WO2021135681A1 - 一种氮化物靶材的制备方法 - Google Patents

一种氮化物靶材的制备方法 Download PDF

Info

Publication number
WO2021135681A1
WO2021135681A1 PCT/CN2020/128747 CN2020128747W WO2021135681A1 WO 2021135681 A1 WO2021135681 A1 WO 2021135681A1 CN 2020128747 W CN2020128747 W CN 2020128747W WO 2021135681 A1 WO2021135681 A1 WO 2021135681A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
target material
preparation
powder
sintered
Prior art date
Application number
PCT/CN2020/128747
Other languages
English (en)
French (fr)
Inventor
王海侠
肖伟军
Original Assignee
欧钛鑫光电科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧钛鑫光电科技(苏州)有限公司 filed Critical 欧钛鑫光电科技(苏州)有限公司
Publication of WO2021135681A1 publication Critical patent/WO2021135681A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron

Definitions

  • the invention relates to a method for preparing a nitride target material, which belongs to the technical field of semiconductor materials.
  • Nitride is a new type of semiconductor material with great potential in electronic and optoelectronic applications. It has the advantages of high electron mobility and good conductivity at room temperature.
  • gallium nitride materials is the current frontier and hotspot of global semiconductor research. It is the development of new semiconductor materials for microelectronic devices and optoelectronic devices, and is the third generation of semiconductor materials after silicon and gallium arsenide. It has wide direct band gap, strong atomic bond, high thermal conductivity, good chemical stability (hardly corroded by any acid) and strong anti-radiation ability. It is used in optoelectronics, high temperature and high power devices and high There are broad prospects in the application of high-frequency microwave devices.
  • the prior art mainly uses metal targets and reactive gases as nitrogen sources, or expensive metal precursors and nitrogen source precursors, to produce nitride films.
  • metal targets and reactive gases as nitrogen sources, or expensive metal precursors and nitrogen source precursors, to produce nitride films.
  • pure nitride targets mainly composite targets, such as metallic Ga-infiltrated gallium nitride, or doped nitride targets, and it is difficult to guarantee the uniformity and purity of the film made.
  • gallium nitride is decomposed into metal Ga and N at 700 degrees to 1000 degrees, and indium nitride will also become metal indium at a certain temperature. Wait.).
  • the present invention provides an effective approach for nitride target materials, which enables low manufacturing cost and continuous production.
  • the method of the present invention can solve the above-mentioned problems.
  • the target material of the present invention has the advantages of high uniformity, oxygen-free, high density, and suitable for large-scale production.
  • the present invention provides a method for preparing a nitride target material.
  • the raw materials are made of nitride nanoparticles with higher purity and larger specific surface area.
  • the solid phase method is used to mix the nitride powder with additives first. After entering the mold into a green body by cold isostatic pressing or hot isostatic pressing or warm isostatic pressing, according to the different molding conditions of the nitride, it is sintered into a nitride target sintered body at a high temperature of 600-1000 degrees in an atmosphere furnace. Multiple target sintered bodies can be sintered, and the production efficiency is high.
  • the method has the characteristics of simple, economical, and environmentally friendly industrial production, can prepare high-quality nitride nanopowders and targets on a large scale, and is applied to the field of semiconductor elements.
  • the thin film layer produced by the nitride target prepared by the method is dense and uniform.
  • the first object of the present invention is to provide a method for preparing a nitride target material, which includes the following steps:
  • step (1) Add polyvinyl alcohol to the powder in step (1) to pre-press and shape it into a green body;
  • step (3) After the green body of step (2) is pre-fired and debinding, it is sintered at a temperature of 600-1050°C under inert gas or ammonia gas or vacuum conditions to obtain a nitride target material.
  • the atmosphere device can be a closed system or a circulation system, preferably a circulation system.
  • the nitride is gallium nitride, zinc nitride or indium nitride.
  • the nitride powder is prepared by the following method: the metal, metal oxide or metal oxyhydroxide corresponding to the nitride is subjected to nitriding treatment at 600-1000°C for 2-7 hours under ammonia conditions to obtain nitrogen.
  • the purity of the oxide or oxyhydroxide is not less than 99.995%, and the purity of the ammonia gas is not less than 4N.
  • the atmosphere device can be a closed system or a circulation system, preferably a circulation system.
  • the added amount of the polyvinyl alcohol is 0.5-5 wt% of the nitride powder.
  • the pre-compression molding conditions are that the temperature is 20-300° C. and the pressure is 80-100 MPa.
  • the pre-pressing method may adopt cold isostatic pressing, warm isostatic pressing, hot pressing, or hot isostatic pressing.
  • step (3) the temperature for pre-burning and debinding is 500-650°C.
  • the density of the obtained nitride sintered body is not less than 60% of the theoretical density, and the flatness of the target material can reach 10 ⁇ m or less.
