WO2021153422A1 - ハロゲン化炭化水素マグネシウム化合物の製造方法、並びに、第3級アルコール化合物及び有機ケイ素化合物の製造方法 - Google Patents

ハロゲン化炭化水素マグネシウム化合物の製造方法、並びに、第3級アルコール化合物及び有機ケイ素化合物の製造方法 Download PDF

Info

Publication number
WO2021153422A1
WO2021153422A1 PCT/JP2021/002091 JP2021002091W WO2021153422A1 WO 2021153422 A1 WO2021153422 A1 WO 2021153422A1 JP 2021002091 W JP2021002091 W JP 2021002091W WO 2021153422 A1 WO2021153422 A1 WO 2021153422A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
compound
hydrocarbon compound
halogenated hydrocarbon
halogenated
Prior art date
Application number
PCT/JP2021/002091
Other languages
English (en)
French (fr)
Inventor
小田 開行
亮介 西本
大祐 安孫子
武範 磯村
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2021573979A priority Critical patent/JPWO2021153422A1/ja
Priority to US17/795,207 priority patent/US20230050880A1/en
Priority to CN202180006438.9A priority patent/CN114728989A/zh
Priority to EP21747923.7A priority patent/EP4067329A4/en
Priority to KR1020227014876A priority patent/KR20220132520A/ko
Publication of WO2021153422A1 publication Critical patent/WO2021153422A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/02Magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/40Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing carbon-to-metal bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/125Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Definitions

