WO2021153020A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2021153020A1
WO2021153020A1 PCT/JP2020/045886 JP2020045886W WO2021153020A1 WO 2021153020 A1 WO2021153020 A1 WO 2021153020A1 JP 2020045886 W JP2020045886 W JP 2020045886W WO 2021153020 A1 WO2021153020 A1 WO 2021153020A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
voltage
motor
current
axis
Prior art date
Application number
PCT/JP2020/045886
Other languages
English (en)
French (fr)
Inventor
昌春 浦山
由樹 齋藤
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to AU2020426771A priority Critical patent/AU2020426771B2/en
Priority to CN202080093047.0A priority patent/CN114982123A/zh
Priority to EP20916873.1A priority patent/EP4099559A4/en
Priority to US17/789,921 priority patent/US12028002B2/en
Publication of WO2021153020A1 publication Critical patent/WO2021153020A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • This disclosure relates to a motor control device.
  • the load torque fluctuates periodically during one rotation of the rotor of the motor that drives the compressor.
  • This periodic load torque fluctuation occurs due to the pressure change of the refrigerant gas between the suction, compression, and discharge strokes, and is sometimes referred to as the fluctuation of the rotation speed of the motor (hereinafter, simply referred to as "speed fluctuation”).
  • speed fluctuation causes motor vibration.
  • torque control periodic disturbance suppression control
  • the vibration of the motor appears remarkably in the low rotation region (for example, the normal control region where the maximum torque / current control of the motor is performed).
  • the low rotation region for example, the normal control region where the maximum torque / current control of the motor is performed.
  • vibration occurs even in a high rotation region (for example, a voltage saturation region in which weakening magnetic flux control is performed), and the peak current of the motor increases due to the generation of vibration.
  • the protection function of the inverter may operate to prevent demagnetization of the motor, and the motor may stop.
  • the motor control device of the present disclosure includes a voltage command value generator and a control switching determination unit.
  • the control switching determination unit determines whether or not the control region of the motor is in the voltage saturation region.
  • the voltage command value generator generates the voltage command value of the motor from the torque command value based on the speed command value and the speed of the motor, and when the control switching determination unit determines that the control region is in the voltage saturation region. Generates a voltage command value based on the torque command value, the limit value of the maximum voltage that can be output to the motor, and the voltage vector angle of the output voltage applied to the motor.
  • FIG. 1A is a diagram provided for explaining an operation example of the motor control device according to the first embodiment of the present disclosure.
  • FIG. 1B is a diagram provided for explaining an operation example of the motor control device according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a configuration example of the motor control device according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram showing a configuration example of the control switching determination unit according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram showing a configuration example of the correction torque generator according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram showing a configuration example of the voltage saturation region voltage command value generator according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram showing a configuration example of the output voltage limit command value generator according to the first embodiment of the present disclosure.
  • FIG. 7A is a diagram provided for explaining an operation example of the current command value calculator according to the first embodiment of the present disclosure.
  • FIG. 7B is a diagram provided for explaining an operation example of the current command value calculator according to the first embodiment of the present disclosure.
  • FIG. 8 is a diagram provided for explaining an operation example of the voltage vector angle calculator according to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram provided for explaining an operation example of the MTPI voltage amplitude limiting processor according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram showing an example of the output voltage waveform of the first embodiment of the present disclosure.
  • FIG. 11 is a diagram showing a configuration example of the normal control region voltage command value generator according to the first embodiment of the present disclosure.
  • FIG. 12 is a diagram showing a configuration example of the current error correction value generator according to the first embodiment of the present disclosure.
  • FIG. 13 is a diagram showing a configuration example of the voltage saturation region voltage command value generator according to the second embodiment of the present disclosure.
  • a motor control device that controls torque of a permanent magnet synchronous motor (PMSM (Permanent Magnet Synchronous Motor)) that drives a compressor having periodic load torque fluctuations by position sensorless vector control, for example, an air conditioner or a low temperature
  • PMSM Permanent Magnet Synchronous Motor
  • a motor control device used as a storage device or the like will be described as an example.
  • the disclosed technique is widely applicable to a motor control device that controls torque of a motor that drives a load having periodic load torque fluctuations.
  • Example 1 ⁇ Operation of motor control device> 1A and 1B are diagrams for explaining an operation example of the motor control device according to the first embodiment of the present disclosure.
  • the constant induced voltage ellipse shown in FIGS. 1A and 1B (a part of the ellipse is shown in FIGS. 1A and 1B) is a current vector locus at which the induced voltage Vo of the motor becomes equal, and it is determined that the estimated electrical angle angular velocity ⁇ e becomes large.
  • the diameter of the induced voltage ellipse becomes smaller.
  • the constant induced voltage ellipse shown in FIG. 1A shows the current vector locus when the estimated electrical angle angular velocity ⁇ e is constant.
  • the constant induced voltage ellipse shown in FIG. 1B shows a current vector locus when the electric angle estimated angular velocity ⁇ e fluctuates due to a load torque fluctuation.
  • FIG. 1A shows the current vector locus when the estimated electrical angle angular velocity ⁇ e is constant.
  • the q-axis current command value Iq * and the d-axis current command value Id * are calculated based on the intersection of * ⁇ ⁇ T) and the fluctuating constant-induced voltage ellipse.
  • the motor control device of the present disclosure has a constant torque curve which is a locus of a current in which the total torque command value T * obtained by adding the fluctuation torque command value ⁇ T which is a correction torque to the average torque command value To * is constant and an output.
  • the shaft current command value Id * and the q-axis current command value Iq * are calculated.
  • the constant induced voltage ellipse and constant torque curve are not uniquely determined based on motor parameters such as reactance, but change from moment to moment depending on the operating state of the motor.
  • FIG. 2 is a diagram showing a configuration example of the motor control device according to the first embodiment of the present disclosure.
  • the motor control device 100 includes subtractors 11 and 38, a speed controller 12, an adder 13, a voltage command value generator 14, a control switching determination unit 15, and dq / u, v. , W converter 23, PWM (Pulse Width Modulation) modulator 24, and IPM (Intelligent Power Module) 25.
  • the IPM 25 is connected to the motor M.
  • PMSM is an example of the motor M.
  • the motor control device 100 has a shunt resistor 26, current sensors 27a and 27b, and a 3 ⁇ current calculator 28.
  • the motor control device 100 may have either a shunt resistor 26 or current sensors 27a and 27b.
  • the motor control device 100 includes a u, v, w / dq converter 29, an axis error calculator 30, a PLL (Phase Locked Loop) controller 31, a position estimator 32, and 1 / Pn processing. It has a device 33 and a correction torque generator 34.
  • PLL Phase Locked Loop
  • the voltage command value generator 14 includes a normal control region voltage command value generator 14a, a voltage saturation region voltage command value generator 14b, a switch SW1, and a switch SW2.
  • the switch SW1 has contacts 14c-1, 14c-2, 14c-3.
  • the switch SW2 has contacts 14c-4, 14c-5, 14c-6.
  • the subtractor 11 is the current estimated angular velocity output from the 1 / Pn processor 33 from the mechanical angular velocity command value ⁇ m * input to the motor control device 100 from the outside of the motor control device 100 (for example, a higher-level controller).
  • the angular velocity error ⁇ is calculated by subtracting a certain mechanical angular velocity estimated angular velocity ⁇ m, and the calculated angular velocity error ⁇ is output to the speed controller 12.
  • the speed controller 12 generates an average torque command value To * so that the angular velocity error ⁇ input from the subtractor 11 approaches zero, and outputs the generated average torque command value To * to the adder 13.
  • the adder 13 calculates the total torque command value T * by adding the average torque command value To * output from the speed controller 12 and the variable torque command value ⁇ T output from the correction torque generator 34. , The calculated total torque command value T * is output to the voltage command value generator 14.
  • the voltage command value generator 14 has a d-axis voltage command value Vd * and a q-axis voltage command value Vq * based on the total torque command value T * output from the adder 13 in each of the normal control region and the voltage saturation region. Is generated, and the generated d-axis voltage command value Vd * and q-axis voltage command value Vq * are output.
  • the voltage saturation region is a region in which the output voltage amplitude Va is saturated in the high rotation region of the motor M and the weakening magnetic flux control is performed.
  • the normal control region is a region other than the voltage saturation region, and is a region in which the motor M is controlled by varying the output voltage. In the normal control region, maximum torque / current control and the like are performed.
  • the voltage command value generator 14 connects the contact 14c-1 and the contact 14c-3 of the switch SW1 and switches. By connecting the contact 14c-4 of SW2 and the contact 14c-6, the d-axis voltage command value Vd * and the q-axis voltage command value Vq * generated by the normal control region voltage command value generator 14a are dq / Output to u, v, w converter 23.
  • the control signal CONTROL_TYPE: B voltage saturation control
  • the contact 14c-5 and the contact 14c-6 of the switch SW2 are connected to generate the d-axis voltage command value Vd * and the q-axis voltage command value Vq * generated by the voltage saturation region voltage command value generator 14b. Output to the dq / u, v, w converter 23.
  • the current control area of the motor M is the normal control area and the voltage saturation area based on the output voltage limit value Vdq_limit, the d-axis voltage command value Vd *, and the q-axis voltage command value Vq *. Which of the above is determined. Then, when the control switching determination unit 15 determines that the current control area of the motor M is the normal control area, the control switching determination unit 15 outputs the control signal CONTROL_TYPE: A (normal control) to the voltage command value generator 14 and outputs the control signal CONTROL_TYPE: A (normal control) to the motor M.
  • the control signal CONTROL_TYPE: B (voltage saturation control) is output to the voltage command value generator 14.
  • the output voltage limit value Vdq_limit is a DC voltage Vdc supplied to the IPM25 from the outside of the IPM25 (for example, a power converter (not shown)) converted into a voltage value in the dq rotation coordinate axis system which is a control system.
  • the dq / u, v, w converter 23 outputs the two-phase d-axis voltage command value Vd * and the q-axis voltage command value Vq * output from the voltage command value generator 14 from the position estimator 32. Based on the current rotor position, the electric angle phase (dq axis phase) ⁇ e, the three-phase U-phase output voltage command value Vu * , V-phase output voltage command value Vv *, and W-phase output voltage command value Vw * Convert to.
  • the dq / u, v, w converter 23 outputs the U-phase output voltage command value Vu * , the V-phase output voltage command value Vv *, and the W-phase output voltage command value Vw * to the PWM modulator 24. ..
  • the PWM modulator 24 generates a 6-phase PWM signal based on the U-phase output voltage command value Vu * , the V-phase output voltage command value Vv * , the W-phase output voltage command value Vw *, and the PWM carrier signal. , The generated 6-phase PWM signal is output to the IPM25.
  • the IPM 25 applies the DC voltage Vdc supplied from the outside of the IPM 25 to each of the U phase, V phase, and W phase of the motor M by converting the DC voltage Vdc supplied from the outside of the IPM 25 based on the 6-phase PWM signal output from the PWM modulator 24. AC voltage is generated, and each AC voltage is applied to the U phase, V phase, and W phase of the motor 10.
  • the 3 ⁇ current calculator 28 uses the 6-phase PWM switching information output from the PWM modulator 24 and the detected bus current to determine the motor.
  • the U-phase current value Iu, the V-phase current value Iv, and the W-phase current value Iw of M are calculated.
  • the 3 ⁇ current calculator 28 outputs the calculated phase current values Iu, Iv, Iw of each phase to the u, v, w / dq converter 29.
  • the u, v, w / dq converter 29 is a three-phase U phase output from the 3 ⁇ current calculator 28 based on the electric angle phase ⁇ e indicating the current rotor position output from the position estimator 32.
  • the current value Iu, the V-phase current value Iv, and the W-phase current value Iw are converted into the two-phase d-axis current Id and the q-axis current Iq.
  • the u, v, w / dq converter 29 outputs the d-axis current Id and the q-axis current Iq to the voltage command value generator 14 and the axis error calculator 30.
  • the axis error calculator 30 outputs the d-axis voltage command value Vd * and the q-axis voltage command value Vq * output from the voltage command value generator 14 and the u, v, w / dq converter 29. Using the d-axis current Id and the q-axis current Iq, the axis error ⁇ (difference between the estimated rotation axis and the actual rotation axis) is calculated. Then, the axis error calculator 30 outputs the calculated axis error ⁇ to the PLL controller 31.
  • the PLL controller 31 calculates the electric angle estimated angular velocity ⁇ e, which is the current estimated angular velocity, based on the axis error ⁇ output from the axis error calculator 30, and uses the calculated electric angle estimated angular velocity ⁇ e as the position estimators 32 and 1. Output to / Pn processor 33.
  • the position estimator 32 estimates the electric angle phase ⁇ e and the mechanical angle phase ⁇ m based on the electric angle estimated angular velocity ⁇ e output from the PLL controller 31. Then, the position estimator 32 outputs the estimated electric angle phase ⁇ e to the dq / u, v, w converter 23 and the u, v, w / dq converter 29, and estimates the mechanical angle phase ⁇ m. Is output to the voltage command value generator 14 and the correction torque generator 34.
  • the 1 / Pn processor 33 calculates the machine angle estimated angular velocity ⁇ m by dividing the electric angle estimated angular velocity ⁇ e output from the PLL controller 31 by the number of pole pairs Pn of the motor M, and calculates the machine angle estimated angular velocity ⁇ m. Output to subtractors 11 and 38.
  • the subtractor 38 calculates the machine angle estimated angular velocity fluctuation ⁇ m by subtracting the machine angle velocity command value ⁇ m * from the machine angle estimated angular velocity ⁇ m output from the 1 / Pn processor 33, and calculates the machine angle estimated angular velocity fluctuation ⁇ m. Is output to the correction torque generator 34.
  • the correction torque generator 34 has a speed fluctuation permissible value
  • periodic rate is the variation of mechanical angle estimated angular velocity change
  • * generates fluctuation torque command value ⁇ T for suppressing below, the resulting variations
  • the torque command value ⁇ T is output to the adder 13.
  • * is stored in the motor control device 100. Further, the mechanical angle estimated angular velocity fluctuation (velocity fluctuation) ⁇ m is different only in the positive and negative signs from the value of the above angular velocity error ⁇ .
  • FIG. 3 is a diagram showing a configuration example of the control switching determination unit according to the first embodiment of the present disclosure.
  • the control switching determination unit 15 has a voltage amplitude calculator 15a and a control switching determination device 15b, and determines whether the current control region of the motor is a normal control region or a voltage saturation region as follows. do.
  • the voltage amplitude calculator 15a calculates the output voltage amplitude Va according to the equation (1) based on the d-axis voltage command value Vd * and the q-axis voltage command value Vq * output from the voltage command value generator 14.
  • the control switching determination device 15b compares the peak value of the output voltage amplitude Va calculated by the voltage amplitude calculator 15a with the output voltage limit value Vdq_limit.
  • the control switching determination device 15b determines that the current control area of the motor M is the normal control area, and sets the control signal CONTROL_TYPE: A to a voltage. Output to the command value generator 14.
  • the control switching determination device 15b determines that the current control region of the motor M is the voltage saturation region, and the control signal CONTROL_TYPE: B is output to the voltage command value generator 14.
  • FIG. 4 is a diagram showing a configuration example of the correction torque generator according to the first embodiment of the present disclosure.
  • the correction torque generator 34 includes a speed fluctuation component separator 34a, a speed fluctuation amplitude calculator 34b, a subtractor 34c, a correction torque amplitude calculator 34d, a speed fluctuation phase corrector 34e, and an orthogonal component. It has a separator 34f and a correction torque demodulator 34g.
  • the fluctuation torque command value (correction torque) ⁇ T so that the speed fluctuation amplitude
  • and phase are adjusted for each mechanical angle period.