  • the nitride sintered body is processed into a specified size.
  • the processing method can be a surface grinding method, a roller grinding method, a wire cutting method, a laser cutting method, a chemical mechanical polishing and other processing methods.
  • the inert gas is nitrogen or argon.
  • the second object of the present invention is to provide a nitride target prepared by the preparation method.
  • the third object of the present invention is to provide the application of the nitride target material in semiconductor materials
  • the present invention adopts the solid phase method, the powder is first mixed with additives, put into a mold and pressed into a green body by cold isostatic pressing, and then sintered into a nitride target material at a high temperature of 600-1000 degrees in an atmosphere furnace
  • the sintered body can sinter multiple target sintered bodies, and the process production efficiency is high. And it can improve the density of the target material, and obtain a high-density and oxygen-free pure nitride target material.
  • the method has the characteristics of simple, economical, and environmentally friendly industrial production, can prepare high-quality nitride nanopowders and targets on a large scale, and is applied to the field of semiconductor elements.
  • the thin film layer produced by the nitride target prepared by the method is dense and uniform.
  • Figure 1 is an X-ray diffraction pattern of gallium nitride
  • Figure 2 is a picture of a gallium nitride target
  • Figure 3 is an X-ray diffraction pattern of indium nitride.
  • the purity of the nitride powder was measured by the GD-MS method, and the specific surface area was measured by the BET multipoint method.
  • Nitride target material density adopts solid density measurement method, target material warpage or flatness evaluation is tested according to semiconductor substrate flatness test method (such as TTV thickness tester), or refer to CN105806301A surface warpage measuring device and method.
  • gallium oxide or gallium oxyhydroxide is nitridated at 980°C for 4 hours under ammonia gas to obtain gallium nitride powder.
  • the purity of gallium oxide or gallium oxyhydroxide is 99.995% and above.
  • the purity is 4N and above.
  • the prepared gallium nitride powder has a particle size range of 0.05-40 ⁇ m, a purity of not less than 99.995%, and a specific surface area of 3.6-18 m 2 /g.
  • GaN target preparation
  • step (1) Add 3wt% polyvinyl alcohol to the powder of step (1), and press it into a green body under the conditions of 100°C and 90MPa;
  • step (3) After the green body of step (2) is pre-fired and debinding at 600° C., it is sintered at 1000° C. under nitrogen to obtain a gallium nitride target.
  • the obtained gallium nitride sintered body was analyzed as a gallium nitride phase by X-ray diffraction structure, and the X-ray diffraction is shown in FIG. 1.
  • the surface of the gallium nitride target is flat; by measuring the density and warpage of the target, the density of the gallium nitride target is not less than 60% of the theoretical density, reaching 3.6g/cm 3 ⁇ 5.9g/cm 3 , the flatness of the target material is less than 5 ⁇ m, and the gallium nitride sintered body is processed into the specified size according to the purpose.
  • the processing method can use the surface grinding method, the roller grinding method, the wire cutting method, the laser cutting method, Processing methods such as chemical mechanical polishing.
  • Zinc nitride powder preparation nitriding metal zinc at 610°C for 5 hours under ammonia gas conditions to obtain zinc nitride powder, wherein the purity of metal zinc is 4N and above, and the purity of ammonia gas is 4N and above.
  • the prepared zinc nitride powder has a particle size range of 0.02-30 ⁇ m, a purity of 4N and above, and a specific surface area of 4.0-25m 2 /g.
  • step (1) Add 1wt% of polyvinyl alcohol to the powder of step (1), and press it into a green body under the conditions of 200°C and 80MPa;
  • step (3) After the green body of step (2) is pre-fired at 500° C. for debinding, it is sintered at 650° C. under nitrogen to obtain a zinc nitride target.
  • the surface of the zinc nitride target is flat; by measuring the density and flatness of the target, the density of the zinc nitride target reaches 3.74 g/cm 3 to 6.20 g/cm 3 , and the flatness of the target is less than 5 ⁇ m.
  • Indium nitride powder preparation indium oxide or indium oxyhydroxide is subjected to nitriding treatment at 680°C for 3 hours under ammonia gas to obtain indium nitride powder, in which the purity of indium oxide or indium oxyhydroxide is 4N and above, and the purity of ammonia gas For 4N and above.
  • the prepared indium nitride powder has a particle size range of 0.05-20 ⁇ m, a purity of 4N and above, and a specific surface area of 4.3-15m 2 /g
  • step (1) Add 5 wt% of polyvinyl alcohol to the powder of step (1), and press it into a green body under the conditions of 300° C. and 80 MPa;
  • step (3) After the green body of step (2) is pre-fired and debinding at 550°C, it is sintered at 600°C under ammonia gas to obtain an indium nitride target.
  • Indium nitride target surface roughness by the density and flatness of the target is measured, indium nitride target density of 4.30g / cm 3 ⁇ 7.11g / cm 3, the target flatness of less than 10 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种氮化物靶材的制备方法,采用固相法把粉末先用添加剂混合,放入模具用冷等静压等压制成坯体后,用气氛炉在高温600-1000度烧结成型成氮化物靶材烧结体,可以烧结多个靶材烧结体,工艺生产效率高,并且能提高靶材致密度,由该方法制备的氮化物靶材生产的薄膜层致密、均匀。

