WO2021131283A1 - アンテナモジュールおよびそれを搭載する通信装置 - Google Patents

アンテナモジュールおよびそれを搭載する通信装置 Download PDF

Info

Publication number
WO2021131283A1
WO2021131283A1 PCT/JP2020/039808 JP2020039808W WO2021131283A1 WO 2021131283 A1 WO2021131283 A1 WO 2021131283A1 JP 2020039808 W JP2020039808 W JP 2020039808W WO 2021131283 A1 WO2021131283 A1 WO 2021131283A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
radiating
antenna module
wiring
sub
Prior art date
Application number
PCT/JP2020/039808
Other languages
English (en)
French (fr)
Inventor
薫 須藤
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021131283A1 publication Critical patent/WO2021131283A1/ja
Priority to US17/847,239 priority Critical patent/US20220328971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • the present disclosure relates to an antenna module and a communication device on which the antenna module is mounted, and more specifically, to a structure for expanding the frequency bandwidth of the antenna module.
  • Patent Document 1 discloses an array antenna in which a plurality of patch antennas having the same shape are arranged at equal pitches.
  • Patent Document 2 in an array antenna having a plurality of flat plate-shaped radiating elements linearly arranged on a dielectric substrate, the element width of the inner radiating element is outside. A configuration narrower than the element width of the radiating element of the above is disclosed.
  • the directional gain of the inner radiating element becomes higher than the directional gain of the outer radiating element, and the side lobe of the emitted radio wave Can be reduced.
  • Japanese Patent Application Laid-Open No. 2019-92130 discloses a configuration of a dual band type patch antenna in which a high frequency signal is supplied from a common power supply wiring to two patch antennas having different sizes. There is.
  • an open stub is arranged in the wiring portion from the branch point of the power feeding wiring to each radiating element, and is supplied to one radiating element. It is possible to suppress the transmission of the high frequency signal to the other radiating element.
  • 5G 5th generation mobile communication system
  • a plurality of radiating elements are used to perform advanced beamforming and spatial multiplexing, and in addition to the conventionally used 6 GHz band frequency signal, a higher frequency (several tens of GHz) millimeter wave band is used.
  • a higher frequency (several tens of GHz) millimeter wave band is used.
  • the present disclosure has been made to solve such a problem, and an object thereof is to expand the frequency bandwidth in the antenna module.
  • the antenna module according to the present disclosure is a first power supply that supplies a high frequency signal common to the first radiating element and the second radiating element that emit radio waves in the first polarization direction and the first radiating element and the second radiating element. Equipped with wiring.
  • the first radiating element and the second radiating element are arranged adjacent to each other.
  • the first power feeding wiring includes a first common wiring and a first wiring and a second wiring branched from the first common wiring.
  • the first wiring and the second wiring are coupled to the first radiating element and the second radiating element, respectively.
  • the frequency characteristic of the impedance of the first radiating element is different from the frequency characteristic of the impedance of the second radiating element.
  • the frequency band in which the reflection loss is equal to or less than a predetermined value is defined as the operable bandwidth in each radiating element, the operating bandwidth of the first radiating element and the operable bandwidth of the second radiating element partially overlap. ing.
  • the frequency characteristics of the impedances of the two radiating elements to which the high frequency signal is supplied from the common feeding wiring are different, and the operable bandwidths of the two radiating elements partially overlap. It is configured to do. With such a configuration, the frequency bandwidth of the entire antenna module is a superposition of the frequency bandwidths of each radiating element. Therefore, the frequency bandwidth in the antenna module can be expanded.
  • FIG. 5 is a block diagram of a communication device to which the antenna module according to the first embodiment is applied.
  • FIG. 5 is a plan view and a side perspective view of the antenna module according to the first embodiment of the first embodiment. It is a figure for demonstrating the principle of expanding a frequency bandwidth in Embodiment 1.
  • FIG. FIG. 1 is a diagram for explaining an operable bandwidth in the first embodiment and the first comparative example.
  • FIG. 2 is a diagram for explaining an operable bandwidth in the first embodiment and the first comparative example.
  • FIG. 1 is a diagram for explaining an operable bandwidth in the second embodiment and the second comparative example.
  • FIG. 2 is a diagram for explaining an operable bandwidth in the second embodiment and the second comparative example. It is a top view of the antenna module which concerns on Example 3.
  • FIG. 1 is a diagram for explaining an operable bandwidth in the first embodiment and the first comparative example.
  • FIG. 2 is a diagram for explaining an operable bandwidth in the second embodiment and the second comparative example. It is
  • FIG. 1 is a diagram for explaining an operable bandwidth in the third embodiment and the third comparative example.
  • FIG. 2 is a diagram for explaining an operable bandwidth in the third embodiment and the third comparative example.
  • FIG. 3 is a diagram for explaining the operable bandwidth in the third embodiment and the third comparative example.
  • FIG. 4 is a diagram for explaining an operable bandwidth in the third embodiment and the third comparative example. It is a top view of the antenna module which concerns on Example 4.
  • FIG. FIG. 1 is a diagram for explaining an operable bandwidth in the fourth embodiment and the fourth comparative example.
  • FIG. 2 is a diagram for explaining an operable bandwidth in the fourth embodiment and the fourth comparative example. It is a side perspective view of the antenna module which concerns on Example 5.
  • FIG. FIG. 1 is a diagram for explaining an operable bandwidth in the third embodiment and the third comparative example.
  • FIG. 3 is a diagram for explaining the operable bandwidth in the third embodiment and the third comparative example.
  • FIG. 4 is a diagram for explaining an oper
  • FIG. 1 is a diagram for explaining an operable bandwidth in the fifth embodiment and the fifth comparative example. It is a 2nd figure for demonstrating the operable bandwidth in Example 5 and Comparative Example 5. It is a top view of the antenna module which concerns on Example 6.
  • FIG. 1 is a diagram for explaining an operable bandwidth in Example 6 and Comparative Example 6. It is a 2nd figure for demonstrating the operable bandwidth in Example 6 and Comparative Example 6. It is a 3rd figure for demonstrating the operable bandwidth in Example 6 and Comparative Example 6. It is a top view of the antenna module which concerns on Example 7.
  • FIG. It is a top view and a side view of the 1st example of the antenna module which concerns on Example 8.
  • FIG. It is a top view of the 2nd example of the antenna module which concerns on Example 8.
  • FIG. It is a top view of the antenna module of the comparative example 8. It is a figure for demonstrating the operable bandwidth in Example 8 and Comparative Example 8. It is a top view of the antenna module which concerns on Example 9.
  • FIG. It is a top view of the antenna module which concerns on modification 1.
  • FIG. It is a top view of the antenna module which concerns on modification 2.
  • FIG. It is a top view of the antenna module which concerns on Example 21 of Embodiment 2.
  • FIG. It is a top view of the antenna module of the comparative example. It is a top view of the antenna module which concerns on Example 22. It is a top view of the antenna module which concerns on Example 23. It is a top view of the antenna module which concerns on Example 24. It is a top view of the antenna module which concerns on Example 25.
  • FIG. 3 is a plan view and a side perspective view of the antenna module according to the 31st embodiment of the third embodiment. It is a figure for demonstrating the frequency characteristic of each radiating element in Example 31. It is a side perspective view of the antenna module which concerns on modification 3.
  • FIG. It is a top view of the antenna module which concerns on Example 32. It is a figure for demonstrating the frequency characteristic of the gain of the antenna module which concerns on Example 32.
  • FIG. 3 is a plan view and a side perspective view of the antenna module according to the thirty-third embodiment. It is a figure for demonstrating the frequency characteristic of each radiating element in Example 33. It is a figure for demonstrating the frequency characteristic of the gain of the antenna module which concerns on Example 33.
  • FIG 3 is a plan view and a side perspective view of the antenna module according to the thirty-fourth embodiment. It is a figure for demonstrating the frequency characteristic of each radiating element in Example 34. It is a figure for demonstrating the frequency characteristic of the gain of the antenna module which concerns on Example 34. It is a top view and a side perspective view of the antenna module which concerns on Example 35. It is a figure for demonstrating the frequency characteristic of each radiating element in Example 35. It is a figure for demonstrating the frequency characteristic of the gain of the antenna module which concerns on Example 35. It is a top view of the antenna module which concerns on Example 36. It is a figure for demonstrating the frequency characteristic of the gain of the antenna module which concerns on Example 36.
  • FIG. It is a top view of the antenna module which concerns on Example 41 of Embodiment 4.
  • FIG. It is a figure for demonstrating the frequency characteristic of the gain of the antenna module which concerns on Example 41.
  • FIG. It is a side perspective view of the antenna module which concerns on modification 5.
  • FIG. It is a perspective view of the antenna module which concerns on modification 6.
  • FIG. 1 is an example of a block diagram of a communication device 10 to which the antenna module 100 according to the first embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, a personal computer having a communication function, or the like.
