WO2021140909A1 - 感放射線性樹脂組成物及びレジストパターンの形成方法 - Google Patents

感放射線性樹脂組成物及びレジストパターンの形成方法 Download PDF

Info

Publication number
WO2021140909A1
WO2021140909A1 PCT/JP2020/047968 JP2020047968W WO2021140909A1 WO 2021140909 A1 WO2021140909 A1 WO 2021140909A1 JP 2020047968 W JP2020047968 W JP 2020047968W WO 2021140909 A1 WO2021140909 A1 WO 2021140909A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radiation
resin composition
structural unit
sensitive resin
Prior art date
Application number
PCT/JP2020/047968
Other languages
English (en)
French (fr)
Inventor
龍一 根本
康太 古市
甫 稲見
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020227022666A priority Critical patent/KR20220125240A/ko
Priority to JP2021569821A priority patent/JPWO2021140909A1/ja
Publication of WO2021140909A1 publication Critical patent/WO2021140909A1/ja
Priority to US17/854,012 priority patent/US20220342307A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/20Esters containing oxygen in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a method for forming a resist pattern.
  • Photolithography technology using a resist composition is used to form fine circuits in semiconductor devices.
  • an acid is generated by exposure to a film of a resist composition by irradiation through a mask pattern, and the reaction using the acid as a catalyst causes an alkaline or organic resin in an exposed portion and an unexposed portion.
  • a resist pattern is formed on the substrate by causing a difference in solubility in the developer of the system.
  • short-wavelength radiation such as an ArF excimer laser
  • an immersion exposure method liquid immersion
  • lithography using shorter wavelength radiation such as electron beam, X-ray and EUV (extreme ultraviolet) is also being studied.
  • Patent Document 1 a technique for achieving a pattern resolution from a micron unit to a submicron unit by using a resist composition containing a resin having an alicyclic group is being developed.
  • next-generation exposure technology such as electron beam exposure also requires resist performance equal to or higher than that of exposure technology using an ArF excimer laser.
  • An object of the present invention is to provide a radiation-sensitive resin composition and a method for forming a resist pattern, which can exhibit sensitivity, LWR performance, and pattern rectangularity at excellent levels.
  • the present invention comprises a resin containing a structural unit (A) represented by the following formula (1) and a structural unit (B) having an acid dissociative group.
  • Radiation-sensitive acid generator and Regarding a radiation-sensitive resin composition containing a solvent are a halogen atom-substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • X is —O— or —S—.
  • La1 is a halogen atom-substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R P is a lactone structure, a monovalent organic group having at least one structure selected from the group consisting of cyclic carbonate structure and sultone structure.
  • the radiation-sensitive resin composition contains a resin having the structural unit (A) represented by the above formula (1) as one structural unit, it is not only exposed by an ArF excimer laser or the like, but also EUV (extreme ultraviolet rays) or the like. Even with the exposure by, the resist film using the composition can exhibit sensitivity, LWR performance, and resist pattern rectangularity at a sufficient level. The reason for this is presumed as follows, although it is not bound by any theory.
  • Lactone structure R P of the formula (1) has at least one structure selected from the group consisting of cyclic carbonate structure and sultone structure (hereinafter, also referred to as "lactone structure, etc.”.),
  • lactone structure etc.
  • the alkali in the exposed portion By action, the ring is opened to form a polar structure, and the solubility in a developing solution is improved.
  • the lactone structure and the like maintain hydrophobicity without ring-opening, and the hydrophobicity of the hydrocarbon group represented by R 1 exhibits hydrophobicity in the entire structural unit (A) for development. It is possible to suppress dissolution in a liquid.
  • the organic group means a group containing at least one carbon atom.
  • the present invention is a step of forming a resist film with the above-mentioned radiation-sensitive resin composition.
  • the present invention relates to a method for forming a resist pattern, which includes a step of exposing the resist film and a step of developing the exposed resist film.
  • the forming method since the above-mentioned radiation-sensitive resin composition having excellent resist performance is used, a high-quality resist pattern can be efficiently formed.
  • the radiation-sensitive resin composition according to the present embodiment contains a resin, a radiation-sensitive acid generator, and a solvent.
  • the composition may contain other optional components as long as the effects of the present invention are not impaired.
  • the resin is an aggregate of polymers containing the structural unit (A) represented by the following formula (1) and the structural unit (B) having an acid dissociative group (hereinafter, this resin is also referred to as "base resin”). .).
  • R 1 is a halogen atom-substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • X is —O— or —S—.
  • La1 is a halogen atom-substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R P is a lactone structure, a monovalent organic group having at least one structure selected from the group consisting of cyclic carbonate structure and sultone structure. )
  • the radiation-sensitive resin composition is excellent in sensitivity, LWR performance, and pattern rectangularity because the resin contains the structural unit (A).
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 1 include a chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent alicyclic hydrocarbon having 3 to 20 carbon atoms. Examples thereof include groups, monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms, and combinations thereof.
  • the chain hydrocarbon group having 1 to 20 carbon atoms represented by R 1 is a linear or branched saturated hydrocarbon group having 1 to 20 carbon atoms, or a straight chain or branched hydrocarbon group having 1 to 20 carbon atoms. Saturated hydrocarbon groups can be mentioned.
  • Examples of the alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 1 include a monocyclic or polycyclic saturated hydrocarbon group or a monocyclic or polycyclic unsaturated hydrocarbon group.
  • a saturated hydrocarbon group of the monocycle a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group are preferable.
  • As the polycyclic cycloalkyl group a bridged alicyclic hydrocarbon group such as a norbornyl group, an adamantyl group, a tricyclodecyl group and a tetracyclododecyl group is preferable.
  • the alicyclic hydrocarbon group is a polycyclic fat in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic are bonded by a bond chain containing one or more carbon atoms.
  • a cyclic hydrocarbon group is a polycyclic fat in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic are bonded by a bond chain containing one or more carbon atoms.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 1 include, for example.
  • Aryl groups such as phenyl group, tolyl group, xsilyl group, naphthyl group and anthryl group; aralkyl groups such as benzyl group, phenethyl group and naphthylmethyl group can be mentioned.
  • halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms. You may. Of course, it does not have to be replaced with a halogen atom at all.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 1 preferably does not contain a hetero atom (excluding the halogen atom) such as an oxygen atom or a sulfur atom.
  • a hetero atom excluding the halogen atom
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 1 preferably does not contain a hetero atom (excluding the halogen atom) such as an oxygen atom or a sulfur atom.
  • the divalent hydrocarbon group having 1 to 10 carbon atoms represented by La 1 the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 1 has 1 to 10 carbon atoms.
  • a group obtained by further removing one hydrogen atom from a certain group is preferably mentioned.
  • La1 is preferably a divalent chain hydrocarbon group, particularly preferably a methylene group.
  • the R P represented organic group is not particularly limited as long as it has a lactone structure, at least one structure selected from the group consisting of cyclic carbonate structure and sultone structure.
  • the organic group may have a chain structure, a cyclic structure, or a combination thereof.
  • Examples of the chain structure include chain hydrocarbon groups which are saturated or unsaturated, linear or branched.
  • Examples of the cyclic structure include cyclic hydrocarbon groups regardless of whether they are alicyclic, aromatic or heterocyclic.
  • a group having a chain structure or a group having a cyclic structure in which a part or all of hydrogen atoms are substituted with a substituent, and CO, CS, O, S, SO between carbon-carbon of these groups. 2 or NR', or a group containing two or more of these in combination is also mentioned.
  • Examples of the substituent that replaces a part or all of the hydrogen atom of the organic group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxy group; carboxy group; cyano group; nitro group; alkyl.
  • R P in the above formula (1) is preferably represented by the following formula (A).
  • La2 is a single-bonded or substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • Y is a single bond or a divalent linking group selected from -O-, -CO-, -NH-, -SO 2- or a combination thereof.
  • La3 is a single-bonded or substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • RP1 is a substituted or unsubstituted lactone structure, cyclic carbonate structure or sultone structure. * Is a bond with -O- in the above formula (1).
  • Examples of the divalent hydrocarbon groups of L a2 and having 1 to 10 carbon atoms represented by L a3, include divalent groups similar hydrocarbon group having 1 to 10 carbon atoms represented by L a1 Be done.
  • Examples of the substituent capable of substituting a part or all of the hydrogen atom contained in this hydrocarbon group include the above-mentioned substituents. Examples thereof include a group containing CO, CS, O, S, SO 2 or NR'between carbon-carbon of these groups, or a combination of two or more of these.
  • Lactone structure represented by R P1 the cyclic carbonate structure and sultone structure include structures represented by the following formula (A-1) ⁇ (A -15).
  • RL2 to RL4 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a cyano group, a trifluoromethyl group, a methoxy group, a methoxycarbonyl group, a hydroxy group, and a hydroxy group. It is a methyl group and a dimethylamino group. If R L2 ⁇ R L4 is present in plural, plural R L2 ⁇ R L4 may be the being the same or different.
  • X is an oxygen atom or a methylene group.
  • k is an integer from 0 to 3.
  • m is an integer of 1 to 3. * Is a bond with -La3- in the above formula (A).
  • structural unit (A) include structural units represented by the following formulas (1-1) to (1-20).
  • the base resin may contain one type or a combination of two or more types of structural units (A).
  • the lower limit of the content ratio of the structural unit (A) (the total content ratio when a plurality of types of the structural unit (A) are contained) is preferably 5 mol%, preferably 6 mol, based on all the structural units constituting the base resin. % Is more preferred, 8 mol% is even more preferred, and 10 mol% is particularly preferred.
  • the upper limit of the content ratio is preferably 80 mol%, more preferably 70 mol%, further preferably 65 mol%, and particularly preferably 60 mol%.
  • the monomer giving the structural unit (A) can be synthesized, for example, according to the following scheme.
  • the case where X is an oxygen atom will be described below as an example.
  • E is a halogen atom .R 1, L a1 and R P has the same meaning as the above formula (1).
  • An ether derivative is produced by reacting a halogenated raw material having an ester moiety protected with an alcohol having a structure corresponding to R 1 in the above formula (1), then deprotection is performed by alkaline hydrolysis, and finally the above formula is performed.
  • (1) by reacting an alcohol having a structure corresponding to R P in, it is possible to synthesize monomer providing the structural unit represented by the formula (1 ') (a).
  • Alcohols also have the structure of the linking group and R 1 of the starting material for other structures can be synthesized by suitably changing the alcohol having the structure R P.
  • the base resin is composed of a group consisting of a structural unit having an acid dissociative group (hereinafter, also referred to as “structural unit (B)”), a lactone structure described later, a cyclic carbonate structure, and a sultone structure. It is preferable to have a structural unit (C) containing at least one selected (excluding the structural unit corresponding to the structural unit (A)), and other structural units other than the structural units (B) and (C). May have.
  • the "acid dissociable group” is a group that replaces a hydrogen atom of a carboxy group, a phenolic hydroxyl group, an alcoholic hydroxyl group, a sulfo group, or the like, and means a group that dissociates by the action of an acid.
  • the radiation-sensitive resin composition is excellent in pattern forming property because the resin has a structural unit (B). Hereinafter, each structural unit will be described.
  • the structural unit (B) is a structural unit having an acid dissociative group.
  • the structural unit (B) is not particularly limited as long as it contains an acid dissociative group.
  • examples thereof include a structural unit having an acetal bond and a structural unit having an acetal bond.
  • the structural unit represented by the following formula (2) hereinafter, “structure”).
  • Unit (B-1) is preferable.
  • R 7 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 8 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 and R 10 are independently monovalent chain hydrocarbon groups having 1 to 10 carbon atoms or monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms, or groups thereof. Represents a divalent alicyclic group having 3 to 20 carbon atoms, which is composed of carbon atoms to which they are bonded together.
  • a hydrogen atom preferably a methyl group, more preferably a methyl group.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 8 include a chain hydrocarbon group having 1 to 10 carbon atoms and a monovalent alicyclic hydrocarbon having 3 to 20 carbon atoms. Examples thereof include a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the chain hydrocarbon group having 1 to 10 carbon atoms represented by R 8 to R 10 is a linear hydrocarbon group having 1 to 10 carbon atoms or a branched saturated hydrocarbon group, or a linear hydrocarbon group having 1 to 10 carbon atoms. Branched chain unsaturated hydrocarbon groups can be mentioned.
  • Examples of the alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 8 to R 10 include a monocyclic or polycyclic saturated hydrocarbon group or a monocyclic or polycyclic unsaturated hydrocarbon group. Be done.
  • a saturated hydrocarbon group of the monocycle a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group are preferable.
  • As the polycyclic cycloalkyl group a bridged alicyclic hydrocarbon group such as a norbornyl group, an adamantyl group, a tricyclodecyl group and a tetracyclododecyl group is preferable.
  • the alicyclic hydrocarbon group is a polycyclic fat in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic are bonded by a bond chain containing one or more carbon atoms.
  • a cyclic hydrocarbon group is a polycyclic fat in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic are bonded by a bond chain containing one or more carbon atoms.
  • R 8 preferably a linear or branched chain saturated hydrocarbon group, an alicyclic hydrocarbon group having 3 to 20 carbon atoms having 1 to 10 carbon atoms.
  • the group is not particularly limited as long as it is a group obtained by removing two hydrogen atoms from the same carbon atom constituting the carbon ring of the monocyclic or polycyclic alicyclic hydrocarbon having the above carbon number. It may be either a monocyclic hydrocarbon group or a polycyclic hydrocarbon group, and the polycyclic hydrocarbon group may be either an abridged alicyclic hydrocarbon group or a condensed alicyclic hydrocarbon group, and is saturated hydrocarbon.
  • the condensed alicyclic hydrocarbon group refers to a polycyclic alicyclic hydrocarbon group in which a plurality of alicyclics share a side (bond between two adjacent carbon atoms).
  • the saturated hydrocarbon group is preferably a cyclopentandyl group, a cyclohexanediyl group, a cycloheptandyl group, a cyclooctanediyl group or the like, and the unsaturated hydrocarbon group is a cyclopentendyl group.
  • Cyclohexendyl group, cycloheptendyl group, cyclooctendyl group, cyclodecendyl group and the like are preferable.
  • polycyclic alicyclic hydrocarbon group a bridged alicyclic saturated hydrocarbon group is preferable, and for example, a bicyclo [2.2.1] heptane-2,2-diyl group (norbornan-2,2-diyl group) is preferable. ), Bicyclo [2.2.2] octane-2,2-diyl group, tricyclo [3.3.1.1 3,7 ] decan-2,2-diyl group (adamantan-2,2-diyl group) Etc. are preferable.
  • R 8 is an alkyl group having 1 to 4 carbon atoms, and cycloalkanes having a polycyclic or monocyclic alicyclic structure in which R 9 and R 10 are combined with each other and composed of carbon atoms to which they are bonded. It is preferably a structure.
  • the structural unit (B-1) is, for example, a structural unit represented by the following formulas (3-1) to (3-6) (hereinafter, “structural unit (B-1-1) to (B-1-”). 6) ”) and the like.
  • R 7 to R 10 have the same meaning as the above formula (2).
  • i and j are each independently an integer of 1 to 4.
  • k and l are 0 or 1.
  • i and j 1 is preferable.
  • R 8 a methyl group, an ethyl group or an isopropyl group.
  • R 9 and R 10 a methyl group or an ethyl group is preferable.
  • the base resin may contain one type or a combination of two or more types of structural units (B).
  • the lower limit of the content ratio of the structural unit (B) (the total content ratio when a plurality of types of the structural unit (B) are contained) is preferably 10 mol%, preferably 20 mol%, based on all the structural units constituting the base resin. % Is more preferred, and 25 mol% is even more preferred.
  • the upper limit of the content ratio is preferably 90 mol%, more preferably 80 mol%, further preferably 75 mol%, and particularly preferably 70 mol%.
  • the structural unit (C) is a structural unit containing at least one selected from the group consisting of a lactone structure, a cyclic carbonate structure, and a sultone structure (however, the structural unit corresponding to the structural unit (A) is excluded).
  • the solubility in a developing solution can be adjusted, and as a result, the radiation-sensitive resin composition improves lithography performance such as resolution. be able to.
  • the adhesion between the resist pattern formed from the base resin and the substrate can be improved.
  • Examples of the structural unit (C) include structural units represented by the following formulas (T-1) to (T-10).
  • RL1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • RL2 to RL5 are independently composed of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cyano group, a trifluoromethyl group, a methoxy group, a methoxycarbonyl group, a hydroxy group, a hydroxymethyl group, and a dimethylamino group. is there.
  • RL4 and RL5 may be divalent alicyclic groups having 3 to 8 carbon atoms which are combined with each other and composed of carbon atoms to which they are bonded.
  • L 2 is a single bond or divalent linking group.
  • X is an oxygen atom or a methylene group.
  • k is an integer from 0 to 3.
  • m is an integer of 1 to 3.
  • the divalent alicyclic group having 3 to 8 carbon atoms in which the above RL4 and RL5 are combined with each other and formed together with the carbon atom to which they are bonded is represented by R 9 and R 10 in the above formula (2).
  • the chain hydrocarbon groups or alicyclic hydrocarbon groups to be formed are combined with each other and composed of carbon atoms to which they are bonded, and the number of carbon atoms is 3 to 8. The group is mentioned.
  • One or more hydrogen atoms on this alicyclic group may be substituted with a hydroxy group.
  • Examples of the divalent linking group represented by L 2 include a divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms and a divalent alicyclic hydrocarbon having 4 to 12 carbon atoms. Examples thereof include a hydrogen group, or a group composed of one or more of these hydrocarbon groups and at least one group of -CO-, -O-, -NH- and -S-.
  • a structural unit containing a lactone structure is preferable, a structural unit containing a norbornane lactone structure is more preferable, and a structural unit derived from norbornane lactone-yl (meth) acrylate is further preferable.
  • the lower limit of the content ratio of the structural unit (C) 2 mol% is preferable, 4 mol% is more preferable, and 5 mol% is further preferable with respect to all the structural units constituting the base resin.
  • the upper limit of the content ratio is preferably 50 mol%, more preferably 45 mol%, still more preferably 40 mol%.
  • the base resin may have other structural units in addition to the structural units (B) and (C).
  • the other structural unit include a structural unit (D) containing a polar group (excluding those corresponding to the structural unit (C)).
  • the base resin can adjust the solubility in a developing solution, and as a result, improve the lithography performance such as the resolution of the radiation-sensitive resin composition. be able to.
  • the polar group include a hydroxy group, a carboxy group, a cyano group, a nitro group, a sulfonamide group and the like. Among these, a hydroxy group and a carboxy group are preferable, and a hydroxy group is more preferable.
  • Examples of the structural unit (D) having this polar group include a structural unit represented by the following formula.
  • RA is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the lower limit of the content ratio of the structural unit (D) having the polar group is preferably 2 mol% with respect to all the structural units constituting the base resin. 5, 5 mol% is more preferable, and 8 mol% is further preferable.
  • the upper limit of the content ratio is preferably 40 mol%, more preferably 30 mol%, still more preferably 20 mol%.
  • the base resin may have, as other structural units, a structural unit containing a phenolic hydroxyl group (hereinafter, also referred to as “structural unit (E)”) in addition to the structural unit (D) having a polar group. Good.
  • the structural unit (E) contributes to the improvement of etching resistance and the difference in developer solubility (dissolution contrast) between the exposed portion and the unexposed portion. In particular, it can be suitably applied to pattern formation using exposure with radiation having a wavelength of 50 nm or less, such as an electron beam or EUV.
  • the resin preferably has a structural unit (B) as well as a structural unit (E).
  • R AF1 is a hydrogen atom or a methyl group.
  • LAF is single-bonded, -COO-, -O- or -CONH-.
  • R AF2 is a monovalent organic group or halogen atom having 1 to 20 carbon atoms.
  • n f1 is an integer of 0 to 3.
