WO2021135124A1 - 防尘结构、麦克风封装结构以及电子设备 - Google Patents

防尘结构、麦克风封装结构以及电子设备 Download PDF

Info

Publication number
WO2021135124A1
WO2021135124A1 PCT/CN2020/099338 CN2020099338W WO2021135124A1 WO 2021135124 A1 WO2021135124 A1 WO 2021135124A1 CN 2020099338 W CN2020099338 W CN 2020099338W WO 2021135124 A1 WO2021135124 A1 WO 2021135124A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
dust
proof structure
membrane body
proof
Prior art date
Application number
PCT/CN2020/099338
Other languages
English (en)
French (fr)
Inventor
林育菁
佐佐木宽充
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2021135124A1 publication Critical patent/WO2021135124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to the field of acousto-electric technology, and more specifically, to a dust-proof structure, a microphone packaging structure, and an electronic device.
  • the dust-proof structure will be heated during assembly to the printed circuit board or during use after assembly on the printed circuit board. After heating, the dust-proof structure itself will deform. Due to the different coefficients of thermal expansion between different components, the deformation of the dust-proof structure after heating will cause it to fall off or be damaged from the substrate.
  • An object of the present invention is to provide a new technical solution for a dust-proof structure, a microphone packaging structure, and an electronic device.
  • a dust-proof structure including;
  • a carrier the carrier is a metal material, and a through hole is formed in the middle of the carrier;
  • a membrane body is made of a metal material, the membrane body includes a grid structure and a connection part arranged around the grid structure, the grid structure covers one end of the through hole, and the connection part is connected to the Said on the carrier.
  • the membrane body and the carrier are made of the same metal material.
  • the material of the carrier is nickel or copper.
  • the carrier includes at least one layer of structure.
  • the membrane body includes at least one layer of structure.
  • the metal material of the membrane body is a single element metal or alloy.
  • the metal material of the carrier is a single element metal or alloy.
  • the carrier includes a multilayer structure, and in the carrier, the thermal expansion coefficient of the outermost structure on the side away from the film body is lower than the thermal expansion coefficient of the structures of other layers.
  • the thermal expansion coefficient of each layer structure is reduced layer by layer along the side where the film body is located to the side far away from the film body.
  • the thickness of the carrier is 10um-70um.
  • a microphone packaging structure including the dust-proof structure of any one of the above, and the dust-proof structure is fixed on the sound hole of the microphone packaging structure;
  • the dust-proof structure covers the MEMS chip in the microphone packaging structure.
  • an electronic device including the aforementioned microphone packaging structure.
  • the carrier and the membrane body as metal materials, the thermal expansion coefficient of the carrier of the dust-proof structure is reduced, and the deformation of the dust-proof structure after being affected by heat is reduced.
  • Fig. 1 is a schematic structural diagram of a dust-proof structure in an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the structure of the present disclosure in which the carrier and the membrane body are the same metal in an embodiment.
  • FIG. 3 is a schematic diagram of a structure of the present disclosure in which the carrier and the film body in the embodiment are both multilayered structures.
  • Fig. 4 is a process diagram of deformation in the process of installing a dust-proof structure in the prior art.
  • FIG. 5 is a process diagram of the deformation of the carrier and the membrane body in an embodiment of the present disclosure when they are different metals.
  • FIG. 6 is a process diagram of the deformation of the carrier and the film body in an embodiment of the present disclosure when the same metal is used.
  • Fig. 7 is a schematic diagram of a dust-proof structure in the sound hole on the microphone packaging structure substrate in an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a dust-proof structure structure provided at the MEMS chip on the microphone package structure substrate in the embodiment of the present disclosure.
  • 1 is a film body
  • 11 is a first film body
  • 12 is a second film body
  • 13 is a third film body
  • 2 is a carrier
  • 21 is a first carrier
  • 22 is a second carrier
  • 3 is a printed substrate.
  • 31 is a sound hole
  • 32 is a MEMS chip
  • 4 is an adhesive.
  • the dust-proof structure includes;
  • the carrier 2 is a metal material, and a through hole is formed in the middle of the carrier 2;
  • the membrane body 1, the membrane body 1 is made of a metal material, the membrane body 1 includes a grid structure and a connection part arranged around the grid structure, the grid structure covers one end of the through hole, and the connection part Attached to the carrier 2.
  • the carrier 2 forms a support for the membrane body 1, and the membrane body 1 is fixed to the carrier 2 through the connecting portion, so that the mesh structure covers one end of the through hole.
  • the grid structure has a filtering effect on the through holes, for example, filtering out dust and other pollutants in the passing air, so that the dust-proof structure plays a dust-proof function.
  • Both the membrane body 1 and the carrier 2 are made of metal materials, which have a lower thermal expansion coefficient than organic materials.