  • the present invention relates to a method for producing a halogenated magnesium hydrocarbon compound, and a method for producing a tertiary alcohol compound and an organosilicon compound.
  • the halogenated magnesium hydrocarbon compound is an organometallic compound used in the Grignard reaction.
  • the Grignard reaction is widely used in the synthesis of various organic compounds as a carbon-carbon bond reaction (see Patent Documents 1 and 2).
  • the halogenated magnesium hydrocarbon compounds relatively stable compounds such as methylmagnesium bromide are industrially available as tetrahydrofuran solutions.
  • the halogenated hydrocarbon compound can be industrially produced by reacting the halogenated hydrocarbon compound with magnesium in a solvent such as diethyl ether.
  • halogenated hydrocarbon compound used for react so that magnesium does not remain.
  • the reaction is a solid-liquid reaction, a halogenated magnesium hydrocarbon compound is produced using magnesium having a relatively high specific surface area with an average particle size of about 2 mm or less in order to improve the reaction rate.
  • the synthesis reaction of a halogenated magnesium hydrocarbon compound is accompanied by a large amount of heat generation, and the heat generation may make it difficult to control the synthesis reaction. Therefore, in industrial production, it is necessary to carry out the reaction in a large amount of solvent and adjust the dropping rate of the solution containing the halogenated hydrocarbon compound to control the reaction rate. Therefore, it is difficult to increase the amount of magnesium halogenated hydrocarbon produced per batch. Further, when the scale-up is performed, the heat transfer area of the reaction vessel is reduced, so that there is still room for improvement in terms of heat removal efficiency.
  • An object of the present invention is to provide a method for producing a halogenated magnesium hydrocarbon compound capable of carrying out a reaction under mild conditions.
  • the present inventors have diligently studied the reaction conditions between the halogenated hydrocarbon compound and magnesium. As a result, it was found that there is a correlation between the particle size of magnesium and the reaction efficiency, and further, it was found that the reaction can be easily controlled by reducing the specific surface area of magnesium to a specific range. Further, when the specific surface area of magnesium is reduced, the reaction yield is lowered because the contact ratio between the halogenated hydrocarbon compound and the magnesium surface is lowered, but a filling tower filled with magnesium is prepared and filled. It has been found that the reaction yield of the halogenated hydrocarbon compound is improved by repeatedly passing a solution containing the halogenated hydrocarbon compound through the column. The present invention has been completed based on such findings, and is specifically as follows.
  • a method for producing a halogenated hydrocarbon compound which comprises contacting a halogenated hydrocarbon compound with magnesium having a specific surface area of 1 ⁇ 10 -5 to 2 ⁇ 10 -4 m 2 / g.
  • the halogenated hydrocarbon compound is a monohalogenated alkyl compound, and the following formula (1): (In the formula, R represents a linear or branched alkyl group having 1 to 8 carbon atoms, and X represents a halogen atom.)
  • the method for producing a magnesium halide hydrocarbon compound according to ⁇ 1> which is at least one selected from the alkyl dihalogenated compounds represented by.
  • ⁇ 3> The method for producing a halogenated magnesium hydrocarbon compound according to ⁇ 1> or ⁇ 2>, wherein the halogenated hydrocarbon compound is a bromide hydrocarbon compound.
  • ⁇ 4> The method for producing a halogenated hydrocarbon compound according to any one of ⁇ 1> to ⁇ 3>, wherein the halogenated hydrocarbon compound is brought into contact with the magnesium at ⁇ 78 to 100 ° C.
  • ⁇ 5> The method for producing a halogenated hydrocarbon compound according to any one of ⁇ 1> to ⁇ 4>, wherein the solution containing the halogenated hydrocarbon compound is brought into contact with the magnesium.
  • ⁇ 6> The method for producing a halogenated hydrocarbon compound according to ⁇ 5>, wherein the solution containing the halogenated hydrocarbon compound is passed through a filling tower filled with magnesium.
  • ⁇ 9> The method for producing a halogenated magnesium hydrocarbon compound according to any one of ⁇ 6> to ⁇ 8>, wherein the temperature of the solution containing the halogenated hydrocarbon compound is ⁇ 78 to 100 ° C.
  • a halogenated magnesium hydrocarbon compound by the production method according to any one of ⁇ 1> to ⁇ 9>, and contacting the halogenated hydrocarbon magnesium compound with a ketone compound are included.
  • a method for producing a tertiary alcohol compound A method for producing a tertiary alcohol compound.
  • a method for producing a tertiary alcohol compound which comprises contacting a halogenated hydrocarbon compound, a ketone compound, and magnesium having a specific surface area of 1 ⁇ 10 -5 to 2 ⁇ 10 -4 m 2 / g. ..
  • the halogenated magnesium hydrocarbon compound is produced by the production method according to any one of ⁇ 1> to ⁇ 9>, and the halogenated magnesium hydrocarbon compound is selected from the chlorosilane compound and the alkoxysilane compound.
  • a method for producing an organosilicon compound which comprises contacting the organosilicon compound.
  • the method for producing a halogenated magnesium hydrocarbon compound according to the present invention it is possible to easily control the reaction between the halogenated hydrocarbon compound and magnesium by using magnesium having a small specific surface area. Moreover, since the reaction can be easily controlled, it is possible to easily scale up to an industrial production scale. Further, by preparing a filling tower filled with magnesium and repeatedly passing a solution containing the halogenated hydrocarbon compound through the filling tower, the reaction yield of the halogenated hydrocarbon compound can be improved, which is high. It is possible to produce a halogenated magnesium hydrocarbon compound in yield. Further, it is possible to continuously pass a solution containing a halogenated hydrocarbon compound through a filling tower filled with magnesium, and it is possible to continuously produce a halogenated hydrocarbon compound.
  • the method for producing a magnesium halogenated hydrocarbon compound according to the present embodiment is a method for producing a halogenated hydrocarbon compound and having a specific surface area of 1 ⁇ 10 -5 to 2 to 2 with respect to the halogenated hydrocarbon compound. Includes contact with magnesium, which is ⁇ 10 -4 m 2 / g.
  • the manufacturing method according to this embodiment will be described in detail.
  • Halogenated hydrocarbon compound examples include known compounds such as a chloride hydrocarbon compound, a brominated hydrocarbon compound, and an iodide hydrocarbon compound.
  • a monohalogenated alkyl compound a monohalogenated alkenyl compound; monohalogenation of chlorobenzene, ⁇ -chlorotoluene, bromobenzene, ⁇ -bromotoluene, iodobenzene, ⁇ -iodotoluene and the like.
  • Aromatic hydrocarbon compounds alkyl halides represented by the following formula (1); o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, o-dibromobenzene, m-dibromobenzene, p-dibromobenzene, Dihalogenated aromatic hydrocarbon compounds such as o-diiodobenzene, m-diiodobenzene, and p-diiodobenzene; and the like.
  • R represents a linear or branched alkyl group having 1 to 8 carbon atoms
  • X represents a halogen atom.
  • alkyl group in the monohalogenated alkyl compound a linear or branched alkyl group having 1 to 8 carbon atoms is preferable.
  • monohalogenated alkyl compounds include chloromethane, chloroethane, chloropropane, 2-chloropropane, 1-chloro-2methylpropane, 2-chloro-2methylpropane, 2-bromo-2methylpropane, chlorobutane, and bromobutane.
  • alkenyl group in the monohalogenated alkenyl compound a linear or branched alkenyl group having 2 to 8 carbon atoms is preferable.
  • monohalogenated alkenyl compounds include chloroethylene, 3-chloro-1-propene, bromoethylene, 3-bromo-1-propene, iodoethylene, 3-iodo-1-propene and the like.
  • R in the above formula (1) indicates a linear or branched alkyl group having 1 to 8 carbon atoms.
  • alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group and the like.
  • dihalogenated alkyl compound represented by the above formula (1) 1,3-dichloropropane, 1,4-dichlorobutane, 1,5-dichloropentane, 1,3-dibromopropane, 1,4 -Dibromobutane, 1,5-dibromopentane, 1,3-diiodopropane, 1,4-diiodobutane, 1,5-diiodopentane and the like can be mentioned.
  • halogenated hydrocarbon compounds a monohalogenated alkyl compound and a dihaloalkane alkyl compound represented by the above formula (1) are preferable from the viewpoint of being useful as a Grignard reagent, and a monohalogenated alkyl compound and a dihalogenated alkyl compound are preferable.
  • Compounds are more preferred.
  • Organic solvent When the halogenated hydrocarbon compound is a liquid, it is possible to produce the halogenated hydrocarbon compound by bringing the halogenated hydrocarbon compound into contact with magnesium as it is, but the reaction temperature can be easily controlled. Therefore, it is preferable to dissolve the halogenated hydrocarbon compound in an organic solvent before use.
  • organic solvent include ether solvents such as diethyl ether, diisopropyl ether, dibutyl ether, tert-butyl methyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, and 1,4-dioxane. Be done.
  • One of these ether solvents may be used alone, or may be used as a mixed solution of a plurality of solvents.
  • tetrahydrofuran is preferable from the viewpoint of easy industrial availability and high boiling point.
  • the amount of water contained in the organic solvent used is preferably low, specifically less than 500 ppm, and less than 100 ppm. Is more preferable.
  • the amount of organic solvent used may be appropriately determined in consideration of the scale of the manufacturing equipment, heat removal efficiency, etc.
  • the halogenated hydrocarbon compound is liquid at room temperature, it is organic with respect to 1 part by volume of the halogenated hydrocarbon compound from the viewpoint of productivity and from the viewpoint of suppressing the precipitation of salts such as magnesium halide produced as a by-product in the reaction.
  • the solvent is preferably used in the range of 1 to 99 parts by volume, more preferably in the range of 2 to 98 parts by volume, and even more preferably in the range of 3 to 97 parts by volume.
  • the amount of the halogenated hydrocarbon compound is 1 part by mass.
  • the organic solvent is preferably used in the range of 1 to 130 parts by mass, more preferably in the range of 2 to 120 parts by mass, and further preferably in the range of 3 to 110 parts by mass.
  • magnesium having a specific surface area of 1 ⁇ 10 -5 to 2 ⁇ 10 -4 m 2 / g is used.
  • the specific surface area of magnesium used in a batch system is about 3 ⁇ 10 -4 to 1 ⁇ 10 ⁇ 2 m 2 / g, and is characterized in that the specific surface area is smaller than that of magnesium.
  • the specific surface area of magnesium in the present specification shall be measured by the method shown below.
  • the surface area of magnesium particles whose weight has been measured with a precision balance is calculated by measuring the size with an optical microscope having a magnification of 10 times, and the specific surface area is calculated by dividing this surface area by the particle weight. The same measurement is performed on 10 magnesium particles, and the average value is adopted as the specific surface area.
  • the specific surface area of magnesium is preferably 5 ⁇ 10 -5 to 1 ⁇ 10 -4 m 2 / g.
  • the shape of magnesium is not particularly limited, and examples thereof include a cylindrical pellet shape, a shot shape, a mesh shape, and a rod shape.
  • Magnesium may contain metal impurities. From the viewpoint of suppressing side reactions due to metal impurities, the purity of magnesium is preferably 90% or more, more preferably 99% or more.
  • Magnesium usually reacts with oxygen in the atmosphere to form an oxide film on the surface, and the oxide film interferes with the reaction with the halogenated hydrocarbon compound. Therefore, in order to allow the reaction to proceed smoothly from the initial stage of the reaction start, it is preferable to carry out the magnesium activation treatment before contacting with the halogenated hydrocarbon compound.
  • Magnesium is activated by adding an activator such as methyl iodide, dibromoethylene, or dibromoethane at the initial stage of the reaction to react with the oxide film on the magnesium surface; after washing magnesium with dilute hydrochloric acid, dilute nitrate, etc. The method to be used; and the like.
  • the amount of the activator added is usually sufficient to be used in the range of 5 to 10 mol% with respect to magnesium.
  • the temperature at which the halogenated hydrocarbon compound and magnesium are brought into contact with each other may be appropriately set at a temperature sufficient for the reaction to proceed.
  • the contact temperature is preferably in the range of ⁇ 78 to 100 ° C, more preferably in the range of ⁇ 78 to 60 ° C.
  • the higher the contact temperature the higher the reaction rate, but there is a tendency for side reactions (Wurtz coupling, etc.) between the produced magnesium halogenated hydrocarbon compounds to occur.
