WO2021152973A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2021152973A1
WO2021152973A1 PCT/JP2020/043172 JP2020043172W WO2021152973A1 WO 2021152973 A1 WO2021152973 A1 WO 2021152973A1 JP 2020043172 W JP2020043172 W JP 2020043172W WO 2021152973 A1 WO2021152973 A1 WO 2021152973A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
polypropylene
polyamide
balloon
Prior art date
Application number
PCT/JP2020/043172
Other languages
English (en)
French (fr)
Inventor
弥朗 小島
章浩 野末
直弥 福島
中島 啓造
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080093454.1A priority Critical patent/CN115003756B/zh
Publication of WO2021152973A1 publication Critical patent/WO2021152973A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • This disclosure relates to a resin composition.
  • Patent Document 1 discloses a resin composition containing 30 to 80% by mass of polyamide, 5 to 60% by mass of modified polyolefin, a filler such as unmodified polyolefin and glass beads, and an additive such as a flame retardant. It has a core-shell type particle structure in which polyamide is used as a matrix, modified polyolefin is used as a shell, and unmodified polyolefin is used as a core. Then, dimensional stability, impact resistance and the like are improved.
  • Patent Document 1 could not achieve both the desired flame retardancy, flexural modulus, and light weight.
  • An object of the present disclosure is to provide a resin composition having flame retardancy, flexural modulus, and light weight.
  • the resin composition in the present disclosure is a balloon filler 20 to 20% by mass of polyamide 27 to 38% by mass, polypropylene 6 to 20% by mass, maleic acid-modified styrene-butadiene elastomer 7 to 17% by mass, and specific gravity 0.2 to 0.7. 29% by mass, containing at least one selected from plasticizers and flame retardants as the balance.
  • flame retardancy flexural modulus
  • light weight can be combined.
  • the resin composition according to the present embodiment is a balloon type having 27 to 38% by mass of polyamide, 6 to 20% by mass of polypropylene, 7 to 17% by mass of a maleic acid-modified styrene-butadiene elastomer, and a specific gravity of 0.2 to 0.7. It contains 20 to 29% by mass of a filler and at least one selected from a plasticizer and a flame retardant as a balance.
  • polyamide, polypropylene, maleic acid-modified styrene-butadiene elastomer, balloon filler, plasticizer, and flame retardant will be described in order.
  • polyamide The type of polyamide is not particularly limited. Specific examples of the polyamide include nylon 6, nylon 66, nylon 11, nylon 12, nylon 46, nylon 6T (T: terephthalic acid component), nylon 9T, nylon MXD6 (MXD: m-xylylene diamine component), and the like. Examples include aliphatic polyamides. Among these, nylon 6, nylon 66, nylon 11, and nylon 12 are preferable from the viewpoint of excellent moldability, mechanical properties, and the like.
  • polyamides one kind of polyamide may be used alone, or two or more kinds of polyamides may be used in combination as appropriate.
  • the mass average molecular weight (Mw) of the polyamide is not particularly limited, but is preferably 10,000 to 500,000 from the viewpoint of improving the plasticity, particularly from the viewpoint of improving the plasticity when a plasticizer is added.
  • the mass average molecular weight (Mw) can be determined by the GPC method.
  • the mass ratio of the polyamide in the resin composition is 27 to 38% by mass, preferably 30 to 34% by mass, and more preferably 31 to 33% by mass. By defining the mass ratio within such a range, flame retardancy, flexural modulus, and light weight can be combined.
  • polypropylene As polypropylene, unmodified polypropylene is used.
  • the concept of polypropylene shall include homopolymers, random copolymers, and block copolymers. Homopolymers are homopolymers of propylene. Random copolymers and block copolymers are copolymers of propylene and ⁇ -polyolefins other than polypropylene. Specific examples of ⁇ -polyolefin include ethylene, 1-butene and the like.
  • the molar ratio of ⁇ -polyolefins other than polypropylene in the random copolymers and block copolymers is preferably 20 mol% or less from the viewpoint of effectively expressing the characteristics of polypropylene.
  • the mass average molecular weight (Mw) of polypropylene is not particularly limited, but is preferably in the range of 10,000 to 500,000, and more preferably in the range of 45,000 to 300,000.
  • Mw mass average molecular weight
  • the mass average molecular weight (Mw) of polypropylene is 10,000 or more, it is possible to suppress a decrease in the rigidity of the molded product.
  • the mass average molecular weight (Mw) of polypropylene is 500,000 or less, it is possible to prevent a decrease in the fluidity of the resin composition during molding. If the decrease in fluidity can be prevented, the resin can easily spread to the mold during molding, so that even a thin or complicated member can be molded satisfactorily.
  • the mass average molecular weight (Mw) can be determined by the GPC method.
  • the mass ratio of polypropylene in the resin composition is 6 to 20% by mass, preferably 13 to 17% by mass, and more preferably 14 to 16% by mass. By defining the mass ratio within such a range, flame retardancy, flexural modulus, and light weight can be combined. Further, when the impact strength is further improved, it is preferably blended in an amount of 6 to 8% by mass. By specifying the mass ratio within such a range, the impact strength can be improved by balancing with the blending amount of the maleic acid-modified styrene-butadiene elastomer.
  • Halogenated styrene may be used as the styrene constituting the maleic acid-modified styrene-butadiene elastomer, and isoprene (2-methyl-1,3-butadiene) may be used as the butadiene.
  • the butadiene skeleton may be formed as an olefin by hydrogenation.
  • the styrene-butadiene elastomer is modified with maleic acid. Thereby, the compatibility of polyamide, polypropylene, and balloon-based filler is improved.
  • Styrene copolymer styrene-isoprene-butadiene copolymer, styrene-butadiene-butylene-styrene copolymer, styrene-ethylene-propylene-styrene copolymer, styrene-ethylene-butylene-styrene copolymer (SEBS), Examples thereof include a styrene-ethylene-butadiene-styrene copolymer, a styrene-ethylene-ethylene-propylene-styrene copolymer, a styrene-isoprene-styrene copolymer, and a styrene (butadiene / isoprene) styrene copolymer.
  • SEBS maleic acid-modified styrene-ethylene-butylene-styrene copolymer
  • maleic acid-modified styrene-butadiene-based elastomers one type of maleic acid-modified styrene-butadiene-based elastomer may be used alone, or two or more types of maleic acid-modified styrene-butadiene-based elastomers may be appropriately combined. You may use it.
  • Examples of commercially available maleic acid-modified styrene-butadiene elastomers include Tough Tech M series (manufactured by Asahi Kasei Corporation).