  • the dust-proof structure manufactured in this way has a lower thermal expansion coefficient than the existing dust-proof structure in which the carrier is an organic material.
  • the thermal deformation of the dust-proof structure after being heated will be greatly reduced, which can effectively prevent the shape of the dust-proof structure from being deformed.
  • the deformation of the dust-proof structure can be effectively suppressed in this embodiment.
  • the material of the carrier 2 is a metal material, and the coefficient of thermal expansion is lower than that of the carrier 2 using an organic material.
  • the degree of deformation of the carrier 2 is smaller, and the shape deformation of the carrier 2 is effectively suppressed. In this way, in the process of installing the dust-proof structure, the carrier 2 is more conformed to the set shape, and the installation is more convenient.
  • the membrane body 1 and the carrier 2 are made of the same metal material.
  • the membrane body 1 and the carrier 2 are made of the same metal material.
  • the properties of the same metal material are the same, the coefficient of thermal expansion is also the same, and the degree of parallelism when it is affected by heat is also the same.
  • the membrane body 1 and the carrier 2 are made of the same metal material, and the membrane body 1 and the carrier 2 are made into a dust-proof structure, or the dust-proof structure is installed during the installation process, and the dust-proof structure is deformed by the heat of the heat treatment. .
  • the thermal expansion coefficients of the two are the same.
  • the degree of deformation that occurs in this way is also the same, and there is no relative deformation caused by different degrees of deformation between the membrane body 1 and the carrier 2. In this way, the structure between the membrane body 1 and the carrier 2 will remain in the original state and will not be damaged. In this way, the dust-proof structure can eliminate its own deformation caused by thermal expansion.
  • the membrane body 1 and the carrier 2 of the same metal material.
  • the material of the membrane body 1 and the carrier 2 is metal, and the coefficient of thermal expansion is much lower than that of organic materials, and the deformation amount of the membrane body 1 and the carrier 2 is very small when they are expanded by heat.
  • the expansion degree of the membrane body 1 and the carrier 2 are the same, and the membrane body 1 deforms synchronously with respect to the carrier 2. This can eliminate the deformation of the dust-proof structure caused by the expansion of the membrane body 1 and the carrier 2 to different degrees.
  • the material of the carrier 2 is nickel or copper. Using nickel or copper as the material of the carrier 2 enables the carrier 2 to have a lower coefficient of thermal expansion. The deformation of the carrier 2 during the heat treatment process is reduced.
  • the material of the film body 1 may also be nickel or copper, and the thermal expansion coefficients of nickel and copper are lower, which can reduce the deformation of the film body 1 during the heat treatment process.
  • the carrier 2 includes at least one layer of structure.
  • the carrier 2 has the function of supporting the overall structure in the dust-proof structure.
  • the thickness of the carrier 2 can affect the size of the dust-proof structure. Under different requirements, the size requirements of the dust-proof structure are also different.
  • the dust-proof structure can be arranged in at least one layer structure, such as a one-layer structure, a two-layer structure, a three-layer structure, and the like. In this way, the size of the dust-proof structure can be controlled by setting the number of layers of the carrier 2.
  • Carriers 2 with different layers have different process steps during manufacturing, and the number of layers can be adjusted according to requirements to simplify the process steps for manufacturing the carrier 2. Those skilled in the art can select the number of layers of the carrier 2 according to actual needs.
  • the carrier 2 includes a first carrier layer 21 and a second carrier layer 22.
  • the membrane body 1 includes at least one layer of structure.
  • the membrane body 1 has the function of filtering and preventing dust in the dust-proof structure.
  • the number of layers of the membrane body 1 determines the number of filtrations and can affect the ability to prevent dust.
  • the number of layers of the membrane body 1 can also affect the thickness of the entire dust-proof structure and the size of the dust-proof structure. Those skilled in the art can select a suitable number of layers of the film body 1 according to different dust-proof requirements, so that the dust-proof structure can have a suitable dust-proof capability and a suitable size.
  • the membrane body 1 includes a first membrane body layer 11, a second membrane body layer 12 and a third membrane body layer 13.
  • the metal material of the membrane body 1 is a single element metal or alloy.
  • the thermal expansion coefficient of the membrane body 1 made of single-element metal or alloy can reach a low value, which can ensure that the membrane body 1 maintains a low amount of deformation during thermal deformation, which helps reduce the deformation of the dust-proof structure. Protect the dust-proof structure from damage due to deformation.
  • the metal material of the carrier 2 is a single element metal or alloy.
  • the coefficient of thermal expansion of the carrier 2 made of single-element metal or alloy can reach a low value, which can ensure that the carrier 2 maintains a low amount of deformation during thermal deformation, helps reduce the deformation of the dust-proof structure, and protects against The dust structure will not be damaged by deformation.