  • n f2 is an integer of 1 to 3.
  • n f1 + n f2 is 5 or less.
  • n af is an integer of 0 to 2.
  • the R AF1 is preferably a hydrogen atom from the viewpoint of copolymerizability of the monomer giving the structural unit (E).
  • the L AF it is preferable a single bond and is -COO-.
  • the organic group in the base resin means a group containing at least one carbon atom.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R AF2 include a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the carbon-carbon group or the bond hand side of the hydrocarbon group. Examples thereof include a group containing a divalent heteroatom-containing group at the terminal, a group in which a part or all of the hydrogen atom of the group and the hydrocarbon group is substituted with a monovalent heteroatom-containing group, and the like.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R AF2 include, for example. Alkyl groups such as methyl group, ethyl group, propyl group and butyl group; Alkenyl groups such as ethenyl group, propenyl group, butenyl group; Chain hydrocarbon groups such as alkynyl groups such as ethynyl group, propynyl group and butynyl group; Cycloalkyl groups such as cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, norbornyl group, adamantyl group; Alicyclic hydrocarbon groups such as cycloalkenyl groups such as cyclopropenyl group, cyclopentenyl group, cyclohexenyl group, norbornenyl group; Aryl groups such as phenyl group, tolyl group, xsilyl group, naphthy
  • a chain hydrocarbon group and a cycloalkyl group are preferable, an alkyl group and a cycloalkyl group are more preferable, and a methyl group, an ethyl group, a propyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and an adamantyl group are preferable. More preferred.
  • divalent heteroatom-containing group examples include -O-, -CO-, -CO-O-, -S-, -CS-, -SO 2-, and -NR'-, and 2 of these.
  • a group in which one or more are combined can be mentioned.
  • divalent heteroatom-containing group for example, a methoxy group, an ethoxy group, a propoxy group and the like are preferably mentioned.
  • R' is a hydrogen atom or a monovalent hydrocarbon group.
  • Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group (-SH). be able to.
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group (-SH).
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • n f1 is preferably an integer of 0 to 2, more preferably 0 and 1, and even more preferably 0.
  • n f2 , 1 and 2 are preferable, and 1 is more preferable.
  • naf 0 and 1 are preferable, and 0 is more preferable.
  • the structural unit (E) is preferably a structural unit represented by the following formulas (a1-1) to (a1-9).
  • R AF1 is the same as the above formula (af).
  • the structural unit represented by each of the above formulas (a1-1) to (a1-7) is preferable, and the structural unit represented by the above formula (a1-1) is more preferable.
  • the lower limit of the content ratio of the structural unit (E) is preferably 5 mol%, more preferably 10 mol%, based on all the structural units constituting the base resin. 15 mol% is more preferred.
  • the upper limit of the content ratio is preferably 50 mol%, more preferably 40 mol%, still more preferably 30 mol%.
  • the structural unit (E) by hydrolyzing and deprotecting.
  • the structural unit that gives the structural unit (E) by hydrolysis is preferably represented by the following formula (af-1).
  • R AF1 , L AF , R AF2 , n f1 , n f2 and n af are synonymous with the above formula (af).
  • R 12 is a monovalent hydrocarbon group or an alkoxy group having 1 to 20 carbon atoms.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms of R 12 include a monovalent hydrocarbon group having 1 to 20 carbon atoms of R 8 in the structural unit (B).
  • the alkoxy group include a methoxy group, an ethoxy group, a tert-butoxy group and the like.
  • R 12 is preferably an alkyl group and alkoxy group, and among them methyl group, tert- butoxy group is more preferable.
  • the fluorine content of the base resin is preferably 10% by mass or less.
  • the upper limit of the fluorine content is more preferably 9% by mass, further preferably 8% by mass, and particularly preferably 7% by mass.
  • the lower limit of the fluorine content is preferably 0% by mass (that is, does not contain a fluorine atom).
  • the base resin can be synthesized, for example, by polymerizing a monomer that gives each structural unit in an appropriate solvent using a radical polymerization initiator or the like.
  • radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis (2-cyclopropylpro). Pionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate and other azo radical initiators; benzoyl peroxide, t-butyl hydroperoxide, Examples thereof include peroxide-based radical initiators such as cumene hydroperoxide. Among these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferable, and AIBN is more preferable. These radical initiators can be used alone or in admixture of two or more.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylenedibromid, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate, methyl propionate; Ketones such as acetone, methyl ethyl ket
  • the reaction temperature in the above polymerization is usually 40 ° C. to 150 ° C., preferably 50 ° C. to 120 ° C.
  • the reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the molecular weight of the base resin is not particularly limited, but the polystyrene-equivalent weight average molecular weight (Mw) by gel permeation chromatography (GPC) is preferably 1,000 or more and 50,000 or less, and more preferably 2,000 or more and 30,000 or less. , 3,000 or more and 15,000 or less are more preferable, and 4,000 or more and 12,000 or less are particularly preferable. If the Mw of the base resin is less than the above lower limit, the heat resistance of the obtained resist film may decrease. If the Mw of the base resin exceeds the above upper limit, the developability of the resist film may decrease.
  • Mw polystyrene-equivalent weight average molecular weight
  • the ratio of Mw (Mw / Mn) to the polystyrene-equivalent number average molecular weight (Mn) of the base resin by GPC is usually 1 or more and 5 or less, preferably 1 or more and 3 or less, and further preferably 1 or more and 2 or less.
  • the Mw and Mn of the resin in the present specification are values measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC column 2 G2000HXL, 1 G3000HXL, 1 G4000HXL (all manufactured by Tosoh) Column temperature: 40 ° C Elution solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass Sample injection volume: 100 ⁇ L Detector: Differential Refractometer Standard Material: Monodisperse Polystyrene
  • the content of the base resin is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 85% by mass or more, based on the total solid content of the radiation-sensitive resin composition.
  • the radiation-sensitive resin composition of the present embodiment may contain, as another resin, a resin having a higher mass content of fluorine atoms than the above-mentioned base resin (hereinafter, also referred to as “high fluorine content resin”). Good.
  • the radiation-sensitive resin composition contains a high-fluorine content resin, it can be unevenly distributed on the surface layer of the resist film with respect to the base resin, and as a result, the surface of the resist film is repelled during immersion exposure. Aqueousness can be increased.
  • the high fluorine content resin has, for example, at least one of the structural unit (B) and the structural unit (C) in the base resin, and is a structural unit represented by the following formula (5) (hereinafter, “structural unit”). It is preferable to have (F) ”.
  • R 13 is a hydrogen atom, a methyl group or a trifluoromethyl group.
  • G is a single bond, an oxygen atom, a sulfur atom, -COO-, -SO 2 ONH-, -CONH- or -OCONH-.
  • R 14 is a monovalent fluorinated chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • R 13 from the viewpoint of copolymerizability of the monomer giving the structural unit (F), preferably a hydrogen atom or a methyl group, more preferably a methyl group.
  • a single bond and -COO- are preferable, and -COO- is more preferable, from the viewpoint of copolymerizability of the monomer giving the structural unit (F).
  • the monovalent fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 14 is a part of hydrogen atoms of a monocyclic or polycyclic hydrocarbon group having 3 to 20 carbon atoms. Examples include those in which all are substituted with fluorine atoms.
  • R 14 preferably a fluorinated chain hydrocarbon group, more preferably a fluorinated alkyl group, a 2,2,2-trifluoroethyl group, 1,1,1,3,3,3-hexafluoro-propyl Groups and 5,5,5-trifluoro-1,1-diethylpentyl groups are more preferred.
  • the lower limit of the content ratio of the structural unit (F) is preferably 20 mol% with respect to all the structural units constituting the high fluorine content resin, preferably 30. More preferably mol%, more preferably 35 mol%.
  • the upper limit of the content ratio is preferably 95 mol%, more preferably 90 mol%, still more preferably 85 mol%.
  • the high fluorine content resin may have a fluorine atom-containing structural unit (hereinafter, also referred to as structural unit (G)) represented by the following formula (f-2) in addition to the structural unit (F). .. Since the high fluorine content resin has a structural unit (G), its solubility in an alkaline developer can be improved and the occurrence of development defects can be suppressed.
  • structural unit (G) fluorine atom-containing structural unit represented by the following formula (f-2)
  • the structural unit (G) is also referred to as (x) a group having an alkali-soluble group and (y) a group that dissociates due to the action of alkali and increases its solubility in an alkaline developer (hereinafter, simply referred to as "alkali dissociative group"). It is roughly divided into two cases of having).
  • RC is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R D is a single bond, having from 1 to 20 carbon atoms (s + 1) -valent hydrocarbon group, an oxygen atom at the terminal of R E side of the hydrocarbon group, a sulfur atom, -NR dd -, carbonyl group, -COO- or It is a structure in which -CONH- is bonded, or a structure in which a part of the hydrogen atom of this hydrocarbon group is replaced by an organic group having a heteroatom.
  • R dd is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • s is an integer of 1 to 3.
  • R F is a hydrogen atom
  • a 1 is an oxygen atom
  • -COO- * or -SO 2 O-* is. * Indicates a site which binds to R F.
  • W 1 is a single bond, hydrocarbon group having 1 to 20 carbon atoms or a divalent fluorinated hydrocarbon group.
  • a 1 is an oxygen atom
  • W 1 is a fluorinated hydrocarbon group having a fluorine atom or a fluoroalkyl group at the carbon atom to which A 1 is bonded.
  • RE is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • the plurality of RE , W 1 , A 1 and RF may be the same or different, respectively.
  • the structural unit (G) has the (x) alkali-soluble group, the affinity for the alkaline developer can be enhanced and development defects can be suppressed.
  • (X) As the structural unit (G) having an alkali-soluble group, when A 1 is an oxygen atom and W 1 is a 1,1,1,3,3,3-hexafluoro-2,2-methanediyl group. Is particularly preferable.
  • R F is a monovalent organic group having 1 to 30 carbon atoms
  • a 1 is an oxygen atom, -NR aa -, - COO- *, or -SO 2 O- *.
  • Raa is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. * Indicates a site which binds to R F.
  • W 1 is a single bond or a divalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • RE is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • W 1 or R F is a fluorine atom on the carbon atom adjacent to the carbon atoms or which binds to A 1.
  • W 1 is an oxygen atom
  • W 1 is a single bond
  • R D is a structure bonded carbonyl group at the terminal of R E side of the hydrocarbon group having 1 to 20 carbon atoms
  • R F is an organic group having a fluorine atom.
  • the plurality of RE , W 1 , A 1 and RF may be the same or different, respectively.
  • the structural unit (G) has the (y) alkali dissociative group, the surface of the resist film changes from hydrophobic to hydrophilic in the alkaline development step. As a result, the affinity for the developing solution can be significantly increased, and development defects can be suppressed more efficiently.
  • the structural unit (V) with (y) alkali dissociative group, A 1 is -COO- *, which both R F or W 1 or they have a fluorine atom is particularly preferred.
  • a hydrogen atom and a methyl group are preferable, and a methyl group is more preferable, from the viewpoint of copolymerizability of the monomer giving the structural unit (G).
  • RE is a divalent organic group
  • a group having a lactone structure is preferable, a group having a polycyclic lactone structure is more preferable, and a group having a norbornane lactone structure is more preferable.
  • the lower limit of the content ratio of the structural unit (G) is preferably 40 mol% with respect to all the structural units constituting the high fluorine content resin, preferably 50. More preferably, 60 mol%, more preferably 70 mol%.
  • the upper limit of the content ratio is preferably 98 mol%, more preferably 95 mol%, still more preferably 92 mol%.
  • Mw of the high fluorine content resin 1,000 is preferable, 2,000 is more preferable, 3,000 is further preferable, and 5,000 is particularly preferable.
  • Mw 50,000 is preferable, 30,000 is more preferable, 20,000 is further preferable, and 15,000 is particularly preferable.
  • the lower limit of Mw / Mn of the high fluorine content resin is usually 1, and 1.1 is more preferable.
  • the upper limit of Mw / Mn is usually 5, preferably 3, more preferably 2, and even more preferably 1.9.
  • the lower limit of the content of the high fluorine content resin is preferably 0.1 part by mass, more preferably 1 part by mass, further preferably 1.5 parts by mass, and 2 parts by mass with respect to 100 parts by mass of the base resin. Is particularly preferable.
  • the upper limit of the content is preferably 15 parts by mass, more preferably 12 parts by mass, further preferably 10 parts by mass, and particularly preferably 8 parts by mass.
  • the radiation-sensitive resin composition may contain one or more high-fluorine content resins.
  • the high fluorine content resin can be synthesized by the same method as the above-mentioned method for synthesizing the base resin.
  • a radiation-sensitive acid generator is a component that generates an acid upon exposure.
  • the acid generated by exposure is considered to have two functions in the radiation-sensitive resin composition depending on the strength of the acid.
  • the first function is that when the acid generated by exposure contains a structural unit (B) having an acid dissociative group, the acid dissociative group of the structural unit (B) is dissociated, and a carboxy group or the like is used.
  • the function to generate is mentioned.
  • the radiation-sensitive acid generator having this first function is referred to as a radiation-sensitive acid generator (I).
  • the second function is that the acid dissociative group of the structural unit (B) of the resin is not substantially dissociated under the pattern forming conditions using the radiation-sensitive resin composition, and the radiation-sensitive portion is exposed to radiation.
  • the function of suppressing the diffusion of the acid generated from the sex acid generator (I) can be mentioned.
  • the radiation-sensitive acid generator having this second function is called a radiation-sensitive acid generator (II). It can be said that the acid generated from the radiation-sensitive acid generator (II) is an acid (acid having a large pKa) that is relatively weaker than the acid generated from the radiation-sensitive acid generator (I).
  • the radiation-sensitive acid generator functions as the radiation-sensitive acid generator (I) or the radiation-sensitive acid generator (II) depends on the dissociation of the acid dissociative group of the structural unit (B) of the resin. It is determined by the required energy and the thermal energy conditions given when forming a pattern using the radiation-sensitive resin composition.
  • the radiation-sensitive acid generator contained in the radiation-sensitive resin composition may be in the form of being present as a compound by itself (liberated from the polymer) or in the form incorporated as a part of the polymer. Although both forms may be used, the form that exists alone as a compound is preferable.
  • the radiation-sensitive resin composition contains the radiation-sensitive acid generator (I)
  • the polarity of the resin in the exposed portion is increased, and the resin in the exposed portion is relative to the developing solution in the case of developing with an alkaline aqueous solution. It becomes soluble, while in the case of organic solvent development, it becomes sparingly soluble in the developing solution.
  • the radiation-sensitive resin composition can form a resist pattern having better pattern developability, LWR, and CDU performance.
  • Examples of the radiation-sensitive acid generator include onium salt compounds, sulfonimide compounds, halogen-containing compounds, diazoketone compounds and the like.
  • Examples of the onium salt compound include sulfonium salt, tetrahydrothiophenium salt, iodonium salt, phosphonium salt, diazonium salt, pyridinium salt and the like. Of these, sulfonium salts and iodonium salts are preferable.
  • Examples of the acid generated by exposure include those producing sulfonic acid, carboxylic acid, and sulfonimide by exposure.
  • an acid (1) A compound in which one or more fluorine atoms or fluorinated hydrocarbon groups are substituted for carbon atoms adjacent to a sulfo group.
  • Examples thereof include compounds in which the carbon atom adjacent to the sulfo group is not substituted with a fluorine atom or a fluorinated hydrocarbon group.
  • As a carboxylic acid generated by exposure (3) A compound in which one or more fluorine atoms or fluorinated hydrocarbon groups are substituted for carbon atoms adjacent to a carboxy group.
  • Examples thereof include compounds in which the carbon atom adjacent to the carboxy group is not substituted with a fluorine atom or a fluorinated hydrocarbon group.
  • the radiation-sensitive acid generator (I) the one corresponding to the above (1) is preferable, and the one having a cyclic structure is particularly preferable.
  • the radiation-sensitive acid generator (II) those corresponding to the above (2), (3) or (4) are preferable, and those corresponding to (2) or (4) are particularly preferable.
  • the lower limit of the content of the radiation-sensitive acid generator (I) is preferably 2 parts by mass and more preferably 5 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of ensuring sensitivity and developability as a resist. , 8 parts by mass is more preferable.
  • the upper limit of the content of the radiation-sensitive acid generator (I) is preferably 30 parts by mass, more preferably 25 parts by mass, and 20 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of ensuring transparency to radiation. The portion is more preferable.
  • the radiation-sensitive resin composition contains a solvent.
  • the solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least a resin, a radiation-sensitive acid generator, an acid diffusion control agent contained if desired, and the like.
  • solvent examples include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, ester-based solvents, hydrocarbon-based solvents, and the like.
  • an alcohol solvent for example, Carbons such as iso-propanol, 4-methyl-2-pentanol, 3-methoxybutanol, n-hexanol, 2-ethylhexanol, furfuryl alcohol, cyclohexanol, 3,3,5-trimethylcyclohexanol, diacetone alcohol, etc. Numbers 1 to 18 of monoalcoholic solvents; Ethylene glycol, 1,2-propylene glycol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, etc. Hydrate alcohol solvent; Examples thereof include a polyhydric alcohol partial ether solvent obtained by etherifying a part of the hydroxy groups of the polyhydric alcohol solvent.
  • ether solvent for example, Dialkyl ether solvents such as diethyl ether, dipropyl ether and dibutyl ether; Cyclic ether solvent such as tetrahydrofuran and tetrahydropyran; Aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether); Examples thereof include a polyhydric alcohol ether solvent obtained by etherifying the hydroxy group of the polyhydric alcohol solvent.
  • ketone solvent examples include chain ketone solvents such as acetone, butanone, and methyl-iso-butyl ketone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, and methylcyclohexanone: Examples thereof include 2,4-pentandione, acetonylacetone and acetophenone.
  • amide solvent examples include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide and N-methylpropionamide.
  • ester solvent examples include Monocarboxylic acid ester solvent such as n-butyl acetate and ethyl lactate; Polyhydric alcohol partial ether acetate solvent such as diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate; Lactone-based solvents such as ⁇ -butyrolactone and valerolactone; Carbonate-based solvents such as diethyl carbonate, ethylene carbonate, and propylene carbonate; Examples thereof include polyvalent carboxylic acid diester solvents such as propylene glycol diacetate, methoxytriglycolacetate, diethyl oxalate, ethyl acetoacetate, ethyl lactate, and diethyl phthalate.
  • Monocarboxylic acid ester solvent such as n-butyl acetate and ethyl lactate
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents such as n-hexane, cyclohexane, and methylcyclohexane; Examples thereof include aromatic hydrocarbon solvents such as benzene, toluene, di-iso-propylbenzene, and n-amylnaphthalene.
  • ester-based solvents and ketone-based solvents are preferable, polyhydric alcohol partial ether acetate-based solvents, cyclic ketone-based solvents, and lactone-based solvents are more preferable, and propylene glycol monomethyl ether acetate, cyclohexanone, and ⁇ -butyrolactone are even more preferable. ..
  • the radiation-sensitive resin composition may contain one or more solvents.
  • the radiation-sensitive resin composition may contain other optional components in addition to the above components.
  • the other optional components include acid diffusion control agents, uneven distribution accelerators, surfactants, alicyclic skeleton-containing compounds, and sensitizers. These other optional components may be used alone or in combination of two or more.
  • the radiation-sensitive resin composition may contain an acid diffusion control agent, if necessary.
  • the acid diffusion control agent the radiation-sensitive acid generator (II) among the above-mentioned radiation-sensitive acid generators can be preferably adopted.
  • the acid diffusion control agent has the effect of controlling the diffusion phenomenon of the acid generated from the radiation-sensitive acid generator by exposure in the resist film and suppressing an unfavorable chemical reaction in the non-exposure region.
  • the storage stability of the obtained radiation-sensitive resin composition is improved.
  • the resolution of the resist pattern is further improved, and the change in the line width of the resist pattern due to the fluctuation of the leaving time from the exposure to the development process can be suppressed, so that a radiation-sensitive resin composition having excellent process stability can be obtained. Be done.
  • the lower limit of the content of the acid diffusion control agent 1 part by mass is preferable, 2 parts by mass is more preferable, and 4 parts by mass is further preferable with respect to 100 parts by mass in total of the radiation-sensitive acid generator.