  • the contact temperature may be appropriately selected in consideration of the stability of the target magnesium halide hydrocarbon compound and the like.
  • the production method according to this embodiment can be carried out in a reaction vessel equipped with a stirrer.
  • the method of contacting the halogenated hydrocarbon compound with magnesium is not particularly limited. For example, 1) an organic solvent and magnesium are charged in a reaction vessel, an activator is added to activate magnesium, and then the contact temperature is reached. A method of adding a solution in which a halogenated hydrocarbon compound is dissolved in an organic solvent while heating and stirring; 2) The halogenated hydrocarbon compound is charged with an organic solvent, a halogenated hydrocarbon compound and an activator in a reaction vessel. Is dissolved in an organic solvent, the solution is heated to the above contact temperature, and magnesium is added; and the like.
  • the addition of the solution containing the halogenated hydrocarbon compound in the above method 1) or the addition of magnesium in the above method 2) should be carried out so as not to exceed the predetermined contact temperature while checking the temperature inside the reaction vessel. Is preferable. Specifically, in the above method 1), it is preferable to adjust the dropping rate of the solution containing the halogenated hydrocarbon compound. Further, in the above method 2), it is preferable to add magnesium in a plurality of portions.
  • the halogenated hydrocarbon magnesium compound to be produced is relatively unstable, the halogenated hydrocarbon magnesium compound can be produced in the coexistence of a ketone compound or a silicon compound (chlorosilane compound, alkoxysilane compound) described later. It is preferable because the produced magnesium halide hydrocarbon compound can be reacted with a ketone compound or a silicon compound.
  • a method for coexisting a ketone compound or a silicon compound for example, in the above method 1), a ketone compound or a silicon compound is charged in advance together with magnesium in a reaction vessel, and a solution containing a halogenated hydrocarbon compound is added; halogenation.
  • Examples thereof include a method in which a ketone compound or a silicon compound is mixed with a solution containing a hydrocarbon compound, and the solution is added to a reaction vessel. Further, in the above method 2), a method in which an organic solvent, a halogenated hydrocarbon compound, a ketone compound or a silicon compound are charged in advance in a reaction vessel and mixed, and then magnesium is added.
  • the amount of the ketone compound or the silicon compound to be used may be appropriately determined in consideration of the reactivity with the halogenated magnesium hydrocarbon compound to be produced, and usually, the ketone compound or the silicon compound is used with respect to 1 mol of the alkyl halide compound. It may be appropriately used in the range of 1 to 2.5 mol.
  • the amount of magnesium used may be appropriately determined in consideration of the reactivity with the halogenated hydrocarbon compound, and is usually appropriately determined in the range of 1 to 1.5 mol with respect to 1 mol of the halogen atom of the halogenated hydrocarbon compound. You just have to decide.
  • the halogenated hydrocarbon compound is a dihalogenated hydrocarbon compound, theoretically, 2 mol of magnesium is required for 1 mol of the dihalogenated hydrocarbon compound, and it is usually determined appropriately in the range of 2 to 2.5 mol. do it.
  • the reaction atmosphere is preferably an inert atmosphere such as nitrogen or argon.
  • the reaction time may be appropriately determined while checking the conversion rate to the product, a magnesium halide hydrocarbon compound.
  • the reaction time is usually 1 to 24 hours, preferably 3 to 12 hours.
  • magnesium remains after the reaction is completed, it can be used for the next reaction after removing magnesium by filtration or the like. Further, when the ketone compound or the silicon compound is mixed with the solution containing the halogenated hydrocarbon compound, the corresponding tertiary alcohol or organosilane compound is produced. Therefore, it is possible to add an acid after the reaction is completed to decompose the unreacted magnesium halogenated hydrocarbon compound, and then purify the compound by a known means.
  • a packed tower filled with magnesium (hereinafter, also referred to as “magnesium packed tower”) is prepared, and a solution containing a halogenated hydrocarbon compound is passed through the packed tower.
  • a method of producing a halogenated hydrocarbon compound by contacting a halogenated hydrocarbon compound with magnesium can be adopted.
  • the method of passing liquid through a packed column is referred to as a "packed tower distribution method”.
  • the solution containing the halogenated hydrocarbon compound supplied from one end of the packed tower is discharged from the other end of the packed tower while being in contact with magnesium in the packed tower.
  • the reaction temperature can be controlled by shortening the contact time between the halogenated hydrocarbon compound and magnesium. Further, in the packed bed distribution method, it is possible to continuously supply the solution containing the halogenated hydrocarbon compound to the packed bed. Therefore, according to the packed bed distribution method, it is possible to improve the productivity of the halogenated magnesium hydrocarbon compound.
  • a method for producing a halogenated magnesium hydrocarbon compound by a packed bed distribution method will be described in detail.
  • the packed tower is filled with magnesium having a specific surface area of 1 ⁇ 10 -5 to 2 ⁇ 10 -4 m 2 / g.
  • the specific surface area of magsium packed in the packed column is more preferably 5 ⁇ 10 -5 to 1 ⁇ 10 -4 m 2 / g from the viewpoint of the balance between the control of the reaction and the reaction yield. Further, for the purpose of enhancing the reactivity, it is preferable to use magnesium which has been previously activated.
  • the packed tower may be of a shape in which magnesium is filled in a part or all of the inside of the flow path in the packed tower and a solution containing a halogenated hydrocarbon can flow, but the cross-sectional shape of the flow path is circular. Is preferable, and a straight structure without branching or bending inside the packed column is preferable.
  • the cross-sectional shape of the flow path is preferably circular with a diameter of 5 to 50 mm from the viewpoint of enhancing the uniformity of the flux in the cross-sectional area direction and the contact area with magnesium.
  • the diameter of the packed column is more preferably 10 to 30 mm.
  • the length of the packed tower is not particularly limited, and is appropriately selected so that the temperature inside the packed tower when the solution containing the halogenated hydrocarbon compound is circulated and brought into contact with magnesium is within the above-mentioned contact temperature range. do it.
  • the packed tower may have a cooling function such as a jacket that circulates a refrigerant and a Pelche element system.
  • the material of the packed column is not particularly limited, but from the viewpoint of chemical resistance and safety, fluororesin such as polytetrafluoroethylene resin or stainless steel is preferable.
  • the filling rate of magnesium filled in the filling tower is not particularly limited, but if the filling rate is too low, the contact ratio between the halogenated hydrocarbon compound and magnesium tends to decrease, and if the filling rate is too high, halogenation tends to occur. Since the pressure loss when the solution containing the hydrocarbon compound is circulated tends to be large, the ratio of the occupied volume of magnesium to the internal volume of the filling tower may be appropriately set within a range of 10 to 80%.
  • the solution containing the halogenated hydrocarbon compound can be prepared by dissolving the halogenated hydrocarbon compound in the above-mentioned organic solvent to prepare a solution. Further, a solution containing a halogenated hydrocarbon compound and a ketone compound or a silicon compound (chlorosilane compound, alkoxysilane compound) described later may be supplied to the magnesium filling tower.
  • the halogenated magnesium hydrocarbon compound is relatively unstable, the produced halogenated magnesium hydrocarbon compound is reacted with the ketone compound or the silicon compound by mixing the ketone compound or the silicon compound in advance. Is preferable because it enables.
  • the amount of the ketone compound or the silicon compound to be used may be appropriately determined in consideration of the reactivity with the halogenated magnesium hydrocarbon compound to be produced.
  • the ketone compound or the silicon compound is used with respect to 1 mol of the halogenated hydrocarbon compound. Can be appropriately used in the range of 1 to 2.5 mol.
  • the concentration of the halogenated hydrocarbon compound in the solution containing the halogenated hydrocarbon compound is appropriately determined in consideration of the reactivity of the halogenated hydrocarbon compound used, the solubility of the produced halogenated magnesium hydrocarbon compound in the organic solvent, and the like. You just have to decide.
  • the halogenated hydrocarbon compound is liquid at room temperature, it is preferable to use an organic solvent in the range of 1 to 99 parts by volume with respect to 1 part by volume of the halogenated hydrocarbon compound, and use it in the range of 2 to 98 parts by volume. Is more preferable, and it is further preferable to use it in the range of 3 to 97 parts by volume.
  • halogenated hydrocarbon compound When the halogenated hydrocarbon compound is solid at room temperature, it is preferable to use an organic solvent in the range of 1 to 130 parts by mass with respect to 1 part by mass of the halogenated hydrocarbon compound, in the range of 2 to 120 parts by mass. It is more preferable to use it, and it is further preferable to use it in the range of 3 to 110 parts by mass.
  • the contact temperature between the halogenated hydrocarbon compound and magnesium may be appropriately determined within the above-mentioned range of the contact temperature in consideration of reactivity and the like.
  • the desired contact temperature is room temperature or higher, the solution containing the halogenated hydrocarbon compound may be heated and then supplied to the magnesium packed bed.
  • the supply rate of the solution containing the halogenated hydrocarbon compound may be appropriately determined in consideration of the reaction yield, the degree of temperature rise in the magnesium packed column, and the like.
  • the supply rate of the solution containing the halogenated hydrocarbon compound is 10 to 2000 mL. / Min is preferred, more preferably 50-1000 mL / min.
  • the residence time may be appropriately determined in consideration of the reaction yield of the solution flowing through the magnesium packed column, the temperature rise in the magnesium packed column, and the like.
  • the residence time is preferably in the range of 0.1 to 30 seconds. , 0.2 to 20 seconds is more preferable.
  • a halogenated magnesium hydrocarbon compound can be produced by a packed bed distribution method. Further, when the ketone compound or the silicon compound is mixed with the solution containing the halogenated hydrocarbon compound, the produced magnesium halide hydrocarbon compound reacts with the ketone compound or the silicon compound, and the corresponding tertiary alcohol or the corresponding tertiary alcohol or An organic silane compound is produced.
  • the reaction yield is obtained by repeatedly supplying the reaction solution to the magnesium filling column.
  • the rate can be increased.
  • a plurality of magnesium packed columns can be prepared in series, and the reaction solution after passing the solution can be supplied to another magnesium packed column to increase the reaction yield.
  • the number of packed columns when connecting a plurality of packed magnesium columns in series may be determined according to the desired yield of magnesium halide hydrocarbons. If the number of packed columns is increased, a large pressure is required to supply the reaction solution at a predetermined supply rate, which may increase the size of the manufacturing equipment. Therefore, from the viewpoint of economy, the number of packed towers is preferably 2 to 20, and more preferably 2 to 15.
  • the end of the reaction that is, the end of the supply of the reaction solution to the magnesium packed column, may be determined by confirming the reaction yield of the product in the reaction solution discharged from the magnesium packed column.
  • reaction solution can be collected and used for the next reaction. Further, when the ketone compound or the silicon compound is mixed with the solution containing the halogenated hydrocarbon compound, the corresponding tertiary alcohol or organosilane compound is produced. Therefore, after completion of the reaction, an acid can be added to decompose the unreacted magnesium halogenated hydrocarbon compound, and then the compound can be purified by a known means.
  • ⁇ Method for producing tertiary alcohol compound or organic silane compound By reacting the halogenated magnesium hydrocarbon compound obtained by the above production method with a ketone compound or a silicon compound, the corresponding tertiary alcohol or organosilane compound can be produced.
  • a ketone compound or silicon compound a compound used in the Grignard reaction can be used without particular limitation.