  • the mass ratio of the maleic acid-modified styrene-butadiene elastomer in the resin composition is 7 to 17% by mass, preferably 7 to 9% by mass.
  • flame retardancy, flexural modulus, and light weight can be combined.
  • the impact strength is further improved, it is preferably blended in an amount of 15 to 17% by mass.
  • the balloon-based filler can make the resin composition lighter in specific density.
  • a polyamide resin, a polypropylene resin, or the like as a thermoplastic resin has a specific gravity of 0.90 or more.
  • the specific gravity of the resin composition increases by about 0.1.
  • a balloon-based filler which is a light specific gravity structural member, is melt-kneaded into the resin composition.
  • an inorganic balloon filler or an organic balloon filler may be used.
  • the inorganic balloon filler include glass balloons such as hollow glass beads, silas balloons, alumina balloons (pearlite balloons), silica-alumina balloons (fly ash balloons), carbon balloons, zirconia balloons and the like.
  • the organic balloon filler include thermosetting organic balloons such as phenol resin balloons and thermoplastic organic balloons such as acrylonitrile balloons. Of these, hollow glass beads are preferable from the viewpoint of ease of molding during production.
  • balloon-based fillers one type of balloon-based filler may be used alone, or two or more types of balloon-based fillers may be used in combination as appropriate.
  • the specific gravity of the balloon-based filler is 0.2 to 0.7, preferably 0.3 to 0.6, and more preferably 0.4 to 0.5.
  • the specific gravity of the balloon-based filler is 0.2 or more, the compressive strength of the balloon-based filler can be improved. Further, when the specific gravity of the balloon-based filler is 0.7 or less, the weight of the resin composition can be reduced.
  • the compressive strength of the balloon-based filler is not particularly limited, but is preferably 40 to 190 MPa, more preferably 110 to 190 MPa. By defining in such a range, it is possible to prevent the balloon-based filler from being destroyed and further reduce the weight of the resin composition.
  • the mass ratio of the balloon-based filler in the resin composition is 20 to 29% by mass, preferably 26 to 29% by mass, and more preferably 27 to 28% by mass. By defining the mass ratio within such a range, flame retardancy, flexural modulus, and light weight can be combined.
  • plasticizer is not particularly limited as long as it can be applied to polyamide.
  • plasticizers include sulfonamides such as aromatic or aliphatic sulfonamides, oxybenzoic acid esters, polycyclic aromatic compounds, N-alkyl aliphatic sulfonamides, orthophosphates, and esters of aliphatic carboxylic acids.
  • sulfonamides include, for example, N-butylbenzenesulfonamide, N-hexylbenzenesulfonamide, N-decylbenzenesulfonamide, N-cyclohexylbenzylsulfonamide, and the like, and p-toluene as a toluene derivative thereof.
  • oxybenzoic acid esters include p-oxybenzoic acid esters and the like.
  • polycyclic aromatic compounds include fluorene derivatives and the like.
  • orthophosphates include monooctyldiphenyl phosphate, cresylphenyl phosphate, xylenyldiphenyl phosphate and the like.
  • esters of the aliphatic carboxylic acid include dioctyl azelaic acid and dioctyl sebacate.
  • plasticizers sulfonamides, oxybenzoic acid esters, and polycyclic aromatic compounds are preferable from the viewpoint of excellent compatibility with polyamide and excellent effect of imparting plasticization of the resin composition.
  • plasticizers one kind of plasticizer may be used alone, or two or more kinds of plasticizers may be used in combination as appropriate.
  • the mass ratio of the plasticizer in the resin composition is preferably 1 to 2.2% by mass, more preferably 1.5 to 2.0% by mass.
  • the mass ratio of the plasticizer is 1% by mass or more, plasticization can be imparted to the resin composition. Further, when the mass ratio of the plasticizer is 2.2% by mass or less, the surface appearance can be kept good.
  • flame retardants examples include phosphorus-based flame retardants such as halogen-based flame retardants, phosphoric acid ester-based flame retardants and organic phosphorus-based flame retardants, metal salt-based flame retardants, silicone-based flame retardants, ammonium polyphosphate-based flame retardants, and triazine-based flame retardants. Flame retardants and the like can be mentioned.
  • halogen-based flame retardants include decabromodiphenyl ether, tetrabromobisphenol A, tetrabromobisphenol S, 1,2-bis (2', 3', 4', 5', 6'-pentabromophenyl).
  • the phosphorus-based flame retardant include aromatic phosphate esters such as triphenyl phosphate, tricresyl phosphate, trimethyl phosphate, triethyl phosphate, cresil diphenyl phosphate, xylenyl diphenyl phosphate, and 2-ethylhexyl diphenyl phosphate.
  • aromatic phosphate esters such as triphenyl phosphate, tricresyl phosphate, trimethyl phosphate, triethyl phosphate, cresil diphenyl phosphate, xylenyl diphenyl phosphate, and 2-ethylhexyl diphenyl phosphate.
  • Phosphorus ester compounds such as monophosphate compounds and phosphate oligomer compounds, halogen-containing phosphoric acid ester compounds such as trisdichloropropyl phosphate, trischloroethyl phosphate and trischloropropyl phosphate, condensed phosphate compounds, polyphosphates, red phosphorus Examples thereof include system compounds, phosphinate compounds, phosphonate compounds, phosphonitrile oligomer compounds, and phosphonic acid amide compounds.
  • the metal salt flame retardant include those in which some inorganic salts such as sodium antimonate, antimon trioxide, and antimon pentoxide are used in combination with a halogen flame retardant and used as a flame retardant aid, and organic sulfonic acid.
  • organic metal salt flame retardants such as alkali (earth) metal salts, borate metal salt flame retardants, and tin acid metal salt flame retardants.
  • one kind of flame retardant may be used alone, or two or more kinds of flame retardants may be used in combination as appropriate.
  • a drip inhibitor polytetrafluoroethylene having a fibril forming ability, etc.
  • a flame retardant may be separately blended and used in combination with a flame retardant.
  • the mass ratio of the flame retardant in the resin composition is preferably 12.6 to 15.2% by mass, and more preferably 13 to 15% by mass.
  • the mass ratio of the flame retardant is 12.6% by mass or more, flame retardancy can be imparted to the resin composition. Further, when the mass ratio of the flame retardant is 15.2% by mass or less, the weight of the resin composition can be reduced.