  • An example of the frequency band of the radio wave used for the antenna module 100 according to the present embodiment is a radio wave in the millimeter wave band having a center frequency of, for example, 28 GHz, 39 GHz, 60 GHz, etc., but radio waves in frequency bands other than the above are also available. Applicable.
  • n258, n257, n261 24.25 GHz to 29.5 GHz
  • n260, n259 37 GHz to 43.5 GHz
  • 3GPP Third Generation Partnership Project
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, and an antenna device 120.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal and radiates it from the antenna device 120, and down-converts the high-frequency signal received by the antenna device 120 to process the signal at the BBIC 200. To do.
  • the subarray 130 includes at least one radiating element.
  • FIG. 1 shows an example in which the antenna device 120 is formed by a plurality of sub-arrays 130 arranged in a two-dimensional array
  • the sub-array 130 does not necessarily have to be a plurality of sub-arrays 130, and one sub-array 130 is required.
  • the antenna device 120 may be formed. Further, it may be a one-dimensional array in which a plurality of sub-arrays 130 are arranged in a row.
  • the radiating element included in the sub-array 130 is a patch antenna having a substantially square flat plate shape.
  • the RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesizer / demultiplexer. It includes 116, a mixer 118, and an amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT side, and the switch 117 is connected to the transmitting side amplifier of the amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the low noise amplifiers 112AR to 112DR side, and the switch 117 is connected to the receiving side amplifier of the amplifier circuit 119.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116, passes through four signal paths, and is fed to different subarrays 130.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115D arranged in each signal path.
  • the received signal which is a high-frequency signal received by the radiating element of each sub-array 130, passes through four different signal paths and is combined by the signal synthesizer / demultiplexer 116.
  • the combined received signal is down-converted by the mixer 118, amplified by the amplifier circuit 119, and transmitted to the BBIC 200.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the equipment (switch, power amplifier, low noise amplifier, attenuator, phase shifter) corresponding to each sub-array 130 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding sub-array 130.
  • FIG. 2 is a plan view (FIG. 2 (a)) and a side perspective view (FIG. 2 (b)) of the antenna module 100.
  • the antenna module 100 includes an RFIC 110, radiation elements 131 and 132, a dielectric substrate 140, a power supply wiring 150, and a ground electrode GND.
  • the positive direction of the Z axis in each figure may be referred to as the upper surface side, and the negative direction may be referred to as the lower surface side.
  • the dielectric substrate 140 is, for example, a co-fired ceramics (LCC) multilayer substrate, a multilayer resin substrate formed by laminating a plurality of resin layers composed of resins such as epoxy and polyimide.
  • the dielectric substrate 140 does not necessarily have to have a multi-layer structure, and may be a single-layer substrate.
  • the dielectric substrate 140 has a rectangular planar shape, and the radiating elements 131 and 132 are arranged on the inner layer of the dielectric substrate 140 or the surface 141 on the upper surface side.
  • a flat plate-shaped ground electrode GND is arranged on a layer on the lower surface side of the radiating elements 131 and 132.
  • the RFIC 110 is arranged on the back surface 142 on the lower surface side of the dielectric substrate 140 via the solder bumps 160.
  • Radiating elements 131 and 132 are patch antennas having a substantially square flat plate shape, and are arranged adjacent to each other in the X-axis direction.
  • the element spacing GP is the distance between the radiating element 131 and the radiating element 132 when the antenna module 100 is viewed in a plan view.
  • the element size of the radiating element 131 is larger than the element size of the radiating element 132. That is, the resonance frequency of the radiating element 131 is lower than the resonance frequency of the radiating element 132.
  • the element size of the radiating element may be expressed using the resonance frequency of the radiating element.
  • the power supply wiring 150 includes wiring 151, wiring 152, and common wiring 153.
  • the common wiring 153 rises from the solder bump 160 that electrically connects the RFIC 110 through the ground electrode GND into the dielectric substrate 140, and is branched into the wiring 151 and the wiring 152 at the branch point BP.
  • the wiring 151 is coupled to the feeding point SP1 of the radiating element 131.
  • the wiring 152 is coupled to the feeding point SP2 of the radiating element 132.
  • the length of the wiring 151 and the length of the wiring 152 are set to be the same length.
  • the wiring may be directly connected to the radiating element as shown in FIG. May be combined with.
  • the feeding point SP1 of the radiating element 131 is arranged at a position offset in the negative direction of the X axis with respect to the center of the radiating element 131. Further, the feeding point SP2 of the radiating element 132 is also arranged at a position offset in the negative direction of the X axis with respect to the center of the radiating element 132. By arranging the feeding points at such positions, radio waves having the polarization direction in the X-axis direction are emitted from each radiating element.
  • the conductors constituting the radiation element, the electrode, the via forming the power feeding wiring, etc. are made of aluminum (Al), copper (Cu), gold (Au), silver (Ag), and alloys thereof. It is made of metal as the main component.
  • 5G fifth generation mobile communication system
  • a plurality of radiating elements are used to perform advanced beamforming and spatial multiplexing, and in addition to the conventionally used 6 GHz band frequency signal, a higher frequency (several tens of GHz) millimeter wave band is used.
  • a higher frequency severe tens of GHz
  • millimeter wave band is used.
  • a common high frequency signal is supplied to two radiating elements arranged adjacent to each other and having different element sizes. Since the two radiating elements have different element sizes, the resonance frequencies are different from each other, and the frequency bands in which the radiating elements can operate are set to overlap each other. With such a configuration, the frequency bandwidth of the antenna module as a whole can be expanded as compared with the case where radiating elements having the same element size are used.
  • the resonance frequencies of the radiating element 131 and the radiating element 132 are set to f1 and f2 (f1 ⁇ f2), respectively, the frequency characteristics of the impedance of each radiating element are different when viewed from the branch point BP.
  • the reflection loss of 132 is as shown by line LN1 (solid line) and line LN2 (broken line), respectively, as shown in FIG. 3A.
  • the radiating element The operable bandwidth of 131 is BW1
  • the operable bandwidth of the radiating element 132 is BW2.
  • the operable bandwidth BW0 of the antenna module 100 as a whole becomes a range from the lower limit of the operable bandwidth of the radiating element 131 to the upper limit of the operating bandwidth of the radiating element 132.
  • the antenna is compared with the case where radiating elements of the same size are used. It is possible to increase the frequency bandwidth of the module.
  • FIG. 4 and 5 are diagrams for explaining the simulation results in Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the frequency characteristics of the reflection loss.
  • FIG. 5 is a table showing readings of the operable bandwidth BW0 in each simulation result of FIG.
  • FIGS. 4 and 5 the case where the two radiating elements have the same element size (27 GHz / 27 GHz) is taken as Comparative Example 1, and the two element spacing GPs are set for the radiating elements having different element sizes (26 GHz / 28 GHz).
  • the simulation results when changed are shown in Examples 1-1 to 1-4.
  • the line LN10 shows the case of Comparative Example 1
  • the line LN11 solid line
  • Example 1-1 is shown.
  • Example 4 have element spacing GPs of 0.75 mm (Example 1-2) and 0.50 mm (Example 1), respectively. -3), the case where it is narrowed to 0.25 mm (Example 1-4) is shown.
  • the element spacing GP when the element spacing GP is 0.75 mm, it corresponds to 1/4 of the element size, and when the element spacing GP is 0.50 mm, it corresponds to 1/6 of the element size.
  • the operable bandwidth BW0 at which the reflection loss is 6 dB or less is expanded from 3.0 GHz to 3.3 GHz by using two radiating elements having the same element spacing of 1.0 mm and different element sizes. You can see that it is doing. Further, it can be seen that when radiating elements having different element sizes are used, the operable bandwidth BW0 is further expanded by narrowing the element spacing GP.
  • the element spacing GP is narrowed, the coupling between the radiating elements becomes stronger, and the reflection loss in the part between the two valleys (the overlapping part of the operable bandwidth) in the reflection loss graph gradually increases. Become. Therefore, if the element spacing GP is made too narrow, the operable bandwidth BW0 becomes narrower.
  • the element spacing GP is preferably 1/12 or more of the element size of the radiating element 132 on the high frequency side.
  • the distance between the centers of the radiating element 131 and the radiating element 132 shall be 1/2 or less of the wavelength of the radio wave emitted from the radiating element 131. Is preferable.
  • the frequency bandwidth of the antenna module is expanded by supplying a common high-frequency signal to two radiating elements having different element sizes and partially overlapping operable bandwidths. It becomes possible.
  • the "radiating element 131" and the “radiating element 132" correspond to the “first radiating element” and the “second radiating element” in the present disclosure, respectively.
  • the “feeding point SP1" and the “feeding point SP2” correspond to the "first feeding point” and the “second feeding point” in the present disclosure, respectively.
  • the “power supply wiring 150” in the first embodiment corresponds to the “first power supply wiring” in the present disclosure.
  • the “wiring 151”, “wiring 152”, and “common wiring 153" in the first embodiment correspond to the "first wiring", “second wiring”, and “first common wiring” in the present disclosure, respectively.