  • such ketone compounds include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, ethyl propyl ketone, dipropyl ketone, methyl butyl ketone, ethyl butyl ketone, propyl butyl ketone, dibutyl ketone, methyl isopropyl ketone, and ethyl isopropyl ketone.
  • Diisopropyl ketone Diisopropyl ketone, methyl isobutyl ketone, ethyl isobutyl ketone, diisobutyl ketone, propyl isobutyl ketone, methyl vinyl ketone, cyclohexanone, 2-methylcyclopentanone, acetophenone, benzophenone and the like.
  • Examples of the silicon compound include chlorosilane compounds such as dimethyldichlorosilane, methyltrichlorosilane, trimethylchlorosilane, methyldichlorosilane, vinyltrichlorosilane, phenyltrichlorosilane, and trichlorosilane; methyltrimethoxysilane, dimethyldimethoxysilane, and phenyltrimethoxysilane.
  • Methyltriethoxysilane dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane and other alkoxysilane compounds; And so on.
  • These ketone compounds or silicon compounds may be used alone or in combination of two or more, but it is preferable to use one of them alone from the viewpoint of easy purification after the reaction.
  • the amount of the ketone compound or the silicon compound used may be the amount required to complete the reaction, and usually, the amount of the ketone compound or the silicon compound is in the range of 1 to 2.5 mol with respect to 1 mol of the halogenated magnesium hydrocarbon compound. It may be used as appropriate.
  • the reaction method is also not particularly limited, and a ketone compound or a silicon compound may be added to the reaction solution after the production of the halogenated magnesium hydrocarbon compound, or an organic solvent and the ketone compound or the silicon compound are charged in the reaction vessel. After mixing in, the reaction solution after the production of the halogenated magnesium hydrocarbon compound may be added.
  • the reaction temperature may be appropriately determined in consideration of the reactivity of the magnesium halogenated hydrocarbon compound with the ketone compound or the silicon compound, and is usually appropriately determined in the range of ⁇ 78 to 60 ° C.
  • the reaction time may be appropriately determined in consideration of the reaction yield, and is usually appropriately determined in the range of 1 to 24 hours.
  • an acid can be added to decompose the unreacted magnesium halogenated hydrocarbon compound, and then the compound can be purified by a known means.
  • a gas chromatograph device (Agilent, 6890N) was used for the analysis of each component in Examples and Comparative Examples, and a DB-1 column manufactured by J & W was used as the analysis column.
  • the specific surface area of magnesium in Examples and Comparative Examples as described above, the weight and surface area per particle were measured using a precision balance and an optical microscope observation at a magnification of 10 times, and the specific surface area of each particle was measured. After calculating, it was determined by calculating the average value of 10 particles.
  • Example 1 In a well-dried glass 2L three-necked flask, 800 mL of tetrahydrofuran (water content: 10 ppm) and 4.0 g of granular magnesium having an average specific surface area of 5.8 ⁇ 10-5 m 2 / g were weighed and placed in a magnetic stirrer. A mixed solution of 200 mL of tetrahydrofuran (water content: 10 ppm) and 14.8 g of 1-bromopropane was added dropwise using a dropping tube while stirring with. Since the solution generated heat with the dropping, the dropping rate was adjusted so that the temperature of the reaction solution was maintained at 55 ° C. while cooling the flask in a water bath, and the dropping was completed over 2 hours. After completion of the dropping, the conversion rate to bromopropyl magnesium was analyzed by gas chromatography analysis and found to be 83%.
  • Example 2 200 mL of tetrahydrofuran and 2.4 g of methyl ethyl ketone were weighed in a well-dried 500 mL glass three-necked flask, and a mixed solution of 5 g of bromopropyl magnesium and 100 mL of tetrahydrofuran synthesized in Example 1 using a dropping tube under an argon atmosphere. Was added dropwise over 1 hour.
  • the reaction product was confirmed by 1 H-NMR, the formation of 2-ethyl-2-pentanol was confirmed.
  • the yield was confirmed by gas chromatography, the synthetic yield was 72%.
  • Example 3 200 mL of tetrahydrofuran and 4.4 g of dichlorodimethylsilane were weighed in a well-dried 500 mL glass three-necked flask, and 5 g of bromopropylmagnesium and 100 mL of tetrahydrofuran synthesized in Example 1 were prepared using a dropping tube under an argon atmosphere. The mixed solution was added dropwise over 1 hour. When the reaction product was confirmed by 1 H-NMR, the formation of chlorodimethylpropylsilane was confirmed. When the yield was confirmed by gas chromatography, the synthetic yield was 76%.
  • the magnesium packed tower in the following examples has a circular straight pipe structure having an internal flow path length of 200 mm and a cross section of 20 mm in diameter, and is made of polytetrafluoroethylene resin.
  • the packed tower was held and fixed vertically so that the liquid flowed in from the lower part of the flow path and exited to the upper part.
  • a K-type thermocouple was inserted from the side surface into the lower part of the packed bed, which is the inlet of the liquid, and the upper part, which was the outlet, so that the temperature at the inlet and outlet of the packed tower could be measured.
  • a plunger pump whose wetted part was made of polytetrafluoroethylene was used regardless of the number of connected packing towers.
  • a 1/4 inch PFA tube was used for the connection from the pump to the packed tower and the connection between each packed tower when using multiple packed towers.
  • Example 4 In a well-dried 10 L glass bottle, 7.5 L of tetrahydrofuran (water content: 10 ppm) and 150 g of 1-bromopropane were weighed, shaken and mixed. The glass bottle was placed in a water bath at 30 ° C. The magnesium filling tower is filled with 6.0 g of granular magnesium having an average specific surface area of 5.8 ⁇ 10-5 m 2 / g, and then a mixed solution in a 10 L glass bottle is supplied at a constant flow rate of 400 mL / min to provide magnesium and a solution. Was brought into contact with.
  • the temperature of the solution at the outlet of the packed tower was 42 ° C to 45 ° C when it passed through the packed tower with a thermocouple.
  • the solution was analyzed by gas chromatography to confirm the conversion rate to bromopropyl magnesium, it was 7%.
  • the solution was circulated through the magnesium packed column under the same conditions.
  • the solution passed through the packed column was analyzed by gas chromatography to confirm the conversion rate to bromopropylmagnesium, it was 13%.
  • Example 5 Four magnesium packed towers are connected in series by PFA tubes, and the tubes connecting the packed towers are immersed in a water bath at 30 ° C. so that the liquid temperature at the second and subsequent inlets becomes 30 ° C.
  • a mixed solution of tetrahydrofuran and 1-bromopropane described in 1 was supplied at 400 mL / min and contacted with magnesium at each packed bed.
  • samples immediately after passing through each packed bed were taken from a sampling valve provided between each packed bed, and each was analyzed by gas chromatography to confirm the conversion rate to bromopropyl magnesium. It was 8% later, 15% after the second pass, 24% after the third pass, and 33% after the fourth pass.
  • Example 6 The total amount of the solution obtained in Example 5 was supplied twice more to a magnesium packed column connected in series under the same conditions as in Example 5. The conversion rate after the first supply was 62%, and the conversion rate after the second supply was 87%.
  • Example 7 In a well-dried 10 L glass bottle, 7.5 L of tetrahydrofuran (water content: 10 ppm), 150 g of 1-bromopropane, and 157 g of dichlorodimethylsilane were weighed, shaken and mixed. The obtained mixed solution was repeatedly supplied to a magnesium packed column connected in series under the same conditions as in Example 5 three times. A sample was taken and the conversion rate to chlorodimethylpropylsilane as a raw material was measured by gas chromatography after each passage of four magnesium packed beds. The conversion rate after the first supply was 28%, the conversion rate after the second supply was 54%, and the conversion rate after the third supply was 84%. Table 1 shows the results of the temperature and conversion rate of the solution discharged from the magnesium packed bed in Example 7.
  • Example 8 In a well-dried 10 L glass bottle, 7.5 L of tetrahydrofuran (water content: 10 ppm), 246 g of 1,3-dibromopropane, and 315 g of dichlorodimethylsilane were weighed, shaken and mixed. The obtained mixed solution was repeatedly supplied to a magnesium packed column connected in series under the same conditions as in Example 5 three times. Samples were taken and used for analysis after each passage of four magnesium packed beds. From 1 H-NMR and 29 Si-NMR analysis of the solution after the reaction, it was confirmed that the product was 1,3-di- (dimethylchlorosilyl) propane.
  • the conversion rate at each stage was determined by the internal standard method (internal standard substance toluene) by 1 H-NMR. As a result, the conversion rate after the first supply was 26%, the conversion rate after the second supply was 49%, and the conversion rate after the third supply was 71%.
  • Example 9 In a well-dried 10 L glass bottle, 7.5 L of tetrahydrofuran (water content: 10 ppm) and 150 g of 1-bromopropane were weighed, shaken and mixed. The glass bottle was placed in a water bath at 30 ° C. The magnesium filling tower is filled with 6.0 g of granular magnesium having an average specific surface area of 9.0 ⁇ 10-5 m 2 / g, and then a mixed solution in a 10 L glass bottle is supplied at a constant flow rate of 400 mL / min to provide magnesium and a solution. Was brought into contact with. During the supply of the solution, the temperature of the solution at the outlet of the packed bed was 48 ° C. to 52 ° C.
  • Example 10 Four magnesium packed towers are connected in series with a PFA tube, and the tube connecting each packed tower is immersed in a water bath at 30 ° C. so that the liquid temperature at the second and subsequent inlets becomes 30 ° C.
  • a mixed solution of tetrahydrofuran and 1-bromopropane described in 1 was supplied at 400 mL / min and contacted with magnesium at each packed bed.
  • samples immediately after passing through each packed bed were taken from a sampling valve provided between each packed bed, and each was analyzed by gas chromatography to confirm the conversion rate to bromopropyl magnesium. It was 7% later, 12% after the second pass, 20% after the third pass, and 29% after the fourth pass.
  • Example 11 The total amount of the solution obtained in Example 10 was supplied twice more to a magnesium packed column connected in series under the same conditions as in Example 10. The conversion rate after the first supply was 59%, and the conversion rate after the second supply was 84%.
  • Example 12 In a well-dried 10 L glass bottle, 7.5 L of tetrahydrofuran (water content: 10 ppm), 150 g of 1-bromopropane, and 157 g of dichlorodimethylsilane were weighed, shaken and mixed. The obtained mixed solution was repeatedly supplied to a magnesium packed column connected in series under the same conditions as in Example 5 three times. A sample was taken and the conversion rate to chlorodimethylpropylsilane as a raw material was measured by gas chromatography after each passage of four magnesium packed beds. The conversion rate after the first supply was 25%, the conversion rate after the second supply was 57%, and the conversion rate after the third supply was 89%. Table 1 shows the results of the temperature and conversion rate of the solution discharged from the magnesium packed bed in Example 12.
  • Example 13 In a well-dried 10 L glass bottle, 7.5 L of tetrahydrofuran (water content: 10 ppm), 246 g of 1,3-dibromopropane, and 315 g of dichlorodimethylsilane were weighed, shaken and mixed. The obtained mixed solution was repeatedly supplied to a magnesium packed column connected in series under the same conditions as in Example 5 three times. Samples were taken and used for analysis after each passage of four magnesium packed beds. From 1 H-NMR and 29 Si-NMR analysis of the solution after the reaction, it was confirmed that the product was 1,3-di- (dimethylchlorosilyl) propane.
  • the conversion rate at each stage was determined by the internal standard method (internal standard substance toluene) by 1 H-NMR. As a result, the conversion rate after the first supply was 24%, the conversion rate after the second supply was 51%, and the conversion rate after the third supply was 73%.
  • Example 2 The same operation as in Example 7 was carried out except that 6.0 g of powdered magnesium having an average specific surface area of 3 ⁇ 10 -3 m 2 / g was used as the magnesium to be packed in the packed column. Similar to Comparative Example 1, gas was mixed in the tube supplying the liquid, and it was found that the reaction solution boiled in each packed bed. When the conversion rate to chlorodimethylpropylsilane was analyzed in the same manner as in Example 7, the conversion rate after the first supply was 18%, the conversion rate after the second supply was 24%, and the third time. The conversion rate after supply was 28%. Table 1 shows the results of the temperature and conversion rate of the solution discharged from the magnesium packed bed in Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