  • the velocity fluctuation component separator 34a sets the mechanical angle estimated angular velocity fluctuation ⁇ m to the two Fourier coefficients ⁇ sin (sin component) and ⁇ cos (sin component) which are the fundamental wave components of ⁇ m according to the equations (2.1) and (2.2). cos component) is separated.
  • ⁇ sin and ⁇ cos are values that are updated every mechanical angle period.
  • the velocity fluctuation amplitude calculator 34b calculates the velocity fluctuation amplitude
  • the subtractor 34c calculates the velocity fluctuation error
  • * defines the permissible speed fluctuation amplitude
  • the corrected torque amplitude calculator 34d adjusts the corrected torque amplitude
  • the velocity fluctuation phase corrector 34e corrects the phase of the mechanical angle estimated angular velocity fluctuation ⁇ m acquired for each mechanical angle period. For example, the velocity fluctuation phase corrector 34e multiplies each of the Fourier coefficients ⁇ sin and ⁇ cos by the correction gain k according to the equations (5.1) and (5.2), and adds ⁇ sin_i_old and ⁇ cos_i_old to the respective multiplication results. do.
  • the ⁇ sin_i_old in the equation (5.1) is ⁇ sin_i in the previous mechanical angle period
  • the ⁇ cos_i_old in the equation (5.2) is ⁇ cos_i in the previous mechanical angle period.
  • the speed fluctuation phase corrector 34e calculates the inverse tangent (Arctangent) of ⁇ sin_i and ⁇ cos_i as the speed fluctuation correction phase ⁇ i according to the equation (5.3).
  • This speed fluctuation correction phase ⁇ i serves as a reference for the phase when torque control is performed, and the phase retarded by ⁇ / 2 with respect to this reference becomes the phase (correction torque phase) of the fluctuation torque command value ⁇ T.
  • the orthogonal component separator 34f and the sin component ( ⁇ sin_i) of the velocity fluctuation correction phase ⁇ i are calculated. This process also has a role of preventing divergence at the time of phase correction by the calculation of the equations (5.1) and (5.2).
  • the correction torque demodulator 34g sets the fluctuation torque command value ⁇ T according to the equations (7.1) and (7.2) based on the sin component ( ⁇ sin_i) and the cos component ( ⁇ cos_i) of the speed fluctuation correction phase ⁇ i. calculate.
  • the speed fluctuation correction phase ⁇ i is converted into a correction torque phase retarded by ⁇ / 2, and an instantaneous value of the fluctuation torque command value ⁇ T at the mechanical angle phase ⁇ m is generated.
  • the correction torque demodulator 34g may calculate the instantaneous value of the variable torque command value ⁇ T according to the equation (8) instead of the equation (7.1) and the equation (7.2).
  • the adder 13 calculates the total torque command value T * by adding the variable torque command value ⁇ T to the average torque command value To * output from the speed controller 12 according to the equation (9).
  • FIG. 5 is a diagram showing a configuration example of the voltage saturation region voltage command value generator according to the first embodiment of the present disclosure.
  • the voltage saturation region voltage command value generator 14b includes an output voltage limit command value generator 14b1, an induced voltage command value calculator 14b2, a current command value calculator 14b3, and a temporary voltage command value calculator 14b4. , A voltage vector angle calculator 14b5 and a voltage command value calculator 14b6.
  • FIG. 6 is a diagram showing a configuration example of the output voltage limit command value generator of the first embodiment of the present disclosure.
  • the output voltage limit command value generator 14b1 includes an MTPI current command value calculator 14b1-1, an MTPI voltage command value calculator 14b1-2, an MTPI voltage amplitude calculator 14b1-3, and an average output voltage generation. It has an apparatus 14b1-4, an MTPI voltage fluctuation component extractor 14b1-5, an adder 14b1-6, 14b1-8, and an MTPI voltage amplitude limiting processor 14b1-7.
  • the output voltage limit command value generator 14b1 outputs based on the total torque command value T * , the estimated electrical angle angular velocity ⁇ e, the output voltage limit value Vdq_limit, the d-axis current Id, the q-axis current Iq, and the mechanical angle phase ⁇ m. Generates the voltage limit command value Va *.
  • This output voltage limit command value Va * adjusts the fluctuation amplitude of the output voltage within the range up to the output voltage limit value Vdq_limit, and sets the fluctuation phase of the output voltage as the fluctuation phase of the output voltage in the normal control region (MTPI control region). It is a voltage to match.
  • the MTPI current command value calculator 14b1-1 is the MTPI which is the intersection of the constant torque curve and the MTPI curve (maximum torque / current control curve) which are the loci of the current at which the total torque command value T * is constant.
  • the assumed d-axis current command value Id_mtpi * and the MTPI assumed q-axis current command value Iq_mtpi * are calculated.
  • the intersection of the constant torque curve and the MTPI curve is calculated using, for example, the motor torque equation of the equation (10) and the equation (11) which is the d-axis current equation on the MTPI curve when the q-axis current is known. Will be done.
  • the MTPI current command value calculator 14b1-1 is based on the MTPI assumed q-axis current command value Iq_mtpi * , which is the solution of the equation (12), and according to the d-axis current equation of the equation (11), the MTPI assumed d-axis current command value Id_mtpi * Calculate.
  • the MTPI voltage command value calculator 14b1-2 uses equations (13.1) and (13) based on the MTPI assumed d-axis current command value Id_mtpi * , the MTPI assumed q-axis current command value Iq_mtpi *, and the electric angle estimated angular velocity ⁇ e. According to the PMSM voltage equation shown in .2), the MTPI assumed d-axis voltage Vd_mtpi * and the MTPI assumed q-axis voltage Vq_mtpi * are calculated. In addition, "p” in equation (13.1) and equation (13.2) is a differential operator.
  • the p-term voltage is shown using the time derivative of the current change.
  • the MTPI assumed d-axis voltage Vd_mtpi * and the MTPI assumed q-axis voltage Vq_mtpi * react sensitively to current noise. Therefore, the differential value is generated based on the fluctuation of the current fundamental wave, for example, as follows.
  • variable components ⁇ Ida and ⁇ Iqa of the d-axis current Id and the q-axis current Iq are defined as equations (14.1) and (14.2).
  • equation (14.1) when one periodic fluctuation occurs in one rotation of the mechanical angle, “Ida” and “ ⁇ d” included in the equation (14.1) indicate the fluctuation amplitude and the initial phase of ⁇ Ida, respectively, and the equation (14. “Iqa” and “ ⁇ q” included in 2) indicate the fluctuation amplitude and initial phase of ⁇ Iqa, respectively, and “ ⁇ m” included in equations (14.1) and (14.2) are instantaneous mechanical angle phases. Indicates the value.
  • the p-term voltage generated by the fluctuation of the current fundamental wave is expressed by Eqs. (15.1) and (15.2). That is, the phase of the d-axis current fluctuation and the q-axis current fluctuation is advanced by ⁇ / 2, and the d-axis current fluctuation and the q-axis current fluctuation whose phase is advanced by ⁇ / 2 are multiplied by the mechanical angle estimated angular velocity ⁇ m. , A differential value (p-term voltage) can be generated.
  • the MTPI voltage amplitude calculator 14b1-3 calculates the MTPI assumed output voltage Va_mtpi * according to the equation (16) based on the MTPI assumed d-axis voltage Vd_mtpi * and the MTPI assumed q-axis voltage Vq_mtpi * .
  • the average output voltage generator 14b1-4 traces the MTPI curve (maximum torque / current control curve) so that the average values of the d-axis current Id and the q-axis current Iq, which fluctuate with each rotation of the rotor of the motor M, trace the MTPI curve (maximum torque / current control curve). Outputs the average output voltage command value Va0 * adjusted to. For example, the average output voltage generator 14b1-4 calculates the d-axis current Idt on the MTPI curve from the current q-axis current Iq so that the error between the calculated d-axis current Idt and the current d-axis current Id is eliminated. Adjust the average output voltage command value Va0 * by PI control or the like.
  • the average output voltage generator 14b1-4 calculates the average output voltage command value Va0 * according to, for example, equations (17.1) and (17.2).
  • the average output voltage generator 14b1-4 when the average output voltage command value Va0 * exceeds the output voltage limit value Vdq_limit is according to equation (18), the average output voltage command value Va0 * output voltage limit value Limited to Vdq_limit.
  • the weak magnetic flux control is performed. “ ⁇ a” indicates the interlinkage magnetic flux of the motor M.
  • the MTPI voltage fluctuation component extractor 14b1-5 calculates the fluctuation amplitude
  • the MTPI voltage fluctuation component extractor 14b1-5 first sets the fundamental wave component of the MTPI assumed output voltage Va_mtpi * according to the equations (19.1) and (19.2), the Fourier coefficient Va_mtpi_sin which is a sin component, and cos. It is separated from the component Va_mtpi_cos. MTPi voltage variation component extractor 14b1-5, by calculating the Fourier coefficients of the fundamental wave component of MTPi assumed output voltage Va_mtpi * the mechanical angle for each cycle, MTPi assumed output voltage Va_mtpi * basic harmonic component is removed Wave components can be extracted.
  • the MTPI voltage fluctuation component extractor 14b1-5 is based on the Fourier coefficients Va_mtpi_sin and Va_mtpi_cos calculated according to the equations (19.1) and (19.2), and the MTPI assumed output voltage Va_mtpi * according to the equation (20).
  • the MTPI voltage fluctuation component extractor 14b1-5 calculates the instantaneous value ⁇ Va_mtpi of the fundamental wave component of the MTPI assumed output voltage Va_mtpi * according to the equation (21).
  • the adder 14b1-6 adds the amplitude
  • the MTPI voltage amplitude limiting processor 14b1-7 is adjusted so that the MTPI assumed output voltage fluctuation peak value Va_mtpi_peak, which is the addition result of the adder 14b1-6, is equal to or less than the output voltage limit value Vdq_limit. Is generated, and the generated variable output voltage limit command value ⁇ Va_limit_mtpi is output.
  • the MTPI voltage amplitude limiting processor 14b1-7 compares the average output voltage command value Va0 * , the MTPI assumed output voltage fluctuation peak value Va_mtpi_peak, and the output voltage limit value Vdq_limit with the amplitude ratio scale of the output voltage fluctuation component. Is calculated, and the amplitude ratio scale is multiplied by the MTPI assumed output voltage fluctuation component ⁇ Va_mtpi to generate the variable output voltage limit command value ⁇ Va_limit_mtpi. By doing so, it is possible to generate a variable output voltage limit command value ⁇ Va_limit_mtpi whose phase is matched with the MTPI assumed output voltage fluctuation component ⁇ Va_mtpi.
  • the MTPI voltage amplitude limiting processor 14b1-7 calculates the amplitude ratio scale of the output voltage fluctuation component according to the formulas (23.1) to (23.3), and based on the calculated amplitude ratio scale, the formula ( According to 23.4), the variable output voltage limit command value ⁇ Va_limit_mtpi is generated.
  • the adder 14b1-8 calculates the output voltage limit command value Va * by adding the average output voltage command value Va0 * and the variable output voltage limit command value ⁇ Va_limit_mtpi according to the equation (24).
  • the adder 14b1-8 outputs the calculated output voltage limit command value Va * to the induced voltage command value calculator 14b2 and the voltage command value calculator 14b6.
  • the induced voltage command value calculator 14b2 is a motor represented by the equations (25.1) and (25.2) based on the current d-axis current Id, q-axis current Iq, and electric angle estimated angular velocity ⁇ e. according to the model equations to calculate the induced voltage command value Vo * based on the output voltage limit command value Va *.
  • the details of the calculation of the induced voltage command value Vo * are shown below.
  • the equation for associating the output voltage limit command value Va * with the induced voltage command value Vo * is as shown in the equation (28). Therefore, the induced voltage command value calculator 14b2 calculates the induced voltage command value Vo * according to the equation (28), and outputs the calculated induced voltage command value Vo * to the current command value calculator 14b3.
  • the current command value calculator 14b3 has a constant torque curve which is a current locus in which the total torque command value T * is constant, and a current locus in which the induced voltage command value Vo * and the electric angle estimated angular velocity ⁇ e are constant.
  • the q-axis current command value Iq * and the d-axis current command value Id * are calculated based on the intersection with the induced voltage ellipse (see FIG. 1B).
  • the current command value calculator 14b3 outputs the calculated q-axis current command value Iq * and d-axis current command value Id * to the temporary voltage command value calculator 14b4.
  • the intersection of the constant torque curve and the constant induced voltage ellipse can be calculated using, for example, the motor torque equation shown in the equation (29) and the induced voltage equation shown in the equation (30).
  • the total torque command value T * is a constant current locus.
  • a solution corresponding to the q-axis current command value Iq * at the intersection of the torque curve and the constant induced voltage ellipse, which is the locus of the current at which the induced voltage Vo and the estimated electrical angle velocity ⁇ e are constant, can be derived. (See FIG. 1B).
  • 7A and 7B are diagrams for explaining an operation example of the current command value calculator according to the first embodiment of the present disclosure.
  • the current command value calculator 14b3 first calculates the d-axis current Id_M on the M point according to the equation (33).
  • the current command value calculator 14b3 calculates the q-axis current Iq_M at the point where the M point boundary line and the constant induced voltage ellipse intersect. Since the q-axis current Iq_M can be calculated by substituting the d-axis current Id_M on the M point into the equation (30), it is calculated according to the equation (34).
  • the current command value calculator 14b3 calculates the torque T_M on the M point boundary according to the equation (35).
  • the current command value calculator 14b3 uses the d-axis current command according to the equations (36.1) and (36.2) based on the magnitude relationship between the total torque command value T * and the torque T_M on the M point boundary. Determine the value Id *.
  • Equation (36.1) shows the d-axis current command value Id * (see FIG. 7A) in the case of "total torque command value T * ⁇ torque on the M point boundary T_M", and equation (36.2) shows.
  • the d-axis current command value Id * (see FIG. 7B) in the case of "total torque command value T *> torque on M point boundary T_M" is shown.
  • the current command value calculator 14b3 outputs the d-axis current command value Id * and the q-axis current command value Iq * calculated as described above to the temporary voltage command value calculator 14b4.
  • the temporary voltage command value calculator 14b4 has equations (37.1) and (37.2) based on the electric angle estimated angular velocity ⁇ e, the d-axis current command value Id *, and the q-axis current command value Iq *. ),
  • the temporary d-axis voltage command value Vd_m and the temporary q-axis voltage command value Vq_m are calculated by feed forward.
  • the temporary voltage command value calculator 14b4 outputs the calculated temporary d-axis voltage command value Vd_m and the temporary q-axis voltage command value Vq_m to the voltage vector angle calculator 14b5.
  • the voltage vector angle calculator 14b5 calculates the voltage vector angle ⁇ according to the equation (38) based on the temporary d-axis voltage command value Vd_m and the temporary q-axis voltage command value Vq_m.
  • the voltage vector angle calculator 14b5 outputs the calculated voltage vector angle ⁇ to the voltage command value calculator 14b6. That is, as shown in FIG. 8, the voltage vector angle calculator 14b5 calculates the angle formed by the output voltage vector having the amplitude Va calculated by the equation (1) as the voltage vector angle ⁇ . By doing so, in the voltage saturation region where the output voltage amplitude is limited to the DC voltage (DC voltage) or less that can be output by the inverter, the voltage vector angle ⁇ corresponding to the total torque command value T * can be generated by calculation.
  • FIG. 8 is a diagram provided for explaining an operation example of the voltage vector angle calculator according to the first embodiment of the present disclosure.
  • the voltage command value calculator 14b6 performs coordinate conversion from polar coordinates to Cartesian coordinates according to equations (39.1) and (39.2) based on the voltage vector angle ⁇ and the output voltage limit command value Va *.
  • the d-axis voltage command value Vd * and the q-axis voltage command value Vq * are calculated accordingly.
  • FIG. 9 is a diagram provided for explaining an operation example of the MTPI voltage amplitude limiting processor according to the first embodiment of the present disclosure.
  • the MTPI voltage amplitude limiting processor 14b1-7 sets the amplitude ratio scale of the output voltage fluctuation component to “1”.
  • the output voltage limit command value Va * coincides with the MTPI assumed output voltage fluctuation component ⁇ Va_mtpi.
  • an output voltage limit command value Va * is generated in which the phase matches the MTPI assumed output voltage fluctuation component ⁇ Va_mtpi and the peak value due to the fluctuation amplitude is equal to or less than the output voltage limit value Vdq_limit.
  • the output voltage limit command value Va * By controlling the output voltage limit command value Va * in this way, as in the example of the output voltage waveform shown in FIG. 10, the output is output even immediately after the control region of the motor M transitions from the normal control region to the voltage saturation region. While keeping the voltage amplitude Va below the output voltage limit value Vdq_limit, the output voltage amplitude Va can be matched between the normal control region and the voltage saturation region. Therefore, it is possible to reduce the switching shock at the time of transition from the normal control region to the voltage saturation region. Further, since the motor control device 100 has the voltage saturation region voltage command value generator 14b, the average output voltage command value Va0 *, which is the center of fluctuation of the output voltage limit command value Va *, is the output voltage limit in the voltage saturation region. It can also be used when it is limited by the value Vdq_limit.