  • Example 2 In the examples of FIGS. 4 and 5 in the first embodiment, the frequency bandwidth when the element spacing of the two radiating elements is fixed and the element spacing is changed has been described. In the second embodiment, the frequency bandwidth when the element sizes of the two radiating elements are changed while the element spacing is fixed will be described.
  • FIG. 6 and 7 are diagrams for explaining the simulation results in Example 2 and Comparative Example 2.
  • FIG. 6 is a graph showing the frequency characteristics of the reflection loss.
  • FIG. 7 is a table showing readings of the operable bandwidth BW0 in each simulation result of FIG.
  • the element spacing GP of the two radiating elements is fixed at 0.5 mm, and the case where the two radiating elements have the same element size (27 GHz / 27 GHz) is compared with Comparative Example 2 (line LN20 in FIG. 7).
  • Line LN20 in FIG. 7 the case where the element size is 26 GHz / 28 GHz is Example 2-1 (line LN 21 in FIG. 7: solid line), and the case where the element size is 25 GHz / 29 GHz is Example 2-2 (line LN 22 in FIG. 7: The case where the element size is 24 GHz / 30 GHz is defined as Example 2-3 (line LN23 in FIG. 7: two-dot chain line).
  • the operable bandwidth BW0 increases as the difference in element size (that is, the difference in resonance frequency) increases.
  • the reflection loss increases as the difference in element size increases. This is because the overlap range of the operational bandwidths of the two radiation elements is reduced, and when the operational bandwidths of the two radiation elements do not overlap, the desired reflection at the frequency between the two valleys. There will be areas where loss cannot be realized. That is, if the operable bandwidths of the two radiating elements are within the overlapping range, the frequency bandwidth can be further expanded by increasing the difference in element size.
  • FIG. 8 is a plan view of the antenna module 100A according to the third embodiment.
  • the radiating elements 131A and 132A forming the sub-array 130A have the same element size.
  • the length from the branch point BP to each feeding point that is, the length SL1 of the wiring 151 and the length SL2 of the wiring 152 are different.
  • the frequency characteristics of the impedance of each radiating element when viewed from the branch point BP are set to different values. Can be done.
  • the operable bandwidths of the radiating elements are partially overlapped, so that the frequency bandwidth of the entire antenna module can be expanded as described with reference to FIG.
  • the linear distance in the X-axis direction between the branch point BP and the feeding points SP1 and SP2 when viewed in a plan view from the normal direction of the antenna module 100A is shown. Although it is shown as SL1 and SL2, in reality, the wiring lengths in the Z-axis direction and the Y-axis direction are taken into consideration.
  • FIG. 9 and 10 are diagrams for explaining the simulation results in Example 3 and Comparative Example 3.
  • FIG. 9 is a graph showing the frequency characteristics of the reflection loss.
  • FIG. 10 is a table showing readings of the operable bandwidth BW0 in each simulation result of FIG. 9.
  • the element sizes of the two radiating elements are both set to be the same as 27 GHz.
  • the case where the wiring lengths SL1 and SL2 from the branch point BP are both 2.5 mm is referred to as Comparative Example 3 (line LN30: broken line in FIG. 9), and the wiring lengths SL1 and SL2 are 4.0 mm and 3.0 mm.
  • the case is Example 3-1 (line LN31 in FIG. 9: solid line), and the case where the wiring lengths SL1 and SL2 are 1.5 mm and 3.5 mm is Example 3-2 (line LN32 in FIG. 9: alternate long and short dash line).
  • the wiring lengths SL1 and SL2 are 2.5 mm and 3.5 mm is defined as Example 3-3 (line LN33 in FIG. 9: alternate long and short dash line).
  • the wiring length is adjusted so that the operable bandwidth of the entire antenna module is the widest when the element spacing GP is 2.2 mm, 1.0 mm, and 0.75 mm. ..
  • the operable bandwidth BW0 in the case of Comparative Example 3 in which the wiring lengths are the same is 2.8 GHz
  • the operable bandwidth BW0 in the case of -3 is 7.2 GHz, 7.2 GHz, and 8.0 GHz, respectively. That is, even when two radiating elements having the same element size are used, the operable bandwidth BW0 can be expanded by making the length of the power feeding wiring different.
  • 11 and 12 show the case where the element sizes of the two radiating elements are further different in the case of the same wiring length and the same element spacing as in Examples 3-1 to 3-3 shown in FIG. It is a figure for demonstrating the simulation result.
  • the operable bandwidth BW0 in this case is 8.4 GHz, and it can be seen that the operable bandwidth BW0 is further expanded as compared with the case of Example 3-1 (7.2 GHz).
  • Example 3-5 line LN35 in FIG. 11: alternate long and short dash line
  • the operable bandwidth BW0 is further expanded as compared with the case of Example 3-2.
  • the operable bandwidth BW0 is further expanded as compared with the case of Example 3-3.
  • the antenna module is formed by combining the configuration in which the element sizes of the two radiating elements described in the first and second embodiments are different and the configuration in which the wiring length from the branch point to each radiating element is different. It is possible to further expand the overall frequency bandwidth.
  • the "radiating element 131A” and the “radiating element 132A” correspond to the "first radiating element” and the “second radiating element” in the present disclosure, respectively.
  • Example 4 In the fourth embodiment, a configuration will be described in which the frequency characteristics of the impedance of each radiating element are made different by arranging the stub in the feeding wiring connected to the two radiating elements.
  • FIG. 13 is a plan view of the antenna module 100B according to the fourth embodiment.
  • the radiating elements 131B and 132B forming the sub-array 130B are set to the same element size.
  • the length from the branch point BP to each feeding point is set to the same length.
  • a stub 171 is arranged in the wiring 151 from the branch point BP to the feeding point SP1
  • a stub 172 is arranged in the wiring 152 from the branch point BP to the feeding point SP2. ing.
  • the stub 171 is arranged at a position of a distance SL12 from the branch point BP (a position of a distance SL11 from the feeding point SP1) in the wiring 151. Further, the stub 172 is arranged at a position of a distance SL22 from the branch point BP (a position of a distance SL21 from the feeding point SP2) in the wiring 152.
  • These stubs 171 and 172 are not provided to cut off the frequency band of the radiating element on the other side, but are provided to adjust the impedance matching between the RFIC 110 and each radiating element. That is, even if the radiating elements have the same element size and the same wiring length, the frequency characteristics of the impedances of the two radiating elements are adjusted by changing the length of the stub and / or the position of the stub on the feeding wiring. be able to. Further, by arranging the stub, a pole having a minimum reflection loss is added, and the generation of this pole also contributes to the expansion of the frequency band.
  • FIG. 14 and 15 are diagrams for explaining the simulation results in Example 4 and Comparative Example 4.
  • FIG. 14 is a graph showing the frequency characteristics of the reflection loss.
  • FIG. 15 is a table showing readings of the operable bandwidth BW0 in each simulation result of FIG.
  • Comparative Example 4 is an example in which the element size and the wiring length are the same and the stub is not arranged (line LN40 in FIG. 14: broken line), and Example 4-1 is the length. This is an example in which different stubs are arranged at the same position on each wiring (line LN41 in FIG. 14: solid line).
  • the radiating elements 131B and 132B are arranged so that the element spacing GPs have the same dimensions.
  • the operable bandwidth BW0 in which the reflection loss is smaller than 6 dB is 2.9 GHz in the case of Comparative Example 4, whereas in the case of Example 4-1. Is expanded to 5.8 GHz. Therefore, the frequency band of the antenna module 100B as a whole can be expanded by arranging different stubs from the branch point BP to the power supply wiring after branching to change the frequency characteristics of the impedance.
  • Example 4-2 (line LN42 in FIG. 14: alternate long and short dash line) is an example in which radiating elements having different element sizes are used at the same element spacing as in Example 4-1.
  • the stubs corresponding to each radiating element are arranged at the same distance from the branch point BP, but the positions are different from those in Example 4-1.
  • Example 4-3 (line LN43 in FIG. 14: alternate long and short dash line) is an example in which the element spacing GP is further narrowed as compared with Example 4-2.
  • Example 4-4 (line LN44 in FIG. 14: broken line) is an example in which the position of the stub is changed and the element spacing GP is further narrowed with respect to Example 4-3.
  • Example 4-5 (line LN45 in FIG. 14: alternate long and short dash line), the position of the stub on the radiation element 131B side and the position of the stub on the radiation element 132B side were different in the same element spacing GP as in Example 4-4. This is an example.
  • the length of the stub is appropriately adjusted in order to match the impedance.
  • the operable bandwidth BW0 can be expanded by using radiating elements having different element sizes in addition to the arrangement of the stubs. Further, the operable bandwidth BW0 can be further expanded by narrowing the element spacing GP and / or arranging the stubs at different positions on the feeding wiring for the two radiating elements.
  • the frequency bandwidth of the entire antenna module can be expanded by arranging the stub in the power supply wiring connected to the two radiation elements.