  • the resin composition can be produced by a dry method as follows. That is, a twin-screw kneading extruder containing at least one selected from polyamide, polypropylene, maleic acid-modified styrene-butadiene elastomer, balloon filler having a specific gravity of 0.2 to 0.7, a plasticizer, and a flame retardant in a predetermined formulation. Etc. are put into the kneading extruder. Polyamide, polypropylene, and maleic acid-modified styrene-butadiene elastomer are melted in the kneading extruder.
  • the plasticizer improves the fluidity of the polyamide and reduces the shear stress, and the balloon filler and flame retardant are dispersed in the molten mixed resin. Further, the balloon-based filler and the flame retardant are subjected to a shearing action in the kneading extruder and uniformly dispersed in the melt-mixed resin.
  • the melt-kneaded product extruded from the kneading extruder is, for example, water-cooled to be pelletized.
  • the size of the pellet is not particularly limited.
  • molded product manufacturing method Various molded products can be produced by using a resin composition (pellet) as a molding material and using a known molding method such as injection molding, extrusion molding, or casting molding. Since the resin composition contains at least one selected from polyamide, polypropylene, maleic acid-modified styrene-butadiene elastomer, balloon filler, and a plasticizer and a flame retardant as the balance, the obtained molded product is difficult. It has flammability, bending elasticity, and light weight.
  • a resin composition pellet
  • a known molding method such as injection molding, extrusion molding, or casting molding. Since the resin composition contains at least one selected from polyamide, polypropylene, maleic acid-modified styrene-butadiene elastomer, balloon filler, and a plasticizer and a flame retardant as the balance, the obtained molded product is difficult. It has flammability, bending elasticity, and light weight.
  • polyamide is 30 to 34% by mass
  • polypropylene is 13 to 17% by mass
  • maleic acid-modified styrene-butadiene elastomer is 7 to 9% by mass
  • balloon filler is 26 to 29% by mass. You may. As a result, more excellent flame retardancy, flexural modulus, and weight reduction can be achieved.
  • polyamide is 31 to 33% by mass
  • polypropylene is 14 to 16% by mass
  • maleic acid-modified styrene-butadiene elastomer is 7 to 9% by mass
  • balloon filler is 27 to 28% by mass. You may. Thereby, more excellent flame retardancy, flexural modulus, and weight reduction can be achieved.
  • polyamide is 31 to 33% by mass
  • polypropylene is 6 to 8% by mass
  • maleic acid-modified styrene-butadiene elastomer is 15 to 17% by mass
  • balloon filler is 27 to 28% by mass. You may.
  • the impact strength can be improved by balancing the compounding amount of polypropylene and the compounding amount of the maleic acid-modified styrene-butadiene elastomer.
  • the plasticizer may be 1 to 2.2% by mass and the flame retardant may be 12.6 to 15.2% by mass. This makes it possible to improve the plasticity while maintaining a good surface appearance of the resin composition. In addition, flame retardancy can be improved while reducing the weight of the resin composition.
  • the mass average molecular weight of the polyamide may be 10,000 to 500,000.
  • the plasticity can be improved.
  • the plasticity when a plasticizer is added can be improved.
  • the mass average molecular weight of polypropylene may be 10,000 to 500,000.
  • the mass average molecular weight of polypropylene may be 10,000 to 500,000.
  • the plasticizer may be at least one selected from sulfonamides, oxybenzoic acid esters, and polycyclic aromatic compounds. As a result, an excellent effect of imparting thermoplasticity to the resin composition can be obtained.
  • the first embodiment has been described as an example of the technology disclosed in the present application.
  • the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first embodiment to form a new embodiment.
  • the above-described embodiment may contain one or more additives other than the above, as long as the characteristics of the resin composition of the present disclosure are not impaired.
  • the additive include, for example, a colorant, a filler, an antioxidant, an ultraviolet absorber, an antistatic agent, and the like.
  • Example 1 Polyamide, polypropylene, maleic acid-modified styrene-butadiene elastomer, balloon filler, plasticizer, and flame retardant were weighed to the ratios (% by mass) shown in Table 1 and dry-blended. Next, a twin-screw kneading extruder (manufactured by Technobel Co., Ltd., model: KZW15TW) was used to melt-knead and disperse at a kneading temperature of 240 ° C., and then water-cooled to produce pellets.
  • a twin-screw kneading extruder manufactured by Technobel Co., Ltd., model: KZW15TW
  • Polyamide Amylan CM1007 (manufactured by Toray Industries, Inc., nylon 6, mass average molecular weight 250,000)
  • Polypropylene Novatec PP BC03B (manufactured by Japan Polypropylene Corporation, mass average molecular weight 150,000)
  • Maleic acid-modified styrene-butadiene elastomer Tough Tech M1913 (manufactured by Asahi Kasei Corporation, maleic acid-modified SEBS)
  • Balloon-based filler Glass Bubbles iM16K (3M, hollow glass filler, specific gravity 0.46, compressive strength 110 MPa)
  • Plasticizer OGSOL MF-11 (manufactured by Osaka Gas Chemical Co., Ltd., bis-phenol-ethanol-fluorene (BPEF)) Flame Retardant: Saytex8010 (Albemarle Japan, ethylenebis (pentabromophenyl)) (Examples 2 to 9) Pellets made of the resin composition were produced in the
  • the Charpy impact test is an impact test to evaluate the energy required to break a test piece by applying a high-speed impact to a prismatic test piece with a notch and the toughness of the test piece. Is.
  • the Charpy impact test was carried out in accordance with JIS K 7111. Table 1 shows the measurement results of the impact strength obtained by the Charpy impact test.
  • the test piece shall have a length of 127 mm and a width of 12.7 mm, and the thickness shall be 5 types from the minimum to the maximum of 12.7 mm. The thickness increase did not exceed 3.18 mm, respectively.
  • injection pressure The maximum pressure when molded at an injection temperature of 240 ° C. was measured for a mold having a dumbbell piece shape. Table 1 shows the measurement results of the injection pressure.
  • the molded products obtained from the resin compositions of the respective examples all have predetermined flame retardancy, and have a flexural modulus of 1500 MPa or more and a specific gravity of 0.99 or less. It was confirmed that a resin composition having both light weight can be obtained. Further, in each of the examples, the injection pressure was 135 MPa or less, and the fluidity at the time of molding was good. Further, in each of the examples, the impact strength required by the Charpy impact test was 3.0 kJ / m 2 or more, and the impact strength of the molded product was excellent.