  • the carrier 2 includes a multilayer structure.
  • the thermal expansion coefficient of the outermost structure on the side away from the film body 1 is lower than that of the structures of other layers.
  • the carrier 2 includes a multilayer structure.
  • the structure of the outermost layer on the side away from the film body 1 is set to a structure having a lower thermal expansion coefficient than other layers. In this way, the amount of deformation of the outermost structure of the carrier 2 when the carrier 2 is heated and expanded is the smallest.
  • the outermost layer of the carrier 2 is in contact with the installation site.
  • the heat received during thermal bonding is the most.
  • Setting the structure of the outermost layer to have a lower thermal expansion coefficient than other layers can minimize the deformation of the structure of the outermost layer during expansion and deformation, and can reduce the deformation between the dust-proof structure and the installation site. Improve the reliability of the installation of dust-proof structure.
  • the carrier 2 is an integral structure, and the deformation of the outermost layer structure is reduced, which can limit the deformation amount of the structure of other layers.
  • the coefficient of thermal expansion of each layer structure is reduced layer by layer along the side where the membrane body 1 is located to the side far away from the membrane body 1.
  • the carrier 2 of the multilayer structure is arranged from the side where the film body 1 is located to the side away from the film body 1, and the thermal expansion coefficient of each layer structure is reduced layer by layer.
  • each layer of structural material of the carrier 2 uses different metal materials, so that the coefficient of thermal expansion of the carrier 2 changes layer by layer.
  • the structure on the side away from the membrane body 1 is the outermost structure.
  • the dust-proof structure is installed through heat treatment.
  • the dust-proof structure is installed by thermal bonding.
  • the outermost metal material of the carrier 2 has the lowest thermal expansion coefficient and the least amount of deformation when affected by heat.
  • the outermost structure of the carrier 2 is directly bonded to the installation position, and the outermost structure receives the most heat, which decreases layer by layer toward the side of the film body 1.
  • the carrier 2 is arranged from the side where the film body 1 is located to the side far away from the film body 1.
  • the thermal expansion coefficient of each layer structure is reduced layer by layer, which can effectively suppress the expansion and deformation of the carrier 2 and make the deformation between each layer structure more uniform , Effectively reducing the deformation of the carrier.
  • the coefficient of thermal expansion of the first carrier layer 21 may be greater than the coefficient of thermal expansion of the second carrier layer 22.
  • the second carrier layer 22 is in direct contact with the mounting part and is more affected by heat.
  • the deformation of the second carrier layer 22 after being heated is smaller than that of the first carrier layer 21.
  • the carrier deformation can be better suppressed.
  • the structure of the dust-proof structure is not destroyed.
  • the thickness of the carrier 2 is 10um-70um.
  • the dust-proof structure can meet actual size requirements.
  • the carrier 2 is within this range, it is possible to prevent the adhesive from being attached to the carrier 2 along both sides after being heated and melted during the heat treatment process. Improve the reliability of dust-proof structure installation.
  • Fig. 4 is a process diagram of deformation in the process of installing a dust-proof structure in the prior art. among them,
  • the adhesive 4 on the printed substrate 3 softens after being heated, and the carrier 2 and the film body 1 are deformed.
  • the temperature drops, the carrier 2 and the film body 1 return to the original state, but the adhesive 4 begins to solidify, fixing the carrier 2 and the film body 1 in the deformed structure. In this way, the dust-proof structure is maintained in the deformed structure, which will cause damage to the dust-proof structure.
  • FIG. 5 is a process diagram of a deformation process in which the carrier and the membrane body are different metals in an embodiment of the present disclosure. among them,
  • the adhesive 4 on the printed substrate 3 softens after being heated, and the carrier 2 and the film body 1 are deformed.
  • the carrier 2 and the membrane body 1 are metals of different materials, and the thermal expansion coefficient of the membrane body 1 is less than the thermal expansion coefficient of the carrier 2.
  • the carrier 2 is a metal material with a small amount of deformation, and the deformation amount of the membrane body 1 is smaller than that of the carrier 2.
  • Fig. 6 is a process diagram of the deformation of the carrier and the membrane body in the embodiment of the same metal.
  • the adhesive 4 on the printed substrate 3 softens after being heated, and the carrier 2 and the film body 1 are deformed.
  • the carrier 2 and the membrane body 1 are metal of the same material, and the thermal expansion coefficients of the carrier 2 and the membrane body 1 are the same.
  • the carrier 2 and the film body 1 undergo the same expansion, which can eliminate the deformation caused by the expansion.
  • the dust-proof structure can maintain the original shape, which improves the reliability of the dust-proof structure in the heat treatment process.