Description

一种氮化物靶材的制备方法 技术领域
本发明涉及一种氮化物靶材的制备方法,属于半导体材料技术领域。
背景技术
氮化物是在电子和光电子应用方面有较大潜力的新型半导体材料,它在室温下具有高电子迁移率和良好导电性的优势。比如氮化镓材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,是继硅和砷化镓之后的第三代半导体材料。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。
现有技术主要采用金属靶材和反应气体作为氮源,或者昂贵的金属前驱体和氮源前驱体,制作氮化物薄膜。目前尚未见纯氮化物靶材的报道,主要是复合靶材,如含金属Ga渗透氮化镓、或掺杂氮化物靶材,制成薄膜的均匀性和纯度难以保证。在纯氮化物靶材制备过程中存在常压下金属与氮分解的问题(如氮化镓在700度-1000度分解为金属Ga和N,氮化铟也会在一定温度下变成金属铟等。)。另外在制备过程中也有氧化的问题,即制备过程中产生的金属Ga可能会变成氧化物,氮化锌在一定温度下会变成氧化锌等。本发明提供一种有效的氮化物靶材途径,使得低制造成本、连续生产成为可能。本发明方法可以解决上述问题,本发明的靶材均匀程度高、无氧、致密度高、适于规模化生产等优点。
发明内容
为解决上述问题,本发明提供一种氮化物靶材的制备方法,原料上选用纯 度更高并且比表面积更大的氮化物纳米颗粒,采用固相法,把氮化物粉末先用添加剂混合,放入模具用冷等静压或热等静压或温等静压压制成坯体后,根据氮化物不同的成型条件,用气氛炉在高温600-1000度烧结成型成氮化物靶材烧结体,可以烧结多个把靶材烧结体,工艺生产效率高。并且能提高靶材致密度,可获得高密度且无氧量的氮化物靶材。该方法具有简便、经济、环保的工业化生产特点、可规模化制备高品质氮化物纳米粉和靶材,应用于半导体元件领域。由该方法制备的氮化物靶材生产的薄膜层致密、均匀。
本发明的第一个目的是提供一种氮化物靶材的制备方法,包括如下步骤:
(1)在载气条件下,将氮化物粉末进行研磨、筛分;
(2)在步骤(1)的粉末中加入聚乙烯醇预压制成型为坯体;
(3)将步骤(2)的坯体进行预烧排胶后,在惰性气体或氨气或真空条件下烧结温度为600-1050℃得到氮化物靶材。
烧结方法可以使用各种烧结方法,包括高温固相法,热压法、热等静压法。为了获得高密度的氮化物烧结体,优选的是热等静压法。其中气氛装置可以为密闭体系或流通体系,优先为流通体系。
进一步地,所述氮化物为氮化镓、氮化锌或氮化铟。
进一步地,所述氮化物粉末通过如下方法制备得到:将氮化物对应的金属、金属氧化物或金属羟基氧化物在氨气条件下,在600-1000℃进行氮化处理2-7小时得到氮化物粉末,其中氧化物或羟基氧化物纯度不低于99.995%,氨气纯度不低于4N。其中气氛装置可以为密闭体系或流通体系,优先为流通体系。
进一步地,所述聚乙烯醇的添加量为氮化物粉末的0.5-5wt%。
进一步地,在步骤(2)中,预压制成型的条件为温度为20-300℃,压力为80-100MPa。预压制方法可以采用冷等静压、温等静压、热压法、或热等静压法。
进一步地,在步骤(3)中,预烧排胶的温度为500-650℃。
所得氮化物烧结体的密度是,不低于理论密度的60%,靶材平面度能达到10μm以下。根据用途将氮化物烧结体加工成规定尺寸,加工方法可以采用平面磨削法、滚园磨削法、线切割法、激光切割法、化学机械抛光等加工方法。
进一步地,在步骤(3)中,所述惰性气体为氮气或氩气。
本发明的第二个目的是提供一种所述的制备方法制备得到的氮化物靶材。
本发明的第三个目的是提供所述的氮化物靶材在半导体材料中的应用