  • the resin composition of the present disclosure can be used for, for example, parts of home appliances such as vacuum cleaners, power tools, dryers, curling irons, hair curlers, kettles, and handy type cookers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示における樹脂組成物は、ポリアミド27~38質量%、ポリプロピレン6~20質量%、マレイン酸変性スチレン-ブタジエン系エラストマー7~17質量%、比重0.2~0.7のバルーン系フィラー20~29質量%、残部として可塑剤及び難燃剤から選ばれる少なくとも1種を含む。本開示は、難燃性、曲げ弾性率、及び軽量性を兼備する樹脂組成物を提供する。

Description

樹脂組成物
 本開示は、樹脂組成物に関する。
 特許文献1は、ポリアミド30~80質量%、変性ポリオレフィン5~60質量%、未変性ポリオレフィン、ガラスビーズ等の充填剤、難燃剤等の添加剤を含有する樹脂組成物を開示する。ポリアミドをマトリックスとし、変性ポリオレフィンをシェル、未変性ポリオレフィンをコアとするコア-シェル型粒子構造となるものである。そして、寸法安定性、耐衝撃性等を改善する。
特開平9-157519号公報
 特許文献1は、所望の難燃性、曲げ弾性率、及び軽量性という機能の両立を図ることができなかった。
 本開示の目的は、難燃性、曲げ弾性率、及び軽量性を兼備する樹脂組成物を提供することにある。
 本開示における樹脂組成物は、ポリアミド27~38質量%、ポリプロピレン6~20質量%、マレイン酸変性スチレン-ブタジエン系エラストマー7~17質量%、比重0.2~0.7のバルーン系フィラー20~29質量%、残部として可塑剤及び難燃剤から選ばれる少なくとも1種を含む。
 本開示における樹脂組成物によれば、難燃性、曲げ弾性率、及び軽量性を兼備できる。
 以下、実施の形態を詳細に説明する。但し、必要以上に詳細な説明を省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、以下の説明は、当業者が本開示を十分に理解するために提供されているのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 以下、実施の形態1を説明する。
 [1-1.構成]
 本実施の形態に係る樹脂組成物は、ポリアミド27~38質量%、ポリプロピレン6~20質量%、マレイン酸変性スチレン-ブタジエン系エラストマー7~17質量%、比重0.2~0.7のバルーン系フィラー20~29質量%、残部として可塑剤及び難燃剤から選ばれる少なくとも1種を含んでいる。以下、ポリアミド、ポリプロピレン、マレイン酸変性スチレン-ブタジエン系エラストマー、バルーン系フィラー、可塑剤、及び難燃剤について順に説明する。
 [1-2.ポリアミド]
 ポリアミドの種類は、特に限定されない。ポリアミドの具体例としては、例えばナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン46、ナイロン6T(T:テレフタル酸成分)、ナイロン9T、ナイロンMXD6(MXD:m-キシリレンジアミン成分)等の脂肪族ポリアミド等が挙げられる。これらの中でも成形性、機械的特性等に優れる観点からナイロン6、ナイロン66、ナイロン11、ナイロン12が好ましい。
 これらのポリアミドは、一種類のポリアミドを単独で使用してもよいし、又は二種以上のポリアミドを適宜組み合わせて使用してもよい。
 ポリアミドの質量平均分子量(Mw)は、特に限定されないが、可塑性を向上させる観点、特に可塑剤を添加した際の可塑性を向上させる観点から、好ましくは1万~50万である。質量平均分子量(Mw)は、GPC法により求めることができる。
 樹脂組成物中におけるポリアミドの質量比率は、27~38質量%であり、好ましくは30~34質量%であり、より好ましくは31~33質量%である。質量比率をかかる範囲内に規定することにより難燃性、曲げ弾性率、及び軽量性を兼備できる。
 [1-3.ポリプロピレン(PP)]
 ポリプロピレンは、未変性のポリプロピレンが用いられる。ポリプロピレンの概念には、ホモポリマー、ランダムコポリマー、及びブロックコポリマーが含まれるものとする。ホモポリマーは、プロピレンの単独重合体である。ランダムコポリマー及びブロックコポリマーは、プロピレンと、ポリプロピレン以外のα-ポリオレフィンとの共重合体である。α-ポリオレフィンの具体例としては、例えばエチレン、1-ブテン等が挙げられる。ランダムコポリマー及びブロックコポリマー中におけるポリプロピレン以外のα-ポリオレフィンのモル比率は、ポリプロピレンの特性を有効に発現する観点から20モル%以下が好ましい。
 ポリプロピレンの質量平均分子量(Mw)は、特に限定されないが、好ましくは1万~50万の範囲内であり、より好ましくは4.5万~30万の範囲内である。ポリプロピレンの質量平均分子量(Mw)が1万以上であることで、成形品の剛性の低下を抑制できる。ポリプロピレンの質量平均分子量(Mw)が50万以下であることで、成形時における樹脂組成物の流動性低下を防止できる。流動性低下を防止できれば、成形時に金型に樹脂が行きわたり易くなるため、薄型又は複雑な形状の部材であっても良好に成形できる。また、樹脂の溶融混練時又は射出成形時の圧力上昇を抑えることができるため、圧力上昇に伴うバルーン系フィラーの破壊を抑制することができる。質量平均分子量(Mw)は、GPC法により求めることができる。
 樹脂組成物中におけるポリプロピレンの質量比率は、6~20質量%であり、好ましくは13~17質量%、より好ましくは14~16質量%である。質量比率をかかる範囲内に規定することにより難燃性、曲げ弾性率、及び軽量性を兼備できる。また、さらに衝撃強度を向上させる場合、好ましくは6~8質量%配合される。質量比率をかかる範囲内に規定することによりマレイン酸変性スチレン-ブタジエン系エラストマーの配合量とのバランスを図り衝撃強度を向上できる。
 [1-4.マレイン酸変性スチレン-ブタジエン系エラストマー]
 マレイン酸変性スチレン-ブタジエン系エラストマーを構成するスチレンとしては、ハロゲン化スチレンを用いてもよく、ブタジエンとしては、イソプレン(2-メチル-1,3-ブタジエン)を用いてもよい。また、ブタジエン骨格は、水添によりオレフィンとして構成されてもよい。スチレン-ブタジエン系エラストマーは、マレイン酸により変性されている。それにより、ポリアミド、ポリプロピレン、バルーン系フィラーの相溶性を向上させる。