  • FIG. 11 is a diagram showing a configuration example of the normal control region voltage command value generator according to the first embodiment of the present disclosure.
  • the normal control region voltage command value generator 14a includes a current command value calculator 14a1, adders 16, 17, 21, 22, subtractors 18, 19, voltage command value calculator 20, and IIR. It has (Infinite Impulse Response) filters 35a and 35b, a decoupling controller 36, and a current error correction value generator 37.
  • the current command value calculator 14a1 has a q-axis current command value Iq * and a d-axis current command value Id based on the intersection of the constant torque curve and the MTPI curve, which are the loci of the current at which the total torque command value T * is constant. * Calculate.
  • the intersection of the constant torque curve and the MTPI curve is, for example, the motor torque equation shown in the equation (29) and the equation (17.1) showing the relationship between the d-axis current Id and the q-axis current Iq in the MTPI curve.
  • the first term represents the magnet torque
  • the second term represents the reluctance torque
  • the magnet torque includes only the q-axis current Iq
  • the reluctance torque represents the q-axis current Iq and the d-axis current. Includes both with Id. Therefore, by appropriately controlling the q-axis current Iq and the d-axis current Id, it is possible to generate an appropriate torque in the motor M.
  • the equation (40) which is a quartic equation relating to the q-axis current Iq, can be obtained.
  • the current command value calculator 14a1 calculates the d-axis current command value Id * by substituting the q-axis current command value Iq * calculated according to the equation (40) into the equation (17.1).
  • the adder 17 has a q-axis current command value Iq * output from the current command value calculator 14a1 and a q-axis current error correction value ⁇ Iq output from the current error correction value generator 37 according to the equation (41.1). Is added to calculate the q-axis current correction command value Iq_FF *.
  • the adder 16 has a d-axis current command value Id * output from the current command value calculator 14a1 and a d-axis current error correction value ⁇ Id output from the current error correction value generator 37 according to the equation (41.2). Is added to calculate the d-axis current correction command value Id_FF *.
  • the subtractor 19 subtracts the q-axis current Iq output from the u, v, w / d-q converter 29 from the q-axis current correction command value Iq_FF * output from the adder 17, thereby subtracting the q-axis current Iq.
  • the q-axis current error Iq_diff which is the error between the current correction command value Iq_FF * and the q-axis current Iq, is calculated.
  • the subtractor 18 subtracts the d-axis current Id output from the u, v, w / dq converter 29 from the d-axis current correction command value Id_FF * output from the adder 16, thereby subtracting the d-axis current Id.
  • the d-axis current error Id_diff which is the error between the current correction command value Id_FF * and the d-axis current Id, is calculated.
  • the voltage command value calculator 20 calculates the q-axis voltage command value Vqt before decoupling by performing PI (Proportional Integral) control on the q-axis current error Iq_diff (Iq_FF * -Iq) according to the equation (42.1). do. Further, the voltage command value calculator 20 calculates the pre-interference d-axis voltage command value Vdt by performing PI control on the d-axis current error Id_diff (Id_FF * ⁇ Id) according to the equation (42.2). Note that kp_q in Eq. (42.1) and kp_d in Eq. (42.2) are proportional constants, and ki_q in Eq. (42.1) and ki_d in Eq. (42.2) are constants of integration.
  • the adder 22 adds the q-axis decoupling correction value Vqa represented by the equation (43.1) to the q-axis voltage command value Vqt before decoupling according to the equation (43.3), thereby q. Calculate the shaft voltage command value Vq *.
  • the adder 21 adds the d-axis decoupling correction value Vda represented by the equation (43.2) to the d-axis voltage command value Vdt before decoupling according to the equation (43.4), thereby d. Calculate the shaft voltage command value Vd *.
  • the q-axis voltage command value Vq * and the d-axis voltage command value Vd * in which the interference between the dq axes is canceled by feedforward are calculated.
  • the IIR filter (Infinite Impulse Response Filter) 35a removes the noise of the d-axis current Id output from the u, v, w / dq converter 29, and outputs the d-axis response current Id_ir after removing the noise.
  • the IIR35b removes the noise of the q-axis current Iq output from the u, v, w / dq converter 29, and outputs the q-axis response current Iq_ir after removing the noise.
  • the IIR filters 35a and 35b are examples of noise reduction filters.
  • the decoupling controller 36 is based on the electric angular velocity command value ⁇ e * input from the outside of the motor control device 100 (for example, the upper controller) and the q-axis response current Iq_ir, and the d-axis voltage before decoupling.
  • a d-axis decoupling correction value Vda for correcting the command value Vdt is generated.
  • the decoupling controller 36 is a q-axis decoupling correction value Vqa for correcting the q-axis voltage command value Vqt before decoupling based on the electric angular velocity command value ⁇ e * and the d-axis response current Id_ir. To generate.
  • the d-axis non-interference correction value Vda and the q-axis non-interference correction value Vqa are correction values for canceling the interference term between the dq axes by feedforward.
  • the non-interference correction value is a DC value. Therefore, in generating the non-interference correction value, the electric angular velocity command value ⁇ e * is used for the velocity, and for the d-axis current Id and the q-axis current Iq, the d-axis response in which the variable component is removed by the IIR filter.
  • the current Id_ir and the q-axis response current Iq_ir are used.
  • the current error correction value generator 37 outputs the d-axis current command value Id * and the q-axis current command value Iq * output from the current command value calculator 14a1 and the u, v, w / dq converter 29. Based on the d-axis current Id and the q-axis current Iq and the mechanical angle phase ⁇ m output from the position estimator 32, the d-axis current error correction value ⁇ Id and the q-axis current error correction value ⁇ Iq are generated.
  • the current error correction value generator 37 integrates fluctuation errors (phase error and amplitude error) that occur when the dq-axis current cannot follow the current command value due to the response delay of the current command value calculator 14a1 and the interference of the dq axis. Then, the inverted output of the integrated value is generated as a current error correction value (d-axis current error correction value ⁇ Id and q-axis current error correction value ⁇ Iq).
  • the d-axis current error correction value ⁇ Id is a feed-forward component for correcting the fluctuation error between the d-axis current command value I * and the d-axis current Id
  • the q-axis current error correction value ⁇ Iq is the q-axis current error correction value ⁇ Iq. This is a feed-forward component for correcting the fluctuation error between the current command value Iq * and the q-axis current Iq.
  • FIG. 12 is a diagram showing a configuration example of the current error correction value generator according to the first embodiment of the present disclosure.
  • the current error correction value generator 37 includes subtractors 37a and 37e, a q-axis current error component separator 37b, a q-axis current error accumulator 37c, and a q-axis current error correction value demodulator 37d. It has a d-axis current error component separator 37f, a d-axis current error accumulator 37g, and a d-axis current error correction value demodulator 37h.
  • the subtractor 37a calculates the q-axis current fluctuation error Iq_err, which is the error between the q-axis current Iq and the q-axis current command value Iq *, according to the equation (44).
  • the q-axis current error component separator 37b has two Fourier coefficients Iq_err_sin (sin component) and IQ_err_cos (cos), which are fundamental wave components of the q-axis current fluctuation error Iq_err, according to equations (45.1) and (45.2). Component) is calculated for each machine angle period.
  • the q-axis current error integrator 37c has a sin component Iq_err_sin of the q-axis current fluctuation error Iq_err and a cos component Iq_err_cos of the q-axis current fluctuation error Iq_err according to the equations (46.1) and (46.2), respectively.
  • the correction gain k is multiplied, and the respective multiplication results are added to Iq_err_sin_i_old and Iq_err_cos_i_old.
  • Iq_err_sin_i in the equation (46.1) is the integrated value of IQ_err_sin up to the current machine angle period
  • Iq_err_cos_i in the equation (46.2) is the integrated value of IQ_err_cos up to the current machine angle period.
  • IQ_err_sin_i_old in the equation (46.1) is IQ_err_sin_i up to the previous machine angle period
  • Iq_err_cos_i_old in the equation (46.2) is Iq_err_cos_i up to the previous machine angle period.
  • the q-axis current error correction value demodulator 37d calculates the q-axis current error correction value ⁇ Iq according to the equations (47.1) and (47.2). As a result, the phase of the q-axis current fluctuation error is inverted, and the instantaneous value of the q-axis current error correction value ⁇ Iq at the mechanical angle phase ⁇ m is calculated.
  • the subtractor 37e calculates the d-axis current fluctuation error Id_err, which is the error between the d-axis current Id and the d-axis current command value Id *, according to the equation (48).
  • the d-axis current error component separator 37f has two Fourier coefficients, Id_err_sin (sin component) and Id_err_cos (cos), which are fundamental wave components of the d-axis current fluctuation error Id_err. Component) is calculated for each mechanical angle period.
  • the d-axis current error integrator 37g is provided with the sin component Id_err_sin of the d-axis current fluctuation error Id_err and the cos component Id_err_cos of the d-axis current fluctuation error Id_err according to the equations (50.1) and (50.2), respectively.
  • the correction gain k is multiplied, and the respective multiplication results are added to Id_err_sin_i_old and Id_err_cos_i_old.
  • Id_err_sin_i in the equation (50.1) is an integrated value of Id_err_sin up to the current machine angle period
  • Id_err_cos_i in the equation (50.2) is an integrated value of Id_err_cos up to the current machine angle period.
  • Id_err_sin_i_old in the equation (50.1) is Id_err_sin_i up to the previous machine angle period
  • Id_err_cos_i_old in the equation (50.2) is Id_err_cos_i up to the previous machine angle period.
  • the d-axis current error correction value demodulator 37h calculates the d-axis current error correction value ⁇ Id according to the equations (51.1) and (51.2). As a result, the phase of the d-axis current fluctuation error is inverted, and an instantaneous value of the d-axis current error correction value ⁇ Id at the mechanical angle phase ⁇ m is generated.
  • Example 1 of the present disclosure is effective when the distortion of the induced voltage of the motor M is small.
  • the actual induced voltage waveform has an induced voltage distortion due to the structure of the motor M, and when the induced voltage distortion is large, the harmonic of the current of the motor M becomes large.
  • the followability of the current control of the motor M may deteriorate. Therefore, in the second embodiment, the followability of the current control of the motor M is enhanced to further improve the stability of the control. Therefore, in the second embodiment, the configuration of the voltage saturation region voltage command value generator 14b is partially different from that of the first embodiment.
  • FIG. 13 is a diagram showing a configuration example of the voltage saturation region voltage command value generator 14b according to the second embodiment of the present disclosure.
  • the voltage saturation region voltage command value generator 14b includes an output voltage limit command value generator 14b1, an induced voltage command value calculator 14b2, a current command value calculator 14b3, and a temporary voltage command value calculator 14b4.
  • the point that the voltage vector angle calculator 14b5 and the voltage command value calculator 14b6 are provided is the same as that of the first embodiment (FIG. 5).
  • the voltage saturation region voltage command value generator 14b further includes a current proportional controller 14b7, adders 14b8, 14b9, and subtractors 14b10, 14b11.
  • the voltage saturation region voltage command value generator 14b outputs the d-axis voltage command value Vd ** calculated by the voltage command value calculator 14b6 to the adder 14b8 and calculates it in the same manner as in the first embodiment.
  • the q-axis voltage command value Vq ** is output to the adder 14b9.
  • the d-axis voltage command value and the q-axis voltage command value output from the voltage command value calculator 14b6 are described as Vd * and Vq * , respectively, whereas in the second embodiment, the voltage command value is described.
  • the d-axis voltage command value and the q-axis voltage command value output from the calculator 14b6 are expressed as Vd ** and Vq ** , respectively. That is, the d-axis voltage command value Vd ** and the q-axis voltage command value V ** in the second embodiment correspond to the d-axis voltage command value Vd * and the q-axis voltage command value Vq * in the first embodiment.
  • the current command value calculator 14b3 outputs the calculated q-axis current command value Iq * and d-axis current command value Id * to the temporary voltage command value calculator 14b4. Further, the current command value calculator 14b3 outputs the calculated q-axis current command value Iq * to the subtractor 14b11, and outputs the calculated d-axis current command value Id * to the subtractor 14b10.
  • the subtractor 14b10 calculates the d-axis current error Id_p by subtracting the d-axis current Id from the d-axis current command value Id *, and outputs the calculated d-axis current error Id_p to the current proportional controller 14b7.
  • the subtractor 14b11 calculates the q-axis current error Iq_p by subtracting the q-axis current Iq from the q-axis current command value Iq *, and outputs the calculated q-axis current error Iq_p to the current proportional controller 14b7.
  • the current proportional controller 14b7 calculates the d-axis compensation voltage Vd_p by multiplying the d-axis current error Id_p by the proportionality constant kp_d, and outputs the calculated d-axis compensation voltage Vd_p to the adder 14b8. Further, the current proportional controller 14b7 calculates the q-axis compensation voltage Vq_p by multiplying the q-axis current error Iq_p by the proportionality constant kp_q, and outputs the calculated q-axis compensation voltage Vq_p to the adder 14b9. That is, the d-axis compensation voltage Vd_p is calculated as "kp_d ⁇ Id_p", and the q-axis compensation voltage Vq_p is calculated as "kp_q ⁇ Iq_p".
  • the adder 14b8 adds the d-axis compensation voltage Vd_p output from the current proportional controller 14b7 to the d-axis voltage command value Vd ** output from the voltage command value calculator 14b6 to obtain the final d-axis. Calculate the voltage command value Vd *. Further, the adder 14b9 finally adds the q-axis compensation voltage Vq_p output from the current proportional controller 14b7 to the q-axis voltage command value Vq ** output from the voltage command value calculator 14b6. Calculate the q-axis voltage command value Vq *.
  • the motor control device (motor control device 100 of the first embodiment) of the present disclosure includes a voltage command value generator (voltage command value generator 14 of the first embodiment) and a control switching determination unit 15. .
  • the control switching determination unit 15 determines whether the control region of the motor (motor M of the first embodiment) is in the voltage saturation region or the normal control region.
  • the voltage command value generator is based on the speed command value (mechanical angular velocity command value ⁇ m * in Example 1) and the motor speed (machine angle estimated angular velocity ⁇ m in Example 1), and the voltage command value of the motor (Example 1).
  • the d-axis voltage command value Vd * and the q-axis voltage command value Vq * ) are generated.
  • the voltage command value generator outputs the torque command value (total torque command value T * of the first embodiment) to the motor when the control switching determination unit determines that the control region of the motor is in the voltage saturation region.
  • the voltage vector angle of the output voltage applied to the motor (voltage vector angle ⁇ of Example 1) is obtained from the limit value of the maximum possible voltage (output voltage limit command value Va * of Example 1), and this voltage vector angle is obtained. Generates a voltage command value based on.
  • the voltage command value calculator is based on the intersection of the constant torque curve of the motor and the constant induced voltage ellipse of the motor, and the current command value of the motor (q-axis current command value Iq * and d-axis current command value of the first embodiment). Id * ) is calculated.
  • the voltage command value generator has a temporary voltage command value (temporary d-axis of the first embodiment) according to the motor model formula (formula (37.1) and formula (37.2) of the second embodiment) based on the current command value.
  • the voltage command value Vd_m and the temporary q-axis voltage command value Vq_m) are calculated, and the voltage vector angle is calculated based on the temporary voltage command value.
  • the voltage vector angle can be calculated by feedforward, and integration control becomes unnecessary, so that the occurrence of windup (saturation phenomenon) can be prevented.
  • the voltage command value calculator (voltage command value calculator 14 of Example 2) has an error (Example 2) between the current command value and the motor current (d-axis current Id and q-axis current Iq of Example 2).
  • the compensation voltage (d-axis compensation voltage Vd_p and q-axis compensation voltage Vq_p in Example 2) is obtained by multiplying the d-axis current error Id_p and the q-axis current error Iq_p) by the proportionality constant (proportional constant ka in Example 2). It has a proportional controller (current proportional controller 14b7 of the second embodiment) to be calculated, and calculates a voltage command value to which a compensation voltage is added.
  • Motor control device 14 Voltage command value generator 14a Normal control area Voltage command value generator 14b Voltage saturation area Voltage command value generator 14b1 Output voltage limit command value generator 14b2 Induced voltage command value calculator 14b3 Current command value calculator 14b4 Temporary voltage command value calculator 14b5 Voltage vector angle calculator 14b6 Voltage command value calculator 14b7 Current proportional controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