  • the "radiating element 131B" and the “radiating element 132B” correspond to the "first radiating element” and the “second radiating element” in the present disclosure, respectively.
  • the "stub 171" and the “stub 172" in the third embodiment correspond to the "first stub” and the “second stub” of the present disclosure, respectively.
  • Example 5 In the fifth embodiment, a configuration will be described in which the frequency characteristics of the impedance of each radiating element are made different by making the dielectric constant of the dielectric forming the dielectric substrate on which the radiating element is arranged different.
  • FIG. 16 is a side perspective view of the antenna module 100C according to the fifth embodiment.
  • the radiating elements 131C and 132C forming the sub-array 130C have the same element size, and the lengths from the branch point BP of the feeding wiring 150 to the feeding points SP1 and SP2 are the same. ..
  • the dielectric in the region where the radiating element 131C is formed has a different dielectric constant than the dielectric in the region where the radiating element 132C is formed.
  • the permittivity ⁇ 1 of the dielectric 1401 arranged between the radiating element 131C and the ground electrode GND is different from the permittivity ⁇ 2 of the dielectric 1402 arranged between the radiating element 132C and the ground electrode GND. ( ⁇ 1 ⁇ ⁇ 2).
  • the dielectric constant between the radiating element and the ground electrode GND is different, a signal propagating through the dielectric substrate 140 As a result, the resonance frequency of the radiating element changes because the effective wavelength of the above changes. Therefore, by making the dielectric constant of the region where the radiating element is formed different, the operable bandwidth in each radiating element can be made different.
  • FIG. 17 and 18 are diagrams for explaining the simulation results in Example 5 and Comparative Example 5.
  • FIG. 17 is a graph showing the frequency characteristics of the reflection loss.
  • FIG. 18 is a table showing readings of the operable bandwidth BW0 in each simulation result of FIG.
  • Comparative Example 5 (line LN50 in FIG. 17: broken line) is an example in which the dielectric constant ⁇ 1 in the region where the radiating element 131C is formed and the dielectric constant ⁇ 2 in the region where the radiating element 132C is formed are both 2.9. is there.
  • Example 5 (line LN51 in FIG. 17: solid line), the dielectric constant ⁇ 1 in the region where the radiating element 131C is formed is 2.9, and the dielectric constant ⁇ 2 in the region where the radiating element 132C is formed is 3.5. This is an example of the case.
  • the operable bandwidth BW0 (3.6 GHz) of Example 5 is wider than the operable bandwidth BW0 (2.9 GHz) of Comparative Example 5 using the same permittivity. ing.
  • the frequency bandwidth of the entire antenna module can be expanded by making the dielectric constants of the regions of the dielectric substrate on which each radiating element is formed different.
  • a dielectric having a predetermined dielectric constant is arranged in the entire space between the radiating element and the ground electrode, but the dielectric material is placed between the radiating element and the ground electrode. It may be the case that the effective dielectric constant of the dielectric substrate is made different by forming a cavity in a part or partially arranging the dielectrics having different dielectric constants.
  • Example 5 the "radiating element 131C” and the “radiating element 132C” correspond to the “first radiating element” and the “second radiating element” in the present disclosure, respectively.
  • Example 6 In the sixth embodiment, a configuration will be described in which the frequency characteristics of the impedance of each radiating element are made different by arranging the positions of the feeding points connecting the feeding wiring and the radiating element at different positions for each radiating element.
  • FIG. 19 is a plan view of the antenna module 100D according to the sixth embodiment.
  • the radiating elements 131D and 132D forming the sub-array 130D have the same element size, and the lengths from the branch point BP of the feeding wiring 150 to the feeding points SP1 and SP2 are the same. ..
  • the positions of the feeding points on the radiating elements 131D and 132D are different from each other. Specifically, the offset amount SF1 of the feeding point SP1 with respect to the center CP1 in the radiating element 131D is larger than the offset amount SF2 of the feeding point SP2 with respect to the center CP2 in the radiating element 132D.
  • the impedance of the radiating element changes when the position of the feeding point changes.
  • the feeding point is arranged at a position (optimal position) where the characteristic impedance (for example, 50 ⁇ ) is obtained, so that the reflection loss in the used bandwidth is reduced.
  • the resonance frequency of the radiating element is changed by shifting the position of the feeding point from the optimum position for at least one of the two radiating elements.
  • FIGS. 20 to 22 are diagrams for explaining the simulation results in Example 6 and Comparative Example 6.
  • FIG. 20 is a graph showing the frequency characteristics of the reflection loss when the shift amount of the feeding point SP1 is changed for the radiating elements having the same element size.
  • FIG. 21 is a graph showing the frequency characteristics of the reflection loss when the element sizes of the two radiating elements are changed in addition to the shift of the feeding point.
  • FIG. 22 is a table showing readings of the operable bandwidth BW0 in each of the simulation results of FIGS. 20 and 21.
  • Example 6-1 line LN61 in FIG. 20: solid line
  • Example 6-2 line LN62 in FIG. 20: alternate long and short dash line
  • the element sizes of the two radiating elements are both 27 GHz, but the radiating element 131D.
  • the offset amount SF1 of the feeding point in is set to 1.3 mm.
  • the element spacing GP in Example 6-1 is set to 2.2 mm, which is the same as in Comparative Example 6, and in Example 6-2, the element spacing GP is narrowed to 0.75 mm.
  • the operable bandwidth BW0 is changed from 2.9 GHz (Comparative Example 6) to 5.0 GHz by changing the shift amount of the feeding point SP1. It is expanded to (Example 6-1). Further, by narrowing the element spacing GP, the operable bandwidth BW0 is further expanded to 5.4 GHz.
  • Example 6-3 line LN63 in FIG. 21: alternate long and short dash line
  • Example 6-4 line LN64 in FIG. 21: alternate long and short dash line
  • the offset amount SF1 of the feeding point in the radiating element 131D is 1.3 mm.
  • the element size of the radiating element 131D is set to 26 GHz and the element size of the radiating element 132D is set to 28 GHz.
  • the element spacing GP in Example 6-3 is set to 2.2 mm, which is the same as in Comparative Example 6 and Example 6-1.
  • the element spacing GP in Example 6-4 is 0, which is the same as in Example 6-2. It is set to .75 mm.
  • the operable bandwidth BW0 is expanded to 5.7 GHz (Example 6-3) by changing the element size in addition to shifting the feeding point SP1. Further, by narrowing the element spacing GP, the operable bandwidth BW0 is expanded to 5.9 GHz (Example 6-4).
  • the frequency bandwidth of the entire antenna module is increased by changing the positions of the feeding points of the two radiating elements to change the frequency characteristics of the impedance so that the operable bandwidths partially overlap. Can be expanded.
  • Example 6 the "radiating element 131D” and the “radiating element 132D” correspond to the “first radiating element” and the “second radiating element” in the present disclosure, respectively.
  • Example 7 In each of the above-described embodiments, a configuration in which radio waves in a single polarization direction are emitted from each radiating element has been described. In the seventh embodiment, an example in which the above-mentioned features are applied to a so-called dual polarization type antenna module in which radio waves in two polarization directions are radiated from each radiation element will be described.
  • FIG. 23 is a plan view of the antenna module 100E according to the seventh embodiment. Similar to the antenna module 100 shown in FIG. 2, the antenna module 100E has a sub-array 130E formed by radiating elements 131E and 132E having different element sizes. Then, in each radiating element, a high frequency signal is supplied to a feeding point offset in the X-axis direction from the center of the radiating element and a feeding point offset in the Y-axis direction from the center of the radiating element.
  • the feeding point SP11 is offset from the center of the radiating element 131E in the negative direction of the X-axis
  • the feeding point SP12 is offset from the center of the radiating element 131E in the positive direction of the Y-axis.
  • a high frequency signal is supplied.
  • a high frequency signal is supplied to the feeding point SP21 offset in the negative direction of the X axis from the center of the radiating element 132E and the feeding point SP22 offset in the positive direction of the Y axis from the center of the radiating element 132E. Will be done.
  • a common high frequency signal is supplied to the feeding point SP11 of the radiating element 131E and the feeding point SP21 of the radiating element 132E by the feeding wiring 150.
  • the wirings between the branch point BP1 of the power feeding wiring 150 and the feeding points SP11 and SP21 are set to have the same length.
  • a common high frequency signal is supplied to the feeding point SP12 of the radiating element 131E and the feeding point SP22 of the radiating element 132E by the feeding wiring 155.
  • the wirings between the branch point BP2 of the power feeding wiring 155 and the feeding points SP12 and SP22 are set to have the same length.
  • the element sizes of the two radiating elements forming the sub-array are different, and the operable bandwidths of the radiating elements are partially overlapped in each polarization direction. It is possible to expand the frequency bandwidth for radio waves.
  • Example 7 the "radiating element 131E” and the “radiating element 132E” correspond to the “first radiating element” and the “second radiating element” in the present disclosure, respectively.