 マレイン酸変性スチレン-ブタジエン系エラストマーを構成するスチレン-ブタジエン系エラストマーの具体例としては、例えばスチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-ブタジエン-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、スチレン-イソプレン-ブタジエン共重合体、スチレン-ブタジエン-ブチレン-スチレン共重合体、スチレン-エチレン-プロピレン-スチレン共重合体、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、スチレン-エチレン-ブタジエン-スチレン共重合体、スチレン-エチレン-エチレン-プロピレン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体、スチレン(ブタジエン/イソプレン)スチレン共重合体等が挙げられる。これらの中で、本開示における樹脂組成物の効果に優れる観点からマレイン酸変性スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)が好ましい。
 これらのマレイン酸変性スチレン-ブタジエン系エラストマーは、一種類のマレイン酸変性スチレン-ブタジエン系エラストマーを単独で使用してもよいし、又は二種以上のマレイン酸変性スチレン-ブタジエン系エラストマーを適宜組み合わせて使用してもよい。
 マレイン酸変性スチレン-ブタジエン系エラストマーの市販品としては、例えばタフテックMシリーズ(旭化成社製)等が挙げられる。
 樹脂組成物中におけるマレイン酸変性スチレン-ブタジエン系エラストマーの質量比率は、7~17質量%であり、好ましくは7~9質量%である。質量比率をかかる範囲内に規定することにより難燃性、曲げ弾性率、及び軽量性を兼備できる。また、さらに衝撃強度を向上させる場合、好ましくは15~17質量%配合される。質量比率をかかる範囲内に規定することによりポリプロピレンの配合量とのバランスを図り衝撃強度を向上できる。
 [1-5.バルーン系フィラー]
 バルーン系フィラーは、樹脂組成物を軽比重にできる。一般的に熱可塑性樹脂としてのポリアミド樹脂、ポリプロピレン樹脂等は、比重が0.90以上ある。難燃性を向上させるために難燃剤を相当量添加すると、樹脂組成物の比重が0.1程度上昇する。樹脂組成物の見かけ上の比重を低下させるために、本開示では軽比重構造部材であるバルーン系フィラーを樹脂組成物に溶融混錬した。
 バルーン系フィラーとしては、無機系バルーンフィラー、有機質バルーンフィラーのいずれを採用してもよい。無機系バルーンフィラーの具体例としては、例えば中空ガラスビーズ等のガラスバルーン、シラスバルーン、アルミナバルーン(パーライトバルーン)、シリカ-アルミナバルーン(フライアッシュバルーン)、カーボンバルーン、ジルコニアバルーン等が挙げられる。有機質バルーンフィラーの具体例としては、例えばフェノール樹脂バルーン等の熱硬化性有機質バルーン、アクリロニトリルバルーン等の熱可塑系有機質バルーン等が挙げられる。これらの中で、製造時における成形しやすさの観点から、中空ガラスビーズが好ましい。
 これらのバルーン系フィラーは、一種類のバルーン系フィラーを単独で使用してもよいし、又は二種以上のバルーン系フィラーを適宜組み合わせて使用してもよい。
 バルーン系フィラーの比重は、0.2~0.7、好ましくは0.3~0.6、より好ましくは0.4~0.5である。バルーン系フィラーの比重が0.2以上の場合、バルーン系フィラーの耐圧強度を向上できる。また、バルーン系フィラーの比重が0.7以下の場合、樹脂組成物の軽量化を図ることができる。
 バルーン系フィラーの耐圧強度は、特に限定されないが、好ましくは40~190MPa、より好ましくは110~190MPaである。かかる範囲に規定することにより、バルーン系フィラーの破壊を防止し、さらに樹脂組成物の軽量化を図ることができる。
 樹脂組成物中におけるバルーン系フィラーの質量比率は、20~29質量%であり、好ましくは26~29質量%、より好ましくは27~28質量%である。質量比率をかかる範囲内に規定することにより難燃性、曲げ弾性率、及び軽量性を兼備できる。
 [1-6.可塑剤]
 ポリアミドに適用できる可塑剤であれば、特に限定されない。可塑剤として、例えば芳香族又は脂肪族スルホンアミド等のスルホンアミド類、オキシ安息香酸エステル類、多環芳香族化合物、N-アルキル脂肪族スルホンアミド類、オルト燐酸塩類、脂肪族カルボン酸のエステル類、ラクタム類、ラクトン類、環状ケトン類、オキシカルボン酸と酸化アルキレンとの付加物、炭酸アミルシクロヘキサノール及び炭酸テトラヒドロフルフリル類、塩素化芳香族炭化水素及びそのエーテル類、ポリアミドと酸化エチレンとの付加物、ウレタンとホルムアルデヒドとの縮合物、イソシアネートとポリオキシ化合物との縮合物、無定形ポリアミド類等が挙げられる。
 スルホンアミド類の具体例としては、例えばN-ブチルベンゼンスルホンアミド、N-ヘキシルベンゼンスルホンアミド、N-デシルベンゼンスルホンアミド、N-シクロヘキシルベンジルスルホンアミド等、さらにはそれらのトルエン誘導体として、p-トルエンスルホンアミド、N-エチル-p-トルエンスルホンアミド、N-エチル-o,p-トルエンスルホンアミド(o,p混合物)、N-ブチル-p-トルエンスルホンアミド、N-ヘキシル-p-トルエンスルホンアミド、N-デシル-p-トルエンスルホンアミド、N-シクロヘキシル-p-トルエンスルホンアミド等が挙げられる。
 オキシ安息香酸エステル類の具体例としては、例えばp-オキシ安息香酸エステル等が挙げられる。
 多環芳香族化合物の具体例としては、例えばフルオレン誘導体等が挙げられる。
 オルト燐酸塩類の具体例として、例えばモノオクチルジフェニル燐酸塩、クレシルフェニル燐酸塩、キシレニルジフェニル燐酸塩等が挙げられる。
 脂肪族カルボン酸のエステル類の具体例として、例えばアゼライン酸ジオクチル、セバシン酸ジオクチル等が挙げられる。
 これらの可塑剤の中で、ポリアミドとの相溶性に優れ、樹脂組成物の可塑化付与効果に優れる観点から、スルホンアミド類、オキシ安息香酸エステル類、多環芳香族化合物が好ましい。
 これらの可塑剤は、一種類の可塑剤を単独で使用してもよいし、又は二種以上の可塑剤を適宜組み合わせて使用してもよい。
 樹脂組成物中における可塑剤の質量比率は、好ましくは1~2.2質量%であり、より好ましくは1.5~2.0質量%である。可塑剤の質量比率が1質量%以上の場合、樹脂組成物に可塑化を付与できる。また、可塑剤の質量比率が2.2質量%以下の場合、表面外観を良好に保つことができる。
 [1-7.難燃剤]
 難燃剤としては、例えばハロゲン系難燃剤、リン酸エステル系難燃剤及び有機リン系難燃剤等のリン系難燃剤、金属塩系難燃剤、シリコーン系難燃剤、ポリリン酸アンモニウム系難燃剤、トリアジン系難燃剤等が挙げられる。