  • a microphone packaging structure includes the above-mentioned dust-proof structure, and the dust-proof structure is fixed on the sound hole 31 of the microphone packaging structure;
  • the dust-proof structure covers the MEMS chip 32 in the microphone packaging structure.
  • the microphone packaging structure includes a housing forming a accommodating cavity and a substrate fixed to the housing.
  • the sound hole 31 may be provided on the substrate or on the housing.
  • the dust-proof structure is fixed on the sound hole 31 from the outside of the microphone packaging structure to protect the components in the microphone packaging structure from the outside.
  • the dust-proof structure is fixed on the sound hole 31 from the inside of the microphone packaging structure to protect the components of the microphone packaging structure from the inside.
  • the dust-proof structure is fixed on the substrate to protect the sound hole 31 and the inside of the microphone packaging structure.
  • the MEMS chip 32 is fixed by a dust-proof structure.
  • the dustproof structure is fixed inside the microphone packaging structure and covers the MEMS chip 32. This can protect the MEMS chip 32.
  • the carrier 2 can be fixed on the substrate where the MEMS chip 32 is located to form a coating.
  • the carrier 2 can also be fixed on the substrate of the MEMS chip 32 to form a cladding. All of the above structures can form a protective effect on the MEMS chip 32.
  • the microphone packaging structure can effectively prevent damage to the dust-proof structure caused by heat during the installation and use of the microphone. And it can protect the components in the microphone.
  • the MEMS chip 32 is protected from contamination by pollutants such as external dust.
  • an electronic device including the aforementioned microphone packaging structure.
  • the electronic device includes the above-mentioned microphone and has all the advantages of the above-mentioned microphone packaging structure.
  • the electronic equipment can be audio equipment, mobile phones, computers and other products.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种防尘结构、麦克风封装结构以及电子设备,包括:载体,所述载体为金属材料,载体的中部形成有通孔;膜体,所述膜体为金属材料,膜体包括网格结构和围绕所述网格结构设置的连接部,所述网格结构覆盖在所述通孔的一端,所述连接部连接在所述载体上。本发明的一个技术效果在于,通过将载体与膜体全部设置为金属材料,使防尘结构的载体的热膨胀系数降低,减少防尘结构受热量影响后发生的形变量。

Description

防尘结构、麦克风封装结构以及电子设备 技术领域
本发明涉及声电技术领域,更具体地,涉及一种防尘结构、麦克风封装结构以及电子设备。
背景技术
麦克风内部具有精密的元件。在麦克风使用的过程中,外界的灰尘以及其他污染物会从声孔进入内部,会对元件的性能造成影响。