  • the upper limit of the content is preferably 20 parts by mass, more preferably 15 parts by mass, and even more preferably 10 parts by mass.
  • the radiation-sensitive resin composition may contain one or more acid diffusion control agents.
  • the uneven distribution accelerator has the effect of more efficiently unevenly distributing the high fluorine content resin on the surface of the resist film.
  • this uneven distribution accelerator in the radiation-sensitive resin composition, the amount of the high-fluorine-containing resin added can be reduced as compared with the conventional case. Therefore, while maintaining the lithography performance of the radiation-sensitive resin composition, it is possible to further suppress the elution of components from the resist film into the immersion medium, and to perform immersion exposure at a higher speed by high-speed scanning. As a result, the hydrophobicity of the resist film surface that suppresses immersion-derived defects such as water mark defects can be improved.
  • Examples of those that can be used as such an uneven distribution accelerator include low molecular weight compounds having a relative permittivity of 30 or more and 200 or less and a boiling point of 100 ° C. or more at 1 atm.
  • Specific examples of such a compound include a lactone compound, a carbonate compound, a nitrile compound, and a polyhydric alcohol.
  • lactone compound examples include ⁇ -butyrolactone, valero lactone, mevalonic lactone, norbornane lactone and the like.
  • carbonate compound examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate and the like.
  • nitrile compound examples include succinonitrile.
  • polyhydric alcohol examples include glycerin and the like.
  • the lower limit of the content of the uneven distribution accelerator 10 parts by mass is preferable, 15 parts by mass is more preferable, and 20 parts by mass is further preferable with respect to 100 parts by mass of the total amount of the resin in the radiation-sensitive resin composition. 25 parts by mass is more preferable.
  • the upper limit of the content is preferably 300 parts by mass, more preferably 200 parts by mass, further preferably 100 parts by mass, and particularly preferably 80 parts by mass.
  • the radiation-sensitive resin composition may contain one or more of the uneven distribution accelerators.
  • Surfactant Surfactants have the effect of improving coatability, striation, developability and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, and polyethylene glycol di.
  • Nonionic surfactants such as stearate; commercially available products include KP341 (manufactured by Shin-Etsu Chemical Industry Co., Ltd.), Polyflow No. 75, No.
  • the content of the surfactant in the radiation-sensitive resin composition is usually 2 parts by mass or less with respect to 100 parts by mass of the resin.
  • the alicyclic skeleton-containing compound has the effect of improving dry etching resistance, pattern shape, adhesiveness to a substrate, and the like.
  • Examples of the alicyclic skeleton-containing compound include adamantane derivatives such as 1-adamantanane carboxylic acid, 2-adamantanone, and 1-adamantane carboxylate t-butyl; Deoxycholic acid esters such as t-butyl deoxycholic acid, t-butoxycarbonylmethyl deoxycholic acid, and 2-ethoxyethyl deoxycholic acid; Lithocholic acid esters such as t-butyl lithocholic acid, t-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid; 3- [2-Hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2,5.
  • adamantane derivatives such as 1-adamantanane carboxylic acid, 2-adamantanone, and 1-adamantane carboxylate t-butyl
  • Deoxycholic acid esters such as t
  • the content of the alicyclic skeleton-containing compound in the radiation-sensitive resin composition is usually 5 parts by mass or less with respect to 100 parts by mass of the resin.
  • the sensitizer has an action of increasing the amount of acid produced from a radiation-sensitive acid generator or the like, and has an effect of improving the "apparent sensitivity" of the radiation-sensitive resin composition.
  • sensitizer examples include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyls, eosin, rose bengal, pyrenes, anthracenes, phenothiazines and the like. These sensitizers may be used alone or in combination of two or more.
  • the content of the sensitizer in the radiation-sensitive resin composition is usually 2 parts by mass or less with respect to 100 parts by mass of the resin.
  • the radiation-sensitive resin composition can be prepared by mixing, for example, a resin, a radiation-sensitive acid generator, an acid diffusion control agent, a high-fluorine content resin, or the like, if necessary, and a solvent in a predetermined ratio. After mixing, the radiation-sensitive resin composition is preferably filtered with, for example, a filter having a pore size of about 0.05 ⁇ m to 0.2 ⁇ m.
  • the solid content concentration of the radiation-sensitive resin composition is usually 0.1% by mass to 50% by mass, preferably 0.5% by mass to 30% by mass, and more preferably 1% by mass to 20% by mass.
  • the resist pattern forming method is A step of forming a resist film with the radiation-sensitive resin composition (hereinafter, also referred to as a “resist film forming step”). It has a step of exposing the resist film (hereinafter, also referred to as “exposure step”) and a step of developing the exposed resist film (hereinafter, also referred to as “development step”).
  • the resist pattern forming method is also referred to as a step of providing an upper layer film on the resist film after the step of forming the resist film and before the step of exposing the resist film (hereinafter, also referred to as "upper layer film forming step"). ) May be included.
  • the resist pattern forming method since the above-mentioned radiation-sensitive resin composition is used, a resist pattern excellent in sensitivity, LWR performance and pattern rectangularity can be formed. Hereinafter, each step will be described.
  • a resist film is formed from the radiation-sensitive resin composition.
  • the substrate on which the resist film is formed include conventionally known substrates such as silicon wafers, silicon dioxide, and wafers coated with aluminum.
  • an organic or inorganic antireflection film disclosed in Japanese Patent Application Laid-Open No. 6-12452, Japanese Patent Application Laid-Open No. 59-93448, and the like may be formed on the substrate.
  • the coating method include rotary coating (spin coating), cast coating, roll coating and the like.
  • prebaking (PB) may be performed to volatilize the solvent in the coating film.
  • the PB temperature is usually 60 ° C.
  • the PB time is usually 5 seconds to 600 seconds, preferably 10 seconds to 300 seconds.
  • the film thickness of the resist film to be formed is preferably 10 nm to 1,000 nm, more preferably 10 nm to 500 nm.
  • the immersion liquid and the resist film are formed on the formed resist film regardless of the presence or absence of the water-repellent polymer additive such as the high fluorine content resin in the radiation-sensitive resin composition.
  • An insoluble protective film for immersion may be provided in the immersion liquid for the purpose of avoiding direct contact with the liquid.
  • the protective film for immersion include a solvent-removing protective film that is peeled off by a solvent before the developing process (see, for example, Japanese Patent Application Laid-Open No. 2006-227632), and a developer-removing protective film that is peeled off at the same time as development in the developing process (for example, Any of WO2005-069076 and WO2006-305790) may be used.
  • a developer peeling type immersion protective film it is preferable to use a developer peeling type immersion protective film.
  • the exposure step which is the next step, is performed with radiation having a wavelength of 50 nm or less
  • an upper layer film is provided on the resist film by using the upper layer film forming composition.
  • the composition for forming the upper layer film for example, a conventionally known composition disclosed in Japanese Patent Application Laid-Open No. 2005-352384 can be used.
  • the composition for forming an upper layer film is applied onto the resist film to form an upper layer film.
  • the method for applying the composition for forming the upper layer film include the same method as the method for applying the radiation-sensitive resin composition in the process of forming the resist film.
  • PB pre-baking
  • the immersion medium and the resist film do not come into direct contact with each other, so that the liquid medium permeates the resist film and the lithography performance of the resist film deteriorates. Further, it is possible to effectively prevent the lens of the projection exposure apparatus from being contaminated by the components eluted from the resist film into the liquid medium.
  • the thickness of the upper layer film to be formed is as close as possible to an odd multiple of ⁇ / 4 m (where ⁇ : wavelength of radiation, m: refractive index of the upper layer film). By doing so, the reflection suppression effect at the upper interface of the resist film can be increased.
  • the resist film formed in the resist film forming step is irradiated with radiation through a photomask (in some cases, through an immersion medium such as water) to expose the resist film.
  • the radiation used for exposure is, for example, electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, EUV (extreme ultraviolet rays), X-rays, and ⁇ -rays; electron beams, ⁇ -rays, and the like, depending on the line width of the target pattern. Examples include charged particle beams.
  • ArF excimer laser light (wavelength 193 nm)
  • KrF excimer laser light (wavelength 248 nm)
  • electron beams and EUV are more preferable
  • ArF excimer laser light and EUV are further preferable.
  • the immersion liquid to be used include water and a fluorine-based inert liquid.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient as small as possible so as to minimize distortion of the optical image projected on the film.
  • the exposure light source is ArF.
  • excimer laser light wavelength 193 nm
  • water it is preferable to use water from the viewpoints of easy availability and handling in addition to the above viewpoints.
  • an additive that reduces the surface tension of water and increases the surface activity may be added in a small proportion. It is preferable that this additive does not dissolve the resist film on the wafer and the influence on the optical coating on the lower surface of the lens can be ignored. Distilled water is preferable as the water to be used.
  • PEB post-exposure baking
  • the PEB temperature is usually 50 ° C. to 180 ° C., preferably 80 ° C. to 130 ° C.
  • the PEB time is usually 5 seconds to 600 seconds, preferably 10 seconds to 300 seconds.
  • the resist film exposed in the above exposure step is developed.
  • a predetermined resist pattern can be formed.
  • it is generally washed with a rinse solution such as water or alcohol and dried.
  • the upper film can be easily removed with a developing solution during development, or with a cleaning solution during cleaning when cleaning is performed after development.
  • the developing solution used for the above development is, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-.
  • TMAH tetramethylammonium hydroxide
  • pyrrole pyrrole
  • piperidine choline
  • 1,8-diazabicyclo- [5.4.0] -7-undecene 1,5-Diazabicyclo- [4.3.0] -5-None and other alkaline compounds dissolved in an alkaline aqueous solution.
  • the TMAH aqueous solution is preferable, and the 2.38 mass% TMAH aqueous solution is more preferable.
  • an organic solvent such as a hydrocarbon solvent, an ether solvent, an ester solvent, a ketone solvent, an alcohol solvent, or a solvent containing an organic solvent
  • the organic solvent include one or more of the solvents listed as the solvent of the above-mentioned radiation-sensitive resin composition.
  • ester-based solvents and ketone-based solvents are preferable.
  • the ester solvent an acetate ester solvent is preferable, and n-butyl acetate and amyl acetate are more preferable.
  • the ketone solvent a chain ketone is preferable, and 2-heptanone is more preferable.
  • the content of the organic solvent in the developing solution is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • the components other than the organic solvent in the developing solution include water, silicone oil and the like.
  • Examples of the developing method include a method of immersing the substrate in a tank filled with a developing solution for a certain period of time (dip method), and a method of developing by raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time (paddle method). ), A method of spraying the developer on the surface of the substrate (spray method), a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed on the substrate rotating at a constant speed (dynamic discharge method), etc. Can be mentioned.
  • the fluorine content in the resin was calculated from the theoretical fluorine elemental analysis value of the fluorine-containing monomer and then the abundance ratio of the monomer in the total resin.
  • a mixed solution of methanol: water (1: 1 (mass ratio)) was added to the above ether derivative to make a 1M solution, then 20.0 mmol of sodium hydroxide was added, and the mixture was reacted at room temperature for 1 hour. Then, the reaction solution was cooled to 30 ° C. or lower, and 1M hydrochloric acid was added to make the inside of the system acidic. Dichloromethane was added and extracted, and the organic layer was separated. The resulting organic layer was washed with saturated aqueous sodium chloride solution and then with water. After drying over sodium sulfate, the solvent was distilled off to obtain a carboxylic acid compound in a good yield.
  • the start of dropping was set as the start time of the polymerization reaction, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was water-cooled and cooled to 30 ° C. or lower.
  • the cooled polymerization solution was put into methanol (2,000 parts by mass), and the precipitated white powder was filtered off.
  • the filtered white powder was washed twice with methanol, filtered, and dried at 50 ° C. for 10 hours to obtain a white powdery resin (A-1) (yield: 80%).
  • the Mw of the resin (A-1) was 6,100, and the Mw / Mn was 1.61.
  • the start of dropping was set as the start time of the polymerization reaction, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was water-cooled and cooled to 30 ° C. or lower.
  • the cooled polymerization solution was put into hexane (2,000 parts by mass), and the precipitated white powder was filtered off.
  • the filtered white powder was washed twice with hexane, filtered, and dissolved in 1-methoxy-2-propanol (300 parts by mass).
  • methanol (500 parts by mass), triethylamine (50 parts by mass) and ultrapure water (10 parts by mass) were added, and a hydrolysis reaction was carried out at 70 ° C. for 6 hours with stirring.
  • the polymerization solution was water-cooled and cooled to 30 ° C. or lower.
  • hexane 100 parts by mass was added and stirred, and the operation of recovering the acetonitrile layer was repeated three times.
  • the solvent By substituting the solvent with propylene glycol monomethyl ether acetate, a solution of the high fluorine content resin (E-1) was obtained (yield: 81%).
  • the Mw of the high fluorine content resin (E-1) was 6,300, and the Mw / Mn was 1.67.
  • the content ratios of the structural units derived from (m-1) and (m-20) were 10.8 mol% and 89.2 mol%, respectively.
  • the fluorine content was 14.5%.
  • Example 1 [A] 100 parts by mass of (A-1) as a resin, [B] 14.0 parts by mass of (B-4) as a radiosensitive acid generator, [C] (C-1) as an acid diffusion control agent ) (C-2) 8.0 parts by mass, [E] 5.0 parts by mass (solid content) as a high fluorine content resin, and [D] (D-1) / as a solvent.
  • a radiation-sensitive resin composition (J-1) was prepared by mixing 3,230 parts by mass of the mixed solvent (D-2) / (D-3) and filtering with a membrane filter having a pore size of 0.2 ⁇ m. ..
  • ASML's "TWINSCAN XT-1900i” ArF excimer laser immersion exposure device
  • the exposure amount for forming the 40 nm line-and-space pattern is defined as the optimum exposure amount, and this optimum exposure amount is defined as the sensitivity (mJ / cm 2 ). did. The sensitivity was evaluated as "good” when it was 20 mJ / cm 2 or less, and as “poor” when it exceeded 20 mJ / cm 2.
  • LWR performance A resist pattern was formed by irradiating the optimum exposure amount obtained in the above sensitivity evaluation and adjusting the mask size so as to form a 40 nm line-and-space pattern. The formed resist pattern was observed from the upper part of the pattern using the scanning electron microscope. A total of 500 points of variation in line width were measured, and 3 sigma values were obtained from the distribution of the measured values, and these 3 sigma values were defined as LWR (nm). The LWR indicates that the smaller the value, the smaller and better the roughness of the line. The LWR performance was evaluated as "good” when it was 2.5 nm or less, and as “poor” when it exceeded 2.5 nm.
  • the 40 nm line-and-space pattern formed by irradiating the optimum exposure amount obtained in the evaluation of the sensitivity was observed using the scanning electron microscope, and the cross-sectional shape of the line-and-space pattern was evaluated.
  • the rectangularity of the resist pattern is " ⁇ " when the ratio of the length of the lower side to the length of the upper side in the cross-sectional shape is 1 or more and 1.05 or less, and " ⁇ " when it is more than 1.05 and 1.10 or less. , If it exceeds 1.10, it was evaluated as "x".
  • the radiation-sensitive resin compositions of the examples had good sensitivity, LWR performance, and pattern rectangularity when used for ArF exposure, whereas in the comparative examples, each of them was good. The characteristics were inferior to those of the examples. Therefore, when the radiation-sensitive resin composition of the example is used for ArF exposure, a resist pattern having good LWR performance and pattern rectangularity can be formed with high sensitivity.
  • Example 39 [Preparation of positive radiation-sensitive resin composition for extreme ultraviolet (EUV) exposure] [Example 39] [A] 100 parts by mass of (A-33) as a resin, [B] 12.0 parts by mass of (B-4) as a radiation-sensitive acid generator, [C] (C-1) as an acid diffusion control agent ) 6.0 parts by mass, [E] 5.0 parts by mass of (E-4) as a high fluorine content resin, and [D] mixed solvent of (D-1) / (D-4) as a solvent 6 , 110 parts by mass were mixed and filtered through a solvent filter having a pore size of 0.2 ⁇ m to prepare a radiation-sensitive resin composition (J-39).
  • EUV extreme ultraviolet
  • PEB was performed at 120 ° C. for 60 seconds.
  • the resist film is alkaline-developed with a 2.38 mass% TMAH aqueous solution as an alkaline developer, washed with water after development, and further dried to form a positive resist pattern (32 nm line and space pattern). Formed.
  • the exposure amount for forming the 32 nm line-and-space pattern is defined as the optimum exposure amount, and this optimum exposure amount is defined as the sensitivity (mJ / cm 2 ). did. The sensitivity was evaluated as "good” when it was 25 mJ / cm 2 or less, and as “poor” when it exceeded 25 mJ / cm 2.
  • LWR performance A resist pattern was formed by irradiating the optimum exposure amount obtained in the above sensitivity evaluation and adjusting the mask size so as to form a 32 nm line-and-space pattern. The formed resist pattern was observed from the upper part of the pattern using the scanning electron microscope. A total of 500 points of variation in line width were measured, and 3 sigma values were obtained from the distribution of the measured values, and these 3 sigma values were defined as LWR (nm). The LWR indicates that the smaller the value, the smaller the rattling of the line and the better. The LWR performance was evaluated as "good” when it was 3.0 nm or less, and as "bad” when it exceeded 3.0 nm.
  • the 32 nm line-and-space pattern formed by irradiating the optimum exposure amount obtained in the evaluation of the sensitivity was observed using the scanning electron microscope, and the cross-sectional shape of the line-and-space pattern was evaluated.
  • the rectangularity of the resist pattern is " ⁇ " when the ratio of the length of the lower side to the length of the upper side in the cross-sectional shape is 1 or more and 1.05 or less, and " ⁇ " when it is more than 1.05 and 1.10 or less. , If it exceeds 1.10, it was evaluated as "x".
  • the radiation-sensitive resin compositions of the examples had good sensitivity, LWR performance, and pattern rectangularity when used for EUV exposure, whereas in the comparative examples, each of them was good. The characteristics were inferior to those of the examples.
  • Example 51 [Preparation of Negative Radiation Resin Composition for ArF Exposure, Formation and Evaluation of Resist Pattern Using This Composition] [Example 51] [A] 100 parts by mass of (A-3) as a resin, [B] 15.0 parts by mass of (B-3) as a radiation-sensitive acid generator, [C] (C-2) as an acid diffusion control agent ) 8.0 parts by mass, [E] 2.0 parts by mass (solid content) of (E-3) as a high-fluorine content resin, and (D-1) / (D-2) as a [D] solvent.
  • a radiation-sensitive resin composition (J-51) was prepared by mixing 3,230 parts by mass of the mixed solvent of / (D-3) and filtering with a membrane filter having a pore size of 0.2 ⁇ m.
  • ASML's "TWINSCAN XT-1900i” ArF excimer laser immersion exposure device
  • the resist pattern using the negative type radiation-sensitive resin composition for ArF exposure was evaluated in the same manner as the evaluation of the resist pattern using the positive radiation-sensitive resin composition for ArF exposure.
  • the radiation-sensitive resin composition of Example 51 had good sensitivity, LWR performance, and pattern rectangularity even when a negative resist pattern was formed by ArF exposure.
  • a radiation-sensitive resin composition (J-52) was prepared by mixing 6,110 parts by mass of the mixed solvent (mass ratio) and filtering with a membrane filter having a pore size of 0.2 ⁇ m.
  • EUV exposure apparatus NXE3300” manufactured by ASML
  • NA 0.33
  • mask imageDEFECT32FFR02.
  • PEB was performed at 120 ° C. for 60 seconds.
  • the resist film was developed with an organic solvent using n-butyl acetate as an organic solvent developer, and dried to form a negative resist pattern (32 nm line and space pattern).
  • the resist pattern using the negative type radiation-sensitive resin composition for EUV exposure was evaluated in the same manner as the evaluation of the resist pattern using the positive radiation-sensitive resin composition for EUV exposure.
  • the radiation-sensitive resin composition of Example 52 had good sensitivity, LWR performance, and pattern rectangularity even when a negative resist pattern was formed by EUV exposure.
  • the radiation-sensitive resin composition and the method for forming a resist pattern of the present invention it is possible to form a resist pattern having good sensitivity to exposure and excellent LWR performance and pattern rectangularity. Therefore, these can be suitably used for processing processes of semiconductor devices, which are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Medicinal Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