 ハロゲン系難燃剤の具体例としては、例えばデカブロモジフェニルエーテル、テトラブロモビスフェノールA、テトラブロモビスフェノールS、1,2-ビス(2’,3’,4’,5’,6’-ペンタブロモフェニル)エタン、1,2-ビス(2,4,6-トリブロモフェノキシ)エタン、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、2,6-または2,4-ジブロモフェノール、臭素化エポキシ樹脂、臭素化ポリカーボネート、臭素化ポリスチレン、臭素化ポリアクリレート、エチレンビステトラブロモフタルイミド、ヘキサブロモシクロドデカン、ヘキサブロモベンゼン、ペンタブロモベンジルアクリレート、2,2-ビス[4’(2’’,3’’-ジブロモプロポキシ)-,3’,5’-ジブロモフェニル]-プロパン、ビス(3,5-ジブロモ-4-ジブロモプロポキシフェニル)スルホン、トリス(2,3-ジブロモプロピル)イソシアヌレート等の臭素含有化合物を含む臭素系難燃剤、塩素化パラフィン、塩素化ポリエチレン、塩素化ポリプロピレン、パークロロペンタシクロデカン、ドデカクロロドデカヒドロジメタノジベンゾシクロオクテン、ドデカクロロオクタヒドロジメタノジベンゾフラン等の塩素含有化合物を含む塩素系難燃剤等が挙げられる。ここで比較的低添加量で難燃効果を発揮する観点から、1,2-ビス(2’,3’,4’,5’,6’-ペンタブロモフェニル)エタン(エチレンビス(ペンタブロモフェニル))が好ましい。
 リン系難燃剤の具体例としては、例えばトリフェニルホスフェート、トリクレジルホスフェート、トリメチルホスフェート、トリエチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート等の芳香族リン酸エステル、モノホスフェート化合物、ホスフェートオリゴマー化合物等のリン酸エステル系化合物、トリスジクロロプロピルホスフェート、トリスクロロエチルホスフェート、トリスクロロプロピルホスフェート等の含ハロゲンリン酸エステル化合物、縮合リン酸エステル化合物、ポリリン酸塩類、赤リン系化合物、ホスフィネート化合物、ホスホネート化合物、ホスホニトリルオリゴマー化合物、ホスホン酸アミド化合物等が挙げられる。
 金属塩系難燃剤の具体例としては、例えばアンチモン酸ナトリウム、三酸化アンチモン、五酸化アンチモン等の一部の無機塩をハロゲン系難燃剤と併用し、難燃助剤として用いるもの、有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、錫酸金属塩系難燃剤等の有機金属塩系難燃剤等が挙げられる。
 これらの難燃剤は、一種類の難燃剤を単独で使用してもよいし、又は二種以上の難燃剤を適宜組み合わせて使用してもよい。
 また、別途、滴下防止剤(フィブリル形成能を有するポリテトラフルオロエチレン等)等を配合し、難燃剤と併用してもよい。
 樹脂組成物中における難燃剤の質量比率は、好ましくは12.6~15.2質量%であり、より好ましくは13~15質量%である。難燃剤の質量比率が12.6質量%以上の場合、樹脂組成物に難燃性を付与できる。また、難燃剤の質量比率が15.2質量%以下の場合、樹脂組成物の軽量化を図ることができる。
 [1-8.樹脂組成物の製造方法]
 樹脂組成物(ペレット)は、次のように乾式法により製造できる。すなわち、ポリアミド、ポリプロピレン、マレイン酸変性スチレン-ブタジエン系エラストマー、比重0.2~0.7のバルーン系フィラー、可塑剤及び難燃剤から選ばれる少なくとも1種を所定の配合で、2軸混練押出機等の混練押出機内に投入する。混練押出機内でポリアミド、ポリプロピレン、マレイン酸変性スチレン-ブタジエン系エラストマーが溶融する。可塑剤によって、ポリアミドの流動性が向上し、せん断応力を低減させた状態で、溶融した混合樹脂内にバルーン系フィラー及び難燃剤が分散する。さらに混練押出機内でバルーン系フィラー及び難燃剤がせん断作用を受けて溶融混合樹脂中に均一に分散される。混練押出機から押し出された溶融混練物は、例えば水冷され、ペレットとなる。ペレットの寸法は特に限定されない。
 [1-9.成形品の製造方法]
 樹脂組成物(ペレット)を成形材料として、射出成形、押出成形、注型成形等の公知の成形方法を使用することにより、各種の成形品を製造できる。樹脂組成物は、ポリアミド、ポリプロピレン、マレイン酸変性スチレン-ブタジエン系エラストマー、バルーン系フィラー、残部として可塑剤及び難燃剤から選ばれる少なくとも1種を含有しているので、得られた成形品は、難燃性、曲げ弾性率、及び軽量性を兼備している。
 [1-10.効果等]
 以上のように、本実施の形態の樹脂組成物において、ポリアミド27~38質量%、ポリプロピレン6~20質量%、マレイン酸変性スチレン-ブタジエン系エラストマー7~17質量%、比重0.2~0.7のバルーン系フィラー20~29質量%、残部として可塑剤及び難燃剤から選ばれる少なくとも1種を含んでいる。これにより、難燃性、曲げ弾性率、及び軽量性を兼備できる。
 また、本実施の形態において、ポリアミドが30~34質量%、ポリプロピレンが13~17質量%、マレイン酸変性スチレン-ブタジエン系エラストマーが7~9質量%、バルーン系フィラーが26~29質量%であってもよい。これにより、より優れた難燃性、曲げ弾性率、及び軽量化を図ることができる。
 また、本実施の形態において、ポリアミドが31~33質量%、ポリプロピレンが14~16質量%、マレイン酸変性スチレン-ブタジエン系エラストマーが7~9質量%、バルーン系フィラーが27~28質量%であってもよい。これにより、さらに優れた難燃性、曲げ弾性率、及び軽量化を図ることができる。
 また、本実施の形態において、ポリアミドが31~33質量%、ポリプロピレンが6~8質量%、マレイン酸変性スチレン-ブタジエン系エラストマーが15~17質量%、バルーン系フィラーが27~28質量%であってもよい。これにより、ポリプロピレンの配合量とマレイン酸変性スチレン-ブタジエン系エラストマーの配合量とのバランスを図り衝撃強度を向上できる。
 また、本実施の形態において、可塑剤が1~2.2質量%、難燃剤が12.6~15.2質量%であってもよい。これにより、樹脂組成物の表面外観を良好に保ちながら、可塑性を向上できる。また、樹脂組成物の軽量化を図りながら、難燃性を向上できる。
 また、本実施の形態において、ポリアミドの質量平均分子量が1万~50万であってもよい。これにより、可塑性を向上できる。特に可塑剤を添加した際の可塑性を向上できる。
 また、本実施の形態において、ポリプロピレンの質量平均分子量が1万~50万であってもよい。これにより、成形品の剛性の低下を抑制できる。また、成形時における樹脂組成物の流動性低下を防止できる。流動性低下を防止できれば、成形時に金型に樹脂が行きわたり易くなるため、薄型又は複雑な形状の部材であっても良好に成形できる。また、樹脂の溶融混練時又は射出成形時の圧力上昇を抑えることができるため、圧力上昇に伴うバルーン系フィラーの破壊を抑制することができる。
 また、本実施の形態において、可塑剤がスルホンアミド類、オキシ安息香酸エステル類、及び多環芳香族化合物から選ばれる少なくとも1種類であってもよい。これにより、優れた樹脂組成物の可塑化付与効果が得られる。
 [2.他の実施の形態]
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
 上記の実施の形態は、本開示の樹脂組成物の特性を阻害しない範囲内において、上記以外の添加剤を1種類以上含有してもよい。添加剤の具体例としては、例えば着色剤、充填剤、酸化防止剤、紫外線吸収剤、帯電防止剤等が挙げられる。
 なお、上記の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 以下、本開示を実施例によって具体的に説明するが、本開示は、以下の実施例に限定されない。