モータの制振効果の向上を図ることができるモータ制御装置。モータ制御装置(100)において、制御切替判定部(15)は、モータ(M)の制御領域が電圧飽和領域にあるか否かを判定し、電圧指令値生成器(14)は、速度指令値とモータの速度とに基づいてモータの電圧指令値を生成し、制御切替判定部(15)によりモータ(M)の制御領域が電圧飽和領域にあると判定された場合に、合計トルク指令値とモータ(M)へ出力可能な最大電圧の限界値からモータに印加される出力電圧の電圧ベクトル角を求め、この電圧ベクトル角に基づいて電圧指令値を生成する。

Description

モータ制御装置
 本開示は、モータ制御装置に関する。
 空気調和装置に用いられる圧縮機では、圧縮機を駆動するモータのロータの1回転中において負荷トルクが周期的に変動する。この周期的な負荷トルク変動は、吸入、圧縮、吐出の各行程間における冷媒ガスの圧力変化に起因して発生し、モータの回転速度の変動(以下では単に「速度変動」と呼ぶことがある)によるモータの振動の発生要因となる。このような負荷トルク変動が発生する圧縮機を用いる場合、モータの回転速度の変動を抑えるために「トルク制御(周期的外乱抑制制御)」が行われる。
 通常、モータの振動が顕著に現れるのは低回転領域(例えば、モータ最大トルク/電流制御が行われる通常制御領域)である。しかし、モータの仕様や負荷条件によっては、高回転領域(例えば、弱め磁束制御が行われる電圧飽和領域)でも振動が発生し、振動の発生に起因してモータのピーク電流が増大してしまう。また、モータのピーク電流が増大すると、モータの減磁を防止するためにインバータの保護機能が動作してモータが停止してしまうことがある。
 そこで、弱め磁束制御が行われる電圧飽和領域でのトルク制御として、インバータが出力可能な直流電圧以下に出力電圧を制限しつつ、出力電圧の位相を示す電圧ベクトル角を速度変動に同期して変動させることにより、電圧飽和領域でのトルク制御を行う技術が提案されている。
特開2017-158414号公報 特開2017-158415号公報
 しかしながら、速度変動に対して出力電圧の電圧ベクトル角を変動させて電圧飽和領域でのトルク制御を行う場合、これまでは、チューニングによって電圧ベクトル角変動の位相を調整するのに工数を要した。このため、ある条件下で電圧ベクトル角変動の位相のチューニングがなされて制振効果が得られたとしても、インバータやモータの仕様、負荷条件等が変われば最適な出力トルクを発生させるための電圧ベクトル角変動とならずに制振効果を十分に発揮できないことがある。
 そこで、本開示では、モータの制振効果の向上を図ることができる技術を提案する。
 本開示のモータ制御装置は、電圧指令値生成器と、制御切替判定部とを有する。制御切替判定部は、モータの制御領域が電圧飽和領域にあるか否かを判定する。電圧指令値生成器は、速度指令値とモータの速度とに基づいたトルク指令値からモータの電圧指令値を生成し、制御切替判定部により制御領域が電圧飽和領域にあると判定された場合には、トルク指令値と、モータへ出力可能な最大電圧の限界値と、モータに印加される出力電圧の電圧ベクトル角とに基づいて電圧指令値を生成する。
 本開示によれば、モータの制振効果の向上を図ることができる。
図1Aは、本開示の実施例1のモータ制御装置の動作例の説明に供する図である。 図1Bは、本開示の実施例1のモータ制御装置の動作例の説明に供する図である。 図2は、本開示の実施例1のモータ制御装置の構成例を示す図である。 図3は、本開示の実施例1の制御切替判定部の構成例を示す図である。 図4は、本開示の実施例1の補正トルク生成器の構成例を示す図である。 図5は、本開示の実施例1の電圧飽和領域電圧指令値生成器の構成例を示す図である。 図6は、本開示の実施例1の出力電圧制限指令値生成器の構成例を示す図である。 図7Aは、本開示の実施例1の電流指令値算出器の動作例の説明に供する図である。 図7Bは、本開示の実施例1の電流指令値算出器の動作例の説明に供する図である。 図8は、本開示の実施例1の電圧ベクトル角算出器の動作例の説明に供する図である。 図9は、本開示の実施例1のMTPI電圧振幅制限処理器の動作例の説明に供する図である。 図10は、本開示の実施例1の出力電圧波形の一例を示す図である。 図11は、本開示の実施例1の通常制御領域電圧指令値生成器の構成例を示す図である。 図12は、本開示の実施例1の電流誤差補正値生成器の構成例を示す図である。 図13は、本開示の実施例2の電圧飽和領域電圧指令値生成器の構成例を示す図である。
 以下、本開示の実施例を図面に基づいて説明する。以下の実施例において同一の構成には同一の符号を付す。
 本開示では、周期的な負荷トルク変動を有する圧縮機を駆動する永久磁石同期モータ(PMSM(Permanent Magnet Synchronous Motor))のトルク制御を位置センサレスベクトル制御により行うモータ制御装置、例えば空気調和装置または低温保存装置等に用いられるモータ制御装置を一例に挙げて説明する。しかし、開示の技術は、周期的な負荷トルク変動を有する負荷を駆動するモータのトルク制御を行うモータ制御装置に広く適用可能である。
 [実施例1]
 <モータ制御装置の動作>
 図1A及び図1Bは、本開示の実施例1のモータ制御装置の動作例の説明に供する図である。
 図1A及び図1Bに示す定誘起電圧楕円(図1A及び図1Bでは楕円の一部を図示)は、モータの誘起電圧Voが等しくなる電流ベクトル軌跡であり、電気角推定角速度ωeが大きくなると定誘起電圧楕円の径は小さくなる。図1Aに示す定誘起電圧楕円は、電気角推定角速度ωeが一定の場合の電流ベクトル軌跡を示す。また、図1Bに示す定誘起電圧楕円は、負荷トルク変動により電気角推定角速度ωeが変動する場合の電流ベクトル軌跡を示す。図1Bには、電気角推定角速度ωeの最大値における定誘起電圧楕円と、電気角推定角速度ωeの最小値における定誘起電圧楕円と、電気角推定角速度ωeの平均値における定誘起電圧楕円とを示す。
 本開示のモータ制御装置は、モータの弱め磁束制御が行われる電圧飽和領域でのトルク制御を行う際、図1Bに示すように、トルク制御により±ΔTだけ変動する定トルク曲線T(=To±ΔT)と、変動する定誘起電圧楕円との交点に基づいて、q軸電流指令値Iq及びd軸電流指令値Idを算出する。例えば、本開示のモータ制御装置は、平均トルク指令値Toに補正トルクである変動トルク指令値ΔTを加算した合計トルク指令値Tが一定となる電流の軌跡である定トルク曲線と、出力電圧振幅Va(電圧指令値の振幅)を所望の振幅とするための誘起電圧指令値V0及び電気角推定角速度ωeが一定となる電流の軌跡である定誘起電圧楕円との交点に基づいてd軸電流指令値Id及びq軸電流指令値Iqを算出する。なお、定誘起電圧楕円や定トルク曲線は、リアクタンス等のモータパラメータに基づいて一意に決まるものではなく、モータの運転状態によって刻々と変化する。
 <モータ制御装置の構成>
 図2は、本開示の実施例1のモータ制御装置の構成例を示す図である。図2において、モータ制御装置100は、減算器11,38と、速度制御器12と、加算器13と、電圧指令値生成器14と、制御切替判定部15と、d-q/u,v,w変換器23と、PWM(Pulse Width Modulation)変調器24と、IPM(Intelligent Power Module)25とを有する。IPM25は、モータMに接続される。モータMの一例としてPMSMが挙げられる。
 また、モータ制御装置100は、シャント抵抗26と、電流センサ27a,27bと、3φ電流算出器28とを有する。なお、モータ制御装置100は、シャント抵抗26、または、電流センサ27a,27bの何れか一方を有していれば良い。
 また、モータ制御装置100は、u,v,w/d-q変換器29と、軸誤差演算器30と、PLL(Phase Locked Loop)制御器31と、位置推定器32と、1/Pn処理器33と、補正トルク生成器34とを有する。
 電圧指令値生成器14は、通常制御領域電圧指令値生成器14aと、電圧飽和領域電圧指令値生成器14bと、スイッチSW1と、スイッチSW2とを有する。スイッチSW1は、接点14c-1,14c-2,14c-3を有する。スイッチSW2は、接点14c-4,14c-5,14c-6を有する。
 減算器11は、モータ制御装置100の外部(例えば、上位のコントローラ)からモータ制御装置100へ入力された機械角速度指令値ωmから、1/Pn処理器33より出力された現在の推定角速度である機械角推定角速度ωmを減算することにより角速度誤差Δωを算出し、算出した角速度誤差Δωを速度制御器12へ出力する。
 速度制御器12は、減算器11から入力された角速度誤差Δωがゼロに近づくような平均トルク指令値Toを生成し、生成した平均トルク指令値Toを加算器13へ出力する。
 加算器13は、速度制御器12より出力された平均トルク指令値Toと、補正トルク生成器34より出力された変動トルク指令値ΔTとを加算することにより合計トルク指令値Tを算出し、算出した合計トルク指令値Tを電圧指令値生成器14へ出力する。
 電圧指令値生成器14は、通常制御領域及び電圧飽和領域のそれぞれにおいて、加算器13より出力された合計トルク指令値Tに基づいてd軸電圧指令値Vd及びq軸電圧指令値Vqを生成し、生成したd軸電圧指令値Vd及びq軸電圧指令値Vqを出力する。電圧飽和領域とは、モータMの高回転領域で出力電圧振幅Vaが飽和して弱め磁束制御が行われる領域である。通常制御領域とは、電圧飽和領域以外の領域であって、出力電圧を可変してモータMが制御される領域であり、通常制御領域では、最大トルク/電流制御などが行われる。
 電圧指令値生成器14は、制御切替判定部15より制御信号CONTROL_TYPE:A(通常制御)が出力された場合には、スイッチSW1の接点14c-1と接点14c-3とを接続するとともに、スイッチSW2の接点14c-4と接点14c-6とを接続して、通常制御領域電圧指令値生成器14aにより生成されるd軸電圧指令値Vd及びq軸電圧指令値Vqをd-q/u,v,w変換器23へ出力する。一方で、制御切替判定部15より制御信号CONTROL_TYPE:B(電圧飽和制御)が出力された場合には、電圧指令値生成器14は、スイッチSW1の接点14c-2と接点14c-3とを接続するとともに、スイッチSW2の接点14c-5と接点14c-6とを接続して、電圧飽和領域電圧指令値生成器14bにより生成されるd軸電圧指令値Vd及びq軸電圧指令値Vqをd-q/u,v,w変換器23へ出力する。
 制御切替判定部15は、出力電圧限界値Vdq_limitと、d軸電圧指令値Vdと、q軸電圧指令値Vqとに基づいて、モータMの現在の制御領域が通常制御領域と電圧飽和領域の何れであるかを判定する。そして、制御切替判定部15は、モータMの現在の制御領域が通常制御領域であると判定した場合には制御信号CONTROL_TYPE:A(通常制御)を電圧指令値生成器14へ出力し、モータMの現在の制御領域が電圧飽和領域であると判定した場合には制御信号CONTROL_TYPE:B(電圧飽和制御)を電圧指令値生成器14へ出力する。出力電圧限界値Vdq_limitは、IPM25の外部(例えば、図示しない電源コンバータ)からIPM25に供給される直流電圧Vdcが、制御系であるdq回転座標軸系における電圧値に変換されたものである。
 d-q/u,v,w変換器23は、電圧指令値生成器14より出力された2相のd軸電圧指令値Vd及びq軸電圧指令値Vqを、位置推定器32より出力された現在のロータ位置である電気角位相(dq軸位相)θeに基づいて、3相のU相出力電圧指令値Vu、V相出力電圧指令値Vv及びW相出力電圧指令値Vwへ変換する。そして、d-q/u,v,w変換器23は、U相出力電圧指令値Vu、V相出力電圧指令値Vv及びW相出力電圧指令値VwをPWM変調器24へ出力する。
 PWM変調器24は、U相出力電圧指令値Vu、V相出力電圧指令値Vv、W相出力電圧指令値Vwと、PWMキャリア信号とに基づいて、6相のPWM信号を生成し、生成した6相のPWM信号をIPM25へ出力する。
 IPM25は、PWM変調器24より出力された6相のPWM信号に基づいて、IPM25の外部から供給される直流電圧Vdcを変換することにより、モータMのU相、V相、W相それぞれへ印加する交流電圧を生成し、それぞれの交流電圧をモータ10のU相、V相、W相へ印加する。
 3φ電流算出器28は、シャント抵抗26を用いた1シャント方式で母線電流が検出される場合、PWM変調器24より出力される6相のPWMスイッチング情報と、検出された母線電流とから、モータMのU相電流値Iu、V相電流値Iv、W相電流値Iwを算出する。または、3φ電流算出器28は、電流センサ27a,27bによってU相電流及びV相電流が検出される場合、残りのW相電流値Iwを“Iu+Iv+Iw=0”のキルヒホッフの法則に基づいて算出する。3φ電流算出器28は、算出した各相の相電流値Iu,Iv,Iwをu,v,w/d-q変換器29へ出力する。
 u,v,w/d-q変換器29は、位置推定器32より出力された現在のロータ位置を示す電気角位相θeに基づいて、3φ電流算出器28より出力された3相のU相電流値Iu、V相電流値Iv、W相電流値Iwを、2相のd軸電流Id及びq軸電流Iqへ変換する。そして、u,v,w/d-q変換器29は、d軸電流Id及びq軸電流Iqを電圧指令値生成器14及び軸誤差演算器30へ出力する。
 軸誤差演算器30は、電圧指令値生成器14より出力されたd軸電圧指令値Vd及びq軸電圧指令値Vqと、u,v,w/d-q変換器29より出力されたd軸電流Id及びq軸電流Iqを用いて、軸誤差Δθ(推定された回転軸と実際の回転軸との差)を算出する。そして、軸誤差演算器30は、算出した軸誤差ΔθをPLL制御器31へ出力する。
 PLL制御器31は、軸誤差演算器30より出力された軸誤差Δθに基づいて現在の推定角速度である電気角推定角速度ωeを算出し、算出した電気角推定角速度ωeを位置推定器32及び1/Pn処理器33へ出力する。
 位置推定器32は、PLL制御器31より出力された電気角推定角速度ωeに基づいて電気角位相θe及び機械角位相θmを推定する。そして、位置推定器32は、推定した電気角位相θeをd-q/u,v,w変換器23及びu,v,w/d-q変換器29へ出力し、推定した機械角位相θmを電圧指令値生成器14及び補正トルク生成器34へ出力する。
 1/Pn処理器33は、PLL制御器31より出力された電気角推定角速度ωeをモータMの極対数Pnで除算することにより機械角推定角速度ωmを算出し、算出した機械角推定角速度ωmを減算器11,38へ出力する。
 減算器38は、1/Pn処理器33より出力された機械角推定角速度ωmから機械角速度指令値ωmを減算することにより機械角推定角速度変動Δωmを算出し、算出した機械角推定角速度変動Δωmを補正トルク生成器34へ出力する。