感度やLWR性能、パターン矩形性 を優れたレベルで発揮可能な感放射線性樹脂組成物及びレジストパターンの形成方法を提供する。下記式(1)で表される構造単位(A)及び酸解離性基を有する構造単位(B)を含む樹脂と、感放射線性酸発生剤と、溶剤とを含む感放射線性樹脂組成物。(上記式(1)中、 Rは、ハロゲン原子置換又は非置換の炭素数1~20の1価の炭化水素基である。 Xは、-O-又は-S-である。 La1は、ハロゲン原子置換又は非置換の炭素数1~10の2価の炭化水素基である。 Rは、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも一種の構造を有する1価の有機基である。)

Description

感放射線性樹脂組成物及びレジストパターンの形成方法
 本発明は、感放射線性樹脂組成物及びレジストパターンの形成方法に関する。
 半導体素子における微細な回路形成にレジスト組成物を用いるフォトリソグラフィー技術が利用されている。代表的な手順として、例えばレジスト組成物の被膜に対するマスクパターンを介した放射線照射による露光で酸を発生させ、その酸を触媒とする反応により露光部と未露光部とにおいて樹脂のアルカリ系や有機系の現像液に対する溶解度の差を生じさせることで、基板上にレジストパターンを形成する。
 上記フォトリソグラフィー技術ではArFエキシマレーザー等の短波長の放射線を利用したり、さらに露光装置のレンズとレジスト膜との間の空間を液状媒体で満たした状態で露光を行う液浸露光法(リキッドイマージョンリソグラフィー)を用いたりしてパターン微細化を推進している。次世代技術として、電子線、X線及びEUV(極端紫外線)等のより短波長の放射線を用いたリソグラフィーも検討されつつある。
 露光技術の進展に伴い、脂環式基を有する樹脂を含むレジスト組成物を利用してミクロン単位からサブミクロン単位までのパターン解像度を達成する技術が開発されつつある(特許文献1)。
特許第4073266号公報
 近年、レジストパターンの微細化が進行する中、感度やレジストパターンの線幅のバラつきを示すラインウィドゥスラフネス(LWR)性能等とともに、レジストパターン形状の矩形性が要求され、レジスト諸性能のさらなる向上が求められている。さらに、電子線露光等の次世代露光技術でもArFエキシマレーザーを用いる露光技術と同等以上のレジスト諸性能が要求される。
 本発明は、感度やLWR性能、パターン矩形性を優れたレベルで発揮可能な感放射線性樹脂組成物及びレジストパターンの形成方法を提供することを目的とする。
 本願発明者は、上記課題を解決すべく鋭意検討した結果、下記構成を採用することで上記目的を達成できることを見出し、本発明を完成させるに至った。
 本発明は、一実施形態において、下記式(1)で表される構造単位(A)及び酸解離性基を有する構造単位(B)を含む樹脂と、
 感放射線性酸発生剤と、
 溶剤と
 を含む感放射線性樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000003
(上記式(1)中、
 Rは、ハロゲン原子置換又は非置換の炭素数1~20の1価の炭化水素基である。
 Xは、-O-又は-S-である。
 La1は、ハロゲン原子置換又は非置換の炭素数1~10の2価の炭化水素基である。
 Rは、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも一種の構造を有する1価の有機基である。)
 当該感放射線性樹脂組成物は、上記式(1)で表される構造単位(A)を一構造単位とする樹脂を含むので、ArFエキシマレーザー等による露光だけでなく、EUV(極端紫外線)等による露光であっても、当該組成物を用いたレジスト膜では感度やLWR性能、レジストパターン矩形性を十分なレベルで発揮することができる。この理由としては、いかなる理論にも束縛されないものの、以下のように推察される。上記式(1)中のRが有するラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも一種の構造(以下、「ラクトン構造等」ともいう。)は、露光部ではアルカリの作用により開環して極性構造を生成し、現像液に対する溶解性が向上する。一方、未露光部ではラクトン構造等は開環せずに疎水性を維持するとともに、Rで表される炭化水素基の疎水性により、構造単位(A)全体で疎水性を発揮して現像液に対する溶解を抑制することができる。このように、露光部での樹脂の現像液への溶解性向上作用と未露光部での樹脂の現像液への溶解抑制作用との相乗作用により、両者における溶解コントラストが向上し、これによりパターンの矩形性が良好となることによると推察される。なお、有機基とは、少なくとも1個の炭素原子を含む基をいう。
 本発明は、他の実施形態において、上記感放射線性樹脂組成物によりレジスト膜を形成する工程、
 上記レジスト膜を露光する工程、及び
 上記露光されたレジスト膜を現像する工程
 を含むレジストパターンの形成方法に関する。
 当該形成方法によれば、レジスト諸性能に優れる上記感放射線性樹脂組成物を用いるので、高品位のレジストパターンを効率的に形成することができる。
<感放射線性樹脂組成物>
 本実施形態に係る感放射線性樹脂組成物(以下、単に「組成物」ともいう。)は、樹脂、感放射線性酸発生剤及び溶剤を含む。当該組成物は、本発明の効果を損なわない限り、他の任意成分を含んでいてもよい。
[樹脂]
 (構造単位(A))
 樹脂は、下記式(1)で表される構造単位(A)及び酸解離性基を有する構造単位(B)を含む重合体の集合体である(以下、この樹脂を「ベース樹脂」ともいう。)。
Figure JPOXMLDOC01-appb-C000004
 上記式(1)中、
 Rは、ハロゲン原子置換又は非置換の炭素数1~20の1価の炭化水素基である。
 Xは、-O-又は-S-である。
 La1は、ハロゲン原子置換又は非置換の炭素数1~10の2価の炭化水素基である。
 Rは、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも一種の構造を有する1価の有機基である。)
 当該感放射線性樹脂組成物は、樹脂が構造単位(A)を含むことで、感度やLWR性能、パターン矩形性に優れる。
 上記Rで表される炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~20の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基又はこれらの組み合わせ等が挙げられる。
 上記Rで表される炭素数1~20の鎖状炭化水素基としては、炭素数1~20の直鎖若しくは分岐鎖飽和炭化水素基、又は炭素数1~20の直鎖若しくは分岐鎖不飽和炭化水素基が挙げられる。
 上記Rで表される炭素数3~20の脂環式炭化水素基としては、単環若しくは多環の飽和炭化水素基、又は単環若しくは多環の不飽和炭化水素基が挙げられる。単環の飽和炭化水素基としてはシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が好ましい。多環のシクロアルキル基としてはノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の有橋脂環式炭化水素基が好ましい。なお、有橋脂環式炭化水素基とは、脂環を構成する炭素原子のうち互いに隣接しない2つの炭素原子間が1つ以上の炭素原子を含む結合連鎖で結合された多環性の脂環式炭化水素基をいう。
 上記Rで表される炭素数6~20の1価の芳香族炭化水素基としては、例えば、
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基などが挙げられる。
 上記Rで表されるこれら炭素数1~20の1価の炭化水素基が有する水素原子の一部又は全部は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子で置換されていてもよい。もちろん、一切ハロゲン原子で置換されていなくてもよい。
 上記Rで表される炭素数1~20の1価の炭化水素基は、酸素原子や硫黄原子等のヘテロ原子(上記ハロゲン原子を除く。)を含まないことが好ましい。これにより、Rにおける分極や極性の発生を抑制することで、構造単位(A)の未露光部での疎水性を維持することができ、優れたパターン矩形性を発揮することができる。
 上記La1で表される炭素数1~10の2価の炭化水素基としては、上記Rで表される炭素数1~20の1価の炭化水素基のうち炭素数が1~10である基からさらに水素原子を1個取り除いた基が好適に挙げられる。
 中でも、露光部における構造単位(A)の疎水性と極性構造発生による親水性とのバランスや構造単位(A)を与える単量体と他の単量体との共重合性等の点から、La1は2価の鎖状炭化水素基であることが好ましく、特にメチレン基であることが好ましい。
 上記R表される有機基は、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも一種の構造を有している限り特に限定されない。当該有機基としては、鎖状構造、環状構造又はこれらの組み合わせのいずれであってもよい。上記鎖状構造としては、飽和又は不飽和、直鎖又は分岐鎖のいずれをも問わない鎖状炭化水素基が挙げられる。上記環状構造としては、脂環式、芳香族又は複素環式のいずれをも問わない環状炭化水素基が挙げられる。また、鎖状構造を有する基や環状構造を有する基が含む水素原子の一部又は全部を置換基で置換した基、これらの基の炭素-炭素間に、CO、CS、O、S、SO若しくはNR’、又はこれらのうちの2種以上を組み合わせて含む基等も挙げられる。
 上記有機基が有する水素原子の一部又は全部を置換する置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;カルボキシ基;シアノ基;ニトロ基;アルキル基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基又はこれらの基の水素原子をハロゲン原子で置換した基;オキソ基(=O)等が挙げられる。
 上記式(1)におけるRは、下記式(A)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記式(A)中、
 La2は、単結合又は置換若しくは非置換の炭素数1~10の2価の炭化水素基である。
 Yは単結合又は-O-、-CO-、-NH-、-SO-若しくはこれらの組み合わせから選ばれる2価の連結基である。
 La3は、単結合又は置換若しくは非置換の炭素数1~10の2価の炭化水素基である。
 RP1は、置換又は非置換のラクトン構造、環状カーボネート構造又はスルトン構造である。
 *は上記式(1)における-O-との結合手である。
 上記La2及びLa3で表される炭素数1~10の2価の炭化水素基としては、上記La1で表される炭素数1~10の2価の炭化水素基と同様の基が挙げられる。この炭化水素基が含む水素原子の一部又は全部を置換し得る置換基としては上記置換基が挙げられる。これらの基の炭素-炭素間に、CO、CS、O、S、SO若しくはNR’、又はこれらのうちの2種以上を組み合わせて含む基等も挙げられる。
 上記RP1で表されるラクトン構造、環状カーボネート構造及びスルトン構造としては、下記式(A-1)~(A-15)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記式中、RL2~RL4は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のアルキル基、シアノ基、トリフルオロメチル基、メトキシ基、メトキシカルボニル基、ヒドロキシ基、ヒドロキシメチル基、ジメチルアミノ基である。RL2~RL4がそれぞれ複数存在する場合、複数のRL2~RL4は互いに同一であっても異なっていてもよい。Xは、酸素原子又はメチレン基である。kは0~3の整数である。mは1~3の整数である。*は上記式(A)における-La3-との結合手である。
 構造単位(A)の具体例としては、下記式(1-1)~(1-20)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 ベース樹脂は、構造単位(A)を1種又は2種以上組み合わせて含んでいてもよい。
 構造単位(A)の含有割合(構造単位(A)を複数種含む場合は合計の含有割合)の下限としては、ベース樹脂を構成する全構造単位に対して、5モル%が好ましく、6モル%がより好ましく、8モル%がさらに好ましく、10モル%が特に好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、65モル%がさらに好ましく、60モル%が特に好ましい。構造単位(A)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物により得られるレジスト膜の感度やLWR性能、パターン矩形性をより向上させることができる。
 (構造単位(A)を与える単量体の合成方法)
 構造単位(A)を与える単量体は、例えば以下のスキームに従って合成することができる。上記式(1)中、Xが酸素原子である場合を例に以下説明する。
Figure JPOXMLDOC01-appb-C000009
(上記スキーム中、Eはハロゲン原子である。R、La1及びRは上記式(1)と同義である。)
 エステル部分を保護したハロゲン化原料と上記式(1)中のRに対応する構造を有するアルコールとを反応させてエーテル誘導体を生成し、次いでアルカリ加水分解により脱保護を行い、最後に上記式(1)中のRに対応する構造を有するアルコールとを反応させることにより、式(1’)で表される構造単位(A)を与える単量体を合成することができる。他の構造についても出発原料の連結基やRの構造を有するアルコール、Rの構造を有するアルコール等を適宜変更させることにより合成することができる。 
 ベース樹脂は、構造単位(A)以外にも、酸解離性基を有する構造単位(以下、「構造単位(B)」ともいう)、後述するラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位(C)(ただし、構造単位(A)に相当する構造単位は除く。)を有することが好ましく、構造単位(B)及び(C)以外のその他の構造単位を有していてもよい。「酸解離性基」とは、カルボキシ基、フェノール性水酸基、アルコール性水酸基、スルホ基等が有する水素原子を置換する基であって、酸の作用により解離する基をいう。当該感放射線性樹脂組成物は、樹脂が構造単位(B)を有することで、パターン形成性に優れる。以下、各構造単位について説明する。
 (構造単位(B))
 構造単位(B)は、酸解離性基を有する構造単位である。構造単位(B)としては、酸解離性基を含む限り特に限定されず、例えば、第三級アルキルエステル部分を有する構造単位、フェノール性水酸基の水素原子が第三級アルキル基で置換された構造を有する構造単位、アセタール結合を有する構造単位等が挙げられるが、当該感放射線性樹脂組成物のパターン形成性の向上の観点から、下記式(2)で表される構造単位(以下、「構造単位(B-1)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(2)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、炭素数1~20の1価の炭化水素基である。R及びR10は、それぞれ独立して、炭素数1~10の1価の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基を表す。
 上記Rとしては、構造単位(I-1)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
 上記Rで表される炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~10の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 上記R~R10で表される炭素数1~10の鎖状炭化水素基としては、炭素数1~10の直鎖若しくは分岐鎖飽和炭化水素基、又は炭素数1~10の直鎖若しくは分岐鎖不飽和炭化水素基が挙げられる。
 上記R~R10で表される炭素数3~20の脂環式炭化水素基としては、単環若しくは多環の飽和炭化水素基、又は単環若しくは多環の不飽和炭化水素基が挙げられる。単環の飽和炭化水素基としてはシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が好ましい。多環のシクロアルキル基としてはノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の有橋脂環式炭化水素基が好ましい。なお、有橋脂環式炭化水素基とは、脂環を構成する炭素原子のうち互いに隣接しない2つの炭素原子間が1つ以上の炭素原子を含む結合連鎖で結合された多環性の脂環式炭化水素基をいう。
 上記Rで表される炭素数6~20の1価の芳香族炭化水素基としては、例えば、
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基などが挙げられる。
 上記Rとしては、炭素数1~10の直鎖又は分岐鎖飽和炭化水素基、炭素数3~20の脂環式炭化水素基が好ましい。
 上記R及びR10で表される鎖状炭化水素基又は脂環式炭化水素基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基は、上記炭素数の単環又は多環の脂環式炭化水素の炭素環を構成する同一炭素原子から2個の水素原子を除いた基であれば特に限定されない。単環式炭化水素基及び多環式炭化水素基のいずれでもよく、多環式炭化水素基としては、有橋脂環式炭化水素基及び縮合脂環式炭化水素基のいずれでもよく、飽和炭化水素基及び不飽和炭化水素基のいずれでもよい。なお、縮合脂環式炭化水素基とは、複数の脂環が辺(隣接する2つの炭素原子間の結合)を共有する形で構成された多環性の脂環式炭化水素基をいう。
 単環の脂環式炭化水素基のうち飽和炭化水素基としては、シクロペンタンジイル基、シクロヘキサンジイル基、シクロヘプタンジイル基、シクロオクタンジイル基等が好ましく、不飽和炭化水素基としてはシクロペンテンジイル基、シクロヘキセンジイル基、シクロヘプテンジイル基、シクロオクテンジイル基、シクロデセンジイル基等が好ましい。多環の脂環式炭化水素基としては、有橋脂環式飽和炭化水素基が好ましく、例えばビシクロ[2.2.1]ヘプタン-2,2-ジイル基(ノルボルナン-2,2-ジイル基)、ビシクロ[2.2.2]オクタン-2,2-ジイル基、トリシクロ[3.3.1.13,7]デカン-2,2-ジイル基(アダマンタン-2,2-ジイル基)等が好ましい。
 これらの中で、Rは炭素数1~4のアルキル基であり、R及びR10が互いに合わせられこれらが結合する炭素原子と共に構成される脂環構造が多環又は単環のシクロアルカン構造であることが好ましい。
 構造単位(B-1)としては、例えば、下記式(3-1)~(3-6)で表される構造単位(以下、「構造単位(B-1-1)~(B-1-6)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記式(3-1)~(3-6)中、R~R10は、上記式(2)と同義である。i及びjは、それぞれ独立して、1~4の整数である。k及びlは0又は1である。
 i及びjとしては、1が好ましい。Rとしては、メチル基、エチル基又はイソプロピル基が好ましい。R及びR10としては、メチル基又はエチル基が好ましい。
 ベース樹脂は、構造単位(B)を1種又は2種以上組み合わせて含んでいてもよい。
 構造単位(B)の含有割合(構造単位(B)を複数種含む場合は合計の含有割合)の下限としては、ベース樹脂を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましく、25モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましく、75モル%がさらに好ましく、70モル%が特に好ましい。構造単位(B)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のパターン形成性をより向上させることができる。
 (構造単位(C))
 構造単位(C)は、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位(ただし、構造単位(A)に相当する構造単位は除く。)である。ベース樹脂は、構造単位(C)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物は、解像性等のリソグラフィー性能を向上させることができる。また、ベース樹脂から形成されるレジストパターンと基板との密着性を向上させることができる。
 構造単位(C)としては、例えば、下記式(T-1)~(T-10)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RL2~RL5は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、シアノ基、トリフルオロメチル基、メトキシ基、メトキシカルボニル基、ヒドロキシ基、ヒドロキシメチル基、ジメチルアミノ基である。RL4及びRL5は、互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~8の2価の脂環式基であってもよい。Lは、単結合又は2価の連結基である。Xは、酸素原子又はメチレン基である。kは0~3の整数である。mは1~3の整数である。