本发明的有益效果:本发明采用固相法,把粉末先用添加剂混合,放入模具用冷等静压压制成坯体后,用气氛炉在高温600-1000度烧结成型成氮化物靶材烧结体,可以烧结多个把靶材烧结体,工艺生产效率高。并且能提高靶材致密度,可获得高密度且无氧的纯氮化物靶材。该方法具有简便、经济、环保的工业化生产特点、可规模化制备高品质氮化物纳米粉和靶材,应用于半导体元件领域。由该方法制备的氮化物靶材生产的薄膜层致密、均匀。
附图说明
图1为氮化镓X-射线衍射图;
图2为氮化镓靶材图片;
图3为氮化铟X-射线衍射图。
具体实施方式
为了更好地理解发明的实质,下面通过实施例来详细说明发明的技术内容。
氮化物粉末的纯度采用GD-MS方法测定,比表面积采用BET多点法测定。
氮化物靶材密度采用固体密度测量方法,靶材翘曲度或平面度评估按照半导体衬底平面度测试方法(如TTV厚度测试仪)进行测试,或参照CN105806301A表面翘曲度测量装置及方法。
实施例1:
氮化镓粉末制备:将氧化镓或羟基氧化镓在氨气条件下,在980℃进行氮化处理4小时得到氮化镓粉末,其中氧化镓或羟基氧化镓纯度为99.995%及以上,氨气纯度为4N及以上。
制备得到的氮化镓粉末的粒径范围为0.05-40μm,纯度不低于99.995%,比 表面积为3.6~18m 2/g。
氮化镓靶材制备:
(1)在载气条件下,将上述氮化镓粉末进行研磨、筛分;
(2)在步骤(1)的粉末中加入3wt%的聚乙烯醇,在100℃、90MPa条件下压制成型为坯体;
(3)将步骤(2)的坯体在600℃进行预烧排胶后,在氮气条件下1000℃烧结得到氮化镓靶材。所得氮化镓烧结体通过X-射线衍射结构分析为氮化镓相,X-射线衍射如图1所示。
根据附图2可知,氮化镓靶材的表面平整;通过对靶材的密度和翘曲度进行测定,氮化镓靶材的密度不低于理论密度的60%,达到3.6g/cm 3~5.9g/cm 3,靶材平面度小于5μm,根据用途将氮化镓烧结体加工成规定尺寸,加工方法可以采用平面磨削法、滚园磨削法、线切割法、激光切割法、化学机械抛光等加工方法。
实施例2:
氮化锌粉末制备:将金属锌在氨气条件下,在610℃进行氮化处理5小时得到氮化锌粉末,其中金属锌纯度为4N及以上,氨气纯度为4N及以上。
制备得到的氮化锌粉末的粒径范围为0.02-30μm,纯度为4N及以上,比表面积为4.0~25m 2/g。
氮化锌靶材制备:
(1)在载气条件下,将上述氮化锌粉末进行研磨、筛分;
(2)在步骤(1)的粉末中加入1wt%的聚乙烯醇,在200℃、80MPa条件下压制成型为坯体;
(3)将步骤(2)的坯体在500℃进行预烧排胶后,在氮气条件下650℃烧结得到氮化锌靶材。
氮化锌靶材的表面平整;通过对靶材的密度和平面度进行测定,氮化锌靶材的密度达到3.74g/cm 3~6.20g/cm 3,靶材平面度小于5μm。
实施例3:
氮化铟粉末制备:将氧化铟或羟基氧化铟在氨气条件下,在680℃进行氮化处理3小时得到氮化铟粉末,其中氧化铟或羟基氧化铟纯度为4N及以上,氨气纯度为4N及以上。
制备得到的氮化铟粉末的粒径范围为0.05-20μm,纯度为4N及以上,比表面积为4.3~15m 2/g
氮化铟靶材制备:
(1)在载气条件下,将上述氮化铟粉末进行研磨、筛分;
(2)在步骤(1)的粉末中加入5wt%的聚乙烯醇,在300℃、80MPa条件下压制成型为坯体;
(3)将步骤(2)的坯体在550℃进行预烧排胶后,在氨气条件下600℃烧结得到氮化铟靶材。
氮化铟靶材的表面平整;通过对靶材的密度和平面度进行测定,氮化铟靶材的密度达到4.30g/cm 3~7.11g/cm 3,靶材平面度小于10μm。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (9)