ハロゲン化炭化水素化合物と、比表面積が1×10-5~2×10-4/gであるマグネシウムとを接触させることを含むハロゲン化炭化水素マグネシウム化合物の製造方法を提供する。また、その製造方法を利用した第3級アルコール化合物及び有機ケイ素化合物の製造方法を提供する。

Description

ハロゲン化炭化水素マグネシウム化合物の製造方法、並びに、第3級アルコール化合物及び有機ケイ素化合物の製造方法
 本発明は、ハロゲン化炭化水素マグネシウム化合物の製造方法、並びに、第3級アルコール化合物及び有機ケイ素化合物の製造方法に関する。
 ハロゲン化炭化水素マグネシウム化合物は、グリニャール反応に用いられる有機金属化合物である。グリニャール反応は、炭素-炭素結合反応として種々の有機化合物の合成に広く使用されている(特許文献1及び2参照)。ハロゲン化炭化水素マグネシウム化合物のうちメチルマグネシウムブロミド等の比較的安定な化合物は、テトラヒドロフラン溶液として工業的に入手が可能である。また、ハロゲン化炭化水素マグネシウム化合物は、ジエチルエーテル等の溶媒中でハロゲン化炭化水素化合物とマグネシウムとを反応させることにより工業的に製造することができる。
 ハロゲン化炭化水素マグネシウム化合物の製造方法としては、特許文献1及び2に記載のとおり、有機溶媒中にマグネシウムを分散させた後、ヨウ素等を添加してマグネシウムを活性化(すなわち、マグネシウム表面の酸化皮膜を除去)した後、ハロゲン化炭化水素化合物を含有する溶液を滴下して製造する、バッチ式による製造方法が知られている。一般的にハロゲン化炭化水素マグネシウム化合物は、反応活性が高い反面、該化合物自体の安定性が低い場合が多いため、ハロゲン化炭化水素化合物とマグネシウムとの反応を短時間で完結させ、次の反応に供する必要がある。また、反応系中にマグネシウムが残存すると、次の反応の際に副反応の要因となり得るため、マグネシウムに対して過剰量のハロゲン化炭化水素化合物を使用し、マグネシウムが残留しないように反応させることが一般的である。また、当該反応は固液反応であることから、反応速度を向上させるため、平均粒径が2mm以下程度の比表面積が比較的高いマグネシウムを用いてハロゲン化炭化水素マグネシウム化合物を製造している。
特開2009-114166号公報 特許第3779452号公報
 一方、ハロゲン化炭化水素マグネシウム化合物の合成反応は大きな発熱を伴い、発熱により合成反応の制御が困難になる場合がある。そのため、工業的な製造にあたっては、多量の溶媒中で反応を行うとともに、ハロゲン化炭化水素化合物を含有する溶液の滴下速度を調整することで、反応速度を制御しながら製造を行う必要がある。したがって、バッチ当たりのハロゲン化炭化水素マグネシウムの製造量を増加させることが困難である。また、スケールアップを行う際には、反応容器の伝熱面積が低下するため、除熱効率の点でもなお改善の余地があった。
 本発明は、温和な条件で反応を行うことが可能なハロゲン化炭化水素マグネシウム化合物の製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決するため、ハロゲン化炭化水素化合物とマグネシウムとの反応条件について鋭意検討を進めた。その結果、マグネシウムの粒径と反応効率との間に相関があることを見出し、さらに、マグネシウムの比表面積を特定の範囲に低減させることで反応を容易に制御できることを見出した。また、マグネシウムの比表面積を低減させた場合には、ハロゲン化炭化水素化合物とマグネシウム表面との接触割合が低下するため反応収率は低下するが、マグネシウムを充填した充填塔を準備し、該充填塔にハロゲン化炭化水素化合物を含有する溶液を繰り返し通液せしめることで、ハロゲン化炭化水素化合物の反応収率が向上することを見出した。本発明は、このような知見に基づいて完成されたものであり、具体的には以下のとおりである。
<1> ハロゲン化炭化水素化合物と、比表面積が1×10-5~2×10-4/gであるマグネシウムとを接触させることを含むハロゲン化炭化水素マグネシウム化合物の製造方法。
<2> 前記ハロゲン化炭化水素化合物が、モノハロゲン化アルキル化合物、及び下記式(1):
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、炭素数1~8の直鎖状又は分岐鎖状のアルキル基を示し、Xは、ハロゲン原子を示す。)
で表されるジハロゲン化アルキル化合物から選択される少なくとも1種である、<1>に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
<3> 前記ハロゲン化炭化水素化合物が臭化炭化水素化合物である、<1>又は<2>に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
<4> 前記ハロゲン化炭化水素化合物と前記マグネシウムとの接触を-78~100℃で行う、<1>~<3>のいずれか1項に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
<5> 前記ハロゲン化炭化水素化合物を含有する溶液と前記マグネシウムとを接触させる、<1>~<4>のいずれか1項に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
<6> 前記マグネシウムを充填した充填塔に、前記ハロゲン化炭化水素化合物を含有する溶液を通液させる、<5>に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
<7> 前記マグネシウムを充填した充填塔に、前記ハロゲン化炭化水素化合物を含有する溶液を繰り返し通液させる、<6>に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
<8> 前記マグネシウムを充填した充填塔が複数存在し、前記ハロゲン化炭化水素化合物を含有する溶液を複数の前記充填塔に通液させる、<6>又は<7>に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
<9> 前記ハロゲン化炭化水素化合物を含有する溶液の温度が-78~100℃である、<6>~<8>のいずれか1項に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
<10> <1>~<9>のいずれか1項に記載の製造方法によりハロゲン化炭化水素マグネシウム化合物を製造すること、及び
 該ハロゲン化炭化水素マグネシウム化合物とケトン化合物とを接触させること
を含む第3級アルコール化合物の製造方法。
<11> ハロゲン化炭化水素化合物と、ケトン化合物と、比表面積が1×10-5~2×10-4/gであるマグネシウムとを接触させることを含む第3級アルコール化合物の製造方法。
<12> <1>~<9>のいずれか1項に記載の製造方法によりハロゲン化炭化水素マグネシウム化合物を製造すること、及び
 該ハロゲン化炭化水素マグネシウム化合物と、クロロシラン化合物及びアルコキシシラン化合物から選択されるケイ素化合物とを接触させること
を含む有機ケイ素化合物の製造方法。
<13> ハロゲン化アルキル化合物と、クロロシラン化合物及びアルコキシシラン化合物から選択されるケイ素化合物と、比表面積が1×10-5~2×10-4/gであるマグネシウムとを接触させることを含む有機ケイ素化合物の製造方法。
 本発明に係るハロゲン化炭化水素マグネシウム化合物の製造方法によれば、比表面積の小さいマグネシウムを用いることで、ハロゲン化炭化水素化合物とマグネシウムとの反応の制御を容易に行うことが可能である。また、反応の制御が容易であることから、工業的な生産スケールへのスケールアップを容易に行うことが可能である。さらに、マグネシウムを充填した充填塔を準備し、該充填塔にハロゲン化炭化水素化合物を含有する溶液を繰り返し通液せしめることで、ハロゲン化炭化水素化合物の反応収率を向上させることができ、高収率でハロゲン化炭化水素マグネシウム化合物を製造することが可能である。さらに、マグネシウムを充填した充填塔に連続的にハロゲン化炭化水素化合物を含有する溶液を通液せしめることが可能であり、連続的にハロゲン化炭化水素マグネシウム化合物を製造することが可能である。
<ハロゲン化炭化水素マグネシウム化合物の製造方法>
 本実施形態に係るハロゲン化炭化水素マグネシウム化合物の製造方法(以下、単に「本実施形態に係る製造方法」ともいう。)は、ハロゲン化炭化水素化合物と、比表面積が1×10-5~2×10-4/gであるマグネシウムとを接触させることを含む。以下、本実施形態に係る製造方法について詳述する。
[ハロゲン化炭化水素化合物]
 ハロゲン化炭化水素化合物としては、塩化炭化水素化合物、臭化炭化水素化合物、ヨウ化炭化水素化合物等の公知の化合物が挙げられる。ハロゲン化炭化水素化合物として具体的には、モノハロゲン化アルキル化合物;モノハロゲン化アルケニル化合物;クロロベンゼン、α-クロロトルエン、ブロモベンゼン、α-ブロモトルエン、ヨードベンゼン、α-ヨードトルエン等のモノハロゲン化芳香族炭化水素化合物;下記式(1)で表されるジハロゲン化アルキル化合物;o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、o-ジブロモベンゼン、m-ジブロモベンゼン、p-ジブロモベンゼン、o-ジヨードベンゼン、m-ジヨードベンゼン、p-ジヨードベンゼン等のジハロゲン化芳香族炭化水素化合物;などが挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、炭素数1~8の直鎖状又は分岐鎖状のアルキル基を示し、Xは、ハロゲン原子を示す。)
 モノハロゲン化アルキル化合物におけるアルキル基としては、炭素数1~8の直鎖状又は分岐鎖状のアルキル基が好ましい。かかるモノハロゲン化アルキル化合物として具体的には、クロロメタン、クロロエタン、クロロプロパン、2-クロロプロパン、1-クロロ-2メチルプロパン、2-クロロ-2メチルプロパン、2-ブロモ-2メチルプロパン、クロロブタン、ブロモブタン、クロロペンタン、クロロシクロペンタン、クロロヘキサン、ブロモメタン、ブロモエタン、ブロモプロパン、2-ブロモプロパン、1-ブロモ-2メチルプロパン、ブロモブタン、ブロモペンタン、ブロモシクロペンタン、ブロモヘキサン、ヨードメタン、ヨードエタン、ヨードプロパン、2-ヨードプロパン、1-ヨード-2メチルプロパン、2-ヨード-2メチルプロパン、ヨードペンタン、ヨードシクロペンタン、ヨードヘキサン等が挙げられる。
 モノハロゲン化アルケニル化合物におけるアルケニル基としては、炭素数2~8の直鎖状又は分岐鎖状のアルケニル基が好ましい。かかるモノハロゲン化アルケニル化合物として具体的には、クロロエチレン、3-クロロ-1-プロペン、ブロモエチレン、3-ブロモ-1-プロペン、ヨードエチレン、3-ヨード-1-プロペン等が挙げられる。
 上記式(1)におけるRは、炭素数1~8の直鎖状又は分岐鎖状のアルキル基を示す。かかるアルキル基として具体的には、メチル基、エチル基、プロピル基、ブチル基、イソブチル基等が挙げられる。上記式(1)で表されるジハロゲン化アルキル化合物として具体的には、1,3-ジクロロプロパン、1,4-ジクロロブタン、1,5-ジクロロペンタン、1,3-ジブロモプロパン、1,4-ジブロモブタン、1,5-ジブロモペンタン、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,5-ジヨードペンタン等が挙げられる。
 これらのハロゲン化炭化水素化合物の中でも、グリニャール試薬として有用な点から、モノハロゲン化アルキル化合物及び上記式(1)で表されるジハロゲン化アルキル化合物が好ましく、モノ臭化アルキル化合物及びジ臭化アルキル化合物がより好ましい。
[有機溶媒]
 ハロゲン化炭化水素化合物が液体である場合、該ハロゲン化炭化水素化合物をそのままマグネシウムと接触せしめて、ハロゲン化炭化水素マグネシウム化合物を製造することも可能であるが、反応温度の制御が容易である点から、ハロゲン化炭化水素化合物を有機溶媒に溶解させて用いることが好ましい。かかる有機溶媒として具体的には、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒が挙げられる。これらのエーテル系溶媒は、1種を単独で用いてもよく、複数の溶媒の混合溶液として用いてもよい。これらのエーテル系溶媒の中でも、工業的入手の容易さや沸点の高さの点からテトラヒドロフランが好ましい。
 また、ハロゲン化炭化水素マグネシウム化合物は水と反応して失活するため、使用する有機溶媒に含まれる水分量は低いことが好ましく、具体的には500ppm未満であることが好ましく、100ppm未満であることがより好ましい。
 有機溶媒の使用量は、製造設備の規模、除熱効率等を勘案して適宜決定すればよい。ハロゲン化炭化水素化合物が常温で液体の場合、生産性の観点、及び反応で副生するハロゲン化マグネシウム等の塩の析出を抑制する観点から、ハロゲン化炭化水素化合物1容量部に対して、有機溶媒を1~99容量部の範囲で用いることが好ましく、2~98容量部の範囲で用いることがより好ましく、3~97容量部の範囲で用いることがさらに好ましい。また、ハロゲン化炭化水素化合物が常温で固体の場合、生産性の観点、及び反応で副生するハロゲン化マグネシウム等の塩の析出を抑制する観点から、ハロゲン化炭化水素化合物1質量部に対して、有機溶媒を1~130質量部の範囲で用いることが好ましく、2~120質量部の範囲で用いることがより好ましく、3~110質量部の範囲で用いることがさらに好ましい。
[マグネシウム]
 本実施形態に係る製造方法では、比表面積が1×10-5~2×10-4/gであるマグネシウムを使用する。通常、バッチ式で使用されるマグネシウムの比表面積は3×10-4~1×10-2/g程度であり、該マグネシウムよりも比表面積が小さいことが特徴である。このようなマグネシウムを用いることにより、ハロゲン化炭化水素化合物とマグネシウムとの反応の制御を容易に行うことが可能である。なお、本明細書におけるマグネシウムの比表面積は、以下に示す方法により測定するものとする。
(マグネシウムの比表面積の測定方法)