  • Example 8 In the eighth embodiment, an example in which the above-mentioned features are applied to a so-called dual band type antenna module capable of radiating radio waves of two frequencies from each radiating element will be described.
  • FIG. 24 is a plan view (FIG. 24 (a)) and a side perspective view (FIG. 24 (b)) of the antenna module 100F according to the first example of the eighth embodiment.
  • the radiating elements 131F and 132F forming the sub-array 130F are arranged adjacent to each other in the X-axis direction.
  • Each of the radiating elements 131F and 132F is composed of a feeding element and a non-feeding element facing the feeding element. More specifically, the radiating element 131F includes a feeding element 131F1 and a non-feeding element 131F2, and the radiating element 132F includes a feeding element 132F1 and a non-feeding element 132F2.
  • the feeding elements 131F1 and 132F1 are arranged on the inner layer of the dielectric substrate 140 or the surface 141 on the upper surface side so as to face the ground electrode GND.
  • the non-feeding element 131F2 is arranged between the feeding element 131F1 and the ground electrode GND so as to face the feeding element 131F1.
  • the non-feeding element 132F2 is arranged between the feeding element 132F1 and the ground electrode GND so as to face the feeding element 132F1.
  • the element size of the feeding element is smaller than the element size of the non-feeding element. That is, in each radiating element, the resonance frequency of the feeding element is higher than the resonance frequency of the non-feeding element.
  • the power feeding elements 131F1 and 132F1 are set to an element size capable of radiating radio waves in the 39 GHz band
  • the non-feeding elements 131F2 and 132F2 are set to an element size capable of radiating radio waves in the 27 GHz band.
  • the element size of the feeding element 132F1 is smaller than the element size of the feeding element 131F1.
  • the resonance frequency of the feeding element 132F1 is set to 41 GHz, and the resonance frequency of the feeding element 131F1 is set to 37 GHz.
  • the element size of the non-feeding element 132F2 is smaller than the element size of the non-feeding element 131F2.
  • the resonance frequency of the non-feeding element 132F2 is set to 28 GHz, and the resonance frequency of the non-feeding element 131F2 is set to 26 GHz.
  • a common high frequency signal is supplied to the feeding point SP11 of the feeding element 131F1 and the feeding point SP21 of the feeding element 132F1 by the feeding wiring 150.
  • the wiring 151 from the branch point BP1 of the feeding wiring 150 to the feeding point SP11 penetrates the non-feeding element 131F2 and is coupled to the feeding point SP11.
  • the wiring 152 from the branch point BP1 to the feeding point SP21 penetrates the non-feeding element 132F2 and is coupled to the feeding point SP21.
  • the feeding points SP11 and SP21 are arranged in the negative direction of the X-axis from the center of the corresponding feeding element. Therefore, when a high-frequency signal in the 39 GHz band is supplied to each power supply element by the power supply wiring 150, radio waves in the 39 GHz band with the X-axis direction as the polarization direction are radiated from the power supply elements 131F1 and 132F1. Further, when a high frequency signal in the 27 GHz band is supplied to each power feeding element by the power feeding wiring 150, radio waves in the 27 GHz band having the X-axis direction as the polarization direction are radiated from the non-feeding elements 131F2 and 132F2.
  • a common high frequency signal is also supplied to the feeding point SP12 of the feeding element 131F1 and the feeding point SP22 of the feeding element 132F1 by the feeding wiring 155.
  • the feeding points SP12 and SP22 are arranged in the positive direction of the Y-axis from the center of the corresponding feeding element.
  • the wiring 156 from the branch point BP2 of the feeding wiring 155 to the feeding point SP12 penetrates the non-feeding element 131F2 and is coupled to the feeding point SP12.
  • the wiring 157 from the branch point BP2 to the feeding point SP22 penetrates the non-feeding element 132F2 and is coupled to the feeding point SP22.
  • the antenna module 100F is a dual band type and dual polarization type antenna module capable of radiating radio waves in the 27 GHz band and 39 GHz band.
  • the combination of the 39 GHz band feeding elements 131F1 and 132F1 corresponds to the first embodiment
  • the combination of the 27 GHz band non-feeding elements 131F2 and 132F2 corresponds to the first embodiment. Therefore, the operable bandwidth can be expanded in each of the two frequency bands.
  • FIG. 25 is a plan view of the antenna module 100G according to the second example of the eighth embodiment.
  • stubs are arranged in the common wiring portion of each feeding wiring.
  • the radiating elements 131G and 132G forming the sub-array 130G are arranged adjacent to each other in the X-axis direction.
  • Each of the radiating elements 131G and 132G is composed of a feeding element and a non-feeding element facing the feeding element. More specifically, the radiating element 131G includes a feeding element 131G1 and a non-feeding element 131G2, and the radiating element 132G includes a feeding element 132G1 and a non-feeding element 132G2.
  • the stubs ST11 and ST12 are arranged in the common wiring 153 of the power feeding wiring 150, and the stubs ST21 and ST22 are arranged in the common wiring 158 of the feeding wiring 155.
  • This stub is different from the stub described in Example 4 and is used to reduce the influence on the other frequency band.
  • the impedance is adjusted so that the signal in the 27 GHz band is blocked by the stub.
  • the impedance is adjusted so that the signal in the 39 GHz band is blocked by the stub. This makes it possible to further improve the frequency bandwidth of the antenna module.
  • FIG. 27 shows the frequency characteristics of the reflection loss of the above antenna modules 100F and 100G when compared with the antenna module 100 # of Comparative Example 8 of FIG.
  • the feeding elements 131 # 1, 132 # 1 are set to the same element size (39 GHz) for the two radiating elements, and the non-feeding elements 131 # 2, 132. # 2 is set to the same element size (27 GHz). Then, a high frequency signal is individually supplied to the feeding point of each radiating element.
  • the line LN70 shows the case of Comparative Example 8 of FIG.
  • the line LN71 shows the case of the first example of the eighth embodiment of FIG. 25
  • the line LN72 one-dot chain line
  • the operable bandwidth in each frequency band is expanded as compared with the case of the comparative example 8. ing. Therefore, even in the dual band type antenna module, the frequency bandwidth for each frequency band can be increased by partially overlapping the operating frequency bandwidths of two adjacent radiating elements that target the same frequency band. It will be possible to expand.
  • Example 8 an example in which the frequency characteristic of the impedance of each radiating element is changed by making the element sizes of the two target radiating elements different has been described, but the dual band type antenna module has been described. Also, the methods as described in Examples 2 to 6 may be applied alone or in combination. Further, the non-feeding element in the eighth embodiment may be changed to a feeding element.
  • the "radiating element 131F” and the “radiating element 131G” correspond to the "first radiating element” in the present disclosure.
  • the “radiating element 132F” and the “radiating element 132G” in the eighth embodiment correspond to the “second radiating element” in the present disclosure.
  • the “feeding element 131F1” and the “feeding element 131G1” in the eighth embodiment correspond to the “first element” in the present disclosure.
  • the “non-feeding element 131F2” and the “non-feeding element 131G2” in the eighth embodiment correspond to the “second element” in the present disclosure.
  • the “feeding element 132F1” and the “feeding element 132G1” in the eighth embodiment correspond to the “third element” in the present disclosure.
  • the “non-feeding element 132F2” and the “non-feeding element 132G2” in the eighth embodiment correspond to the “fourth element” in the present disclosure.
  • Example 9 In the above-mentioned Examples 1 to 8, the antenna module formed by a single sub-array has been described. In the ninth embodiment, the case of an array antenna using a plurality of sub-arrays will be described.
  • FIG. 28 is a plan view of the antenna module 100H according to the ninth embodiment.
  • the antenna module 100H has a configuration in which the sub-arrays of the first embodiment shown in FIG. 2 are arranged in a 2 ⁇ 2 two-dimensional array. More specifically, the antenna module 100H includes four sub-arrays 130H1 to 130H4 (hereinafter, also collectively referred to as "sub-array 130H"), and the sub-array 130H1 and the sub-array 130H2 are adjacent to each other in the X-axis direction. Have been placed.
  • the sub-arrays 130H3 and 130H4 are arranged adjacent to each other in the negative direction of the Y-axis of the sub-arrays 130H1 and 130H2, respectively.
  • Each sub-array contains two radiating elements having different element sizes, and the two radiating elements are arranged adjacent to each other in the X-axis direction.
  • the radiating elements having a large element size are referred to as radiating elements 131H1 to 131H4 (hereinafter, also collectively referred to as “radiating element 131H”), and the radiating elements having a small element size are radiating elements 132H1 to 132H4. (Hereinafter, it is also collectively referred to as “radiating element 132H”).
  • the distance between the center of the radiation element 131H and the center of the radiation element 132H is defined as the inter-element pitch PT0, and the distance between the sub-arrays in the X-axis direction (for example, the distance between the radiation element 131H1 and the radiation element 131H2).