 (実施例1)
 ポリアミド、ポリプロピレン、マレイン酸変性スチレン-ブタジエン系エラストマー、バルーン系フィラー、可塑剤、及び難燃剤を、表1に示す比率(質量%)となるように秤量し、ドライブレンドした。次に、2軸混練押出機(テクノベル社製、型式:KZW15TW)にて、混練温度を240℃として溶融混練分散した後、水冷して、ペレットを製造した。
 ポリアミド:アミランCM1007(東レ社製、ナイロン6、質量平均分子量25万)
 ポリプロピレン:ノバテックPP BC03B(日本ポリプロ社製、質量平均分子量15万)
 マレイン酸変性スチレン-ブタジエン系エラストマー:タフテックM1913(旭化成社製、マレイン酸変性SEBS)
 バルーン系フィラー:グラスバブルズiM16K(3M社製、中空ガラスフィラー、比重0.46、耐圧強度110MPa)
 可塑剤:OGSOL MF-11(大阪ガスケミカル社製、ビス-フェノール-エタノール-フルオレン(BPEF))
 難燃剤:Saytex8010(アルベマール日本社製、エチレンビス(ペンタブロモフェニル))
 (実施例2~9)
 表1に示す比率となるように秤量した以外は、実施例1と同様にして、樹脂組成物からなるペレットを製造した。
 (比較例1~3)
 ポリプロピレン、可塑剤、及び難燃剤を使用せず、表1に示す比率となるように秤量した以外は、実施例1と同様にして、樹脂組成物からなるペレットを製造した。
 (比較例4,5)
 可塑剤、及び難燃剤を使用せず、表1に示す比率となるように秤量した以外は、実施例1と同様にして、樹脂組成物からなるペレットを製造した。
 (比較例6,7,9,10)
 表1に示す比率となるように秤量した以外は、実施例1と同様にして、樹脂組成物からなるペレットを製造した。
 (比較例8)
 難燃剤を使用せず、表1に示す比率となるように秤量した以外は、実施例1と同様にして、樹脂組成物からなるペレットを製造した。
 (曲げ弾性率)
 各実施例及び比較例のペレットを用いてISO178に規定の試験片を作製した。各試験片について、JIS K 7171に規定の曲げ試験を行った。曲げ弾性率の測定結果を表1に示す。
 (シャルピー衝撃試験)
 シャルピー衝撃試験は、切り欠きの入った角柱状の試験片に対して高速で衝撃を与えることで試験片を破壊し、破壊するために要したエネルギーと試験片の靭性を評価するための衝撃試験である。シャルピー衝撃試験は、JIS K 7111の規定に基づいて行った。シャルピー衝撃試験によって求められる衝撃強度の測定結果を表1に示す。
 (樹脂組成物の比重)
 樹脂組成物の比重は、JIS K 7112の記載の水中置換法により求めた。比重の測定結果を表1に示す。
 (難燃性試験)
 アンダーライターズ(Underwriter’s Laboratories Inc.)のUL-94規格の難燃性評価を行った。垂直燃焼試験(Vertical Burning Test)において、まず判定短冊状の試験片を垂直にして、上端で保持し、その下端に10秒間ガスバーナーの炎を接炎させる。次に、ガスバーナーの炎を離した後に炎が消えたなら直ちにガスバーナーの炎をさらに10秒間接炎し炎を離した。判定は、有炎燃焼時間の合計とドリップ(試験片から落下する粒子)による引火の有無により、燃焼しやすい順からUL94V-2、UL94V-1、UL94V-0とランク付けされる。本試験においては、UL94V-2の基準を満たす場合に「合格」、要件を満たさない場合を「不合格」と判断した。難燃性の測定結果を表1に示す。
 なお、試験片は長さ127mm、幅12.7mmとし、厚さは最小から最大12.7mmまでの5種類とする。厚さ増加分は、各々3.18mmを超えないこととした。
 (射出圧)
 ダンベル片形状を有する金型に対し、射出温度240℃で成形した場合の最大圧力を測定した。射出圧の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 各実施例の樹脂組成物により得られた成形品は、いずれも所定の難燃性を有し、曲げ弾性率が1500MPa以上、比重0.99以下のため、難燃性、曲げ弾性率、及び軽量性を兼備する樹脂組成物が得られることが確認された。また、各実施例は、いずれも射出圧が135MPa以下であり、成形時における流動性が良好であった。また、各実施例は、いずれもシャルピー衝撃試験によって求められる衝撃強度が3.0kJ/m以上であり、成形品の衝撃強度に優れていた。
 本開示の樹脂組成物は、例えば掃除機、電動工具、ドライヤー、ヘアアイロン、ヘアカーラー、ケトル、ハンディタイプの調理器等の家電製品の部品等の用途に利用できる。

Claims (8)

  1.  ポリアミド27~38質量%、ポリプロピレン6~20質量%、マレイン酸変性スチレン-ブタジエン系エラストマー7~17質量%、比重0.2~0.7のバルーン系フィラー20~29質量%、残部として可塑剤及び難燃剤から選ばれる少なくとも1種を含む樹脂組成物。
  2.  前記ポリアミドが30~34質量%、前記ポリプロピレンが13~17質量%、前記マレイン酸変性スチレン-ブタジエン系エラストマーが7~9質量%、前記バルーン系フィラーが26~29質量%である請求項1に記載の樹脂組成物。
  3.  前記ポリアミドが31~33質量%、前記ポリプロピレンが14~16質量%、前記マレイン酸変性スチレン-ブタジエン系エラストマーが7~9質量%、前記バルーン系フィラーが27~28質量%である請求項2に記載の樹脂組成物。
  4.  前記ポリアミドが31~33質量%、前記ポリプロピレンが6~8質量%、前記マレイン酸変性スチレン-ブタジエン系エラストマーが15~17質量%、前記バルーン系フィラーが27~28質量%である請求項1に記載の樹脂組成物。
  5.  前記可塑剤が1~2.2質量%、前記難燃剤が12.6~15.2質量%である請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記ポリアミドの質量平均分子量が1万~50万である請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記ポリプロピレンの質量平均分子量が1万~50万である請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記可塑剤がスルホンアミド類、オキシ安息香酸エステル類、及び多環芳香族化合物から選ばれる少なくとも1種類である請求項1~7のいずれか一項に記載の樹脂組成物。
PCT/JP2020/043172 2020-01-27 2020-11-19 樹脂組成物 WO2021152973A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080093454.1A CN115003756B (zh) 2020-01-27 2020-11-19 树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010536 2020-01-27
JP2020010536A JP7369970B2 (ja) 2020-01-27 2020-01-27 樹脂組成物