 精密天秤で重量を測定したマグネシウム粒子について、拡大倍率10倍の光学顕微鏡によりサイズを測定して表面積を算出し、この表面積を粒子重量で除することにより比表面積を算出する。同様の測定をマグネシウム粒子10個について実施し、その平均値を比表面積として採用する。
 ハロゲン化炭化水素化合物を含有する溶液とマグネシウムとの接触面積が反応速度に影響を与えることから、マグネシウムの比表面積が小さすぎると反応が効率的に行われず反応速度が遅くなり望ましくなく、比表面積が大きすぎると反応速度が大きくなりすぎ、反応が暴走し制御不能となる危険がある。特に、上述したエーテル系溶媒は沸点が低いものが多く、反応が暴走すると突沸等の虞がある。ハロゲン化炭化水素マグネシウム化合物の生産性の観点から、マグネシウムの比表面積は、5×10-5~1×10-4/gであることが好ましい。
 マグネシウムの形状は特に限定されず、円筒状のペレット形状、ショット形状、メッシュ状、棒状等の形状が挙げられる。マグネシウムは、金属不純物を含有することがある。金属不純物による副反応抑制の観点から、マグネシウムの純度は90%以上であることが好ましく、99%以上であることがより好ましい。
 マグネシウムは通常、大気中で酸素と反応して表面に酸化膜を形成しており、該酸化膜は、ハロゲン化炭化水素化合物との反応を妨害する。このため、反応開始初期からスムーズに反応を進行させるために、ハロゲン化炭化水素化合物と接触させる前にマグネシウムの活性化処理を行うことが好ましい。マグシウムの活性化処理としては、反応初期にヨウ化メチル、ジブロモエチレン、ジブロモエタン等の活性化剤を添加し、マグネシウム表面の酸化膜と反応させる方法;マグネシウムを希塩酸、希硝酸等で洗浄した後に用いる方法;などが挙げられる。活性化剤の添加量は、通常、マグネシウムに対して5~10mol%の範囲で用いれば十分である。
[接触温度]
 ハロゲン化炭化水素化合物とマグネシウムとを接触させる温度は、反応が進行するに十分な温度で適宜設定すればよい。反応性の観点から、接触温度は-78~100℃の範囲であることが好ましく、-78~60℃の範囲であることがより好ましい。接触温度が高いほど反応速度は向上する一方で、生成するハロゲン化炭化水素マグネシウム化合物同士の反応(ウルツカップリング等)の副反応が生じやすい傾向にある。他方、温度が低すぎる場合には反応速度が低下し、反応時間が長時間に及ぶ傾向にある。したがって、上記接触温度は、目的とするハロゲン化炭化水素マグネシウム化合物の安定性等を勘案して適宜選択すればよい。
[バッチ式による製造方法]
 本実施形態に係る製造方法は、撹拌装置を備えた反応容器内で実施することができる。ハロゲン化炭化水素化合物とマグネシウムとを接触させる方法は特に制限されず、例えば、1)反応容器に有機溶媒とマグネシウムを仕込み、活性化剤を添加してマグネシウムを活性化した後、上記接触温度に加熱し、撹拌しながらハロゲン化炭化水素化合物を有機溶媒に溶解させた溶液を添加する方法;2)反応容器に有機溶媒とハロゲン化炭化水素化合物と活性化剤とを仕込み、ハロゲン化炭化水素化合物を有機溶媒に溶解させた後、溶液を上記接触温度に加熱し、マグネシウムを添加する方法;などが挙げられる。上記方法1)におけるハロゲン化炭化水素化合物を含有する溶液の添加、或いは上記方法2)におけるマグネシウムの添加は、反応容器内の温度を確認しながら、所定の接触温度を超えないように実施することが好ましい。具体的に、上記方法1)では、ハロゲン化炭化水素化合物を含有する溶液の滴下速度を調整することが好ましい。また、上記方法2)では、マグネウシムを複数回に分けて分割添加することが好ましい。
 製造するハロゲン化炭化水素マグネシウム化合物が比較的不安定である場合には、後述するケトン化合物又はケイ素化物(クロロシラン化合物、アルコキシシラン化合物)を共存させながらハロゲン化炭化水素マグネシウム化合物を製造することで、製造されたハロゲン化炭化水素マグネシウム化合物とケトン化合物又はケイ素化合物とを反応させることが可能となるため好ましい。ケトン化合物又はケイ素化合物を共存させる方法としては、例えば、上記方法1)では、予め反応容器にマグネシウムとともにケトン化合物又はケイ素化合物を仕込み、ハロゲン化炭化水素化合物を含有する溶液を添加する方法;ハロゲン化炭化水素化合物を含有する溶液にケトン化合物又はケイ素化合物を混合し、該溶液を反応容器に添加する方法;などが挙げられる。また、上記方法2)では、予め反応容器に、有機溶媒とハロゲン化炭化水素化合物とケトン化合物又はケイ素化合物とを仕込んで混合した後、マグネシウムを添加する方法が挙げられる。
 ケトン化合物又はケイ素化合物の使用量は、生成するハロゲン化炭化水素マグネシウム化合物との反応性を勘案して適宜決定すればよく、通常、ハロゲン化アルキル化合物1モルに対して、ケトン化合物又はケイ素化合物を1~2.5モルの範囲で適宜使用すればよい。
 マグネシウムの使用量は、ハロゲン化炭化水素化合物との反応性を勘案して適宜決定すればよく、通常、ハロゲン化炭化水素化合物のハロゲン原子1モルに対して1~1.5モルの範囲で適宜決定すればよい。ハロゲン化炭化水素化合物がジハロゲン化炭化水素化合物である場合、理論上、ジハロゲン化炭化水素化合物1モルに対して2モルのマグネシウムが必要であり、通常、2~2.5モルの範囲で適宜決定すればよい。
 反応雰囲気は、窒素、アルゴン等の不活性雰囲気が好ましい。
 反応時間は、生成物であるハロゲン化炭化水素マグネシウム化合物への転化率を確認しながら適宜決定すればよい。反応時間は、通常、1~24時間であり、好ましくは3~12時間である。
 反応終了後、マグネシウムが残存している場合には、濾過等によりマグネシウムを除去した後、次の反応に用いることができる。また、ハロゲン化炭化水素化合物を含有する溶液にケトン化合物又はケイ素化合物を混合した場合には、対応する第3級アルコール或いは有機シラン化合物が生成している。したがって、反応終了後に酸を添加し、未反応のハロゲン化炭化水素マグネシウム化合物を分解した後、公知の手段により精製することが可能である。
[充填塔流通方式による製造方法]
 本実施形態に係る製造方法では、マグネシウムを充填した充填塔(以下、「マグネシウム充填塔」ともいう。)を準備し、該充填塔にハロゲン化炭化水素化合物を含有する溶液を通液せしめることで、ハロゲン化炭化水素化合物とマグネシウムとを接触させてハロゲン化炭化水素マグネシウム化合物を製造する方法を採用することができる。以下、マグネシウム充填塔に通液せしめる方法を「充填塔流通方式」という。充填塔流通方式において、充填塔の一端から供給されたハロゲン化炭化水素化合物を含有する溶液は、充填塔内のマグネシウムと接触しながら、充填塔の他端より排出される。このため、充填塔流通方式によれば、ハロゲン化炭化水素化合物とマグネシウムとの接触時間を短縮することにより、反応温度を制御することが可能である。また、充填塔流通方式では、ハロゲン化炭化水素化合物を含有する溶液を充填塔に連続的に供給することが可能である。このため、充填塔流通方式によれば、ハロゲン化炭化水素マグネシウム化合物の生産性を向上させることが可能である。以下、充填塔流通方式によるハロゲン化炭化水素マグネシウム化合物の製造方法について詳述する。
(マグネシウム)
 充填塔流通方式による製造方法では、比表面積が1×10-5~2×10-4/gであるマグネシウムを充填塔に充填する。このとき、充填塔内のマグネシウムの比表面積が大きすぎると、充填塔に供給されたハロゲン化炭化水素化合物に対するマグネシウムの接触面積が大きくなりすぎ、反応の制御が困難になるため好ましくない。また、マグネシウムの比表面積が小さすぎると、反応効率が大きく低下するため好ましくない。充填塔内に充填されるマグシウムの比表面積は、反応の制御と反応収率とのバランスの観点から、5×10-5~1×10-4/gであることがより好ましい。また、反応性を高める目的から、予め活性化処理を行ったマグネシウムを用いることが好ましい。
(充填塔)
 充填塔は、マグネシウムが充填塔内の流路内部の一部又は全部に充填され、ハロゲン化炭化水素を含有する溶液が流通可能な形状のものであればよいが、流路の断面形状は円形が好ましく、充填塔内部での分岐も屈曲も無いストレート構造であることが好ましい。流路の断面形状は、断面積方向での流束及びマグネシウムとの接触面積の均一性を高める観点から、直径5~50mmの円形であることが好ましい。流路の断面積が小さいと、ハロゲン化炭化水素化合物を含有する溶液を流通させる際の圧力損失が大きくなる傾向があり、流路の断面積が大きいと、渦流の発生等により、ハロゲン化炭化水素化合物を含有する溶液が不均一になりやすい傾向がある。反応の制御と反応収率とのバランスの観点から、充填塔の直径は、10~30mmであることがより好ましい。充填塔の長さは、特に限定されず、ハロゲン化炭化水素化合物を含有する溶液を流通してマグネシウムと接触せしめる際の充填塔内の温度が上述した接触温度の範囲内になるように適宜選択すればよい。充填塔の長さが過度に長いとハロゲン化炭化水素化合物を含有する溶液を流通する際の圧力損失が大きくなる傾向があるため、5~100cmの範囲で適宜選択すればよい。充填塔は、冷媒を循環するジャケット、ペルチェ素子方式等の冷却機能を具備していてもよい。充填塔の材質は特に限定されないが、耐薬品性及び安全性の観点から、ポリテトラフルオロエチレン樹脂等のフッ素樹脂やステンレス鋼が好ましい。
 充填塔に充填されるマグネシウムの充填率は特に限定されないが、充填率が低すぎると、ハロゲン化炭化水素化合物とマグネシウムとの接触割合が低下する傾向にあり、充填率が高すぎると、ハロゲン化炭化水素化合物を含有する溶液を流通させる際の圧力損失が大きくなる傾向があるため、充填塔の内容積に対するマグネシウムの占有容積割合が10~80%となる範囲で適宜設定すればよい。
(ハロゲン化炭化水素化合物を含有する溶液)
 ハロゲン化炭化水素化合物を含有する溶液は、ハロゲン化炭化水素化合物を上述した有機溶媒に溶解させて溶液とすることにより調製することができる。また、ハロゲン化炭化水素化合物と後述するケトン化合物又はケイ素化合物(クロロシラン化合物、アルコキシシラン化合物)とを含有する溶液をマグネシウム充填塔に供給してもよい。ハロゲン化炭化水素マグネシウム化合物が比較的不安定である場合には、予めケトン化合物又はケイ素化合物を混合させておくことで、製造されたハロゲン化炭化水素マグネシウム化合物とケトン化合物又はケイ素化合物と反応させることが可能となるため好ましい。
 ケトン化合物又はケイ素化合物の使用量は、生成するハロゲン化炭化水素マグネシウム化合物との反応性を勘案して適宜決定すればよく、通常、ハロゲン化炭化水素化合物1モルに対して、ケトン化合物又はケイ素化合物を1~2.5モルの範囲で適宜使用すればよい。
 ハロゲン化炭化水素化合物を含有する溶液におけるハロゲン化炭化水素化合物の濃度は、用いるハロゲン化炭化水素化合物の反応性や、生成するハロゲン化炭化水素マグネシウム化合物の有機溶媒への溶解度等を勘案して適宜決定すればよい。ハロゲン化炭化水素化合物が常温で液体の場合、ハロゲン化炭化水素化合物1容量部に対して、有機溶媒を1~99容量部の範囲で用いることが好ましく、2~98容量部の範囲で用いることがより好ましく、3~97容量部の範囲で用いることがさらに好ましい。また、ハロゲン化炭化水素化合物が常温で固体の場合、ハロゲン化炭化水素化合物1質量部に対して、有機溶媒を1~130質量部の範囲で用いることが好ましく、2~120質量部の範囲で用いることがより好ましく、3~110質量部の範囲で用いることがさらに好ましい。
(充填塔流通方式によるハロゲン化炭化水素マグネシウム化合物の製造)
 ハロゲン化炭化水素化合物とマグネシウムとの接触温度は、反応性等を勘案して上述した接触温度の範囲で適宜決定すればよい。なお、所望する接触温度が室温以上である場合には、ハロゲン化炭化水素化合物を含有する溶液を加熱した上でマグネシウム充填塔に供給すればよい。
 ハロゲン化炭化水素化合物を含有する溶液の供給速度は、反応収率、マグネシウム充填塔内での温度上昇の度合い等を勘案して適宜決定すればよい。例えば、直径5~50mmで高さが0.1~1m、充填率が10~80%であるマグネシウム充填塔を用いた場合、ハロゲン化炭化水素化合物を含有する溶液の供給速度は、10~2000mL/分が好ましく、50~1000mL/分がより好ましい。
 マグネシウム充填塔内におけるハロゲン化炭化水素化合物を含有する溶液の滞留時間は、長いほど反応収率が高くなる傾向にある一方で、反応熱による温度上昇も高くなる傾向にある。したがって、上記滞留時間は、マグネシウム充填塔を流通した溶液の反応収率、マグネシウム充填塔内の温度上昇等を勘案して適宜決定すればよい。例えば、直径5~50mmで高さが0.1~1m、充填率が10~80%であるマグネシウム充填塔を用いた場合の滞留時間は、0.1~30秒の範囲とすることが好ましく、0.2~20秒の範囲とすることがより好ましい。
 充填塔流通方法により、ハロゲン化炭化水素マグネシウム化合物を製造することができる。また、ハロゲン化炭化水素化合物を含有する溶液にケトン化合物又はケイ素化合物を混合した場合には、生成したハロゲン化炭化水素マグネシウム化合物とケトン化合物又はケイ素化合物とが反応し、対応する第3級アルコール又は有機シラン化合物が生成する。
 マグネシウム充填塔に流通した反応液におけるハロゲン化炭化水素マグネシウム化合物、或いは第3級アルコール又は有機ケイ素化合物の収率が低い場合には、上記反応液をマグネシウム充填塔に繰り返し供給することにより、反応収率を高めることができる。或いは、マグネシウム充填塔を複数直列に準備し、通液後の反応液を他のマグネシウム充填塔に供給して反応収率を高めることができる。マグネシウム充填塔に反応液を繰り返し供給する際、或いは他のマグネシウム充填塔に反応液を供給する際に、反応液の温度が高い場合には、該反応液を冷却した後、マグネシウム充填塔に供給すればよい。複数のマグネシウム充填塔を直列に連結させる際の充填塔の数は、所望するハロゲン化炭化水素マグネシウムの収率に応じて決めればよい。充填塔の数を増加させると反応液を所定の供給速度で供給せしめるために大きな圧力が必要となり、製造設備が大型化する虞がある。このため、経済性の観点から、充填塔の数は2基から20基が好ましく、2基から15基がより好ましい。反応の終了、すなわちマグネシウム充填塔への反応液の供給の終了は、マグネシウム充填塔から排出された反応液における生成物の反応収率を確認して決定すればよい。