 補正トルク生成器34は、モータMの振動が許容できる速度変動範囲である速度変動許容値|Δωm|、減算器38から出力された機械角推定角速度変動Δωm、及び、位置推定器32より出力された機械角位相θmに基づいて、周期的な速度変動である機械角推定角速度変動Δωmを速度変動許容値|Δωm|以下に抑制するための変動トルク指令値ΔTを生成し、生成した変動トルク指令値ΔTを加算器13へ出力する。なお、速度変動許容値|Δωm|は、モータ制御装置100内に記憶されている。また、機械角推定角速度変動(速度変動)Δωmは、上記の角速度誤差Δωの値と正負の符号が異なるだけである。
 <制御切替判定部の構成>
 図3は、本開示の実施例1の制御切替判定部の構成例を示す図である。図3において、制御切替判定部15は、電圧振幅算出器15aと、制御切替判定器15bとを有し、モータの現在の制御領域が通常制御領域か電圧飽和領域かを以下のようにして判定する。
 電圧振幅算出器15aは、電圧指令値生成器14より出力されたd軸電圧指令値Vd及びq軸電圧指令値Vq基づいて、式(1)に従って、出力電圧振幅Vaを算出する。
Figure JPOXMLDOC01-appb-M000001
 制御切替判定器15bは、電圧振幅算出器15aで算出された出力電圧振幅Vaのピーク値と、出力電圧限界値Vdq_limitとを比較する。
 制御切替判定器15bは、出力電圧振幅Vaのピーク値が出力電圧限界値Vdq_limit未満である場合は、モータMの現在の制御領域が通常制御領域であると判定し、制御信号CONTROL_TYPE:Aを電圧指令値生成器14へ出力する。
 一方で、出力電圧振幅Vaのピーク値が出力電圧限界値Vdq_limit以上である場合は、制御切替判定器15bは、モータMの現在の制御領域が電圧飽和領域であると判定し、制御信号CONTROL_TYPE:Bを電圧指令値生成器14へ出力する。
 <補正トルク生成器の構成>
 図4は、本開示の実施例1の補正トルク生成器の構成例を示す図である。図4において、補正トルク生成器34は、速度変動成分分離器34aと、速度変動振幅算出器34bと、減算器34cと、補正トルク振幅算出器34dと、速度変動位相修正器34eと、直交成分分離器34fと、補正トルク復調器34gとを有する。
 補正トルク生成器34は、速度変動振幅|Δωm|が、モータMの振動が実使用上問題とならない範囲の速度変動許容値|Δωm|内になるように変動トルク指令値(補正トルク)ΔTの振幅(補正トルク振幅|ΔT|)及び位相を機械角周期毎に調整する。
 速度変動成分分離器34aは、式(2.1)及び式(2.2)に従って、機械角推定角速度変動Δωmを、Δωmの基本波成分である2つのフーリエ係数ωsin(sin成分)とωcos(cos成分)に分離する。機械角推定角速度変動Δωmの基本波成分のフーリエ係数を機械角周期毎に算出することで、機械角推定角速度変動Δωmの高調波成分を排除して機械角推定角速度変動Δωmの基本波成分を精度よく抽出することができる。ωsin及びωcosは、機械角周期毎に更新される値である。
Figure JPOXMLDOC01-appb-M000002
 速度変動振幅算出器34bは、フーリエ係数ωsin,ωcosに基づいて、式(3)に従って、速度変動振幅|Δωm|を算出する。ωsin及びωcosは機械角周期毎に更新される値であるため、速度変動振幅|Δωm|も機械角周期毎に更新される。
Figure JPOXMLDOC01-appb-M000003
 減算器34cは、速度変動振幅算出器34bより出力された速度変動振幅|Δωm|から速度変動許容値|Δωm|を減算することにより速度変動誤差|Δωm|errを算出する。速度変動許容値|Δωm|は、モータMの振動が許容できる範囲での速度変動振幅|Δωm|を規定したものである。
 補正トルク振幅算出器34dは、速度変動振幅|Δωm|と速度変動許容値|Δωm|との誤差に応じて補正トルク振幅|ΔT|を機械角周期毎に調整する。例えば、補正トルク振幅算出器34dは、式(4)に従って、速度変動振幅|Δωm|と速度変動許容値|Δωm|との誤差である速度変動誤差|Δωm|errに補正ゲインkを乗算し、乗算結果と|ΔT|_oldとを加算することにより補正トルク振幅|ΔT|を算出する。式(4)における|ΔT|_oldは、前回の機械角周期における補正トルク振幅|ΔT|である。補正ゲインkを適切に設定することで、速度変動|Δω|が速度変動許容値|Δωm|の境界でハンチングすることや、急激な負荷トルク変化によって速度変動|Δω|が速度変動許容値|Δωm|よりも大きくなって振動が発生することを抑制できる。
Figure JPOXMLDOC01-appb-M000004
 速度変動位相修正器34eは、機械角周期毎に取得される機械角推定角速度変動Δωmの位相を修正する。例えば、速度変動位相修正器34eは、式(5.1)及び式(5.2)に従って、フーリエ係数ωsin,ωcosのそれぞれに補正ゲインkを乗算し、それぞれの乗算結果にωsin_i_old,ωcos_i_oldを加算する。式(5.1)におけるωsin_i_oldは、前回の機械角周期におけるωsin_iであり、式(5.2)におけるωcos_i_oldは、前回の機械角周期におけるωcos_iである。そして、速度変動位相修正器34eは、式(5.3)に従って、ωsin_i及びωcos_iの逆正接(Arctangent)を速度変動修正位相φωiとして算出する。この速度変動修正位相φωiが、トルク制御を行う際の位相の基準になり、この基準に対してπ/2遅角した位相が変動トルク指令値ΔTの位相(補正トルク位相)となる。
Figure JPOXMLDOC01-appb-M000005
 直交成分分離器34fは、補正トルク振幅|ΔT|及び速度変動修正位相φωiに基づいて、式(6.1)及び式(6.2)に従って、速度変動修正位相φωiのsin成分(ωsin_i)とcos成分(ωcos_i)とを算出する。この処理は、式(5.1)及び式(5.2)の演算による位相修正時の発散を防止する役割も有する。
Figure JPOXMLDOC01-appb-M000006
 補正トルク復調器34gは、速度変動修正位相φωiのsin成分(ωsin_i)とcos成分(ωcos_i)とに基づいて、式(7.1)及び式(7.2)に従って、変動トルク指令値ΔTを算出する。この処理により速度変動修正位相φωiからπ/2だけ遅角した補正トルク位相へ変換され、機械角位相θmでの変動トルク指令値ΔTの瞬時値が生成される。
Figure JPOXMLDOC01-appb-M000007
 なお、補正トルク復調器34gは、式(7.1)及び式(7.2)の代わりに式(8)に従って変動トルク指令値ΔTの瞬時値を算出しても良い。
Figure JPOXMLDOC01-appb-M000008
 そして、加算器13は、式(9)に従って、速度制御器12より出力された平均トルク指令値Toに変動トルク指令値ΔTを加算することにより合計トルク指令値Tを算出する。
Figure JPOXMLDOC01-appb-M000009
 <電圧飽和領域電圧指令値生成器の構成>
 図5は、本開示の実施例1の電圧飽和領域電圧指令値生成器の構成例を示す図である。図5において、電圧飽和領域電圧指令値生成器14bは、出力電圧制限指令値生成器14b1と、誘起電圧指令値算出器14b2と、電流指令値算出器14b3と、仮電圧指令値算出器14b4と、電圧ベクトル角算出器14b5と、電圧指令値算出器14b6とを有する。
 図6は、本開示の実施例1の出力電圧制限指令値生成器の構成例を示す図である。図6において、出力電圧制限指令値生成器14b1は、MTPI電流指令値算出器14b1-1と、MTPI電圧指令値算出器14b1-2と、MTPI電圧振幅算出器14b1-3と、平均出力電圧生成器14b1-4と、MTPI電圧変動成分抽出器14b1-5と、加算器14b1-6,14b1-8と、MTPI電圧振幅制限処理器14b1-7とを有する。
 出力電圧制限指令値生成器14b1は、合計トルク指令値T、電気角推定角速度ωe、出力電圧限界値Vdq_limit、d軸電流Id、q軸電流Iq、及び、機械角位相θmに基づいて、出力電圧制限指令値Vaを生成する。この出力電圧制限指令値Vaは、出力電圧限界値Vdq_limitまでの範囲で出力電圧の変動振幅を調整し、出力電圧の変動位相を通常制御領域(MTPI制御領域)での出力電圧の変動位相と一致させるための電圧である。
 図6において、MTPI電流指令値算出器14b1-1は、合計トルク指令値Tが一定となる電流の軌跡である定トルク曲線とMTPI曲線(最大トルク/電流制御曲線)との交点であるMTPI想定d軸電流指令値Id_mtpi及びMTPI想定q軸電流指令値Iq_mtpiを算出する。定トルク曲線とMTPI曲線との交点は、例えば、式(10)のモータトルク式と、q軸電流が既知のときのMTPI曲線上のd軸電流式である式(11)とを用いて算出される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 式(10)及び式(11)からd軸電流Idを消去すると、式(12)に示すように、q軸電流Iqに関する4次方程式を得ることができる。
Figure JPOXMLDOC01-appb-M000012
 式(12)に示す4次方程式の解として、式(12)に示す4次方程式に対して例えばニュートン法等を用いることで、合計トルク指令値Tの定トルク曲線とMTPI曲線との交点でのMTPI想定q軸電流指令値Iq_mtpiに相当する解を導出することができる。
 MTPI電流指令値算出器14b1-1は、式(12)の解であるMTPI想定q軸電流指令値Iq_mtpiに基づいて式(11)のd軸電流式に従って、MTPI想定d軸電流指令値Id_mtpiを算出する。
 MTPI電圧指令値算出器14b1-2は、MTPI想定d軸電流指令値Id_mtpi、MTPI想定q軸電流指令値Iq_mtpi及び電気角推定角速度ωeに基づいて、式(13.1)及び式(13.2)に示すPMSM電圧方程式に従って、MTPI想定d軸電圧Vd_mtpi及びMTPI想定q軸電圧Vq_mtpiを算出する。なお、式(13.1)及び式(13.2)における“p”は、微分演算子である。
Figure JPOXMLDOC01-appb-M000013
 なお、式(13.1)及び式(13.2)では、トルク制御による電流変化に伴うインダクタンスでの電圧降下“p・Ld・Id”及び“p・Lq・Iq”(p項電圧)が考慮されている。“Ld”はモータMのd軸インダクタンス、“Lq”はモータMのq軸インダクタンスを示す。
 ここで、p項電圧は、電流変化の時間微分を用いて示される。しかし、検出電流の変化量をそのまま微分値とすると、MTPI想定d軸電圧Vd_mtpi及びMTPI想定q軸電圧Vq_mtpiが電流ノイズに敏感に反応してしまう。そこで、微分値は、電流基本波変動に基づいて、例えば以下のようにして生成される。
 p項電圧の生成について説明するために、まず、d軸電流Id及びq軸電流Iqの変動成分ΔIda及びΔIqaを式(14.1)及び式(14.2)のように定義する。
Figure JPOXMLDOC01-appb-M000014
 ここで、機械角一回転で1回の周期変動が起こる場合、式(14.1)に含まれる“Ida”と“φd”は、それぞれΔIdaの変動振幅と初期位相を示し、式(14.2)に含まれる“Iqa”と“φq”は、それぞれΔIqaの変動振幅と初期位相を示し、式(14.1)及び式(14.2)に含まれる“θm”は機械角位相の瞬時値を示す。
 よって、電流基本波変動により生ずるp項電圧は、式(15.1)及び式(15.2)のように示される。すなわち、d軸電流変動及びq軸電流変動の位相をπ/2だけ進ませ、位相をπ/2だけ進ませたd軸電流変動及びq軸電流変動に機械角推定角速度ωmを乗算することで、微分値(p項電圧)を生成することができる。
Figure JPOXMLDOC01-appb-M000015
 MTPI電圧振幅算出器14b1-3は、MTPI想定d軸電圧Vd_mtpi及びMTPI想定q軸電圧Vq_mtpiに基づいて、式(16)に従って、MTPI想定出力電圧Va_mtpiを算出する。
Figure JPOXMLDOC01-appb-M000016
 平均出力電圧生成器14b1-4は、モータMのロータの1回転毎に変動するd軸電流Idとq軸電流Iqのそれぞれの平均値がMTPI曲線(最大トルク/電流制御曲線)をトレースするように調整した平均出力電圧指令値Va0を出力する。例えば、平均出力電圧生成器14b1-4は、現在のq軸電流IqからMTPI曲線上のd軸電流Idtを算出し、算出したd軸電流Idtと現在のd軸電流Idとの誤差がなくなるようにPI制御等により平均出力電圧指令値Va0を調整する。平均出力電圧生成器14b1-4は、例えば式(17.1)及び式(17.2)に従って平均出力電圧指令値Va0を算出する。また、平均出力電圧生成器14b1-4は、平均出力電圧指令値Va0が出力電圧限界値Vdq_limitを超過した場合には、式(18)に従って、平均出力電圧指令値Va0を出力電圧限界値Vdq_limitに制限する。平均出力電圧指令値Va0が出力電圧限界値Vdq_limitに制限されることで、弱め磁束制御となる。“Ψa”はモータMの鎖交磁束を示す。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 MTPI電圧変動成分抽出器14b1-5は、MTPI想定出力電圧Va_mtpiの変動振幅|ΔVa_mtpi|、及び、瞬時値ΔVa_mtpiを、例えば以下のように算出する。
 MTPI電圧変動成分抽出器14b1-5は、まず、式(19.1)及び式(19.2)に従って、MTPI想定出力電圧Va_mtpiの基本波成分を、sin成分であるフーリエ係数Va_mtpi_sinと、cos成分であるVa_mtpi_cosとに分離する。MTPI電圧変動成分抽出器14b1-5は、MTPI想定出力電圧Va_mtpiの基本波成分のフーリエ係数を機械角周期毎に算出することで、高調波成分が除去されたMTPI想定出力電圧Va_mtpiの基本波成分を抽出することができる。
Figure JPOXMLDOC01-appb-M000019
 次いで、MTPI電圧変動成分抽出器14b1-5は、式(19.1)及び式(19.2)に従って算出したフーリエ係数Va_mtpi_sin,Va_mtpi_cosに基づいて、式(20)に従って、MTPI想定出力電圧Va_mtpiの基本波成分の振幅|ΔVa_mtpi|を算出する。なお、フーリエ係数Va_mtpi_sin,Va_mtpi_cosは機械角周期毎に更新される値であるため、振幅|ΔVa_mtpi|も機械角周期毎に更新される。
Figure JPOXMLDOC01-appb-M000020
 そして、MTPI電圧変動成分抽出器14b1-5は、MTPI想定出力電圧Va_mtpiの基本波成分の瞬時値ΔVa_mtpiを式(21)に従って算出する。
Figure JPOXMLDOC01-appb-M000021