Publications (1)

Publication Number Publication Date
WO2021152973A1 true WO2021152973A1 (ja) 2021-08-05

Family

ID=77078916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043172 WO2021152973A1 (ja) 2020-01-27 2020-11-19 樹脂組成物

Country Status (3)

Country Link
JP (1) JP7369970B2 (ja)
CN (1) CN115003756B (ja)
WO (1) WO2021152973A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243587A1 (ja) * 2022-06-14 2023-12-21 三井化学株式会社 フィラー含有ポリプロピレン樹脂組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226765A (ja) * 2016-06-22 2017-12-28 株式会社豊田中央研究所 樹脂組成物
JP2018506630A (ja) * 2015-02-27 2018-03-08 スリーエム イノベイティブ プロパティズ カンパニー 中空ガラス微小球を含むポリアミド組成物、並びにそれに関する物品及び方法
WO2018135648A1 (ja) * 2017-01-23 2018-07-26 トヨタ紡織株式会社 熱可塑性樹脂組成物、その製造方法及び成形体
JP2018525492A (ja) * 2015-08-13 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー 中空ガラス微小球を含むポリオレフィン組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532601A (ja) 1998-12-17 2002-10-02 バセル テクノロジー カンパニー ベスローテン フェンノートシャップ ポリオレフィングラフトコポリマー/ポリアミドブレンド
JP5836923B2 (ja) * 2011-12-22 2015-12-24 トヨタ紡織株式会社 植物由来ポリアミド樹脂を用いた熱可塑性樹脂組成物及び成形体
US9493642B2 (en) * 2011-12-22 2016-11-15 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition, method for producing same, and molded body
KR101675655B1 (ko) * 2011-12-22 2016-11-11 도요다 보쇼꾸 가부시키가이샤 열가소성 수지 조성물 및 그의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506630A (ja) * 2015-02-27 2018-03-08 スリーエム イノベイティブ プロパティズ カンパニー 中空ガラス微小球を含むポリアミド組成物、並びにそれに関する物品及び方法
JP2018525492A (ja) * 2015-08-13 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー 中空ガラス微小球を含むポリオレフィン組成物
JP2017226765A (ja) * 2016-06-22 2017-12-28 株式会社豊田中央研究所 樹脂組成物
WO2018135648A1 (ja) * 2017-01-23 2018-07-26 トヨタ紡織株式会社 熱可塑性樹脂組成物、その製造方法及び成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243587A1 (ja) * 2022-06-14 2023-12-21 三井化学株式会社 フィラー含有ポリプロピレン樹脂組成物

Also Published As

Publication number Publication date
CN115003756B (zh) 2024-10-01
JP2021116348A (ja) 2021-08-10
JP7369970B2 (ja) 2023-10-27
CN115003756A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
JP7338006B2 (ja) 難燃性熱可塑性樹脂組成物
JP3873237B2 (ja) 難燃スチレン系樹脂組成物
TW201111425A (en) Flame-retarded, foam-producing styrene-based resin compositions
JP2011529112A (ja) スチレン含有ポリマーの難燃組成物
JP5872577B2 (ja) 難燃剤マスターバッチ及びそれを使用したスチレン系難燃性樹脂組成物の製造方法
WO2021152973A1 (ja) 樹脂組成物
KR20140103470A (ko) 난연성 열가소성 수지조성물
KR910008556B1 (ko) 난연성 수지 조성물
KR102318927B1 (ko) 우수한 난연성을 부여하는 복합난연제 및 이를 포함하는 난연 수지 조성물
US4219466A (en) Impact resistant resin containing compositions having reduced flammability
JP5570684B2 (ja) 低発煙性樹脂組成物
JPH11323064A (ja) 難燃性スチレン系樹脂組成物
JPH0873649A (ja) 難燃性熱可塑性樹脂組成物
JP2005145988A (ja) 難燃性スチレン系樹脂組成物
EP0010558B1 (en) High impact fire retardant monovinyl aromatic resin composition
JPH0292947A (ja) 難燃性樹脂組成物
JP2003096247A (ja) 難燃導電性樹脂組成物
JP2005220240A (ja) 難燃性ポリアミド樹脂組成物
JPH10120863A (ja) 難燃性樹脂組成物
KR101630515B1 (ko) 챠르 생성 촉진제 및 인계 난연수지 조성물
JP3030726B2 (ja) 難燃性樹脂組成物の製造法
JPH10176095A (ja) 難燃性スチレン系樹脂組成物
JPS61252256A (ja) 難燃性プロピレン重合体組成物
JPH10251467A (ja) ポリオレフィン系難燃性樹脂組成物及び成形品
JPH03265639A (ja) ポリプロピレン樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916866

Country of ref document: EP

Kind code of ref document: A1