  • Is the X-direction pitch PTX, and the distance between the sub-arrays in the Y-axis direction (for example, the distance between the radiation element 131H1 and the radiation element 131H3) is the Y-direction pitch PTY.
  • Each radiating element is arranged so as to be larger than the inter-element pitch PT0 (PTX> PT0, PTY> PT0).
  • each sub-array 130H a common high frequency signal is supplied to the feeding points of the two radiating elements (131H / 132H) by the branched feeding wiring.
  • the feeding point is offset in the negative direction of the X-axis from the center of the radiating element, and each radiating element emits a radio wave having the polarization direction in the X-axis direction. Radiation.
  • the frequency bandwidth can be expanded in each sub-array 130H, so that the frequency bandwidth can be expanded for the entire antenna module 100H as well. Furthermore, it also contributes to the improvement of antenna gain and directivity.
  • the sub-arrays are arranged linearly in the X-axis direction and the Y-axis direction, but the arrangement in the X-axis direction or the Y-axis direction may be arranged in a zigzag manner.
  • three or more sub-arrays may be arranged in the X-axis direction and / or the Y-axis direction. In that case, in order to make the directivity of the radiated radio waves symmetrical, it is preferable that the adjacent sub-arrays are arranged so as to have an equal pitch.
  • the antenna module may be a one-dimensional array in which a plurality of sub-arrays are arranged only in either the X-axis direction or the Y-axis direction.
  • the antenna module of the array antenna is also described.
  • the frequency characteristics of the impedance may be changed by applying the methods described in Examples 2 to 6 alone or in combination.
  • the array antenna may be formed by a dual polarization type and / or a dual band type sub-array as in Examples 7 and 8.
  • Example 9 the "sub-array 130H1" and “sub-array 130H3” correspond to the "first sub-array” in the present disclosure.
  • the “sub-array 130H2” and “sub-array 130H4" in Example 9 correspond to the “second sub-array” in the present disclosure.
  • the “radiating element 131H1” and the “radiating element 131H3” in the ninth embodiment correspond to the "first radiating element” in the present disclosure.
  • the “radiating element 132H1" and the “radiating element 132H3” in the ninth embodiment correspond to the "second radiating element” in the present disclosure.
  • the “radiating element 131H2” and the “radiating element 131H4" in the ninth embodiment correspond to the "third radiating element” in the present disclosure.
  • the “radiating element 132H2” and the “radiating element 132H4" in the ninth embodiment correspond to the "fourth radiating element” in the present disclosure.
  • Example 9 In Example 9 described above, the configuration of an array antenna in which two substantially square-shaped radiating elements forming a sub-array are arranged so that their sides face each other has been described. In the modified example described below, an example of an array antenna in which the arrangement of the two radiating elements forming the sub-array are different will be described.
  • FIG. 29 is a plan view of the antenna module 100H1 according to the first modification.
  • the antenna module 100H1 two radiating elements included in each of the subarrays 130H11 to 130H14 are arranged in the diagonal direction of the radiating elements. Then, in each sub-array, a high-frequency signal is branched and supplied to the two radiating elements from a common power feeding wiring.
  • radio waves having the polarization direction in the X-axis direction are emitted from each radiating element.
  • FIG. 30 is a plan view of the antenna module 100H2 according to the second modification.
  • the antenna module 100H2 of the two substantially square radiating elements included in each of the sub-arrays 130H21 to 130H24, one radiating element 131H21 to 131H24 is arranged so that each side is parallel to the X-axis or the Y-axis.
  • the other radiating elements 132H21 to 132H24 are arranged so that their sides are inclined by 45 ° with respect to the X-axis or the Y-axis.
  • each sub-array For the sub-arrays 130H21 and 130H24, two radiating elements are arranged adjacent to each other in the Y-axis direction, and for the sub-arrays 130H22 and 130H23, two radiating elements are arranged adjacent to each other in the X-axis direction. Then, in each sub-array, a high-frequency signal is branched and supplied to the two radiating elements from a common power feeding wiring.
  • the frequency characteristics of the impedance are changed by applying the method described in Examples 1 to 6 above for the two radiating elements forming each subarray, and the two radiating elements are emitted.
  • the frequency bandwidth of the entire antenna module may be increased by partially overlapping the operational bandwidth of the elements.
  • the array antenna may be formed by a dual polarization type and / or a dual band type sub-array as in the 7th and 8th embodiments.
  • the antenna module is used in a mobile terminal such as a smartphone.
  • a mobile terminal such as a smartphone.
  • the size of the radiating element is limited to some extent by the frequency of the radio wave to be radiated. Therefore, in order to reduce the size of the antenna module, it is necessary to reduce the size of the dielectric substrate on which the radiating element is formed.
  • the frequency bandwidth of radio waves that can be radiated is affected by the distance from the end of the radiating element to the end of the dielectric substrate in the polarization direction of the radio waves. Therefore, if the size of the dielectric substrate is reduced, the antenna module The desired frequency bandwidth may not be achieved.
  • the configuration for realizing the miniaturization of the antenna module while suppressing the reduction of the frequency band in the array antenna using the sub-array as described in the first embodiment will be described.
  • FIG. 31 is a plan view of the antenna module 1100 according to the twenty-first embodiment of the second embodiment.
  • the antenna module 1100 is an array antenna including sub-arrays 1130-1 and 1130-2.
  • the sub-array 1130-1 contains radiating elements 1131-1 and 11321
  • the sub-array 1130-2 contains radiating elements 1131-2 and 1132-2.
  • the radiating element 1131-1 and the radiating element 1131-2 have the same element size (for example, 26 GHz).
  • the radiating element 1132-1 and the radiating element 1132-2 are smaller than the radiating element 1131-1 and the radiating element 1131-2, and have the same element size (for example, 28 GHz).
  • the sub-arrays 1130-1 and 1130-2 are arranged adjacent to the X-axis direction (first direction) in FIG. 31 on the rectangular dielectric substrate 1140.
  • the two radiating elements are arranged adjacent to each other in a direction (second direction) inclined by an angle ⁇ (0 ° ⁇ ⁇ 90 °) with respect to the X-axis direction along one side of the dielectric substrate 1140.
  • the above-mentioned second direction is the direction in which the radiating element 1132-1 is viewed from the radiating element 1131-1 in the sub-array 1130-1.
  • the second direction is the direction in which the radiating element 1132-2 is viewed from the radiating element 1131-2 in the sub-array 1130-2.
  • a common high-frequency signal is supplied to the radiating elements 1131-1 and 11321 from the power feeding wiring 1150-1. Further, in the sub-array 1130-2, a common high frequency signal is supplied to the radiating elements 1131-2 and 1132-2 from the power feeding wiring 1150-2.
  • the feeding point SP1-1 of the radiating element 1131-1, the feeding point SP2-1 of the radiating element 11321, the feeding point SP1-2 of the radiating element 1131-2, and the feeding point SP2-2 of the radiating element 1132-2 are It is arranged at a position offset from the center of the corresponding radiating element along the second direction. Therefore, each radiating element emits a radio wave whose polarization direction is along the second direction.
  • the operable bandwidths of the two radiating elements can be partially overlapped in each subarray.
  • the operable bandwidth of each subarray can be expanded, and the frequency bandwidth of the entire antenna module can be expanded.
  • FIG. 32 is a plan view of the antenna module 1100 # of the comparative example.
  • the two radiating elements in each of the subarrays 1130 # -1 and 1130 # -2 are arranged adjacent to each other along the Y axis. That is, the angle ⁇ in FIG. 31 is 90 °.
  • the radiation elements 1131 # -1, 1131 # -2 are arranged in the polarization direction (Y-axis direction in FIG. 32).
  • the distance L1 # from the end to the end of the dielectric substrate 1140 and the distance L2 # from the end of the radiation elements 1132 # -1,1132 # -2 to the end of the dielectric substrate 1140 gradually become narrower. .. It is known that when the region of the dielectric in the polarization direction becomes narrower, the electromagnetic field coupling between the radiating element and the ground electrode becomes weaker and the frequency bandwidth of the antenna module becomes narrower. Then, in the case of the arrangement of the sub-array as in the comparative example, the frequency bandwidth may be narrowed as the antenna module is miniaturized, and the antenna characteristics may be deteriorated.
  • the sub-array is arranged so as to be inclined with respect to the rectangular dielectric substrate 1140 as in the antenna module 1100 shown in FIG. 31, from the end of the radiating element to the end of the dielectric substrate in the polarization direction.
  • the distances L1 and L2 can be made wider than in the case of the comparative example. Therefore, it is possible to reduce the size of the antenna module while suppressing the reduction of the frequency bandwidth.
  • the frequency characteristics of the impedance are changed by applying the methods described in Examples 1 to 6 of the first embodiment for the two radiating elements forming each subarray, and the two radiating elements are emitted.
  • the frequency bandwidth of the entire antenna module may be increased by partially overlapping the operational bandwidth of the elements.