 加算器14b1-6は、式(22)に従って、平均出力電圧指令値Va0とMTPI想定出力電圧Va_mtpiの基本波成分の振幅|ΔVa_mtpi|とを加算することによりMTPI想定出力電圧変動ピーク値Va_mtpi_peakを算出する。
Figure JPOXMLDOC01-appb-M000022
 MTPI電圧振幅制限処理器14b1-7は、加算器14b1-6での加算結果であるMTPI想定出力電圧変動ピーク値Va_mtpi_peakが出力電圧限界値Vdq_limit以下となるように調整した変動出力電圧制限指令値ΔVa_limit_mtpiを生成し、生成した変動出力電圧制限指令値ΔVa_limit_mtpiを出力する。
 例えば、MTPI電圧振幅制限処理器14b1-7は、平均出力電圧指令値Va0と、MTPI想定出力電圧変動ピーク値Va_mtpi_peakと、出力電圧限界値Vdq_limitとの比較により、出力電圧変動成分の振幅比率scaleを算出し、振幅比率scaleをMTPI想定出力電圧変動成分ΔVa_mtpiに乗算することにより変動出力電圧制限指令値ΔVa_limit_mtpiを生成する。こうすることで、MTPI想定出力電圧変動成分ΔVa_mtpiと位相を一致させた変動出力電圧制限指令値ΔVa_limit_mtpiを生成できる。
 例えば、MTPI電圧振幅制限処理器14b1-7は、式(23.1)~式(23.3)に従って出力電圧変動成分の振幅比率scaleを算出し、算出した振幅比率scaleに基づいて、式(23.4)に従って、変動出力電圧制限指令値ΔVa_limit_mtpiを生成する。
Figure JPOXMLDOC01-appb-M000023
 加算器14b1-8は、式(24)に従って、平均出力電圧指令値Va0と変動出力電圧制限指令値ΔVa_limit_mtpiとを加算することにより出力電圧制限指令値Vaを算出する。加算器14b1-8は、算出した出力電圧制限指令値Vaを誘起電圧指令値算出器14b2及び電圧指令値算出器14b6へ出力する。
Figure JPOXMLDOC01-appb-M000024
 図5において、誘起電圧指令値算出器14b2は、現在のd軸電流Id、q軸電流Iq及び電気角推定角速度ωeに基づいて、式(25.1)及び式(25.2)に示すモータモデル式に従って、出力電圧制限指令値Vaに基づく誘起電圧指令値Voを算出する。以下に、誘起電圧指令値Voの算出の詳細を示す。
 PMSMの電圧方程式(d軸電圧Vd,q軸電圧Vq)、出力電圧振幅Vaの理論式、及び、モータMの誘起電圧Voの理論式は、式(25.1)~式(27)に示される。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 また、式(25.1)~式(27)から、出力電圧制限指令値Vaと誘起電圧指令値Voとを関連づける式は、式(28)のようになる。そこで、誘起電圧指令値算出器14b2は、式(28)に従って誘起電圧指令値Voを算出し、算出した誘起電圧指令値Voを電流指令値算出器14b3へ出力する。
Figure JPOXMLDOC01-appb-M000028
 電流指令値算出器14b3は、合計トルク指令値Tが一定となる電流の軌跡である定トルク曲線と、誘起電圧指令値Vo及び電気角推定角速度ωeが一定となる電流の軌跡である定誘起電圧楕円との交点に基づいて、q軸電流指令値Iqとd軸電流指令値Idとを算出する(図1B参照)。電流指令値算出器14b3は、算出したq軸電流指令値Iq及びd軸電流指令値Idを仮電圧指令値算出器14b4へ出力する。
 定トルク曲線と定誘起電圧楕円との交点は、例えば、式(29)に示すモータトルク式と、式(30)に示す誘起電圧式とを用いて算出できる。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
 式(29)及び式(30)からd軸電流Idを消去すると、式(31)のように、q軸電流Iqに関する4次方程式を得ることができる。但し、式(31)において、“ΔL=Ld-Lq”である。
Figure JPOXMLDOC01-appb-M000031
 式(31)に示す4次方程式の解として、式(31)に示す4次方程式に対して例えばニュートン法等を用いることで、合計トルク指令値Tが一定となる電流の軌跡である定トルク曲線と、誘起電圧Vo及び電気角推定角速度ωeが一定となる電流の軌跡である定誘起電圧楕円とが交差する点でのq軸電流指令値Iqに相当する解を導出することができる(図1B参照)。
 電流指令値算出器14b3は、q軸電流指令値Iqを算出後、式(30)に示す誘起電圧式をd軸電流式に変形した式(32)に従って、q軸電流指令値Iqに基づいてd軸電流指令値Idを算出する。
Figure JPOXMLDOC01-appb-M000032
 ここで、式(32)において、√に係る符号として正または負の何れを採るかは、Iq軸に平行で、かつ、定誘起電圧楕円の中心であるM点(-Ψa/Ld,0)を通る直線(以下では「M点境界ライン」と呼ぶことがある)と、定誘起電圧楕円とが交差する点でのトルク(以下では「M点境界上トルクT_M」と呼ぶことがある)を算出し、M点境界上トルクT_Mと合計トルク指令値Tとを比較することによって決定することができる。
 以下に、d軸電流指令値Id及びq軸電流指令値Iqの算出手順を示す。図7A及び図7Bは、本開示の実施例1の電流指令値算出器の動作例の説明に供する図である。
 電流指令値算出器14b3は、まず、M点上のd軸電流Id_Mを式(33)に従って算出する。
Figure JPOXMLDOC01-appb-M000033
 次いで、電流指令値算出器14b3は、M点境界ラインと定誘起電圧楕円とが交差する点におけるq軸電流Iq_Mを算出する。q軸電流Iq_Mは、式(30)にM点上のd軸電流Id_Mを代入することにより算出できるため、式(34)に従って算出される。
Figure JPOXMLDOC01-appb-M000034
 よって、電流指令値算出器14b3は、式(35)に従って、M点境界上トルクT_Mを算出する。
Figure JPOXMLDOC01-appb-M000035
 そして、電流指令値算出器14b3は、合計トルク指令値TとM点境界上トルクT_Mとの大小関係に基づいて、式(36.1)及び式(36.2)に従って、d軸電流指令値Idを決定する。式(36.1)には、“合計トルク指令値T≦M点境界上トルクT_M”の場合のd軸電流指令値Id(図7A参照)を示し、式(36.2)には、“合計トルク指令値T>M点境界上トルクT_M”の場合のd軸電流指令値Id(図7B参照)を示す。
Figure JPOXMLDOC01-appb-M000036
 電流指令値算出器14b3は、以上のようにして算出したd軸電流指令値Id及びq軸電流指令値Iqを仮電圧指令値算出器14b4へ出力する。
 図5において、仮電圧指令値算出器14b4は、電気角推定角速度ωe、d軸電流指令値Id及びq軸電流指令値Iqに基づいて、式(37.1)及び式(37.2)に示すモータモデル式に従って、フィードフォワードで仮d軸電圧指令値Vd_m及び仮q軸電圧指令値Vq_mを算出する。仮電圧指令値算出器14b4は、算出した仮d軸電圧指令値Vd_m及び仮q軸電圧指令値Vq_mを電圧ベクトル角算出器14b5へ出力する。なお、フィードフォワードで仮電圧指令値を算出することで、入力飽和によってPI制御などの積分器に発生するワインドアップ(飽和現象)を防止できる。
Figure JPOXMLDOC01-appb-M000037
 なお、式(37.1)及び式(37.2)では、トルク制御による電流変化に伴うインダクタンスでの電圧降下“p・Ld・Id”及び“p・Lq・Iq”(p項電圧)が考慮されている。
 電圧ベクトル角算出器14b5は、仮d軸電圧指令値Vd_m及び仮q軸電圧指令値Vq_mに基づいて、式(38)に従って、電圧ベクトル角δを算出する。電圧ベクトル角算出器14b5は、算出した電圧ベクトル角δを電圧指令値算出器14b6へ出力する。つまり、電圧ベクトル角算出器14b5は、図8に示すように、式(1)のようにして算出される振幅Vaを有する出力電圧ベクトルがq軸から為す角度を電圧ベクトル角δとして算出する。こうすることで、出力電圧振幅がインバータの出力可能な直流電圧(DC電圧)以下に制限される電圧飽和領域において、合計トルク指令値Tに対応した電圧ベクトル角δを演算によって生成できる。よって、電圧ベクトル角変動のチューニングを行うことなく制振制御を行うことができるため、電圧ベクトル角変動のチューニングをせずにモータMの制振効果の向上を図ることができる。図8は、本開示の実施例1の電圧ベクトル角算出器の動作例の説明に供する図である。
Figure JPOXMLDOC01-appb-M000038
 電圧指令値算出器14b6は、電圧ベクトル角δ及び出力電圧制限指令値Vaに基づいて、式(39.1)及び式(39.2)に従って、極座標から直交座標への座標変換を行うことにより、d軸電圧指令値Vd及びq軸電圧指令値Vqを算出する。
Figure JPOXMLDOC01-appb-M000039
 <MTPI電圧振幅制限処理器の動作>
 図9は、本開示の実施例1のMTPI電圧振幅制限処理器の動作例の説明に供する図である。
 例えば、図9のケース(a)に示すように、平均出力電圧指令値Va0を中心に変動するMTPI想定出力電圧変動成分ΔVa_mtpiのピーク値Va_mtpi_peakが出力電圧限界値Vdq_limit以下である場合は、式(23.2)の条件に該当するため、MTPI電圧振幅制限処理器14b1-7は、出力電圧変動成分の振幅比率scaleを“1”とする。そして、MTPI電圧振幅制限処理器14b1-7は、式(23.4)において“scale=1”とし、MTPI想定出力電圧変動成分ΔVa_mtpiをそのまま変動出力電圧制限指令値ΔVa_limit_mtpiとして出力する。その結果、出力電圧制限指令値Vaは、MTPI想定出力電圧変動成分ΔVa_mtpiと一致する。
 また例えば、図9のケース(b)に示すように、平均出力電圧指令値Va0を中心に変動するMTPI想定出力電圧変動成分ΔVa_mtpiのピーク値Va_mtpi_peakが出力電圧限界値Vdq_limitを超え、かつ、平均出力電圧指令値Va0が出力電圧限界値Vdq_limitを超えない場合は、式(23.3)の条件に該当するため、MTPI電圧振幅制限処理器14b1-7は、出力電圧変動成分の振幅比率scaleを“(Vdq_limit-Va0)/|ΔVa_mtpi|”とする。そして、MTPI電圧振幅制限処理器14b1-7は、式(23.4)において“scale=(Vdq_limit-Va0)/|ΔVa_mtpi|”とした変動出力電圧制限指令値ΔVa_limit_mtpiを出力する。その結果、MTPI想定出力電圧変動成分ΔVa_mtpiと位相が一致し、かつ、変動振幅によるピーク値が出力電圧限界値Vdq_limit以下となる出力電圧制限指令値Vaが生成される。
 また例えば、図9のケース(c)に示すように、MTPI想定出力電圧変動成分ΔVa_mtpiの平均出力電圧指令値Va0が出力電圧限界値Vdq_limit以上である場合は、式(23.1)の条件に該当するため、MTPI電圧振幅制限処理器14b1-7は、出力電圧変動成分の振幅比率scaleを“0”とする。そして、MTPI電圧振幅制限処理器14b1-7は、式(23.4)において“scale=0”とし、変動出力電圧制限指令値ΔVa_limit_mtpiを“0”として出力する。その結果、出力電圧制限指令値Vaは、出力電圧限界値Vdq_limitと一致する。
 このようにして出力電圧制限指令値Vaを制御することで、図10に示す出力電圧波形の一例のように、モータMの制御領域が通常制御領域から電圧飽和領域に遷移した直後も、出力電圧振幅Vaを出力電圧限界値Vdq_limit以下に保ちつつ、通常制御領域と電圧飽和領域との間で出力電圧振幅Vaを一致させることができる。このため、通常制御領域から電圧飽和領域への遷移時の切替ショックを低減できる。さらに、モータ制御装置100が電圧飽和領域電圧指令値生成器14bを有することで、電圧飽和領域において、出力電圧制限指令値Vaの変動の中心である平均出力電圧指令値Va0が出力電圧限界値Vdq_limitで制限される場合にも対応できる。
 <通常制御領域電圧指令値生成器の構成>
 図11は、本開示の実施例1の通常制御領域電圧指令値生成器の構成例を示す図である。図11において、通常制御領域電圧指令値生成器14aは、電流指令値算出器14a1と、加算器16,17,21,22と、減算器18,19と、電圧指令値算出器20と、IIR(Infinite Impulse Response)フィルタ35a,35bと、非干渉化制御器36と、電流誤差補正値生成器37とを有する。
 電流指令値算出器14a1は、合計トルク指令値Tが一定となる電流の軌跡である定トルク曲線とMTPI曲線との交点に基づいて、q軸電流指令値Iq及びd軸電流指令値Idを算出する。
 ここで、定トルク曲線とMTPI曲線との交点は、例えば、式(29)に示すモータトルク式と、MTPI曲線におけるd軸電流Idとq軸電流Iqとの関係を示す式(17.1)とを用いて算出できる。なお、式(29)の右辺において、第1項がマグネットトルクを表し、第2項がリラクタンストルクを表し、マグネットトルクはq軸電流Iqのみを含み、リラクタンストルクはq軸電流Iqとd軸電流Idとの双方を含む。従って、q軸電流Iqとd軸電流Idとを適切に制御することにより、モータMに適正なトルクを発生させることができる。
 式(29)及び式(17.1)よりd軸電流Idを消去すると、q軸電流Iqに関する4次方程式である式(40)を得ることができる。
Figure JPOXMLDOC01-appb-M000040
 式(40)に示す4次方程式の解として、式(40)に示す4次方程式に対して例えばニュートン法等を用いることで、合計トルク指令値Tの定トルク曲線とMTPI曲線との交点でのq軸電流指令値Iqに相当する解を導出することができる。また、電流指令値算出器14a1は、式(40)に従って算出したq軸電流指令値Iqを式(17.1)に代入することにより、d軸電流指令値Idを算出する。
 加算器17は、式(41.1)に従って、電流指令値算出器14a1より出力されたq軸電流指令値Iqと電流誤差補正値生成器37より出力されたq軸電流誤差補正値ΔIqとを加算することによりq軸電流補正指令値Iq_FFを算出する。加算器16は、式(41.2)に従って、電流指令値算出器14a1より出力されたd軸電流指令値Idと電流誤差補正値生成器37より出力されたd軸電流誤差補正値ΔIdとを加算することによりd軸電流補正指令値Id_FFを算出する。
Figure JPOXMLDOC01-appb-M000041