  1. 一种氮化物靶材的制备方法,其特征在于,包括如下步骤:
    (1)在载气条件下,将氮化物粉末进行研磨、筛分;
    (2)在步骤(1)的粉末中加入聚乙烯醇预压制成型为坯体;
    (3)将步骤(2)的坯体进行预烧排胶后,在惰性气体或氨气或真空条件下,在600-1050℃温度下烧结得到氮化物靶材。
  2. 根据权利要求1所述的制备方法,其特征在于,所述氮化物为氮化镓、氮化铟或氮化锌。
  3. 根据权利要求1所述的制备方法,其特征在于,所述氮化物粉末通过如下方法制备得到:将氮化物相对应的金属、金属氧化物或金属羟基氧化物在氨气条件下,在600-1000℃进行氮化处理2-7小时得到氮化物粉末,其中氧化物或羟基氧化物纯度不低于99.995%,氨气纯度不低于4N。
  4. 根据权利要求1所述的制备方法,其特征在于,所述聚乙烯醇的添加量为氮化物粉末的0.5-5wt%。
  5. 根据权利要求1所述的制备方法,其特征在于,在步骤(2)中,预压制成型的条件为温度为20-300℃,压力为80-100MPa。
  6. 根据权利要求1所述的制备方法,其特征在于,在步骤(3)中,预烧排胶的温度为500-650℃。
  7. 根据权利要求1所述的制备方法,其特征在于,在步骤(3)中,所述惰性气体为氮气或氩气。
  8. 一种权利要求1~7任一项所述的制备方法制备得到的氮化物靶材。
  9. 权利要求8所述的氮化物靶材在半导体材料中的应用。
PCT/CN2020/128747 2019-12-31 2020-11-13 一种氮化物靶材的制备方法 WO2021135681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911416943.1 2019-12-31
CN201911416943.1A CN111153700B (zh) 2019-12-31 2019-12-31 一种氮化物靶材的制备方法