  • the array antenna may be formed by a dual polarization type and / or a dual band type sub-array as in the 7th and 8th embodiments of the first embodiment.
  • the frequency characteristics of the impedances of the two radiating elements forming the subarray are different, and the frequency characteristics of the impedances of the two radiating elements may be the same. ..
  • the magnitude relation of the element sizes may be reversed from each other. That is, in the sub-array 1130-1, the element size of the radiating element 1131-1 is increased by increasing the element size of the radiating element 1132-1, while in the sub-array 1130-2, the element size of the radiating element 1132-2 is increased by the radiating element.
  • the element size of 1131-2 may be increased.
  • Example 22 In the antenna module 1100 of the twenty-first embodiment, a case where adjacent sub-arrays have the same configuration has been described. In the 22nd embodiment, the case where the configurations of the adjacent subarrays are different will be described.
  • FIG. 33 is a plan view of the antenna module 1100A according to the 22nd embodiment.
  • the sub-array 1130A-1 and the sub-array 1130A-2 are arranged adjacent to each other in the X-axis direction on the rectangular dielectric substrate 1140 as in the above-described 21st embodiment.
  • Each subarray contains two radiating elements, which are arranged adjacent to each other along a direction inclined from the X-axis direction.
  • the sub-array 1130A-1 includes a radiating element 1131A-1 and a radiating element 1132A-1.
  • the element size of the radiating element 1131A-1 is larger than the element size of the radiating element 1132A-1.
  • the element size of the radiating element 1131A-1 is 26 GHz
  • the element size of the radiating element 1132A-1 is 28 GHz.
  • a high frequency signal is supplied to the radiating element 1131A-1 and the radiating element 1132A-1 from a common power feeding wiring.
  • the sub-array 1130A-2 includes a radiating element 1131A-2 and a radiating element 1132A-2.
  • the element size of the radiating element 1131A-2 is larger than the element size of the radiating element 1132A-2.
  • the element size of the radiating element 1131A-12 is 25 GHz
  • the element size of the radiating element 1132A-1 is 27 GHz.
  • a high frequency signal is supplied to the radiating element 1131A-2 and the radiating element 1132A-2 from a common power feeding wiring.
  • the configuration of the sub-array 1130A-1 is different from the configuration of the sub-array 1130A-2. Comparing the radiating element 1131A-1 having a large element size in the sub-array 1130A-1 and the radiating element 1131A-2 having a large element size in the sub-array 1130A-2, the element size of the radiating element 1131A-2 is larger. Similarly, when comparing the radiating element 1132A-1 having a small element size in the sub-array 1130A-1 and the radiating element 1132A-2 having a small element size in the sub-array 1130A-2, the element size of the radiating element 1132A-1 is larger. ..
  • the operable bandwidths of the two radiating elements are partially overlapped, so that the operable bandwidth as the sub-array can be expanded. Further, since the operable bandwidths of the adjacent sub-arrays are partially overlapped, the operable bandwidth of the entire array antenna can be expanded. Therefore, the frequency bandwidth of the antenna module 1100A can be expanded.
  • the antenna module 1100A as a method for changing the frequency characteristic of impedance, a method as described in Examples 1 to 6 of the first embodiment may be applied. Further, the array antenna may be formed by a dual polarization type and / or a dual band type sub-array as in the 7th and 8th embodiments of the first embodiment.
  • Example 23 In the 23rd embodiment, an example of an array antenna of a one-dimensional array in which three or more sub-arrays included in the antenna module are arranged in one direction will be described.
  • FIG. 34 is a plan view of the antenna module 1100B according to the 23rd embodiment.
  • the antenna module 1100B four sub-arrays 1130B-1 to 1130B-4 are arranged in a row in the X-axis direction on the rectangular dielectric substrate 1140.
  • Each sub-array contains two radiating elements, and the arrangement direction of the two radiating elements is arranged so as to be inclined with respect to one side (X-axis) of the dielectric substrate 1140 as in Examples 21 and 22. ..
  • Each radiating element is formed by two radiating elements of different element sizes.
  • the element size of the radiating elements 1131B-1, 1131B-2, 1131B-3, 1131B-4 having a large element size is 26 GHz
  • 1132B-4 has an element size of 28 GHz.
  • each sub-array is formed in the same configuration, and the four sub-arrays are arranged at equal pitches in the X-axis direction. That is, the distance between the radiating element 1131B-1 and the radiating element 1131B-2, the distance between the radiating element 1131B-2 and the radiating element 1131B-3, and the radiating element 1131B-3 and the radiating element 1131B-4. The distances between them are arranged so as to be PT12.
  • the distance between the centers of the two radiating elements in the subarray is PT10 and the distance between the virtual lines passing through the centers of the two radiating elements in each of the two adjacent subarrays is PT11.
  • the distance PT11 is set to be longer than the inter-element distance PT10.
  • the pitch PT12 between the sub-arrays is also set to be longer than the inter-element distance PT10.
  • the coupling between adjacent sub-arrays can be weaker than the coupling between two radiating elements in the sub-array, so that isolation between the sub-arrays can be ensured. It is possible to exert the effect of expanding the frequency bandwidth of the sub-array.
  • the number of sub-arrays may be three or five or more.
  • Example 24 In the 24th embodiment, the case where the four sub-arrays included in the antenna module are arranged in a two-dimensional array shape will be described.
  • FIG. 35 is a plan view of the antenna module 1100C according to the 24th embodiment.
  • the antenna module 1100C includes four subarrays 1130C-1 to 1130C-4. Each sub-array is formed by two radiating elements, and the two radiating elements are arranged so as to be inclined with respect to the X-axis of the dielectric substrate 1140.
  • Each radiating element is formed by two radiating elements of different element sizes.
  • the radiating elements 1131C-1, 1131C-2, 1131C-3, 1131C-4 having a large element size have an element size of 26 GHz
  • 1132C-4 has an element size of 28 GHz.
  • the sub-array 1130C-2 is arranged adjacent to the sub-array 1130C-1 in the positive direction of the X-axis.
  • the sub-array 1130C-4 is arranged adjacent to the sub-array 1130C-3 in the positive direction of the X-axis. Further, the sub-array 1130C-3 is arranged adjacent to the sub-array 1130C-1 in the negative direction (third direction) of the Y-axis orthogonal to the X-axis.
  • the sub-array 1130C-4 is arranged adjacent to the sub-array 1130C-2 in the negative direction of the Y-axis.
  • the distance PT21 is the inter-element distance PT20. Is set to be longer than.
  • the distance between two sub-arrays adjacent to each other in the X-axis direction (that is, the distance between the center of the radiation element 1131C-1 and the center of the radiation element 131C-2) is set to PT22, and the two sub-arrays adjacent to each other in the Y-axis direction are defined as PT22. (That is, the distance between the center of the radiating element 1131C-1 and the center of the radiating element 131C-3) is set to PT23, and the sub-array intervals PT22 and PT23 are set to be longer than the inter-element distance PT20. Will be done.
  • the coupling between adjacent sub-arrays can be weaker than the coupling between two radiating elements in the sub-array, so that isolation between the sub-arrays can be ensured. It is possible to exert the effect of expanding the frequency bandwidth of the sub-array.
  • the sub-array spacing may be defined as the spacing between the branch points of the power supply wiring that supplies high-frequency signals to each sub-array. Further, in order to make the beam shape of the radio wave radiated from the entire antenna module 1100C symmetrical, it is preferable to set the sub-array spacing PT22 in the X-axis direction and the sub-array spacing PT23 in the Y-axis direction equally.
  • FIG. 35 an example of an array antenna in which four radiating elements are arranged in a 2 ⁇ 2 two-dimensional array has been described, but n ⁇ m (n and m are both 2 or more) using more radiating elements. It may be a two-dimensional array of (natural numbers).
  • Example 25 In Example 24, an example in which the adjacent sub-arrays have the same configuration in the two-dimensional array antenna has been described. In the 25th embodiment, the configuration in which the two-dimensional array antennas are arranged so that the magnitude relation of the element sizes of the radiating elements of the adjacent sub-arrays is reversed will be described.
  • FIG. 36 is a plan view of the antenna module 1100D according to the 25th embodiment.
  • the antenna module 1100D includes four subarrays 1130D-1 to 1130D-4. Each sub-array is formed by two radiating elements, and the two radiating elements are arranged so as to be inclined with respect to the X-axis of the dielectric substrate 1140.
  • Each radiating element is formed by two radiating elements of different element sizes.
  • the element size of the radiating elements 1131D-1 and 1131D-4 (for example, 26 GHz) is larger than the element size of the radiating elements 1132D-1 and 1132D-4 (for example, 28 GHz). Is set to be.
  • the element size of the radiating elements 1131D-2 and 1131D-3 (for example, 28 GHz) is larger than the element size of the radiating elements 1132D-2 and 1132D-3 (for example, 26 GHz). Is also set to be small.
  • FIG. 37 is a plan view and a side perspective view of the antenna module 2100 according to the 31st embodiment of the third embodiment.