 減算器19は、加算器17より出力されたq軸電流補正指令値Iq_FFから、u,v,w/d-q変換器29より出力されたq軸電流Iqを減算することにより、q軸電流補正指令値Iq_FFとq軸電流Iqとの誤差であるq軸電流誤差Iq_diffを算出する。減算器18は、加算器16より出力されたd軸電流補正指令値Id_FFから、u,v,w/d-q変換器29より出力されたd軸電流Idを減算することにより、d軸電流補正指令値Id_FFとd軸電流Idとの誤差であるd軸電流誤差Id_diffを算出する。
 電圧指令値算出器20は、式(42.1)に従って、q軸電流誤差Iq_diff(Iq_FF-Iq)にPI(Proportional Integral)制御を行うことにより非干渉化前q軸電圧指令値Vqtを算出する。また、電圧指令値算出器20は、式(42.2)に従って、d軸電流誤差Id_diff(Id_FF-Id)にPI制御行うことにより非干渉化前d軸電圧指令値Vdtを算出する。なお、式(42.1)のkp_q及び式(42.2)のkp_dは比例定数であり、式(42.1)のki_q及び式(42.2)のki_dは積分定数である。
Figure JPOXMLDOC01-appb-M000042
 加算器22は、式(43.1)で表されるq軸非干渉化補正値Vqaを、式(43.3)に従って、非干渉化前q軸電圧指令値Vqtに加算することにより、q軸電圧指令値Vqを算出する。加算器21は、式(43.2)で表されるd軸非干渉化補正値Vdaを、式(43.4)に従って、非干渉化前d軸電圧指令値Vdtに加算することにより、d軸電圧指令値Vdを算出する。これにより、dq軸間の干渉がフィードフォワードでキャンセルされたq軸電圧指令値Vq及びd軸電圧指令値Vdが算出される。
Figure JPOXMLDOC01-appb-M000043
 IIRフィルタ(Infinite Impulse Response Filter)35aは、u,v,w/d-q変換器29より出力されたd軸電流Idのノイズを除去し、ノイズ除去後のd軸応答電流Id_iirを出力する。IIR35bは、u,v,w/d-q変換器29より出力されたq軸電流Iqのノイズを除去し、ノイズ除去後のq軸応答電流Iq_iirを出力する。IIRフィルタ35a,35bはノイズ除去フィルタの一例である。
 非干渉化制御器36は、モータ制御装置100の外部(例えば、上位のコントローラ)から入力された電気角速度指令値ωeと、q軸応答電流Iq_iirとに基づいて、非干渉化前d軸電圧指令値Vdtを補正するためのd軸非干渉化補正値Vdaを生成する。また、非干渉化制御器36は、電気角速度指令値ωeとd軸応答電流Id_iirとに基づいて、非干渉化前q軸電圧指令値Vqtを補正するためのq軸非干渉化補正値Vqaを生成する。d軸非干渉化補正値Vda及びq軸非干渉化補正値Vqaは、dq軸間の干渉項をフィードフォワードでキャンセルするための補正値である。ここで、安定制御を図るために、非干渉化補正値は直流化された値であることが望ましい。このため、非干渉化補正値の生成にあたっては、速度については電気角速度指令値ωeが用いられ、d軸電流Id及びq軸電流Iqについては、IIRフィルタにより変動成分が除去されたd軸応答電流Id_iir及びq軸応答電流Iq_iirが用いられる。
 電流誤差補正値生成器37は、電流指令値算出器14a1より出力されたd軸電流指令値Id及びq軸電流指令値Iqと、u,v,w/d-q変換器29より出力されたd軸電流Id及びq軸電流Iqと、位置推定器32より出力された機械角位相θmとに基づいて、d軸電流誤差補正値ΔId及びq軸電流誤差補正値ΔIqを生成する。
 電流誤差補正値生成器37は、電流指令値算出器14a1の応答遅延やdq軸の干渉により、dq軸電流が電流指令値に追従し切れずに生じる変動誤差(位相誤差及び振幅誤差)を積算し、積算値の反転出力を電流誤差補正値(d軸電流誤差補正値ΔId及びq軸電流誤差補正値ΔIq)として生成する。ここで、d軸電流誤差補正値ΔIdは、d軸電流指令値Iとd軸電流Idとの変動誤差を補正するためのフィードフォワード成分であり、q軸電流誤差補正値ΔIqは、q軸電流指令値Iqとq軸電流Iqとの変動誤差を補正するためのフィードフォワード成分である。
 <電流誤差補正値生成器の構成>
 図12は、本開示の実施例1の電流誤差補正値生成器の構成例を示す図である。図12において、電流誤差補正値生成器37は、減算器37a,37eと、q軸電流誤差成分分離器37bと、q軸電流誤差積算器37cと、q軸電流誤差補正値復調器37dと、d軸電流誤差成分分離器37fと、d軸電流誤差積算器37gと、d軸電流誤差補正値復調器37hとを有する。
 減算器37aは、式(44)に従って、q軸電流Iqとq軸電流指令値Iqとの誤差であるq軸電流変動誤差Iq_errを算出する。
Figure JPOXMLDOC01-appb-M000044
 q軸電流誤差成分分離器37bは、式(45.1)及び式(45.2)に従って、q軸電流変動誤差Iq_errの基本波成分である2つのフーリエ係数Iq_err_sin(sin成分)及びIq_err_cos(cos成分)を機械角周期毎に算出する。
Figure JPOXMLDOC01-appb-M000045
 q軸電流誤差積算器37cは、式(46.1)及び式(46.2)に従って、q軸電流変動誤差Iq_errのsin成分Iq_err_sinと、q軸電流変動誤差Iq_errのcos成分Iq_err_cosとのそれぞれに補正ゲインkを乗算し、それぞれの乗算結果をIq_err_sin_i_old,Iq_err_cos_i_oldに加算する。式(46.1)におけるIq_err_sin_iは、今回の機械角周期までのIq_err_sinの積算値であり、式(46.2)におけるIq_err_cos_iは、今回の機械角周期までのIq_err_cosの積算値である。また、式(46.1)におけるIq_err_sin_i_oldは、前回の機械角周期までのIq_err_sin_iであり、式(46.2)におけるIq_err_cos_i_oldは、前回の機械角周期までのIq_err_cos_iである。
Figure JPOXMLDOC01-appb-M000046
 q軸電流誤差補正値復調器37dは、式(47.1)及び式(47.2)に従って、q軸電流誤差補正値ΔIqを算出する。これにより、q軸電流変動誤差の位相が反転して、機械角位相θmでのq軸電流誤差補正値ΔIqの瞬時値が算出される。
Figure JPOXMLDOC01-appb-M000047
 減算器37eは、式(48)に従って、d軸電流Idとd軸電流指令値Idとの誤差であるd軸電流変動誤差Id_errを算出する。
Figure JPOXMLDOC01-appb-M000048
 d軸電流誤差成分分離器37fは、式(49.1)及び式(49.2)に従って、d軸電流変動誤差Id_errの基本波成分である2つのフーリエ係数Id_err_sin(sin成分)及びId_err_cos(cos成分)を機械角周期毎に算出する。
Figure JPOXMLDOC01-appb-M000049
 d軸電流誤差積算器37gは、式(50.1)及び式(50.2)に従って、d軸電流変動誤差Id_errのsin成分Id_err_sinと、d軸電流変動誤差Id_errのcos成分Id_err_cosとのそれぞれに補正ゲインkを乗算し、それぞれの乗算結果をId_err_sin_i_old,Id_err_cos_i_oldに加算する。式(50.1)におけるId_err_sin_iは、今回の機械角周期までのId_err_sinの積算値であり、式(50.2)におけるId_err_cos_iは、今回の機械角周期までのId_err_cosの積算値である。また、式(50.1)におけるId_err_sin_i_oldは、前回の機械角周期までのId_err_sin_iであり、式(50.2)におけるId_err_cos_i_oldは、前回の機械角周期までのId_err_cos_iである。
Figure JPOXMLDOC01-appb-M000050
 d軸電流誤差補正値復調器37hは、式(51.1)及び式(51.2)に従って、d軸電流誤差補正値ΔIdを算出する。これにより、d軸電流変動誤差の位相が反転して、機械角位相θmでのd軸電流誤差補正値ΔIdの瞬時値が生成される。
Figure JPOXMLDOC01-appb-M000051
 以上、本開示の実施例1について説明した。
 [実施例2]
 本開示の実施例1は、モータMの誘起電圧の歪みが小さい場合には有効である。しかし、実際の誘起電圧波形にはモータMの構造に起因した誘起電圧歪みがあり、この誘起電圧歪みが大きい場合、モータMの電流の高調波が大きくなる。その結果、モータMの電流制御の追従性が悪くなる場合がある。そこで、実施例2では、モータMの電流制御の追従性を高めて、制御の安定性をさらに向上させる。このため、実施例2では、電圧飽和領域電圧指令値生成器14bの構成が実施例1と一部異なる。
 <電圧飽和領域電圧指令値生成器の構成>
 図13は、本開示の実施例2の電圧飽和領域電圧指令値生成器14bの構成例を示す図である。図13において、電圧飽和領域電圧指令値生成器14bが、出力電圧制限指令値生成器14b1と、誘起電圧指令値算出器14b2と、電流指令値算出器14b3と、仮電圧指令値算出器14b4と、電圧ベクトル角算出器14b5と、電圧指令値算出器14b6とを有する点は、実施例1(図5)と同一である。実施例2では、電圧飽和領域電圧指令値生成器14bは、さらに電流比例制御器14b7と、加算器14b8,14b9と、減算器14b10,14b11とを有する。
 図13において、電圧飽和領域電圧指令値生成器14bは、実施例1と同様にして、電圧指令値算出器14b6により算出したd軸電圧指令値Vd**を加算器14b8へ出力し、算出したq軸電圧指令値Vq**を加算器14b9へ出力する。
 なお、実施例1では、電圧指令値算出器14b6から出力されるd軸電圧指令値、q軸電圧指令値をそれぞれVd、Vqと表記したのに対し、実施例2では、電圧指令値算出器14b6から出力されるd軸電圧指令値、q軸電圧指令値をそれぞれVd**、Vq**と表記する。つまり、実施例2におけるd軸電圧指令値Vd**及びq軸電圧指令値V**は、実施例1におけるd軸電圧指令値Vd及びq軸電圧指令値Vqに相当する。
 電流指令値算出器14b3は、算出したq軸電流指令値Iq及びd軸電流指令値Idを仮電圧指令値算出器14b4へ出力する。また、電流指令値算出器14b3は、算出したq軸電流指令値Iqを減算器14b11へ出力し、算出したd軸電流指令値Idを減算器14b10へ出力する。
 減算器14b10は、d軸電流指令値Idからd軸電流Idを減算することによりd軸電流誤差Id_pを算出し、算出したd軸電流誤差Id_pを電流比例制御器14b7へ出力する。減算器14b11は、q軸電流指令値Iqからq軸電流Iqを減算することによりq軸電流誤差Iq_pを算出し、算出したq軸電流誤差Iq_pを電流比例制御器14b7へ出力する。
 電流比例制御器14b7は、d軸電流誤差Id_pに比例定数kp_dを乗算することによりd軸補償電圧Vd_pを算出し、算出したd軸補償電圧Vd_pを加算器14b8へ出力する。また、電流比例制御器14b7は、q軸電流誤差Iq_pに比例定数kp_qを乗算することによりq軸補償電圧Vq_pを算出し、算出したq軸補償電圧Vq_pを加算器14b9へ出力する。つまり、d軸補償電圧Vd_pは“kp_d・Id_p”として算出され、q軸補償電圧Vq_pは“kp_q・Iq_p”として算出される。
 加算器14b8は、電流比例制御器14b7より出力されたd軸補償電圧Vd_pを、電圧指令値算出器14b6より出力されたd軸電圧指令値Vd**に加算することにより、最終的なd軸電圧指令値Vdを算出する。また、加算器14b9は、電流比例制御器14b7より出力されたq軸補償電圧Vq_pを、電圧指令値算出器14b6より出力されたq軸電圧指令値Vq**に加算することにより、最終的なq軸電圧指令値Vqを算出する。
 このように電流比例制御器14b7を追加することで、誘起電圧歪みによる電流高調波を抑制することができ、電流指令値への追従性をさらに向上させることができる。
 以上、実施例2について説明した。
 以上のように、本開示のモータ制御装置(実施例1のモータ制御装置100)は、電圧指令値生成器(実施例1の電圧指令値生成器14)と、制御切替判定部15とを有する。制御切替判定部15は、モータ(実施例1のモータM)の制御領域が電圧飽和領域にあるか通常制御領域にあるかを判定する。電圧指令値生成器は、速度指令値(実施例1の機械角速度指令値ωm)とモータの速度(実施例1の機械角推定角速度ωm)とに基づいてモータの電圧指令値(実施例1のd軸電圧指令値Vd及びq軸電圧指令値Vq)を生成する。また、電圧指令値生成器は、制御切替判定部によりモータの制御領域が電圧飽和領域にあると判定された場合に、トルク指令値(実施例1の合計トルク指令値Tと、モータへ出力可能な最大電圧の限界値(実施例1の出力電圧制限指令値Va)とからモータに印加される出力電圧の電圧ベクトル角(実施例1の電圧ベクトル角δ)を求め、この電圧ベクトル角に基づいて電圧指令値を生成する。
 こうすることで、電圧振幅の変動を抑制しつつ、速度変動に対する出力トルク変動を最適化することができるため、電圧飽和領域でのトルク制御時におけるモータの制振効果の向上を図ることができる。
 また、電圧指令値算出器は、モータの定トルク曲線とモータの定誘起電圧楕円との交点に基づいてモータの電流指令値(実施例1のq軸電流指令値Iq及びd軸電流指令値Id)を算出する。
 また、電圧指令値生成器は、電流指令値に基づいてモータモデル式(実施例2の式(37.1)及び式(37.2))に従って仮電圧指令値(実施例1の仮d軸電圧指令値Vd_m及び仮q軸電圧指令値Vq_m)を算出し、仮電圧指令値に基づいて電圧ベクトル角を算出する。
 こうすることで、フィードフォワードで電圧ベクトル角を算出することができで、積分制御が不要になるため、ワインドアップ(飽和現象)の発生を防止できる。
 また、電圧指令値算出器(実施例2の電圧指令値算出器14)は、電流指令値とモータの電流(実施例2のd軸電流Id及びq軸電流Iq)との誤差(実施例2のd軸電流誤差Id_p及びq軸電流誤差Iq_p)に比例定数(実施例2の比例定数ka)を乗算することにより補償電圧(実施例2のd軸補償電圧Vd_p及びq軸補償電圧Vq_p)を算出する比例制御器(実施例2の電流比例制御器14b7)を有し、補償電圧が加算された電圧指令値を算出する。
 こうすることで、比例制御のみで誘起電圧歪等により生ずる高調波電流を抑制して電流指令値への追従性を向上させることができる。
100 モータ制御装置
14 電圧指令値生成器
14a 通常制御領域電圧指令値生成器
14b 電圧飽和領域電圧指令値生成器
14b1 出力電圧制限指令値生成器
14b2 誘起電圧指令値算出器
14b3 電流指令値算出器
14b4 仮電圧指令値算出器
14b5 電圧ベクトル角算出器
14b6 電圧指令値算出器
14b7 電流比例制御器