 反応終了後、反応液を回収し、次の反応に用いることができる。また、ハロゲン化炭化水素化合物を含有する溶液にケトン化合物又はケイ素化合物を混合した場合には、対応する第3級アルコール又は有機シラン化合物が生成している。したがって、反応終了後は酸を添加し、未反応のハロゲン化炭化水素マグネシウム化合物を分解した後、公知の手段により精製することが可能である。
<第3級アルコール化合物又は有機シラン化合物の製造方法>
 上記の製造方法により得られたハロゲン化炭化水素マグネシウム化合物をケトン化合物又はケイ素化合物と反応させることで、対応する第3級アルコール又は有機シラン化合物を製造することができる。上記ケトン化合物又はケイ素化合物としては、グリニャール反応に用いられる化合物を特に制限なく用いることができる。
 かかるケトン化合物として具体的には、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、エチルプロピルケトン、ジプロピルケトン、メチルブチルケトン、エチルブチルケトン、プロピルブチルケトン、ジブチルケトン、メチルイソプロピルケトン、エチルイソプロピルケトン、ジイソプロピルケトン、メチルイソブチルケトン、エチルイソブチルケトン、ジイソブチルケトン、プロピルイソブチルケトン、メチルビニルケトン、シクロヘキサノン、2-メチルシクロペンタノン、アセトフェノン、ベンゾフェノン等が挙げられる。また、ケイ素化合物としては、ジメチルジクロロシラン、メチルトリクロロシラン、トリメチルクロロシラン、メチルジクロロシラン、ビニルトリクロロシラン、フェニルトリクロロシラン、トリクロロシラン等のクロロシラン化合物;メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン等のアルコキシシラン化合物;などが挙げられる。これらのケトン化合物又はケイ素化合物は、1種を単独で用いてもよく、2種以上を併用してもよいが、反応後の精製が容易な点から、1種を単独で用いることが好ましい。
 ケトン化合物又はケイ素化合物の使用量は、反応完結する必要な量を用いればよく、通常、ハロゲン化炭化水素マグネシウム化合物1モルに対して、ケトン化合物又はケイ素化合物を1~2.5モルの範囲で適宜使用すればよい。
 反応方法についても特に制限されず、ハロゲン化炭化水素マグネシウム化合物の製造後の反応液にケトン化合物又はケイ素化合物を添加してもよいし、反応容器に有機溶媒と、ケトン化合物又はケイ素化合物とを仕込んで混合した後、ハロゲン化炭化水素マグネシウム化合物の製造後の反応液を添加してもよい。
 反応温度は、ハロゲン化炭化水素マグネシウム化合物とケトン化合物又はケイ素化合物との反応性を勘案して適宜決定すればよく、通常、-78~60℃の範囲で適宜決定すればよい。反応時間についても反応収率を勘案して適宜決定すればよく、通常、1~24時間の範囲で適宜決定すればよい。反応終了後は酸を添加し、未反応のハロゲン化炭化水素マグネシウム化合物を分解した後、公知の手段により精製することが可能である。
 以下、本発明について代表的な例を示し具体的に説明するが、本発明はこれらに何ら制限されるものではない。実施例及び比較例における各成分の分析は、ガスクロマトグラフ装置(アジレント社製、6890N)を使用し、分析カラムとしては、J&W社製のDB-1カラムを使用した。また、実施例及び比較例におけるマグネシウムの比表面積は、上述したように、精密天秤及び拡大倍率10倍の光学顕微鏡観察を用いて粒子1個当たりの重量及び表面積を測定し、各粒子の比表面積を算出した後、10個の粒子の平均値を求めることにより決定した。
<実施例1>
 よく乾燥させたガラス製の2L三口フラスコに、テトラヒドロフラン(水分量:10ppm)800mL、及び平均比表面積5.8×10-5/gの粒状マグネシウム4.0gを秤取し、マグネチックスターラーで撹拌しながら、滴下管を用いてテトラヒドロフラン(水分量:10ppm)200mLと1-ブロモプロパン14.8gとの混合溶液を滴下した。滴下とともに溶液は発熱したため、フラスコを水浴で冷やしながら反応溶液の温度が55℃を保つように滴下速度を調整して、2時間かけて滴下を完了させた。滴下完了後、ブロモプロピルマグネシウムへの転化率をガスクロマトグラフィー分析によって分析したところ、83%であった。
<実施例2>
 よく乾燥した500mLガラス製三口フラスコに、200mLのテトラヒドロフラン及び2.4gのメチルエチルケトンを秤取し、アルゴン雰囲気下、滴下管を用いて実施例1で合成したブロモプロピルマグネシウム5gとテトラヒドロフラン100mLとの混合溶液を1時間かけて滴下した。反応生成物をH-NMRにより確認したところ、2-エチル-2-ペンタノールの生成が確認できた。ガスクロマトグラフィーにより収率を確認したところ、合成収率は72%であった。
<実施例3>
 よく乾燥した500mLガラス製三口フラスコに、200mLのテトラヒドロフラン及び4.4gのジクロロジメチルシランを秤取し、アルゴン雰囲気下、滴下管を用いて実施例1で合成したブロモプロピルマグネシウム5gとテトラヒドロフラン100mLとの混合溶液を1時間かけて滴下した。反応生成物をH-NMRにより確認したところ、クロロジメチルプロピルシランの生成が確認できた。ガスクロマトグラフィーにより収率を確認したところ、合成収率は76%であった。
<マグネシウム充填塔の準備>
 以下の実施例におけるマグネシウム充填塔は、内部の流路長さが200mm、断面が直径20mmの円形の直管構造で、ポリテトラフルオロエチレン樹脂製のものを使用した。マグネシウム充填塔に対して液を流通させる場合には、充填塔を鉛直に保持固定し、液が流路下部から流入し上部に抜けるように実施した。また、液の入り口である充填塔の下部及び出口である上部に側面からK型熱電対を差し込んで設置し、充填塔の入口及び出口における温度を測定できるようにした。マグネシウム充填塔への液体の供給は、充填塔の連結本数によらず、接液部がポリテトラフルオロエチレン製のプランジャーポンプを用いた。ポンプから充填塔への接続、及び複数本の充填塔を使用する場合の各充填塔間の接続には、1/4インチのPFA製チューブを用いた。
<実施例4>
 よく乾燥させた10Lガラス瓶に、テトラヒドロフラン(水分量:10ppm)7.5L、及び1-ブロモプロパン150gを秤取し、振り混ぜて混合した。ガラス瓶を30℃の水浴中に設置した。上記マグネシウム充填塔に平均比表面積5.8×10-5/gの粒状マグネシウム6.0gを充填したのち、10Lガラス瓶中の混合溶液を400mL/分の一定流速で供給し、マグネシウムと溶液とを接触させた。溶液供給中、充填塔の出口における溶液温度を熱電対で充填塔を通過したところ、42℃から45℃であった。溶液をガスクロマトグラフィーで分析してブロモプロピルマグネシウムへの転化率を確認したところ、7%であった。該溶液を上記マグネシウム充填塔に同条件で流通させた。充填塔を通過した溶液をガスクロマトグラフィーで分析してブロモプロピルマグネシウムへの転化率を確認したところ、13%であった。
<実施例5>
 上記マグネシウム充填塔をPFAチューブで4本直列に連結し、各充填塔をつなぐチューブを30℃の水浴に浸漬し、2本目以降の入口における液温が30℃になるようにして、実施例4に記載のテトラヒドロフラン及び1-ブロモプロパンの混合溶液を400mL/分で供給し、各充填塔でマグネシウムと接触させた。溶液供給中に、各充填塔間に設けたサンプリングバルブより各充填塔を通過した直後のサンプルをとり、それぞれガスクロマトグラフィーにより分析してブロモプロピルマグネシウムへの転化率を確認したところ、1本目通過後で8%、2本目通過後で15%、3本目通過後で24%、4本目通過後で33%であった。
<実施例6>
 実施例5で得られた溶液の全量について、さらに2回、実施例5と同じ条件で4本直列に連結したマグネシウム充填塔に供給した。1回目の供給後の転化率は62%であり、2回目の供給後の転化率は87%であった。
<実施例7>
 よく乾燥させた10Lガラス瓶に、テトラヒドロフラン(水分量:10ppm)7.5L、1-ブロモプロパン150g、及びジクロロジメチルシラン157gを秤取し、振り混ぜて混合した。得られた混合溶液を、実施例5と同じ条件で4本直列に連結したマグネシウム充填塔に3回繰り返して供給した。4本のマグネシウム充填塔を1回通液させるごとに、サンプルを取得してガスクロマトグラフィーで原料のクロロジメチルプロピルシランへの転化率を測定した。1回目の供給後の転化率は28%であり、2回目の供給後の転化率は54%であり、3回目の供給後の転化率は84%であった。実施例7におけるマグネシウム充填塔から排出された溶液の温度、及び転化率の結果を表1に示す。
<実施例8>
 よく乾燥させた10Lガラス瓶に、テトラヒドロフラン(水分量:10ppm)7.5L、1,3-ジブロモプロパン246g、及びジクロロジメチルシラン315gを秤取し、振り混ぜて混合した。得られた混合溶液を、実施例5と同じ条件で4本直列に連結したマグネシウム充填塔に3回繰り返して供給した。4本のマグネシウム充填塔を1回通液させるごとに、サンプルを取得して分析に供した。反応後の溶液のH-NMR及び29Si-NMR分析から、生成物は1,3-ジ―(ジメチルクロロシリル)プロパンであることを確認した。各段階における転化率は、H-NMRによる内部標準法(内部標準物質トルエン)により決定した。その結果、1回目の供給後の転化率は26%であり、2回目の供給後の転化率は49%であり、3回目の供給後の転化率は71%であった。
<実施例9>
 よく乾燥させた10Lガラス瓶に、テトラヒドロフラン(水分量:10ppm)7.5L、及び1-ブロモプロパン150gを秤取し、振り混ぜて混合した。ガラス瓶を30℃の水浴中に設置した。上記マグネシウム充填塔に平均比表面積9.0×10-5/gの粒状マグネシウム6.0gを充填したのち、10Lガラス瓶中の混合溶液を400mL/分の一定流速で供給し、マグネシウムと溶液とを接触させた。溶液供給中、充填塔の出口における溶液温度を熱電対で充填塔を通過したところ、48℃から52℃であった。溶液をガスクロマトグラフィーで分析してブロモプロピルマグネシウムへの転化率を確認したところ、5%であった。該溶液を上記マグネシウム充填塔に同条件で流通させた。充填塔を通過した溶液をガスクロマトグラフィーで分析してブロモプロピルマグネシウムへの転化率を確認したところ、11%であった。
<実施例10>
 上記マグネシウム充填塔をPFAチューブで4本直列に連結し、各充填塔をつなぐチューブを30℃の水浴に浸漬し、2本目以降の入口における液温が30℃になるようにして、実施例9に記載のテトラヒドロフラン及び1-ブロモプロパンの混合溶液を400mL/分で供給し、各充填塔でマグネシウムと接触させた。溶液供給中に、各充填塔間に設けたサンプリングバルブより各充填塔を通過した直後のサンプルをとり、それぞれガスクロマトグラフィーにより分析してブロモプロピルマグネシウムへの転化率を確認したところ、1本目通過後で7%、2本目通過後で12%、3本目通過後で20%、4本目通過後で29%であった。
<実施例11>
 実施例10で得られた溶液の全量について、さらに2回、実施例10と同じ条件で4本直列に連結したマグネシウム充填塔に供給した。1回目の供給後の転化率は59%であり、2回目の供給後の転化率は84%であった。
<実施例12>
 よく乾燥させた10Lガラス瓶に、テトラヒドロフラン(水分量:10ppm)7.5L、1-ブロモプロパン150g、及びジクロロジメチルシラン157gを秤取し、振り混ぜて混合した。得られた混合溶液を、実施例5と同じ条件で4本直列に連結したマグネシウム充填塔に3回繰り返して供給した。4本のマグネシウム充填塔を1回通液させるごとに、サンプルを取得してガスクロマトグラフィーで原料のクロロジメチルプロピルシランへの転化率を測定した。1回目の供給後の転化率は25%であり、2回目の供給後の転化率は57%であり、3回目の供給後の転化率は89%であった。実施例12におけるマグネシウム充填塔から排出された溶液の温度、及び転化率の結果を表1に示す。
<実施例13>
 よく乾燥させた10Lガラス瓶に、テトラヒドロフラン(水分量:10ppm)7.5L、1,3-ジブロモプロパン246g、及びジクロロジメチルシラン315gを秤取し、振り混ぜて混合した。得られた混合溶液を、実施例5と同じ条件で4本直列に連結したマグネシウム充填塔に3回繰り返して供給した。4本のマグネシウム充填塔を1回通液させるごとに、サンプルを取得して分析に供した。反応後の溶液のH-NMR及び29Si-NMR分析から、生成物は1,3-ジ―(ジメチルクロロシリル)プロパンであることを確認した。各段階における転化率は、H-NMRによる内部標準法(内部標準物質トルエン)により決定した。その結果、1回目の供給後の転化率は24%であり、2回目の供給後の転化率は51%であり、3回目の供給後の転化率は73%であった。
<比較例1>
 充填塔に充填するマグネシウムとして平均比表面積3×10-3/gの粉状マグネシウム6.0gを用いた以外は、実施例4と同様の操作を実施した。溶液供給中、充填塔出口における温度を測定したところ、55℃から62℃であった。液体供給しているチューブにガスの混入が見られたことから、反応溶液が充填塔内で沸騰したことが分かった。反応後の溶液中のブロモプロピルマグネシウムを分析して転化率を確認したところ、2%であった。
<比較例2>
 充填塔に充填するマグネシウムとして、平均比表面積3×10-3/gの粉状マグネシウム6.0gを用いた以外は、実施例7と同様の操作を実施した。比較例1と同様に、液体供給しているチューブにガスの混入が見られたことから、反応溶液が各充填塔内で沸騰したことが分かった。実施例7と同様にクロロジメチルプロピルシランへの転化率を分析したところ、1回目の供給後の転化率は18%であり、2回目の供給後の転化率は24%であり、3回目の供給後の転化率は28%であった。比較例2におけるマグネシウム充填塔から排出された溶液の温度、及び転化率の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004