防尘结构在装配到印刷基板的过程中,或者装配到印刷基板上后的使用过程中,都会受热。受热后的防尘结构自身会产生变形,因不同部件间的热膨胀系数不同,受热后防尘结构的变形会导致从基板上脱落或损坏。
因此,需要提供一种新的技术方案,以解决上述问题。
发明内容
本发明的一个目的是提供一种防尘结构、麦克风封装结构以及电子设备的新技术方案。
根据本发明的第一方面,提供了一种防尘结构,包括;
载体,所述载体为金属材料,载体的中部形成有通孔;
膜体,所述膜体为金属材料,膜体包括网格结构和围绕所述网格结构设置的连接部,所述网格结构覆盖在所述通孔的一端,所述连接部连接在所述载体上。
可选地,所述膜体和所述载体为相同的金属材料。
可选地,所述载体的材料为镍或铜。
可选地,所述载体包括至少一层结构。
可选地,所述膜体包括至少一层结构。
可选地,所述膜体的金属材料为单元素金属或合金。
可选地,所述载体的金属材料为单元素金属或合金。
可选地,所述载体包括多层结构,在载体中,远离所述膜体一侧的最外层结构的热膨胀系数低于其他层的结构的热膨胀系数。
可选地,在所述载体中,沿膜体所在一侧到远离膜体的一侧,每层结构的热膨胀系数逐层降低。
可选地,所述载体的厚度为10um-70um。
根据本发明的第二方面,提供了一种麦克风封装结构,包括上述任意一项的防尘结构,所述防尘结构固定在麦克风封装结构的声孔上;
或者,所述防尘结构包覆麦克风封装结构内的MEMS芯片。
根据本发明的第三方面,提供了一种电子设备,包括上述的麦克风封装结构。
根据本公开的一个实施例,通过将载体与膜体全部设置为金属材料,使防尘结构的载体的热膨胀系数降低,减少防尘结构受热量影响后发生的形变量。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本公开的一个是实施例中的防尘结构的结构示意图。
图2是本公开的一个是实施例中的载体和膜体为相同金属的结构示意图。
图3是本公开的一个是实施例中的载体和膜体均为多层结构的结构示意图。
图4是现有技术中安装防尘结构的过程中发生形变的过程图。
图5是本公开的一个是实施例中的载体和膜体为不同金属的发生形变的过程图。
图6是本公开的一个是实施例中的载体和膜体为相同金属的发生形变的过程图。
图7本公开的一个是实施例中的在麦克风封装结构基板上的声孔内设置防尘结构结构示意图。
图8本公开的一个是实施例中的在麦克风封装结构基板上的MEMS芯片处设置防尘结构结构示意图。
图中,1为膜体,11为第一膜体,12为第二膜体,13为第三膜体,2为载体,21为第一载体,22为第二载体,3为印刷基板,31为声孔,32为MEMS芯片,4为粘接剂。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本公开的一个实施例,提供了一种防尘结构,如图1所示,该防尘结构包括;
载体2,所述载体2为金属材料,载体2的中部形成有通孔;
膜体1,所述膜体1为金属材料,膜体1包括网格结构和围绕所述网格结构设置的连接部,所述网格结构覆盖在所述通孔的一端,所述连接部 连接在所述载体2上。
在制造以及安装该防尘结构的过程中,会使用热粘接的工序进行。过程中防尘结构受热会使载体2和膜体1发生变形,该变形时因材料本身的热膨胀性质发生的,变形无法控制。
在该实施例中,载体2对膜体1形成支撑,膜体1通过连接部与载体2固定在一起,使网格结构覆盖在通孔的一端。网格结构对通孔具有过滤的作用,例如,过滤掉经过通过的空气中的灰尘等污染物,使该防尘结构起到防尘的作用。
膜体1和载体2都使用金属材料制成,金属材料相对于有机材料热膨胀系数更低。这样制成的的防尘结构相对于现有的载体为有机材料的防尘结构的热膨胀系数更低。在进行有热处理的工序时,防尘结构受热后的热变形会减少很多,能够有效抑制防尘结构的形状发生变形。例如,通过热粘接工艺进行粘接时,该实施例中能够有效抑制防尘结构发生的变形。
例如,载体2的材料为金属材料与载体2使用有机材料相比,热膨胀系数更低。在进行热处理工序的过程中,载体2变形的程度更小,有效抑制了载体2的形状变形。这样在安装防尘结构的过程中,载体2更符合设定的形状,更方便安装。
在一个实施例中,如图2所示,膜体1和载体2为相同的金属材料。
在该实施例中,膜体1和载体2选用相同的金属材料制成。相同的金属材料的性质相同,其热膨胀系数也就相同,在收到热量影响时发生的并行程度也相同。
膜体1和载体2为相同金属材料,膜体1和载体2制成防尘结构的过程中,或者,制成的防尘结构在安装的过程中,防尘结构受到热处理的热量影响发生变形。变形过程中,因膜体1和载体2的材料相同,两者热膨胀系数相同。这样发生的变形程度也相同,膜体1和载体2之间不会存在变形程度不同而引起的相对的变形。这样膜体1和载体2之间的结构会保持原有的状态,不会被损坏。这样防尘结构就能够消除因热膨胀引起的自身的变形。
例如,同样金属材料的膜体1和载体2。首先,膜体1和载体2的材 料为金属,热膨胀系数远低于有机材料,本身受热膨胀时的形变量很小。其次,膜体1和载体2的膨胀程度相同,膜体1相对于载体2同步变形。这样能够消除因膜体1和载体2不同程度膨胀引起的防尘结构变形。
例如,载体2的材料是镍或铜。使用镍或铜做为载体2的材料能使载体2具有更低的热膨胀系数。减小热处理工序过程中载体2的变形。例如,膜体1的材料也可以是镍或铜,镍和铜的热膨胀系数更低,能够减小热处理工序过程中膜体1的变形。
在一个实施例中,载体2包括至少一层结构。
载体2在防尘结构中具有支撑整体结构的作用。载体2的厚度能够影响防尘结构的尺寸。在不同的需求下,对防尘结构的尺寸要求也不同。防尘结构可以设置成至少一层结构,例如一层结构、两层结构、三层结构等。这样能够通过设定载体2的层数控制防尘结构的尺寸。
不同层数的载体2在制造时工艺步骤不同,可以根据需求调整层数,以简化制造载体2的工艺步骤。本领域技术人员可根据实际需求选择载体2的层数。
例如图3所示,载体2包括第一载体层21和第二载体层22.