 上記RL4及びRL5が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~8の2価の脂環式基としては、上記式(2)中のR及びR10で表される鎖状炭化水素基又は脂環式炭化水素基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基のうち炭素数が3~8の基が挙げられる。この脂環式基上の1つ以上の水素原子は、ヒドロキシ基で置換されていてもよい。
 上記Lで表される2価の連結基としては、例えば、炭素数1~10の2価の直鎖状若しくは分岐状の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、又はこれらの炭化水素基の1個以上と-CO-、-O-、-NH-及び-S-のうちの少なくとも1種の基とから構成される基等が挙げられる。
 構造単位(C)としては、これらの中で、ラクトン構造を含む構造単位が好ましく、ノルボルナンラクトン構造を含む構造単位がより好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。
 構造単位(C)の含有割合の下限としては、ベース樹脂を構成する全構造単位に対して、2モル%が好ましく、4モル%がより好ましく、5モル%がさらに好ましい。上記含有割合の上限としては、50モル%が好ましく、45モル%がより好ましく、40モル%がさらに好ましい。構造単位(C)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物は解像性等のリソグラフィー性能及び形成されるレジストパターンの基板との密着性をより向上させることができる。
 (構造単位(D))
 ベース樹脂は、上記構造単位(B)及び(C)以外にも、その他の構造単位を有していてもよい。上記その他の構造単位としては、例えば、極性基を含む構造単位(D)等が挙げられる(但し、構造単位(C)に該当するものを除く)。ベース樹脂は、極性基を含む構造単位をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物の解像性等のリソグラフィー性能を向上させることができる。上記極性基としては、例えば、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。これらの中で、ヒドロキシ基、カルボキシ基が好ましく、ヒドロキシ基がより好ましい。
 この極性基を有する構造単位(D)としては、例えば、下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 上記ベース樹脂が上記極性基を有する構造単位を有する場合、上記極性基を有する構造単位(D)の含有割合の下限としては、ベース樹脂を構成する全構造単位に対して、2モル%が好ましく、5モル%がより好ましく、8モル%がさらに好ましい。上記含有割合の上限としては、40モル%が好ましく、30モル%がより好ましく、20モル%がさらに好ましい。極性基を有する構造単位(D)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の解像性等のリソグラフィー性能をさらに向上させることができる。
 (構造単位(E))
 ベース樹脂は、その他の構造単位として、上記極性基を有する構造単位(D)以外に、フェノール性水酸基を含む構造単位(以下、「構造単位(E)」ともいう。)を有していてもよい。構造単位(E)はエッチング耐性の向上と、露光部と未露光部との間の現像液溶解性の差(溶解コントラスト)の向上に寄与する。特に、電子線やEUVといった波長50nm以下の放射線による露光を用いるパターン形成に好適に適用することができる。この場合、樹脂は、構造単位(E)とともに構造単位(B)を有することが好ましい。
 上記構造単位(E)としては、例えば、下記式(af)で表される構造単位等をあげることができる。
Figure JPOXMLDOC01-appb-C000014
 上記式(af)中、RAF1は、水素原子又はメチル基である。LAFは、単結合、-COO-、-O-又は-CONH-である。RAF2は、炭素数1~20の1価の有機基又はハロゲン原子である。nf1は、0~3の整数である。nf1が2又は3の場合、複数のRAF2は同一でも異なっていてもよい。nf2は、1~3の整数である。ただし、nf1+nf2は、5以下である。nafは、0~2の整数である。
 上記RAF1としては、構造単位(E)を与える単量体の共重合性の観点から、水素原子であることが好ましい。
 LAFとしては、単結合及び-COO-であることが好ましい。
 なお、ベース樹脂における有機基とは、少なくとも1個の炭素原子を含む基をいう。
 上記RAF2で表される炭素数1~20の1価の有機基としては、例えば、炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間又は結合手側の末端に2価のヘテロ原子含有基を含む基、当該基及び上記炭化水素基が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等をあげることができる。
 上記RAF2で表される炭素数1~20の1価の炭化水素基としては、例えば、
 メチル基、エチル基、プロピル基、ブチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などの鎖状炭化水素基;
 シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ノルボルニル基、アダマンチル基等のシクロアルキル基;
 シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基、ノルボルネニル基等のシクロアルケニル基などの脂環式炭化水素基;
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基などの芳香族炭化水素基等を挙げることができる。
 上記RAF2としては、鎖状炭化水素基、シクロアルキル基が好ましく、アルキル基及びシクロアルキル基がより好ましく、メチル基、エチル基、プロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基及びアダマンチル基がさらに好ましい。
 上記2価のヘテロ原子含有基としては、例えば、-O-、-CO-、-CO-O-、-S-、-CS-、-SO-、-NR’-、これらのうちの2つ以上を組み合わせた基等を挙げることができる。上記2価のヘテロ原子含有基としては、例えばメトキシ基、エトキシ基、プロポキシ基等が好適に挙げられる。R’は、水素原子又は1価の炭化水素基である。
 上記1価のヘテロ原子含有基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基(-SH)等を挙げることができる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子である。
 上記nf1としては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。
 上記nf2としては、1及び2が好ましく、1がより好ましい。
 上記nafとしては、0及び1が好ましく、0がより好ましい。
 上記構造単位(E)としては、下記式(a1-1)~(a1-9)で表される構造単位等であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記式(a1-1)~(a1-9)中、RAF1は、上記式(af)と同様である。
 これらの中で、上記式(a1-1)~(a1-7)のそれぞれで表される構造単位が好ましく、上記式(a1-1)で表される構造単位がより好ましい。
 ベース樹脂が構造単位(E)を含む場合、構造単位(E)の含有割合の下限としては、ベース樹脂を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましい。上記含有割合の上限としては、50モル%が好ましく、40モル%がより好ましく、30モル%がさらに好ましい。構造単位(E)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物により得られるレジスト膜の感度やLWR性能、パターン矩形性をより向上させることができる。
 ただし、ヒドロキシスチレンを重合させようとしても、フェノール性水酸基の影響により重合が阻害されることになるので、アルカリ解離性基等の保護基によりフェノール性水酸基を保護した状態で重合させておき、その後加水分解を行って脱保護することにより構造単位(E)を得るようにすることが好ましい。加水分解により構造単位(E)を与える構造単位としては、下記式(af-1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(af-1)中、RAF1、LAF、RAF2、nf1、nf2及びnafは上記式(af)と同義である。R12は、炭素数1~20の1価の炭化水素基又はアルコキシ基である。R12の炭素数1~20の1価の炭化水素基としては、構造単位(B)におけるRの炭素数1~20の1価の炭化水素基が挙げられる。アルコキシ基としては、例えば、メトキシ基、エトキシ基及びtert-ブトキシ基等が挙げられる。
 上記R12としては、アルキル基及びアルコキシ基が好ましく、中でもメチル基、tert-ブトキシ基がより好ましい。
 上記ベース樹脂におけるフッ素含有率は10質量%以下であることが好ましい。フッ素含有率の上限は9質量%がより好ましく、8質量%がさらに好ましく、7質量%が特に好ましい。フッ素含有率の下限は0質量%(すなわち、フッ素原子を含まない。)が好ましい。ベース樹脂におけるフッ素含有率を上記範囲とすることで露光部と未露光部との溶解コントラストを向上させることができ、所望のレジスト諸性能を発揮することができる。
 (ベース樹脂の合成方法)
 ベース樹脂は、例えば、各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶剤中で重合することにより合成できる。
 上記ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられる。これらの中で、AIBN、ジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル開始剤は1種単独で又は2種以上を混合して用いることができる。
 上記重合に使用される溶剤としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、メチルエチルケトン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの重合に使用される溶剤は、1種単独で又は2種以上を併用してもよい。
 上記重合における反応温度としては、通常40℃~150℃であり、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間であり、1時間~24時間が好ましい。
 ベース樹脂の分子量は特に限定されないが、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)が1,000以上50,000以下が好ましく、2,000以上30,000以下がより好ましく、3,000以上15,000以下がさらに好ましく、4,000以上12,000以下が特に好ましい。ベース樹脂のMwが上記下限未満だと、得られるレジスト膜の耐熱性が低下する場合がある。ベース樹脂のMwが上記上限を超えると、レジスト膜の現像性が低下する場合がある。
 ベース樹脂のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常、1以上5以下であり、1以上3以下が好ましく、1以上2以下がさらに好ましい。
 本明細書における樹脂のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:G2000HXL 2本、G3000HXL 1本、G4000HXL 1本(以上、東ソー製)
 カラム温度:40℃
 溶出溶剤:テトラヒドロフラン
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
 ベース樹脂の含有量としては、当該感放射線性樹脂組成物の全固形分に対して、70質量%以上が好ましく、80質量%以上がより好ましく、85質量%以上がさらに好ましい。
[他の樹脂]
 本実施形態の感放射線性樹脂組成物は、他の樹脂として、上記ベース樹脂よりもフッ素原子の質量含有率が大きい樹脂(以下、「高フッ素含有量樹脂」ともいう。)を含んでいてもよい。当該感放射線性樹脂組成物が高フッ素含有量樹脂を含有する場合、上記ベース樹脂に対してレジスト膜の表層に偏在化させることができ、その結果、液浸露光時のレジスト膜の表面の撥水性を高めることができる。
 高フッ素含有量樹脂としては、例えば上記ベース樹脂における構造単位(B)及び構造単位(C)のうちの少なくとも一方を有するとともに、下記式(5)で表される構造単位(以下、「構造単位(F)」ともいう。)を有することが好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記式(5)中、R13は、水素原子、メチル基又はトリフルオロメチル基である。Gは、単結合、酸素原子、硫黄原子、-COO-、-SOONH-、-CONH-又は-OCONH-である。R14は、炭素数1~20の1価のフッ素化鎖状炭化水素基又は炭素数3~20の1価のフッ素化脂環式炭化水素基である。
 上記R13としては、構造単位(F)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 上記Gとしては、構造単位(F)を与える単量体の共重合性の観点から、単結合及び-COO-が好ましく、-COO-がより好ましい。
 上記R14で表される炭素数1~20の1価のフッ素化鎖状炭化水素基としては、炭素数1~20の直鎖又は分岐鎖アルキル基が有する水素原子の一部又は全部がフッ素原子により置換されたものが挙げられる。
 上記R14で表される炭素数3~20の1価のフッ素化脂環式炭化水素基としては、炭素数3~20の単環又は多環式炭化水素基が有する水素原子の一部又は全部がフッ素原子により置換されたものが挙げられる。
 上記R14としては、フッ素化鎖状炭化水素基が好ましく、フッ素化アルキル基がより好ましく、2,2,2-トリフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロプロピル基及び5,5,5-トリフルオロ-1,1-ジエチルペンチル基がさらに好ましい。
 高フッ素含有量樹脂が構造単位(F)を有する場合、構造単位(F)の含有割合の下限としては、高フッ素含有量樹脂を構成する全構造単位に対して、20モル%が好ましく、30モル%がより好ましく、35モル%がさらに好ましい。上記含有割合の上限としては、95モル%が好ましく、90モル%がより好ましく、85モル%がさらに好ましい。構造単位(F)の含有割合を上記範囲とすることで、高フッ素含有量樹脂のフッ素原子の質量含有率をより適度に調整してレジスト膜の表層への偏在化をさらに促進することができ、その結果、液浸露光時のレジスト膜の撥水性をより向上させることができる。
 高フッ素含有量樹脂は、構造単位(F)以外に、下記式(f-2)で表されるフッ素原子含有構造単位(以下、構造単位(G)ともいう。)を有していてもよい。高フッ素含有量樹脂は構造単位(G)を有することで、アルカリ現像液への溶解性が向上し、現像欠陥の発生を抑制することができる。
Figure JPOXMLDOC01-appb-C000018
 構造単位(G)は、(x)アルカリ可溶性基を有する場合と、(y)アルカリの作用により解離してアルカリ現像液への溶解性が増大する基(以下、単に「アルカリ解離性基」とも言う。)を有する場合の2つに大別される。(x)、(y)双方に共通して、上記式(f-2)中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは単結合、炭素数1~20の(s+1)価の炭化水素基、この炭化水素基のR側の末端に酸素原子、硫黄原子、-NRdd-、カルボニル基、-COO-若しくは-CONH-が結合された構造、又はこの炭化水素基が有する水素原子の一部がヘテロ原子を有する有機基により置換された構造である。Rddは、水素原子又は炭素数1~10の1価の炭化水素基である。sは、1~3の整数である。
 構造単位(G)が(x)アルカリ可溶性基を有する場合、Rは水素原子であり、Aは酸素原子、-COO-*又は-SOO-*である。*はRに結合する部位を示す。Wは単結合、炭素数1~20の炭化水素基又は2価のフッ素化炭化水素基である。Aが酸素原子である場合、WはAが結合する炭素原子にフッ素原子又はフルオロアルキル基を有するフッ素化炭化水素基である。Rは単結合又は炭素数1~20の2価の有機基である。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一でも異なっていてもよい。構造単位(G)が(x)アルカリ可溶性基を有することで、アルカリ現像液に対する親和性を高め、現像欠陥を抑制することができる。(x)アルカリ可溶性基を有する構造単位(G)としては、Aが酸素原子でありWが1,1,1,3,3,3-ヘキサフルオロ-2,2-メタンジイル基である場合が特に好ましい。
 構造単位(G)が(y)アルカリ解離性基を有する場合、Rは炭素数1~30の1価の有機基であり、Aは酸素原子、-NRaa-、-COO-*又は-SOO-*である。Raaは水素原子又は炭素数1~10の1価の炭化水素基である。*はRに結合する部位を示す。Wは単結合又は炭素数1~20の2価のフッ素化炭化水素基である。Rは、単結合又は炭素数1~20の2価の有機基である。Aが-COO-*又は-SOO-*である場合、W又はRはAと結合する炭素原子又はこれに隣接する炭素原子上にフッ素原子を有する。Aが酸素原子である場合、W、Rは単結合であり、Rは炭素数1~20の炭化水素基のR側の末端にカルボニル基が結合された構造であり、Rはフッ素原子を有する有機基である。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一でも異なっていてもよい。構造単位(G)が(y)アルカリ解離性基を有することにより、アルカリ現像工程においてレジスト膜表面が疎水性から親水性へと変化する。この結果、現像液に対する親和性を大幅に高め、より効率的に現像欠陥を抑制することができる。(y)アルカリ解離性基を有する構造単位(V)としては、Aが-COO-*であり、R若しくはW又はこれら両方がフッ素原子を有するものが特に好ましい。
 Rとしては、構造単位(G)を与える単量体の共重合性等の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 Rが2価の有機基である場合、ラクトン構造を有する基が好ましく、多環のラクトン構造を有する基がより好ましく、ノルボルナンラクトン構造を有する基がより好ましい。
 高フッ素含有量樹脂が構造単位(G)を有する場合、構造単位(G)の含有割合の下限としては、高フッ素含有量樹脂を構成する全構造単位に対して、40モル%が好ましく、50モル%がより好ましく、60モル%がさらに好ましく、70モル%が特に好ましい。上記含有割合の上限としては、98モル%が好ましく、95モル%がより好ましく、92モル%がさらに好ましい。構造単位(V)の含有割合を上記範囲とすることで、液浸露光時のレジスト膜の撥水性をより向上させることができる。
 高フッ素含有量樹脂のMwの下限としては、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、15,000が特に好ましい。
 高フッ素含有量樹脂のMw/Mnの下限としては、通常1であり、1.1がより好ましい。上記Mw/Mnの上限としては、通常5であり、3が好ましく、2がより好ましく、1.9がさらに好ましい。
 高フッ素含有量樹脂の含有量の下限としては、上記ベース樹脂100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、1.5質量部がさらに好ましく、2質量部が特に好ましい。上記含有量の上限としては、15質量部が好ましく、12質量部がより好ましく、10質量部がさらに好ましく、8質量部が特に好ましい。
 高フッ素含有量樹脂の含有量を上記範囲とすることで、高フッ素含有量樹脂をレジスト膜の表層へより効果的に偏在化させることができ、その結果、液浸露光時におけるレジスト膜の表面の撥水性をより高めることができる。当該感放射線性樹脂組成物は、高フッ素含有量樹脂を1種又は2種以上含有していてもよい。
 (高フッ素含有量樹脂の合成方法)
 高フッ素含有量樹脂は、上述のベース樹脂の合成方法と同様の方法により合成することができる。
[感放射線性酸発生剤]