Claims (4)

  1.  速度指令値とモータの速度とに基づいたトルク指令値から前記モータの電圧指令値を生成する電圧指令値生成器と、
     前記モータの制御領域が電圧飽和領域にあるか否かを判定する制御切替判定部と、を具備し、
     前記電圧指令値生成器は、前記制御切替判定部により前記制御領域が前記電圧飽和領域にあると判定された場合には、
     前記トルク指令値と、前記モータへ出力可能な最大電圧の限界値と、前記モータに印加される出力電圧の電圧ベクトル角とに基づいて前記電圧指令値を生成する、
     モータ制御装置。
  2.  前記電圧指令値生成器は、前記トルク指令値の前記モータの定トルク曲線と前記モータの定誘起電圧楕円との交点に基づいて前記モータの電流指令値を算出し、前記電流指令値から電圧ベクトル角を求めて電圧指令値を生成する、
     請求項1に記載のモータ制御装置。
  3.  前記電圧指令値生成器は、前記電流指令値に基づいてモータモデル式に従って仮電圧指令値を算出し、前記仮電圧指令値に基づいて前記電圧ベクトル角を算出する、
     請求項2に記載のモータ制御装置。
  4.  前記電圧指令値生成器は、前記モータの電流指令値と前記モータの電流との誤差に比例定数を乗算することにより補償電圧を算出し、前記補償電圧が加算された前記電圧指令値を生成する、
     請求項1に記載のモータ制御装置。
PCT/JP2020/045886 2020-01-31 2020-12-09 モータ制御装置 WO2021153020A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2020426771A AU2020426771B2 (en) 2020-01-31 2020-12-09 Motor control device
CN202080093047.0A CN114982123A (zh) 2020-01-31 2020-12-09 电动机控制装置
EP20916873.1A EP4099559A4 (en) 2020-01-31 2020-12-09 ENGINE CONTROL DEVICE
US17/789,921 US12028002B2 (en) 2020-01-31 2020-12-09 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-015699 2020-01-31
JP2020015699A JP6852823B1 (ja) 2020-01-31 2020-01-31 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2021153020A1 true WO2021153020A1 (ja) 2021-08-05

Family

ID=75154785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045886 WO2021153020A1 (ja) 2020-01-31 2020-12-09 モータ制御装置

Country Status (6)

Country Link
US (1) US12028002B2 (ja)
EP (1) EP4099559A4 (ja)
JP (1) JP6852823B1 (ja)
CN (1) CN114982123A (ja)
AU (1) AU2020426771B2 (ja)
WO (1) WO2021153020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195273A1 (ja) * 2022-04-06 2023-10-12 日立Astemo株式会社 モータ制御装置並びに電気車

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926221B2 (en) * 2020-09-24 2024-03-12 GM Global Technology Operations LLC Open-loop control for transient operation of a rotary electric machine
CN115913018A (zh) * 2022-11-04 2023-04-04 珠海市伟高变频科技有限公司 一种基于转速控制的单转子压缩机振动抑制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139892A (ja) * 2016-02-04 2017-08-10 株式会社明電舎 埋込磁石同期モータの電流指令テーブル自動生成システムおよび電流指令テーブル自動生成方法
JP2017158414A (ja) 2016-03-04 2017-09-07 株式会社富士通ゼネラル モータ制御装置
JP2017158415A (ja) 2016-03-04 2017-09-07 株式会社富士通ゼネラル モータ制御装置
JP2019180173A (ja) * 2018-03-30 2019-10-17 株式会社富士通ゼネラル モータ制御装置
JP2019201471A (ja) * 2018-05-15 2019-11-21 株式会社富士通ゼネラル モータ制御装置
JP2019213309A (ja) * 2018-06-01 2019-12-12 日産自動車株式会社 巻線界磁型同期モータの制御方法、及び、制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447572C2 (ru) * 2007-12-04 2012-04-10 Мицубиси Электрик Корпорейшн Устройство управления электродвигателя переменного тока
US9007004B2 (en) * 2009-11-06 2015-04-14 University Of Technology, Sydney Sensorless AC motor controller
KR101562419B1 (ko) * 2011-07-05 2015-10-22 엘에스산전 주식회사 매입형 영구자석 동기 전동기의 구동장치
CN103988419B (zh) 2011-12-09 2016-03-23 松下电器产业株式会社 电动机控制装置
JP6260502B2 (ja) 2014-09-16 2018-01-17 株式会社デンソー モータ制御装置
CN106961232B (zh) 2017-04-17 2019-12-06 上海大学 采用小容量薄膜电容的高功率因数二极管整流器永磁电机控制方法
JP6867267B2 (ja) * 2017-10-13 2021-04-28 ルネサスエレクトロニクス株式会社 モータ制御装置およびモータシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139892A (ja) * 2016-02-04 2017-08-10 株式会社明電舎 埋込磁石同期モータの電流指令テーブル自動生成システムおよび電流指令テーブル自動生成方法
JP2017158414A (ja) 2016-03-04 2017-09-07 株式会社富士通ゼネラル モータ制御装置
JP2017158415A (ja) 2016-03-04 2017-09-07 株式会社富士通ゼネラル モータ制御装置
JP2019180173A (ja) * 2018-03-30 2019-10-17 株式会社富士通ゼネラル モータ制御装置
JP2019201471A (ja) * 2018-05-15 2019-11-21 株式会社富士通ゼネラル モータ制御装置
JP2019213309A (ja) * 2018-06-01 2019-12-12 日産自動車株式会社 巻線界磁型同期モータの制御方法、及び、制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099559A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195273A1 (ja) * 2022-04-06 2023-10-12 日立Astemo株式会社 モータ制御装置並びに電気車

Also Published As

Publication number Publication date
JP6852823B1 (ja) 2021-03-31
AU2020426771A1 (en) 2022-07-21
JP2021125898A (ja) 2021-08-30
US12028002B2 (en) 2024-07-02
EP4099559A4 (en) 2024-02-28
AU2020426771B2 (en) 2023-08-03
EP4099559A1 (en) 2022-12-07
US20220399843A1 (en) 2022-12-15
CN114982123A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2021153020A1 (ja) モータ制御装置
EP2034605B1 (en) Electric motor driving device, and compressor driving device
JP3840905B2 (ja) 同期電動機の駆動装置
JP5413400B2 (ja) 交流電動機の制御装置
JP7225564B2 (ja) モータ制御装置
JP6672902B2 (ja) モータ制御装置
JPH1118496A (ja) 電気車の制御装置および制御方法
JP7081274B2 (ja) モータ制御装置
JP7020093B2 (ja) モータ制御装置
JP7363524B2 (ja) センサレスモータ制御装置
JP7318547B2 (ja) モータ制御装置
JP6769050B2 (ja) モータ制御装置
JP7020112B2 (ja) モータ制御装置
JP6984672B2 (ja) モータ制御装置
JP7009861B2 (ja) モータ制御装置
JP7127657B2 (ja) モータ制御装置
WO2024204319A1 (ja) モータ制御装置
JP2023051559A (ja) モータ制御装置
JP2012175776A (ja) モータ制御装置及びモータ駆動システム
WO2023013302A1 (ja) 交流電動機の駆動制御装置および駆動制御方法
JP5511531B2 (ja) 同期電動機の制御装置
JP2023170542A (ja) 回転電機の制御方法、及び、回転電機の制御装置
JP2023047965A (ja) モータ制御装置
JP2023051557A (ja) モータ制御装置
JP2023034801A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020426771

Country of ref document: AU

Date of ref document: 20201209

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020916873

Country of ref document: EP

Effective date: 20220831