Publications (1)

Publication Number Publication Date
WO2021135681A1 true WO2021135681A1 (zh) 2021-07-08

Family

ID=70560256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128747 WO2021135681A1 (zh) 2019-12-31 2020-11-13 一种氮化物靶材的制备方法

Country Status (2)

Country Link
CN (1) CN111153700B (zh)
WO (1) WO2021135681A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180962A (zh) * 2022-05-27 2022-10-14 先导薄膜材料(广东)有限公司 一种高密度高迁移率氧化物靶材及其制备方法
CN115650701A (zh) * 2022-11-09 2023-01-31 长沙壹纳光电材料有限公司 一种氧化镍基靶材的制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153700B (zh) * 2019-12-31 2022-06-21 欧钛鑫光电科技(苏州)有限公司 一种氮化物靶材的制备方法
CN112794294A (zh) * 2021-01-05 2021-05-14 段文轩 高纯氮化锌粉材料的制备
CN116283303A (zh) * 2023-02-24 2023-06-23 中国科学院上海硅酸盐研究所 一种多元红色氮化物靶材的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985735A (zh) * 2009-07-29 2011-03-16 中国科学院福建物质结构研究所 一种氧化铝靶材和该靶材制备的透明导电薄膜
CN102260802A (zh) * 2011-07-20 2011-11-30 佛山市钜仕泰粉末冶金有限公司 一种靶材制备装置及其靶材加工方法
JP2013023745A (ja) * 2011-07-22 2013-02-04 Sumitomo Metal Mining Co Ltd 窒化チタンスパッタリングターゲットおよびその製造方法
JP2013129568A (ja) * 2011-12-21 2013-07-04 Tosoh Corp 窒化ガリウム粉末ならびにその製造方法
CN105347800A (zh) * 2010-12-20 2016-02-24 东曹株式会社 氮化镓成形物及其制造方法以及氮化镓溅射靶材
CN107429383A (zh) * 2015-03-30 2017-12-01 东曹株式会社 氮化镓系烧结体和其制造方法
CN111153700A (zh) * 2019-12-31 2020-05-15 欧钛鑫光电科技(苏州)有限公司 一种氮化物靶材的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278805A (ja) * 1994-04-11 1995-10-24 Shin Etsu Chem Co Ltd 低酸素窒化けい素スパッタリングターゲットの製造方法
CN101786885B (zh) * 2009-12-24 2012-09-26 中国船舶重工集团公司第七二五研究所 一种控制晶粒度制造ito靶材的方法
CN101913856B (zh) * 2010-08-02 2013-03-27 中国船舶重工集团公司第七二五研究所 一种用惰性气体保护法制备高品质azo靶材的方法
CN103232234A (zh) * 2013-04-28 2013-08-07 西南交通大学 一种高致密低电阻ito靶材的微波掺杂烧结方法
JP6677714B2 (ja) * 2015-04-07 2020-04-08 株式会社東芝 窒化珪素焼結体およびそれを用いた高温耐久性部材
CN104944951A (zh) * 2015-06-18 2015-09-30 盐城工学院 一种bmn陶瓷靶材的制备方法
CN105060883A (zh) * 2015-07-30 2015-11-18 天津大学 磁控溅射用高致密度bnt靶材的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985735A (zh) * 2009-07-29 2011-03-16 中国科学院福建物质结构研究所 一种氧化铝靶材和该靶材制备的透明导电薄膜
CN105347800A (zh) * 2010-12-20 2016-02-24 东曹株式会社 氮化镓成形物及其制造方法以及氮化镓溅射靶材
CN102260802A (zh) * 2011-07-20 2011-11-30 佛山市钜仕泰粉末冶金有限公司 一种靶材制备装置及其靶材加工方法
JP2013023745A (ja) * 2011-07-22 2013-02-04 Sumitomo Metal Mining Co Ltd 窒化チタンスパッタリングターゲットおよびその製造方法
JP2013129568A (ja) * 2011-12-21 2013-07-04 Tosoh Corp 窒化ガリウム粉末ならびにその製造方法
CN107429383A (zh) * 2015-03-30 2017-12-01 东曹株式会社 氮化镓系烧结体和其制造方法
CN111153700A (zh) * 2019-12-31 2020-05-15 欧钛鑫光电科技(苏州)有限公司 一种氮化物靶材的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180962A (zh) * 2022-05-27 2022-10-14 先导薄膜材料(广东)有限公司 一种高密度高迁移率氧化物靶材及其制备方法
CN115650701A (zh) * 2022-11-09 2023-01-31 长沙壹纳光电材料有限公司 一种氧化镍基靶材的制备方法与应用
CN115650701B (zh) * 2022-11-09 2023-11-14 长沙壹纳光电材料有限公司 一种氧化镍基靶材的制备方法与应用