在一个实施例中,膜体1包括至少一层结构。
膜体1在防尘结构中具有过滤防尘的作用。膜体1的层数决定过滤次数,能够影响防尘的能力。并且,膜体1的层数也能够影响防尘结构整体的厚底,影响防尘结构的尺寸。本领域技术人员可根据不同的防尘需求,可以选择合适的膜体1的层数,这样能够使防尘结构具有合适的防尘能力以及和合适的尺寸。
例如图3所示,膜体1包括第一膜体层11、第二膜体层12和第三膜体层13。
在一个实施例中,膜体1的金属材料为单元素金属或合金。
单元素金属或合金制成的膜体1的热膨胀系数都能达到较低的值,这样能够保障膜体1在受热变形时保持较低的形变量,有助于减小防尘结构的形变,保护防尘结构不会因变形而损坏。
在一个实施例中,载体2的金属材料为单元素金属或合金。
单元素金属或合金制成的载体2的热膨胀系数都能达到较低的值,这样能够保障载体2在受热变形时保持较低的形变量,有助于减小防尘结构的形变,保护防尘结构不会因变形而损坏。
在一个实施例中,如图3所示,载体2包括多层结构,在载体2中,远离所述膜体1一侧的最外层结构的热膨胀系数低于其他层的结构的热膨胀系数。
在该实施例中,载体2包括多层结构。在这样结构的载体2中,将远离膜体1一侧最外层的结构设定为热膨胀系数低于其它层的结构。这样载体2的最外层的结构在载体2受热膨胀时的变形量是最小的。
在安装防尘结构的过程中,载体2的最外层与安装部位接触。热粘接时受到的热量最多。将最外层的结构设定为热膨胀系数低于其它层的结构,能够使该最外层的结构在膨胀变形时变形最小,能够减小防尘结构与安装部位间发生的变形。提高了安装防尘结构的可靠性。并且,载体2是一个整体的结构,最外层结构变形减小了,能够限制其他层的结构的变形量。
在一个实施例中,在载体2中,沿膜体1所在一侧到远离膜体1的一侧,每层结构的热膨胀系数逐层降低。
在该实施例中,将多层结构的载体2设置为沿膜体1所在一侧到远离膜体1的一侧,每层结构的热膨胀系数逐层降低。例如,载体2的每层结构材料用不同金属材料,以使载体2的热膨胀系数逐层变化。远离膜体1的一侧的结构即为最外层的结构。
在防尘结构安装的过程中,通过热处理进行安装。例如,通过热粘接的方式对防尘结构进行安装。载体2的最外层金属材料的热膨胀系数最低,受到热量影响时形变的量最少。载体2的最外层结构与安装位置直接粘接,最外层结构受到的热量最多,向膜体1一侧逐层减少。将载体2设置为沿膜体1所在一侧到远离膜体1的一侧,每层结构的热膨胀系数逐层降低,能够有效抑制载体2的膨胀变形,并且使每层结构间的变形更加均匀,有效减少了载体的形变量。
例如图3所示,可以是第一载体层21的热膨胀系数>第二载体层22的热膨胀系数。这种情形下,第二载体层22与安装部位直接接触,受到热 量的影响更大,第二载体层22受热后形变量相比于第一载体层21更小。可以更好地抑制载体变形。保护防尘结构的结构不被破坏。
在一个实施例中,载体2的厚度为10um-70um。
在该厚度范围内,防尘结构能够满足实际尺寸需求。载体2在该范围内,能够避免在热处理工序中粘接剂受热融化后沿两侧附着在载体2上。提高防尘结构安装的可靠性。
图4为现有技术中安装防尘结构的过程中发生形变的过程图。其中,
印刷基板3上的粘接剂4受热后软化,载体2和膜体1发生形变。
防尘结构不受热后温度下降,载体2和膜体1向原状态恢复,但粘接剂4开始固化,将载体2和膜体1固定在形变后结构。这样就使防尘结构保持形变后的结构,会对防尘结构造成损伤。
图5为本公开的一个是实施例中的载体和膜体为不同金属的发生形变的过程图。其中,
印刷基板3上的粘接剂4受热后软化,载体2和膜体1发生形变。
载体2与膜体1为不同材料的金属,膜体1的热膨胀系数<载体2的热膨胀系数。载体2为金属材料,形变量很小,膜体1相比于载体2的形变量更小。在防尘结构不受热后温度下降,载体2和膜体1向原状态恢复,粘接剂4开始固化。重新固定后载体2和膜体1的形变量很小,不会对防尘结构造成损伤。防尘结构整体的形变很小。
图6本公开的一个是实施例中的载体和膜体为相同金属的发生形变的过程图。
印刷基板3上的粘接剂4受热后软化,载体2和膜体1发生形变。
载体2和膜体1为相同材料的金属,载体2和膜体1的热膨胀系数相同。在使用粘接剂4热粘接过程中,载体2和膜体1发生相同的膨胀,这样能够消除因膨胀引起的变形。在粘接剂4重新固化后,防尘结构能够保持原有形状,提高了防尘结构在热处理工序中的可靠性。
根据本发明的一个实施例,提供了一种麦克风封装结构,该麦克风封装结构包括上述的防尘结构,所述防尘结构固定在麦克风封装结构的声孔31上;
或者,所述防尘结构包覆麦克风封装结构内的MEMS芯片32。
一般地,麦克风封装结构包括形成容纳腔的壳体和与该壳体固定的基板。声孔31可以设置在基板上,也可以设置在壳体上。
在该实施例中,可以是,防尘结构从麦克风封装结构的外部固定在声孔31上,从外部对麦克风封装结构内的元器件起到保护作用。
也可以是,如图7所示,防尘结构从麦克风封装结构的内部固定在声孔31上,从内部对麦克风封装结构的元器件起到保护作用。
也可以是,如图8所示,防尘结构从固定在基板上,对声孔31与麦克风封装结构的内部起到保护作用。MEMS芯片32通过防尘结构固定。
还可以是,防尘结构固定在麦克风封装结构的内部,并包覆MEMS芯片32。这样能够对MEMS芯片32形成保护。这种结构中,可以将载体2固定在MEMS芯片32所在的基板上,形成包覆。也可以将载体2固定在MEMS芯片32的衬底上,形成包覆。以上结构都能够对MEMS芯片32形成保护作用。
该麦克风封装结构能够在麦克风安装和使用过程中有效防止受热导致的防尘结构损坏。并且能够对麦克风内的元器件形成保护。例如,保护MEMS芯片32不被外界灰尘等污染物污染。
根据本公开的一个实施例,提供了一种电子设备,包括上述的麦克风封装结构。
该电子设备包括上述麦克风,具有上述麦克风封装结构的所有优点。例如,电子设备可以是音响设备、手机、电脑等产品。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (12)

  1. 一种防尘结构,其特征在于,包括;
    载体,所述载体为金属材料,载体的中部形成有通孔;