 感放射線性酸発生剤は、露光により酸を発生する成分である。露光により発生した酸は、その酸の強さによって感放射線性樹脂組成物中で、2つの機能を担うと考えられる。第1の機能としては、露光により発生した酸が、樹脂が酸解離性基を有する構造単位(B)を含む場合は該構造単位(B)が有する酸解離性基を解離させ、カルボキシ基等を発生させる機能が挙げられる。この第1の機能を有する感放射線性酸発生剤を感放射線性酸発生剤(I)という。第2の機能としては、上記感放射線性樹脂組成物を用いたパターン形成条件において、樹脂の構造単位(B)が有する酸解離性基を実質的に解離させず、未露光部において上記感放射線性酸発生剤(I)から発生した酸の拡散を抑制する機能が挙げられる。この第2の機能を有する感放射線性酸発生剤を感放射線性酸発生剤(II)という。感放射線性酸発生剤(II)から発生する酸は、感放射線性酸発生剤(I)から発生する酸より相対的に弱い酸(pKaが大きい酸)であるということができる。感放射線性酸発生剤が感放射線性酸発生剤(I)または感放射線性酸発生剤(II)として機能するかは、樹脂の構造単位(B)が有する酸解離性基が解離するのに必要とするエネルギー、および感放射線性樹脂組成物を用いてパターンを形成する際に与えられる熱エネルギー条件等によって決まる。感放射線性樹脂組成物における感放射線性酸発生剤の含有形態としては、それ単独で化合物として存在する(重合体から遊離した)形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよいものの、単独で化合物として存在する形態が好ましい。
 感放射線性樹脂組成物が上記感放射線性酸発生剤(I)を含有することにより、露光部の樹脂の極性が増大し、露光部における樹脂が、アルカリ水溶液現像の場合は現像液に対して溶解性となり、一方、有機溶媒現像の場合は現像液に対して難溶性となる。
 上記感放射線性酸発生剤(II)を含有することにより、感放射線性樹脂組成物は、パターン現像性、LWR、CDU性能により優れるレジストパターンを形成することができる。
 感放射線性酸発生剤としては、例えばオニウム塩化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。これらのうち、スルホニウム塩、ヨードニウム塩が好ましい。
 露光により発生する酸としては、露光によりスルホン酸、カルボン酸、スルホンイミドを生じるものをあげることができる。このような酸として、
 (1)スルホ基に隣接する炭素原子に1以上のフッ素原子またはフッ素化炭化水素基が置換した化合物、
 (2)スルホ基に隣接する炭素原子がフッ素原子またはフッ素化炭化水素基で置換されていない化合物
を挙げることができる。露光により発生するカルボン酸としては、
 (3)カルボキシ基に隣接する炭素原子に1以上のフッ素原子またはフッ素化炭化水素基が置換した化合物、
 (4)カルボキシ基に隣接する炭素原子がフッ素原子またはフッ素化炭化水素基で置換されていない化合物
 を挙げることができる。これらのうち、感放射線性酸発生剤(I)としては上記(1)に該当するものが好ましく、環状構造を有するものが特に好ましい。感放射線性酸発生剤(II)としては上記(2)、(3)又は(4)に該当するものが好ましく、(2)又は(4)に該当する物が特に好ましい。
 これらの感放射線性酸発生剤は、単独で使用してもよく2種以上を併用してもよい。感放射線性酸発生剤(I)の含有量の下限としては、レジストとしての感度及び現像性を確保する観点から、樹脂100質量部に対して、2質量部が好ましく、5質量部がより好ましく、8質量部がさらに好ましい。感放射線性酸発生剤(I)の含有量の上限としては、放射線に対する透明性を確保する観点から、樹脂100質量部に対して、30質量部が好ましく、25質量部がより好ましく、20質量部がさらに好ましい。
[溶剤]
 当該感放射線性樹脂組成物は、溶剤を含有する。溶剤は、少なくとも樹脂、感放射線性酸発生剤及び所望により含有される酸拡散制御剤等を溶解又は分散可能な溶剤であれば特に限定されない。
 溶剤としては、例えば、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、エステル系溶剤、炭化水素系溶剤等が挙げられる。
 アルコール系溶剤としては、例えば、
 iso-プロパノール、4-メチル-2-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-エチルヘキサノール、フルフリルアルコール、シクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ジアセトンアルコール等の炭素数1~18のモノアルコール系溶剤;
 エチレングリコール、1,2-プロピレングリコール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の炭素数2~18の多価アルコール系溶剤;
 上記多価アルコール系溶剤が有するヒドロキシ基の一部をエーテル化した多価アルコール部分エーテル系溶剤等が挙げられる。
 エーテル系溶剤としては、例えば、
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶剤;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶剤;
 ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶剤;
 上記多価アルコール系溶剤が有するヒドロキシ基をエーテル化した多価アルコールエーテル系溶剤等が挙げられる。
 ケトン系溶剤としては、例えばアセトン、ブタノン、メチル-iso-ブチルケトン等の鎖状ケトン系溶剤:
 シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等の環状ケトン系溶剤:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶剤としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶剤;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶剤等が挙げられる。
 エステル系溶剤としては、例えば、
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
 ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶剤;
 γ-ブチロラクトン、バレロラクトン等のラクトン系溶剤;
 ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤;
 ジ酢酸プロピレングリコール、酢酸メトキシトリグリコール、シュウ酸ジエチル、アセト酢酸エチル、乳酸エチル、フタル酸ジエチル等の多価カルボン酸ジエステル系溶媒が挙げられる。
 炭化水素系溶剤としては、例えば
 n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;
 ベンゼン、トルエン、ジ-iso-プロピルベンゼン、n-アミルナフタレン等の芳香族炭化水素系溶剤等が挙げられる。
 これらの中で、エステル系溶剤、ケトン系溶剤が好ましく、多価アルコール部分エーテルアセテート系溶剤、環状ケトン系溶剤、ラクトン系溶剤がより好ましく、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、γ-ブチロラクトンがさらに好ましい。当該感放射線性樹脂組成物は、溶剤を1種又は2種以上含有していてもよい。
[その他の任意成分]
 当該感放射線性樹脂組成物は、上記成分以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば、酸拡散制御剤、偏在化促進剤、界面活性剤、脂環式骨格含有化合物、増感剤等が挙げられる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
 (酸拡散制御剤)
 当該感放射線性樹脂組成物は、必要に応じて、酸拡散制御剤を含有してもよい。酸拡散制御剤としては、上記感放射線性酸発生剤のうち感放射線性酸発生剤(II)を好適に採用することができる。酸拡散制御剤は、露光により感放射線性酸発生剤から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。また、得られる感放射線性樹脂組成物の貯蔵安定性が向上する。さらに、レジストパターンの解像度がさらに向上すると共に、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れた感放射線性樹脂組成物が得られる。
 酸拡散制御剤の含有量の下限としては、感放射線性酸発生剤の合計100質量部に対して、1質量部が好ましく、2質量部がより好ましく、4質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましい。
 酸拡散制御剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のリソグラフィー性能をより向上させることができる。当該感放射線性樹脂組成物は、酸拡散制御剤を1種又は2種以上を含有していてもよい。
 (偏在化促進剤)
 偏在化促進剤は、上記高フッ素含有量樹脂をより効率的にレジスト膜表面に偏在させる効果を有するものである。当該感放射線性樹脂組成物にこの偏在化促進剤を含有させることで、上記高フッ素含有量樹脂の添加量を従来よりも少なくすることができる。従って、当該感放射線性樹脂組成物のリソグラフィー性能を維持しつつ、レジスト膜から液浸媒体への成分の溶出をさらに抑制したり、高速スキャンにより液浸露光をより高速に行うことが可能になり、結果としてウォーターマーク欠陥等の液浸由来欠陥を抑制するレジスト膜表面の疎水性を向上させることができる。このような偏在化促進剤として用いることができるものとしては、例えば比誘電率が30以上200以下で、1気圧における沸点が100℃以上の低分子化合物が挙げられる。このような化合物としては、具体的には、ラクトン化合物、カーボネート化合物、ニトリル化合物、多価アルコール等が挙げられる。
 上記ラクトン化合物としては、例えばγ-ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等が挙げられる。
 上記カーボネート化合物としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。
 上記ニトリル化合物としては、例えばスクシノニトリル等が挙げられる。
 上記多価アルコールとしては、例えばグリセリン等が挙げられる。
 偏在化促進剤の含有量の下限としては、当該感放射線性樹脂組成物における樹脂の総量100質量部に対して、10質量部が好ましく、15質量部がより好ましく、20質量部がさらに好ましく、25質量部がさらに好ましい。上記含有量の上限としては、300質量部が好ましく、200質量部がより好ましく、100質量部がさらに好ましく、80質量部が特に好ましい。当該感放射線性樹脂組成物は、偏在化促進剤を1種又は2種以上含有していてもよい。
 (界面活性剤)
 界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、KP341(信越化学工業製)、ポリフローNo.75、同No.95(以上、共栄社化学製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ製)、メガファックF171、同F173(以上、DIC製)、フロラードFC430、同FC431(以上、住友スリーエム製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子工業製)等が挙げられる。当該感放射線性樹脂組成物における界面活性剤の含有量としては、樹脂100質量部に対して通常2質量部以下である。
 (脂環式骨格含有化合物)
 脂環式骨格含有化合物は、ドライエッチング耐性、パターン形状、基板との接着性等を改善する効果を奏する。
 脂環式骨格含有化合物としては、例えば
 1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル等のアダマンタン誘導体類;
 デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル等のデオキシコール酸エステル類;
 リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル等のリトコール酸エステル類;
 3-〔2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.1 2,5 .1 7,10 ]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.0 3,7 ]ノナン等が挙げられる。当該感放射線性樹脂組成物における脂環式骨格含有化合物の含有量としては、樹脂100質量部に対して通常5質量部以下である。
 (増感剤)
 増感剤は、感放射線性酸発生剤等からの酸の生成量を増加する作用を示すものであり、当該感放射線性樹脂組成物の「みかけの感度」を向上させる効果を奏する。
 増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。これらの増感剤は、単独で使用してもよく2種以上を併用してもよい。当該感放射線性樹脂組成物における増感剤の含有量としては、樹脂100質量部に対して通常2質量部以下である。
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、例えば、樹脂、感放射線性酸発生剤、必要に応じて酸拡散制御剤、高フッ素含有量樹脂等、及び溶剤を所定の割合で混合することにより調製できる。当該感放射線性樹脂組成物は、混合後に、例えば、孔径0.05μm~0.2μm程度のフィルター等でろ過することが好ましい。当該感放射線性樹脂組成物の固形分濃度としては、通常0.1質量%~50質量%であり、0.5質量%~30質量%が好ましく、1質量%~20質量%がより好ましい。
<レジストパターン形成方法>
 本実施形態に係るレジストパターン形成方法は、
 当該感放射線性樹脂組成物で、レジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)、
 上記レジスト膜を露光する工程(以下、「露光工程」ともいう)、及び
 上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)を有する。
 さらに、上記レジストパターン形成方法は、上記レジスト膜を形成する工程の後かつ上記レジスト膜を露光する工程の前に、上記レジスト膜上に上層膜を設ける工程(以下、「上層膜形成工程」ともいう)を含んでいてもよい。
 当該レジストパターン形成方法によれば、上述の当該感放射線性樹脂組成物を用いているので、感度、LWR性能及びパターン矩形性に優れるレジストパターンを形成することができる。以下、各工程について説明する。
[レジスト膜形成工程]
 本工程では、当該感放射線性樹脂組成物でレジスト膜を形成する。このレジスト膜を形成する基板としては、例えばシリコンウエハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等が挙げられる。また、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば、回転塗布(スピンコーティング)、流延塗布、ロール塗布等が挙げられる。塗布した後に、必要に応じて、塗膜中の溶剤を揮発させるため、プレベーク(PB)を行ってもよい。PB温度としては、通常60℃~140℃であり、80℃~120℃が好ましい。PB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。形成されるレジスト膜の膜厚としては、10nm~1,000nmが好ましく、10nm~500nmがより好ましい。
 液浸露光を行う場合、当該感放射線性樹脂組成物における上記高フッ素含有量樹脂等の撥水性重合体添加剤の有無にかかわらず、上記形成したレジスト膜上に、液浸液とレジスト膜との直接の接触を避ける目的で、液浸液に不溶性の液浸用保護膜を設けてもよい。液浸用保護膜としては、現像工程の前に溶剤により剥離する溶剤剥離型保護膜(例えば特開2006-227632号公報参照)、現像工程の現像と同時に剥離する現像液剥離型保護膜(例えばWO2005-069076号公報、WO2006-035790号公報参照)のいずれを用いてもよい。但し、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
 また、次工程である露光工程を波長50nm以下の放射線にて行う場合、当該組成物中のベース樹脂として上記構造単位(B)及び(E)を有する樹脂を用いることが好ましい。
[上層膜形成工程]
 本工程では、上層膜形成用組成物を用いて上記レジスト膜上に上層膜を設ける。上層膜形成用組成物としては、例えば特開2005-352384号公報等に開示されている従来公知の組成物を用いることができる。上層膜形成用組成物を上記レジスト膜上に塗布し、上層膜を形成する。上層膜形成用組成物の塗布方法としては、レジスト膜形成工程における感放射線性樹脂組成物の塗布方法と同様の方法が挙げられる。本工程は、上層膜形成用組成物を塗布した後、プレベーク(PB)を行うことが好ましい。このようにレジスト膜上に上層膜を形成することによって、液浸媒体とレジスト膜とが直接接触しなくなるため、液状媒体がレジスト膜に浸透することに起因してレジスト膜のリソグラフィー性能が低下したり、レジスト膜から液状媒体に溶出した成分によって投影露光装置のレンズが汚染されたりすることが効果的に抑制される。
 形成する上層膜の厚さは、λ/4m(但し、λ:放射線の波長、m:上層膜の屈折率)の奇数倍にできる限り近づけることが好ましい。このようにすることで、レジスト膜の上側界面における反射抑制効果を大きくすることができる。
[露光工程]
 本工程では、上記レジスト膜形成工程で形成されたレジスト膜に、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)、放射線を照射し、露光する。露光に用いる放射線としては、目的とするパターンの線幅に応じて、例えば、可視光線、紫外線、遠紫外線、EUV(極端紫外線)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、遠紫外線、電子線、EUVが好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、電子線、EUVがより好ましく、ArFエキシマレーザー光、EUVがさらに好ましい。
 露光を液浸露光により行う場合、用いる液浸液としては、例えば、水、フッ素系不活性液体等が挙げられる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤をわずかな割合で添加しても良い。この添加剤は、ウェハ上のレジスト膜を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
 上記露光の後、ポストエクスポージャーベーク(PEB)を行い、レジスト膜の露光された部分において、露光により感放射線性酸発生剤から発生した酸による樹脂等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と未露光部とで現像液に対する溶解性に差が生じる。PEB温度としては、通常50℃~180℃であり、80℃~130℃が好ましい。PEB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。
[現像工程]
 本工程では、上記露光工程で露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。上層膜は、現像中には現像液によって、又は現像後に洗浄を行う場合には洗浄中に洗浄液によって、容易に除去することができる。
 上記現像に用いる現像液としては、アルカリ現像の場合、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 また、有機溶剤現像の場合、炭化水素系溶剤、エーテル系溶剤、エステル系溶剤、ケトン系溶剤、アルコール系溶剤等の有機溶剤、又は有機溶剤を含有する溶剤が挙げられる。上記有機溶剤としては、例えば、上述の感放射線性樹脂組成物の溶剤として列挙した溶剤の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶剤、ケトン系溶剤が好ましい。エステル系溶剤としては、酢酸エステル系溶剤が好ましく、酢酸n-ブチル、酢酸アミルがより好ましい。ケトン系溶剤としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶剤の含有量としては、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99質量%以上が特に好ましい。現像液中の有機溶剤以外の成分としては、例えば、水、シリコンオイル等が挙げられる。
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 樹脂のMw及びMnは、上記条件により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
13C-NMR分析]
 樹脂の13C-NMR分析は、核磁気共鳴装置(日本電子(株)の「JNM-Delta400」)を用いて行った。