Also Published As

Publication number Publication date
CN111153700B (zh) 2022-06-21
CN111153700A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021135681A1 (zh) 一种氮化物靶材的制备方法
US20040171474A1 (en) Aluminum nitride materials and members for use in the production of semiconductors
KR102579987B1 (ko) 반도체 소결체, 전기·전자 부재 및 반도체 소결체 제조방법
CN102584205B (zh) 一种钇钡铜氧靶材的制造方法
JP5732978B2 (ja) 珪化バリウム多結晶体、その製造方法ならびに珪化バリウムスパッタリングターゲット
CN108178636B (zh) 一种Si3N4/SiC复合吸波陶瓷及其制备方法
JP2024051069A (ja) 窒化ガリウム系焼結体及びその製造方法
CN109659427B (zh) 一种过渡金属包覆In2O3(ZnO)5核-壳结构热电材料的制备方法
CN109004079B (zh) P型y掺杂赝三元热电材料的制备方法
CN1614054B (zh) 锑化钴基热电复合材料及制备方法
Katsuyama et al. Synthesis of NaxCo2O4 by the hydrothermal hot-pressing and its thermoelectric properties
CN103613381A (zh) 一种n型钆掺杂钛酸锶氧化物热电陶瓷的制备方法
KR20140036509A (ko) 비스무트 텔루라이드계 열전재료의 제조방법
CN109133939B (zh) 一种制备致密超大负热膨胀块体材料的方法
CN113584337A (zh) 一种低铜含量钨铜复合材料的制备方法及产品
JP6740671B2 (ja) 珪化バリウムバルク多結晶体及びその用途
KR101375559B1 (ko) 고망간실리사이드계 열전재료의 제조방법 및 그에 따라 제조된 고망간실리사이드계 열전재료
CN105420528A (zh) 一种制备高性能AgInTe2热电材料的方法
JP2011058011A (ja) 導電性酸化物
JP2004179264A (ja) 熱電材料及びその製造方法
JP2007173852A (ja) 熱電材料の製造方法
Lee et al. The synthesis and the pressureless sintering of Bi2Te3 for thermoelectric application
CN110759737B (zh) 一种高性能氮化硅基复合陶瓷的制备方法
JP2016000674A (ja) 珪化バリウム系多結晶体及び前記珪化バリウム多結晶体からなるスパッタリングターゲット又は熱電変換素子
JP7167578B2 (ja) 珪化バリウム系バルク多結晶体及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909223

Country of ref document: EP

Kind code of ref document: A1