    膜体,所述膜体为金属材料,膜体包括网格结构和围绕所述网格结构设置的连接部,所述网格结构覆盖在所述通孔的一端,所述连接部连接在所述载体上。
  2. 根据权利要求1所述的防尘结构,其特征在于,所述膜体和所述载体为相同的金属材料。
  3. 根据权利要求1所述的防尘结构,其特征在于,所述载体的材料为镍或铜。
  4. 根据权利要求1所述的防尘结构,其特征在于,所述载体包括至少一层结构。
  5. 根据权利要求1所述的防尘结构,其特征在于,所述膜体包括至少一层结构。
  6. 根据权利要求1所述的防尘结构,其特征在于,所述膜体的金属材料为单元素金属或合金。
  7. 根据权利要求1所述的防尘结构,其特征在于,所述载体的金属材料为单元素金属或合金。
  8. 根据权利要求1所述的防尘结构,其特征在于,所述载体包括多层结构,在载体中,远离所述膜体一侧的最外层结构的热膨胀系数低于其他层的结构的热膨胀系数。
  9. 根据权利要求8所述的防尘结构,其特征在于,在所述载体中,沿膜体所在一侧到远离膜体的一侧,每层结构的热膨胀系数逐层降低。
  10. 根据权利要求1-9中任意一项所述的防尘结构,其特征在于,所述载体的厚度为10um-70um。
  11. 一种麦克风封装结构,其特征在于,包括权利要求1-10中任意一项所述的防尘结构,所述防尘结构固定在麦克风封装结构的声孔上;
    或者,所述防尘结构包覆麦克风封装结构内的MEMS芯片。
  12. 一种电子设备,其特征在于,包括权利要求11所述的麦克风封装结构。
PCT/CN2020/099338 2019-12-31 2020-06-30 防尘结构、麦克风封装结构以及电子设备 WO2021135124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911415584.8A CN110972046A (zh) 2019-12-31 2019-12-31 防尘结构、麦克风封装结构以及电子设备
CN201911415584.8 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135124A1 true WO2021135124A1 (zh) 2021-07-08

Family

ID=70037595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099338 WO2021135124A1 (zh) 2019-12-31 2020-06-30 防尘结构、麦克风封装结构以及电子设备

Country Status (2)

Country Link
CN (1) CN110972046A (zh)
WO (1) WO2021135124A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972046A (zh) * 2019-12-31 2020-04-07 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972047A (zh) * 2019-12-31 2020-04-07 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备
CN111711912A (zh) * 2020-06-30 2020-09-25 歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风
CN111711909B (zh) * 2020-06-30 2022-08-09 歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风
CN111711908A (zh) * 2020-06-30 2020-09-25 歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风
CN112492480A (zh) * 2020-12-02 2021-03-12 潍坊歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2896769Y (zh) * 2006-05-25 2007-05-02 潍坊歌尔电子有限公司 驻极体电容式传声器
CN108141679A (zh) * 2015-08-07 2018-06-08 美商楼氏电子有限公司 用于减少微粒渗入mems麦克风封装件的声室中的入口防护部
WO2019011748A1 (en) * 2017-07-10 2019-01-17 Tdk Electronics Ag MEMS DEVICE WITH PARTICLE FILTER AND METHOD OF MANUFACTURE
CN208540162U (zh) * 2018-02-11 2019-02-22 瑞声科技(新加坡)有限公司 Mems麦克风
CN109890748A (zh) * 2017-06-09 2019-06-14 歌尔股份有限公司 Mems麦克风、其制造方法以及电子设备
CN110267173A (zh) * 2019-06-28 2019-09-20 歌尔股份有限公司 一种微型过滤器及声学设备
CN110351618A (zh) * 2019-06-28 2019-10-18 歌尔股份有限公司 一种微型过滤器及声学设备
CN110972046A (zh) * 2019-12-31 2020-04-07 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378396B2 (ja) * 1995-02-17 2003-02-17 株式会社東芝 超音波プローブ
JP2010514172A (ja) * 2006-12-22 2010-04-30 パルス・エムイーエムエス・アンパルトセルスカブ 低い熱膨張係数を有するアンダーフィル剤を用いるマイクロフォン組立品