[フッ素含有率]
 樹脂中のフッ素含有率は、フッ素を含む単量体の理論フッ素元素分析値を算出したのち、全樹脂中のその単量体の存在比率から算出した。
<単量体化合物の合成>
[合成例1](化合物(M-1)の合成)
 反応容器に2-(ブロモメチル)アクリル酸エチル20.0mmol、イソプロピルアルコール30.0mmol、ジイソプロピルエチルアミン40.0mmol及びジメチルスルホキシド50gを加えて60℃で12時間撹拌した。その後、反応溶液を30℃以下に冷却し、水を加えて希釈させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去した。カラムクロマトグラフィーで精製することで、エーテル誘導体を良好な収率で得た。
 上記エーテル誘導体にメタノール:水(1:1(質量比))の混合液を加えて1M溶液とした後、水酸化ナトリウム20.0mmolを加え、室温で1時間反応させた。その後、反応溶液を30℃以下に冷却し、1M塩酸を加えて系内を酸性とした。ジクロロメタンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カルボン酸体を良好な収率で得た。
 上記カルボン酸体に1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩30.0mmol、4-ジメチルアミノピリジン3.0mmol、α-ヒドロキシ-γ-ブチロラクトン30.0mmol及びジクロロメタン50gを加えて室温で2時間撹拌した。その後、反応溶液を30℃以下に冷却し、水を加えて希釈させたのち、ジクロロメタンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去した。カラムクロマトグラフィーで精製することで、下記式(M-1)で表される化合物(以下、「化合物(M-1)」又は「単量体(M-1)」と記載する場合がある。)を良好な収率で得た。以下に、化合物(M-1)の合成スキームを示す。
Figure JPOXMLDOC01-appb-C000019
[合成例2~18](単量体(M-2)~単量体(M-18)の合成)
 原料及び前駆体を適宜変更したこと以外は合成例1と同様にして、下記式(M-2)~式(M-18)で表される化合物を合成した。以下、式(M-2)~式(M-18)で表される化合物をそれぞれ「化合物(M-2)」~「化合物(M-18)」又は「単量体(M-2)」~「単量体(M-18)」と記載する場合がある。
Figure JPOXMLDOC01-appb-C000020
<[A]樹脂及び[E]高フッ素含有量樹脂の合成>
 各樹脂の合成で用いた単量体のうち、上記単量体(M-1)~単量体(M-18)以外の単量体を以下に示す。なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味し、モル%は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000021
[合成例19](樹脂(A-1)の合成)
 単量体(M-1)及び単量体(m-1)を、モル比率が50/50(モル%)となるよう2-ブタノン(200質量部)に溶解し、開始剤としてAIBN(アゾビスイソブチロニトリル)(使用した単量体の合計100モル%に対して5モル%)を添加して単量体溶液を調製した。空の反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をメタノール(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をメタノールで2回洗浄した後、ろ別し、50℃で10時間乾燥して白色粉末状の樹脂(A-1)を得た(収率:80%)。樹脂(A-1)のMwは6,100であり、Mw/Mnは1.61であった。また、13C-NMR分析の結果、単量体(M-1)及び単量体(m-1)に由来する各構造単位の含有割合は、それぞれ49.0モル%及び51.0モル%であった。なおフッ素含有率は0.0%であった。
[合成例20~50](樹脂(A-2)~樹脂(A-32)の合成)
 下記表1及び表2に示す種類及び配合割合の単量体を用いたこと以外は合成例19と同様にして、樹脂(A-2)~樹脂(A-32)を合成した。得られた樹脂の各構造単位の含有割合(モル%)及び物性値(Mw、Mw/Mn及びフッ素含有率)を下記表1~表2に併せて示す。なお、下記表1~表2における「-」は、該当する単量体を使用しなかったことを示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
[合成例51](樹脂(A-33)の合成)
 単量体(M-3)、単量体(m-1)及び単量体(m-18)を、モル比率が20/40/40(モル%)となるよう1-メトキシ-2-プロパノール(200質量部)に溶解し、開始剤としてAIBN(5モル%)を添加して単量体溶液を調製した。反応容器に1-メトキシ-2-プロパノール(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をヘキサン(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をヘキサンで2回洗浄した後、ろ別し、1-メトキシ-2-プロパノール(300質量部)に溶解した。次いで、メタノール(500質量部)、トリエチルアミン(50質量部)及び超純水(10質量部)を加え、撹拌しながら70℃で6時間加水分解反応を実施した。反応終了後、残溶媒を留去した。得られた固体をアセトン(100質量部)に溶解し、水(500質量部)の中に滴下して樹脂を凝固させた。得られた固体をろ別し、50℃で13時間乾燥させて白色粉末状の重合体(A-33)を得た(収率:73%)。樹脂(A-33)のMwは6,100であり、Mw/Mnは1.60であった。また、13C-NMR分析の結果、(M-3)、(m-1)及び(m-18)に由来する各構造単位の含有割合は、それぞれ19.4モル%、40.7モル%及び39.9モル%であった。なおフッ素含有率は0.0%であった。
[合成例52~57](重合体(A-34)~重合体(A-39)の合成)
 下記表3及び表4に示す種類及び配合割合の単量体を用いたこと以外は合成例51と同様にして、樹脂(A-34)~樹脂(A-39)を合成した。得られた樹脂の各構造単位の含有割合(モル%)及び物性値(Mw、Mw/Mn及びフッ素含有率)を下記表3及び表4に併せて示す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
[合成例58](高フッ素含有量樹脂(E-1)の合成)
 単量体(m-1)及び単量体(m-20)を、モル比率が10/90(モル%)となるよう2-ブタノン(200質量部)に溶解し、開始剤としてAIBN(5モル%)を添加して単量体溶液を調製した。反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。溶媒をアセトニトリル(400質量部)に置換した後、ヘキサン(100質量部)を加えて撹拌しアセトニトリル層を回収する作業を3回繰り返した。溶媒をプロピレングリコールモノメチルエーテルアセテートに置換することで、高フッ素含有量樹脂(E-1)の溶液を得た(収率:81%)。高フッ素含有量樹脂(E-1)のMwは6,300であり、Mw/Mnは1.67であった。また、13C-NMR分析の結果、(m-1)及び(m-20)に由来する各構造単位の含有割合は、それぞれ10.8モル%及び89.2モル%であった。なおフッ素含有率は14.5%であった。
[合成例59~61](高フッ素含有量樹脂(E-2)~高フッ素含有量樹脂(E-4)の合成)
 下記表5に示す種類及び配合割合の単量体を用いたこと以外は合成例58と同様にして、高フッ素含有量樹脂(E-2)~高フッ素含有量樹脂(E-4)を合成した。得られた高フッ素含有量樹脂の各構造単位の含有割合(モル%)及び物性値(Mw、Mw/Mn及びフッ素含有率)を下記表5に併せて示す。
Figure JPOXMLDOC01-appb-T000026
<感放射線性樹脂組成物の調製>
 各感放射線性樹脂組成物の調製に用いた[A]樹脂及び[E]高フッ素含有量樹脂以外の成分を以下に示す。
[[B]感放射線性酸発生剤]
 B-1~B-6:下記式(B-1)~式(B-6)で表される化合物
Figure JPOXMLDOC01-appb-C000027
[[C]酸拡散制御剤]
 C-1~C-5:下記式(C-1)~式(C-5)で表される化合物
Figure JPOXMLDOC01-appb-C000028
[[D]溶剤]
 D-1:酢酸プロピレングリコールモノメチルエーテル
 D-2:シクロヘキサノン
 D-3:γ-ブチロラクトン
 D-4:乳酸エチル
[ArF露光用ポジ型感放射線性樹脂組成物の調製]
[実施例1]
 [A]樹脂としての(A-1)100質量部、[B]感放射線性酸発生剤としての(B-4)14.0質量部、[C]酸拡散制御剤としての(C-1)(C-2)8.0質量部、[E]高フッ素含有量樹脂としての(E-1)5.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-2)/(D-3)の混合溶媒3,230質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-1)を調製した。
[実施例2~38、及び比較例1~12]
 下記表6に示す種類及び含有量の各成分を用いたこと以外は実施例1と同様にして、感放射線性樹脂組成物(J-2)~(J-38)及び(CJ-1)~(CJ-12)を調製した。
Figure JPOXMLDOC01-appb-T000029
<ArF露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成> 
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したArF露光用ポジ型感放射線性樹脂組成物を塗布し、90℃で60秒間PB(プレベーク)を行った。その後、23℃で30秒間冷却することにより、平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜に対し、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Annular(σ=0.8/0.6)の光学条件にて、40nmスペース、105nmピッチのマスクパターンを介して露光した。露光後、90℃で60秒間PEB(ポストエクスポージャーベーク)を行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いて上記レジスト膜をアルカリ現像し、現像後に水で洗浄し、さらに乾燥させることでポジ型のレジストパターン(40nmラインアンドスペースパターン)を形成した。また、マスクパターンを代えたこと以外は上述の操作と同様にして、ポジ型のレジストパターン(40nmホール、105nmピッチ)を形成した。
<評価>
 上記ArF露光用ポジ型感放射線性樹脂組成物を用いて形成したレジストパターンについて、感度、LWR性能及びパターン矩形性を下記方法に従って評価した。その結果を下記表7に示す。なお、レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-5000」)を用いた。
[感度]
 上記ArF露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成において、40nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、20mJ/cm以下の場合は「良好」と、20mJ/cmを超える場合は「不良」と評価した。
[LWR性能]
 上記感度の評価で求めた最適露光量を照射して40nmラインアンドスペースパターンを形成するようにマスクサイズを調整して、レジストパターンを形成した。形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、この3シグマ値をLWR(nm)とした。LWRは、その値が小さいほど、ラインのラフネスが小さく良好であることを示す。LWR性能は、2.5nm以下の場合は「良好」と、2.5nmを超える場合は「不良」と評価した。
[パターン矩形性]
 上記感度の評価で求めた最適露光量を照射して形成された40nmラインアンドスペースパターンについて、上記走査型電子顕微鏡を用いて観察し、当該ラインアンドスペースパターンの断面形状を評価した。レジストパターンの矩形性は、断面形状における下辺の長さの上辺の長さに対する比が、1以上1.05以下であれば「〇」、1.05超1.10以下であれば「△」、1.10超であれば「×」と評価した。
Figure JPOXMLDOC01-appb-T000030
 表7の結果から明らかなように、実施例の感放射線性樹脂組成物は、ArF露光に用いた場合、感度、LWR性能及びパターン矩形性が良好であったのに対し、比較例では、各特性が実施例に比べて劣っていた。従って、実施例の感放射線性樹脂組成物をArF露光に用いた場合、高い感度でLWR性能及びパターン矩形性が良好なレジストパターンを形成することができる。
[極端紫外線(EUV)露光用ポジ型感放射線性樹脂組成物の調製]
[実施例39]
 [A]樹脂としての(A-33)100質量部、[B]感放射線性酸発生剤としての(B-4)12.0質量部、[C]酸拡散制御剤としての(C-1)6.0質量部、[E]高フッ素含有量樹脂としての(E-4)5.0質量部、並びに[D]溶剤としての(D-1)/(D-4)の混合溶媒6,110質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-39)を調製した。
[実施例40~50及び比較例13~15]
 下記表8に示す種類及び含有量の各成分を用いたこと以外は実施例39と同様にして、感放射線性樹脂組成物(J-40)~(J-50)及び(CJ-13)~(CJ-15)を調製した。
Figure JPOXMLDOC01-appb-T000031
<EUV露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成>
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したEUV露光用ポジ型感放射線性樹脂組成物を塗布し、130℃で60秒間PBを行った。その後、23℃で30秒間冷却することにより、平均厚さ55nmのレジスト膜を形成した。次に、このレジスト膜に対し、EUV露光装置(ASML社の「NXE3300」)を用い、NA=0.33、照明条件:Conventional s=0.89、マスク:imecDEFECT32FFR02にて露光した。露光後、120℃で60秒間PEBを行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いて上記レジスト膜をアルカリ現像し、現像後に水で洗浄し、さらに乾燥させることでポジ型のレジストパターン(32nmラインアンドスペースパターン)を形成した。
<評価>
 上記EUV露光用ポジ型感放射線性樹脂組成物を用いて形成したレジストパターンについて、感度、LWR性能及びパターン矩形性を下記方法に従って評価した。その結果を下記表9に示す。なお、レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-5000」)を用いた。
[感度]
 上記EUV露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成において、32nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、25mJ/cm以下の場合は「良好」と、25mJ/cmを超える場合は「不良」と評価した。
[LWR性能]
 上記感度の評価で求めた最適露光量を照射して32nmラインアンドスペースのパターンを形成するようにマスクサイズを調整して、レジストパターンを形成した。形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、この3シグマ値をLWR(nm)とした。LWRは、その値が小さいほど、ラインのがたつきが小さく良好であることを示す。LWR性能は、3.0nm以下の場合は「良好」と、3.0nmを超える場合は「不良」と評価した。
[パターン矩形性]
 上記感度の評価で求めた最適露光量を照射して形成された32nmラインアンドスペースパターンについて、上記走査型電子顕微鏡を用いて観察し、当該ラインアンドスペースパターンの断面形状を評価した。レジストパターンの矩形性は、断面形状における下辺の長さの上辺の長さに対する比が、1以上1.05以下であれば「〇」、1.05超1.10以下であれば「△」、1.10超であれば「×」と評価した。
Figure JPOXMLDOC01-appb-T000032
 表9の結果から明らかなように、実施例の感放射線性樹脂組成物は、EUV露光に用いた場合、感度、LWR性能及びパターン矩形性が良好であったのに対し、比較例では、各特性が実施例に比べて劣っていた。
[ArF露光用ネガ型感放射線性樹脂組成物の調製、この組成物を用いたレジストパターンの形成及び評価] 
[実施例51]
 [A]樹脂としての(A-3)100質量部、[B]感放射線性酸発生剤としての(B-3)15.0質量部、[C]酸拡散制御剤としての(C-2)8.0質量部、[E]高フッ素含有量樹脂としての(E-3)2.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-2)/(D-3)の混合溶媒3,230質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-51)を調製した。
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したArF露光用ネガ型感放射線性樹脂組成物(J-51)を塗布し、90℃で60秒間PB(プレベーク)を行った。その後、23℃で30秒間冷却することにより、平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜に対し、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Annular(σ=0.8/0.6)の光学条件にて、40nmスペース、105nmピッチのマスクパターンを介して露光した。露光後、90℃で60秒間PEB(ポストエクスポージャーベーク)を行った。その後、有機溶媒現像液として酢酸n-ブチルを用いて上記レジスト膜を有機溶媒現像し、乾燥させることでネガ型のレジストパターン(40nmラインアンドスペースパターン)を形成した。
 上記ArF露光用ネガ型感放射線性樹脂組成物を用いたレジストパターンについて、上記ArF露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの評価と同様にして評価した。その結果、実施例51の感放射線性樹脂組成物は、ArF露光にてネガ型のレジストパターンを形成した場合においても、感度、LWR性能及びパターン矩形性が良好であった。
[EUV露光用ネガ型感放射線性樹脂組成物の調製、この組成物を用いたレジストパターンの形成及び評価]
[実施例52]
 [A]樹脂としての(A-33)100質量部、[B]感放射線性酸発生剤としての(B-4)20.0質量部、[C]酸拡散制御剤としての(C-1)12.0質量部、[E]高フッ素含有量樹脂としての(E-4)2.0質量部、並びに[D]溶剤としての(D-1)/(D-4)=70/30(質量比)の混合溶剤6,110質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-52)を調製した。
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したEUV露光用感放射線性樹脂組成物を塗布し、130℃で60秒間PBを行った。その後、23℃で30秒間冷却することにより、平均厚さ55nmのレジスト膜を形成した。次に、このレジスト膜に対し、EUV露光装置(ASML社の「NXE3300」)を用い、NA=0.33、照明条件:Conventional s=0.89、マスク:imecDEFECT32FFR02にて露光した。露光後、120℃で60秒間PEBを行った。その後、有機溶媒現像液として酢酸n-ブチルを用いて上記レジスト膜を有機溶媒現像し、乾燥させることでネガ型のレジストパターン(32nmラインアンドスペースパターン)を形成した。
 上記EUV露光用ネガ型感放射線性樹脂組成物を用いたレジストパターンについて、上記EUV露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの評価と同様にして評価した。その結果、実施例52の感放射線性樹脂組成物は、EUV露光にてネガ型のレジストパターンを形成した場合においても、感度、LWR性能及びパターン矩形性が良好であった。
 本発明の感放射線性樹脂組成物及びレジストパターンの形成方法によれば、露光に対する感度が良好であり、LWR性能及びパターン矩形性に優れるレジストパターンを形成することができる。したがって、これらは、今後さらに微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 
 