 

Claims (13)

  1.  ハロゲン化炭化水素化合物と、比表面積が1×10-5~2×10-4/gであるマグネシウムとを接触させることを含むハロゲン化炭化水素マグネシウム化合物の製造方法。
  2.  前記ハロゲン化炭化水素化合物が、モノハロゲン化アルキル化合物、及び下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、炭素数1~8の直鎖状又は分岐鎖状のアルキル基を示し、Xは、ハロゲン原子を示す。)
    で表されるジハロゲン化アルキル化合物から選択される少なくとも1種である、請求項1に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
  3.  前記ハロゲン化炭化水素化合物が臭化炭化水素化合物である、請求項1又は2に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
  4.  前記ハロゲン化炭化水素化合物と前記マグネシウムとの接触を-78~100℃で行う、請求項1~3のいずれか1項に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
  5.  前記ハロゲン化炭化水素化合物を含有する溶液と前記マグネシウムとを接触させる、請求項1~4のいずれか1項に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
  6.  前記マグネシウムを充填した充填塔に、前記ハロゲン化炭化水素化合物を含有する溶液を通液させる、請求項5に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
  7.  前記マグネシウムを充填した充填塔に、前記ハロゲン化炭化水素化合物を含有する溶液を繰り返し通液させる、請求項6に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
  8.  前記マグネシウムを充填した充填塔が複数存在し、前記ハロゲン化炭化水素化合物を含有する溶液を複数の前記充填塔に通液させる、請求項6又は7に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
  9.  前記ハロゲン化炭化水素化合物を含有する溶液の温度が-78~100℃である、請求項6~8のいずれか1項に記載のハロゲン化炭化水素マグネシウム化合物の製造方法。
  10.  請求項1~9のいずれか1項に記載の製造方法によりハロゲン化炭化水素マグネシウム化合物を製造すること、及び
     該ハロゲン化炭化水素マグネシウム化合物とケトン化合物とを接触させること
    を含む第3級アルコール化合物の製造方法。
  11.  ハロゲン化炭化水素化合物と、ケトン化合物と、比表面積が1×10-5~2×10-4/gであるマグネシウムとを接触させることを含む第3級アルコール化合物の製造方法。
  12.  請求項1~9のいずれか1項に記載の製造方法によりハロゲン化炭化水素マグネシウム化合物を製造すること、及び
     該ハロゲン化炭化水素マグネシウム化合物と、クロロシラン化合物及びアルコキシシラン化合物から選択されるケイ素化合物とを接触させること
    を含む有機ケイ素化合物の製造方法。
  13.  ハロゲン化アルキル化合物と、クロロシラン化合物及びアルコキシシラン化合物から選択されるケイ素化合物と、比表面積が1×10-5~2×10-4/gであるマグネシウムとを接触させることを含む有機ケイ素化合物の製造方法。

     
PCT/JP2021/002091 2020-01-27 2021-01-21 ハロゲン化炭化水素マグネシウム化合物の製造方法、並びに、第3級アルコール化合物及び有機ケイ素化合物の製造方法 WO2021153422A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021573979A JPWO2021153422A1 (ja) 2020-01-27 2021-01-21
US17/795,207 US20230050880A1 (en) 2020-01-27 2021-01-21 Method for producing halogenated hydrocarbon magnesium compound and methods for producing tertiary alcohol compound and organosilicon compound
CN202180006438.9A CN114728989A (zh) 2020-01-27 2021-01-21 卤代烃镁化合物的制造方法、以及叔醇化合物及有机硅化合物的制造方法
EP21747923.7A EP4067329A4 (en) 2020-01-27 2021-01-21 PROCESSES FOR PREPARING HALOGENATED HYDROCARBON MAGNESIUM COMPOUNDS AND PROCESSES FOR PREPARING TERTIARY ALCOHOL COMPOUND AND AN ORGANOSILICON COMPOUND
KR1020227014876A KR20220132520A (ko) 2020-01-27 2021-01-21 할로겐화 탄화수소 마그네슘 화합물의 제조 방법, 및 제3급 알코올 화합물 및 유기 규소 화합물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-011213 2020-01-27
JP2020011213 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153422A1 true WO2021153422A1 (ja) 2021-08-05

Family

ID=77078505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002091 WO2021153422A1 (ja) 2020-01-27 2021-01-21 ハロゲン化炭化水素マグネシウム化合物の製造方法、並びに、第3級アルコール化合物及び有機ケイ素化合物の製造方法

Country Status (7)

Country Link
US (1) US20230050880A1 (ja)
EP (1) EP4067329A4 (ja)
JP (1) JPWO2021153422A1 (ja)
KR (1) KR20220132520A (ja)
CN (1) CN114728989A (ja)
TW (1) TW202138376A (ja)
WO (1) WO2021153422A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224950A1 (ja) * 2021-04-22 2022-10-27 株式会社トクヤマ 有機化合物の製造方法および有機化合物の製造装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257148A (en) * 1975-06-06 1977-05-11 Oxon Italia Spa Process for continuously producing cyclohexyl magnesium halide and apparatus therefore
JPH09227574A (ja) * 1996-02-28 1997-09-02 Nippon Shokubai Co Ltd フッ化アリールマグネシウム誘導体の製造方法
JP2000044581A (ja) * 1998-06-11 2000-02-15 Dow Corning Corp 第3級ヒドロカルビルシリル化合物の製造方法
JP2000229982A (ja) * 1998-12-07 2000-08-22 Mitsubishi Chemicals Corp ビニルフェニルマグネシウムハライド類の連続的製造方法
JP3779452B2 (ja) 1997-11-27 2006-05-31 日本農薬株式会社 アルコール類の製造方法
JP2007290973A (ja) * 2006-04-21 2007-11-08 Univ Nagoya 亜鉛−マグネシウムアート錯体を含む求核試薬及びそれを使用する求核付加体の製造方法
JP2009114166A (ja) 2007-02-16 2009-05-28 Sumitomo Chemical Co Ltd ジベンゾオキセピン化合物の製造方法
JP2016525504A (ja) * 2013-06-27 2016-08-25 ディーピーエックス ホールディングス ビー.ブイ. 流動層を用いるグリニャール試薬の調製

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630407A (en) * 1979-08-22 1981-03-27 Sumitomo Chem Co Ltd Preparation of highly stereoregular alpha-olefin polymer
EP2248819B1 (en) * 2008-03-07 2016-11-16 National Institute of Advanced Industrial Science and Technology Organic inorganic composite material and utilization thereof
CN102093396B (zh) * 2010-12-27 2012-07-25 浙江新和成股份有限公司 一种格氏试剂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257148A (en) * 1975-06-06 1977-05-11 Oxon Italia Spa Process for continuously producing cyclohexyl magnesium halide and apparatus therefore
JPH09227574A (ja) * 1996-02-28 1997-09-02 Nippon Shokubai Co Ltd フッ化アリールマグネシウム誘導体の製造方法
JP3779452B2 (ja) 1997-11-27 2006-05-31 日本農薬株式会社 アルコール類の製造方法
JP2000044581A (ja) * 1998-06-11 2000-02-15 Dow Corning Corp 第3級ヒドロカルビルシリル化合物の製造方法
JP2000229982A (ja) * 1998-12-07 2000-08-22 Mitsubishi Chemicals Corp ビニルフェニルマグネシウムハライド類の連続的製造方法
JP2007290973A (ja) * 2006-04-21 2007-11-08 Univ Nagoya 亜鉛−マグネシウムアート錯体を含む求核試薬及びそれを使用する求核付加体の製造方法
JP2009114166A (ja) 2007-02-16 2009-05-28 Sumitomo Chemical Co Ltd ジベンゾオキセピン化合物の製造方法
JP2016525504A (ja) * 2013-06-27 2016-08-25 ディーピーエックス ホールディングス ビー.ブイ. 流動層を用いるグリニャール試薬の調製

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224950A1 (ja) * 2021-04-22 2022-10-27 株式会社トクヤマ 有機化合物の製造方法および有機化合物の製造装置

Also Published As

Publication number Publication date
EP4067329A4 (en) 2023-08-30
US20230050880A1 (en) 2023-02-16
TW202138376A (zh) 2021-10-16
CN114728989A (zh) 2022-07-08
JPWO2021153422A1 (ja) 2021-08-05
EP4067329A1 (en) 2022-10-05
KR20220132520A (ko) 2022-09-30

Similar Documents

Publication Publication Date Title
US8772525B2 (en) Method for preparing a diorganodihalosilane
US8765090B2 (en) Method for preparing a trihalosilane
US9422316B2 (en) Method of preparing halogenated silahydrocarbylenes
WO2021153422A1 (ja) ハロゲン化炭化水素マグネシウム化合物の製造方法、並びに、第3級アルコール化合物及び有機ケイ素化合物の製造方法
CN112041324B (zh) 生产卤代硅烷化合物的方法
JP2773509B2 (ja) トリアルコキシシランの製造方法
US8865927B2 (en) Method for preparing a diorganodihalosilane
WO2022224950A1 (ja) 有機化合物の製造方法および有機化合物の製造装置
US4642363A (en) Method of preparing trialkyl organo-oxysilanes
JP6725510B2 (ja) アリール官能性シランの製造方法
JP2797881B2 (ja) 3−[n−(2−アミノエチル)]アミノプロピルアルコキシシランの連続的製造方法及びその製造装置
BR112018008939B1 (pt) métodon para a síntese seletiva de trialcoxissilanos
JP6730605B2 (ja) 五フッ化酸化ヨウ素の製造方法
JPS6153107A (ja) シラン化合物の連続的製造方法
JPH0665258A (ja) トリアルコキシシランの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573979

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021747923

Country of ref document: EP

Effective date: 20220629

NENP Non-entry into the national phase

Ref country code: DE