JP4983282B2 (ja) * 2007-02-07 2012-07-25 パナソニック株式会社 音響整合部材
JP2014199983A (ja) * 2013-03-29 2014-10-23 富士通株式会社 電子装置
CN106158735B (zh) * 2015-04-21 2019-02-01 中芯国际集成电路制造(上海)有限公司 半导体器件制作方法、半导体器件及电子装置
CN207968794U (zh) * 2018-01-17 2018-10-12 深圳市诚壹科技有限公司 移动终端及其听筒
CN110265521B (zh) * 2019-04-29 2020-10-27 华灿光电(苏州)有限公司 倒装发光二极管芯片及其制作方法
CN211047217U (zh) * 2019-12-31 2020-07-17 潍坊歌尔微电子有限公司 防尘结构、麦克风封装结构以及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2896769Y (zh) * 2006-05-25 2007-05-02 潍坊歌尔电子有限公司 驻极体电容式传声器
CN108141679A (zh) * 2015-08-07 2018-06-08 美商楼氏电子有限公司 用于减少微粒渗入mems麦克风封装件的声室中的入口防护部
CN109890748A (zh) * 2017-06-09 2019-06-14 歌尔股份有限公司 Mems麦克风、其制造方法以及电子设备
WO2019011748A1 (en) * 2017-07-10 2019-01-17 Tdk Electronics Ag MEMS DEVICE WITH PARTICLE FILTER AND METHOD OF MANUFACTURE
CN208540162U (zh) * 2018-02-11 2019-02-22 瑞声科技(新加坡)有限公司 Mems麦克风
CN110267173A (zh) * 2019-06-28 2019-09-20 歌尔股份有限公司 一种微型过滤器及声学设备
CN110351618A (zh) * 2019-06-28 2019-10-18 歌尔股份有限公司 一种微型过滤器及声学设备
CN110972046A (zh) * 2019-12-31 2020-04-07 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972046A (zh) * 2019-12-31 2020-04-07 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备

Also Published As

Publication number Publication date
CN110972046A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2021135124A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135108A1 (zh) 防尘结构、麦克风封装结构以及电子设备
JP6175001B2 (ja) 電子デバイスエンクロージャおよび電子デバイスを組み立てる方法
WO2021135109A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135122A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135111A1 (zh) 用于mems器件的防尘结构及mems麦克风封装结构
JP2006203086A (ja) 電子部品パッケージ及びその製造方法
WO2021135115A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135116A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135110A1 (zh) 用于mems器件的防尘结构及mems麦克风封装结构
CN110933579A (zh) 防尘结构、麦克风封装结构以及电子设备
CN110972047A (zh) 防尘结构、麦克风封装结构以及电子设备
JP4692816B2 (ja) フレキシブルプリント基板
CN211047217U (zh) 防尘结构、麦克风封装结构以及电子设备
US20150334846A1 (en) Electronic component module
CN211047215U (zh) 用于mems器件的防尘结构及mems麦克风封装结构
WO2021135119A1 (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
JP2010141870A (ja) シリコンマイクロホンモジュール及びその製造方法
WO2021135120A1 (zh) 防尘结构、麦克风封装结构以及电子设备
US20150334885A1 (en) Magnetism suppressing sheet and manufacturing method thereof
CN111711908A (zh) 微型麦克风防尘装置及mems麦克风
CN211047214U (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
JP2005242501A (ja) パネル構造及びその取り付け構造
CN211352441U (zh) 防尘结构、麦克风封装结构以及电子设备
US11542152B2 (en) Semiconductor package with flexible interconnect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909291

Country of ref document: EP

Kind code of ref document: A1