Claims (9)

  1.  下記式(1)で表される構造単位(A)及び酸解離性基を有する構造単位(B)を含む樹脂と、
     感放射線性酸発生剤と、
     溶剤と
     を含む感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、
     Rは、ハロゲン原子置換又は非置換の炭素数1~20の1価の炭化水素基である。
     Xは、-O-又は-S-である。
     La1は、ハロゲン原子置換又は非置換の炭素数1~10の2価の炭化水素基である。
     Rは、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも一種の構造を有する1価の有機基である。)
  2.  上記式(1)におけるRは、それぞれ1価の鎖状炭化水素基、脂環式炭化水素基又は芳香族炭化水素基である請求項1に記載の感放射線性樹脂組成物。
  3.  上記式(1)におけるLa1は、2価の鎖状炭化水素基である請求項1又は2に記載の感放射線性樹脂組成物。
  4.  上記式(1)におけるLa1は、メチレン基である請求項3に記載の感放射線性樹脂組成物。
  5.  上記式(1)におけるRは、下記式(A)で表される請求項1~4のいずれか1項に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(A)中、
     La2は、単結合又は置換若しくは非置換の炭素数1~10の2価の炭化水素基である。
     Yは単結合又は-O-、-CO-、-NH-、-SO-若しくはこれらの組み合わせから選ばれる2価の連結基である。
     La3は、単結合又は置換若しくは非置換の炭素数1~10の2価の炭化水素基である。
     RP1は、置換又は非置換のラクトン構造、環状カーボネート構造又はスルトン構造である。
     *は上記式(1)における-O-との結合手である。)
  6.  上記樹脂におけるフッ素含有率が10質量%以下である請求項1~5のいずれか1項に記載の感放射線性樹脂組成物。
  7.  上記樹脂中の上記構造単位(A)の含有量が、上記樹脂を構成する全構造単位に対して、5モル%以上80モル%以下である請求項1~6のいずれか1項に記載の感放射線性樹脂組成物。
  8.  請求項1~7のいずれか1項に記載の感放射線性樹脂組成物によりレジスト膜を形成する工程、
     上記レジスト膜を露光する工程、及び
     上記露光されたレジスト膜を現像する工程を含むレジストパターンの形成方法。
  9.  上記レジスト膜を形成する工程の後かつ上記レジスト膜を露光する工程の前に、上記レジスト膜上に上層膜を設ける工程をさらに含む請求項8に記載のレジストパターンの形成方法。
     
     
     
PCT/JP2020/047968 2020-01-06 2020-12-22 感放射線性樹脂組成物及びレジストパターンの形成方法 WO2021140909A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227022666A KR20220125240A (ko) 2020-01-06 2020-12-22 감방사선성 수지 조성물 및 레지스트 패턴의 형성 방법
JP2021569821A JPWO2021140909A1 (ja) 2020-01-06 2020-12-22
US17/854,012 US20220342307A1 (en) 2020-01-06 2022-06-30 Radiation-sensitive resin composition and method for forming resist pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020000576 2020-01-06
JP2020-000576 2020-01-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/854,012 Continuation-In-Part US20220342307A1 (en) 2020-01-06 2022-06-30 Radiation-sensitive resin composition and method for forming resist pattern

Publications (1)

Publication Number Publication Date
WO2021140909A1 true WO2021140909A1 (ja) 2021-07-15

Family

ID=76788624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047968 WO2021140909A1 (ja) 2020-01-06 2020-12-22 感放射線性樹脂組成物及びレジストパターンの形成方法

Country Status (5)

Country Link
US (1) US20220342307A1 (ja)
JP (1) JPWO2021140909A1 (ja)
KR (1) KR20220125240A (ja)
TW (1) TW202134785A (ja)
WO (1) WO2021140909A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269412A (ja) * 2003-03-07 2004-09-30 Shin Etsu Chem Co Ltd α位メチル基に酸素置換基を有する脂環含有メタクリレート化合物
JP2005008765A (ja) * 2003-06-19 2005-01-13 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料及びパターン形成方法
JP2007086515A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp レジスト組成物及びそれを用いたパターン形成方法
JP2011095607A (ja) * 2009-10-30 2011-05-12 Fujifilm Corp パターン形成方法及び感活性光線性又は感放射線性樹脂組成物
JP2016099482A (ja) * 2014-11-20 2016-05-30 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
JP2016161790A (ja) * 2015-03-02 2016-09-05 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2017122780A (ja) * 2016-01-05 2017-07-13 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073266B2 (ja) 2002-07-18 2008-04-09 富士フイルム株式会社 ポジ型レジスト組成物
JP6112018B2 (ja) * 2012-01-23 2017-04-12 セントラル硝子株式会社 含フッ素スルホン酸塩類、含フッ素スルホン酸塩樹脂、レジスト組成物及びそれを用いたパターン形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269412A (ja) * 2003-03-07 2004-09-30 Shin Etsu Chem Co Ltd α位メチル基に酸素置換基を有する脂環含有メタクリレート化合物
JP2005008765A (ja) * 2003-06-19 2005-01-13 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料及びパターン形成方法
JP2007086515A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp レジスト組成物及びそれを用いたパターン形成方法
JP2011095607A (ja) * 2009-10-30 2011-05-12 Fujifilm Corp パターン形成方法及び感活性光線性又は感放射線性樹脂組成物
JP2016099482A (ja) * 2014-11-20 2016-05-30 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
JP2016161790A (ja) * 2015-03-02 2016-09-05 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2017122780A (ja) * 2016-01-05 2017-07-13 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物

Also Published As

Publication number Publication date
TW202134785A (zh) 2021-09-16
US20220342307A1 (en) 2022-10-27
JPWO2021140909A1 (ja) 2021-07-15
KR20220125240A (ko) 2022-09-14

Similar Documents

Publication Publication Date Title
JP7140100B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、及び酸拡散制御剤
JP7360633B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2021039331A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2022113663A1 (ja) 感放射線性樹脂組成物、及びパターン形成方法
JP2017181697A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2021220648A1 (ja) 感放射線性樹脂組成物及びそれを用いたレジストパターンの形成方法、並びに、スルホン酸塩化合物及びそれを含む感放射線性酸発生剤
WO2021241246A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP7323865B2 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP6668825B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7091762B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP6794728B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2020008640A (ja) レジストパターンの形成方法及び感放射線性樹脂組成物
JP6641905B2 (ja) リソグラフィー用組成物及びレジストパターン形成方法
WO2022065090A1 (ja) 感放射線性樹脂組成物、パターン形成方法及びオニウム塩化合物
WO2021131845A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP2022095677A (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP6183268B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2021157354A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2021140909A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JPWO2020008994A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP7494846B2 (ja) 感放射線性樹脂組成物、レジストパターンの形成方法及び化合物
WO2022131095A1 (ja) 感放射線性樹脂組成物、パターン形成方法、及び撥水性改善剤
JP6730641B2 (ja) 重合体及び化合物の製造方法
WO2021235283A1 (ja) 感放射線性樹脂組成物、パターン形成方法及びオニウム塩化合物
WO2021166488A1 (ja) レジストパターンの形成方法及び感放射線性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913035

Country of ref document: EP

Kind code of ref document: A1