  • the antenna module 2100 includes a dielectric substrate 2140, radiating elements 2130-1,2130-2, RFIC2110, and a ground electrode GND.
  • the radiating elements 2130-1,2130-2 are arranged adjacent to the inner layer of the dielectric substrate 2140 or the surface 2141 on the upper surface side in the X-axis direction.
  • a flat plate-shaped ground electrode GND is arranged on the layer on the lower surface side of the radiating element 2130-1,2130-2 so as to face the radiating element 2130-1,2130-2.
  • the RFIC 2110 is arranged on the back surface 2142 of the dielectric substrate 2140 via the solder bumps 2160.
  • a common high-frequency signal is supplied to the radiating elements 2130-1,2130-2 by individual power feeding wiring.
  • a high frequency signal is supplied from the RFIC 2110 to the radiating element 2130-1 by the power feeding wiring 21501.
  • the power feeding wiring 2150-1 penetrates the ground electrode GND from the RFIC 2110 and is coupled to the feeding point SP11 of the radiating element 2130-1.
  • a high frequency signal is supplied from the RFIC 2110 to the radiating element 2130-2 by the power feeding wiring 2150-2.
  • the power feeding wiring 2150-2 penetrates the ground electrode GND from the RFIC 2110 and is coupled to the feeding point SP12 of the radiating element 2130-2.
  • the feeding point SP11 of the radiating element 2130-1 and the feeding point SP12 of the radiating element 2130-2 are arranged at positions offset in the negative direction of the X-axis from the center of the corresponding radiating element. As a result, radio waves having the polarization direction in the X-axis direction are radiated from the radiating elements 2130-1,2130-2.
  • the element size of the radiating element 2130-1 is set to be smaller than the element size of the radiating element 2130-2.
  • the element size of the radiating element 2130-1 is set to a size corresponding to 28 GHz
  • the element size of the radiating element 2130-2 is a size corresponding to 26 GHz. Is set to. That is, the frequency characteristic of the impedance of the radiating element 2130-1 when viewed from the RFIC 2110 is different from the frequency characteristic of the impedance of the radiating element 2130-2.
  • FIG. 38 is a diagram showing the frequency characteristics of the reflection loss of each radiating element in the case of the comparative example in which the two radiating elements have the same element size (27 GHz) and the case of the case of Example 31 of FIG. 37.
  • the reflection loss of both radiating elements is as shown by the line LN110.
  • the operable bandwidth at which the reflection loss is 6 dB or less is BW30.
  • the reflection loss of the radiating element 2130-1 is the line LN111 (solid line), and the reflection loss of the radiating element 2130-2 is the line LN112 (broken line). That is, the operable bandwidths of each other partially overlap each other. As a result, the operable bandwidth of the entire antenna module 2100 becomes BW31, so that the frequency bandwidth of the antenna module 2100 can be expanded as compared with the comparative example.
  • the peak gain is high and the frequency band is sharply attenuated (that is, the frequency band). It has a monomodal gain characteristic (narrow width).
  • the gain characteristics are bilateral. Therefore, although the total peak gain is lower than that of the comparative example, the gain characteristic is gradually attenuated as a whole.
  • the region in which a gain reduced by 3 dB from the peak gain can be achieved (that is, the region in which the power of the radio wave is 50% or more of the peak) is wider in Example 31 than in Comparative Example. That is, it is possible to realize a wide band gain.
  • the radiating elements 2130-1,2130-2 are insulated from the ground electrode GND, but as in the antenna module 2100A of the modification 3 of FIG. 39, the radiating elements 2130A
  • the ends of -1,2130A-2 may be inverted F type patch antennas connected to the ground electrode GND by vias V1 and V2, respectively.
  • Example 32 In Example 31, an array antenna in which two radiating elements having different sizes are arranged has been described. However, in this case, since the antenna module as a whole is not symmetric, it may not be possible to realize symmetry in terms of antenna characteristics (gain, loss). In the 32nd embodiment, a configuration in which the antenna characteristics are made symmetrical by arranging the two sets of the configurations described in the 31st embodiment symmetrically will be described.
  • FIG. 40 is a plan view of the antenna module 2100B according to the 32nd embodiment.
  • the antenna module 2100B is a one-dimensional array antenna including four radiating elements 2130B-1 to 2130B-4.
  • the radiating elements 2130B-1 to 2130B-4 are arranged in a row in the order of the radiating elements 2130B-1,2130B-2, 2130B-3, 2130B-4 in the X-axis direction.
  • the radiating element 2130B-1 and the radiating element 2130B-4 have the same configuration, and the radiating element 2130B-2 and the radiating element 2130B-3 have the same configuration. That is, the element sizes of the radiating element 2130B-1 and the radiating element 2130B-4 are the same, and are set to, for example, 28 GHz. Further, the element sizes of the radiating element 2130B-2 and the radiating element 2130B-3 are the same, and are set to, for example, an element size of 26 GHz. Therefore, the frequency characteristic of the impedance of the radiating element 2130-3 when viewed from the RFIC 2110 is different from the frequency characteristic of the impedance of the radiating element 2130-4.
  • Example 32 as well, as in the case of Example 31, a common high frequency signal is supplied to each radiating element, and a high frequency signal is supplied by individual power feeding wiring. ..
  • the distance between the radiating element 2130B-1 and the radiating element 2130B-2 and the distance between the radiating element 2130B-3 and the radiating element 2130B-4 are both set to PT31. ..
  • the distance between the radiating element 2130B-2 and the radiating element 2130B-3 is set to PT32 (> PT31). Since the inner radiating elements 2130B-2 and 2130B-3 have a larger element size than the outer radiating elements 2130B-1,2130B-4, the ground electrode GND wider than the outer radiating elements 2130B-1,2130B-4 is provided. You will need it. Further, when the radiating elements having a large element size are used, the coupling between the elements can be increased.
  • the distance PT32 between the radiating element 2130B-2 and the radiating element 2130B-3 is set between the radiating element 2130B-1 and the radiating element 2130B-2 (or the radiating element 2130B-3 and the radiating element 2130B-4). By making it larger than the distance PT31 (between), it becomes possible to approach the original antenna characteristics of the radiating elements 2130B-2 and 2130B-3, which have relatively large element sizes.
  • the feeding point SP11 of the radiating element 2130B-1 and the feeding point SP12 of the radiating element 2130B-2 are arranged offset from the center of the corresponding radiating element in the negative direction of the X-axis. Further, the feeding point SP13 of the radiating element 2130B-3 and the feeding point SP14 of the radiating element 2130B-4 are arranged offset in the positive direction of the X-axis from the center of the corresponding radiating element. Then, for the radiating element 2130B-3 and the radiating element 2130B-4, a high frequency signal having a phase inverted with respect to the high frequency signal supplied to the radiating element 2130B-1 and the radiating element 2130B-2 is supplied. As a result, radio waves having the polarization direction in the X-axis direction are radiated from each radiating element.
  • FIG. 41 is a diagram showing the frequency characteristics of the gain of the antenna module 2100B according to the 32nd embodiment.
  • the case where the pitches between the radiating elements are different is shown by the line LN122 (solid line).
  • the peak gain is about 10.7 dBi, and the frequency bandwidth (W120) at which the peak gain is -3 dB is 6.0 GHz.
  • the peak gain is about 9.9 dBi, and the frequency bandwidth (W121) at which the peak gain is -3 dB is 7.1 GHz.
  • the peak gain is about 10.2 dBi, and the frequency bandwidth (W122) at which the peak gain is -3 dB is 7.3 GHz.
  • the frequency of the antenna characteristics is obtained by changing the size of the adjacent radiating elements and partially overlapping the operable bandwidths, as in the case of the 31st embodiment.
  • the bandwidth can be expanded, and the symmetry of the antenna characteristics can be improved by arranging the radiating elements symmetrically. Further, by adjusting the pitch between the radiating elements, it is possible to realize a wide range of gain while suppressing a decrease in peak gain.
  • the number of radiating elements may be five or more.
  • Example 33 In Examples 31 and 32, a configuration is described in which the frequency characteristics of the impedance of each radiating element are made different by making the element sizes of adjacent radiating elements different.
  • FIG. 42 is a plan view (FIG. 42 (a)) and a side perspective view (FIG. 42 (b)) of the antenna module 2100C according to the thirty-third embodiment.
  • the antenna module 2100C is a one-dimensional array antenna in which four radiating elements 2130C-1 to 2130C-4 are arranged in a row, similarly to the antenna module 2100B of the 32nd embodiment. In the antenna module 2100C, all the radiating elements have the same element size.
  • a common high frequency signal is supplied to the radiating elements 2130C-1 to 2130C-4 by the power feeding wirings 2150C-1 to 2150C-4, respectively.
  • the length of the power feeding wiring 2150C-1,250C-4 used for the outer radiating element 2130C-1,2130C-4 is the power feeding wiring 2150C-2,2150C- used for the inner radiating element 2130C-2,2130C-3. Longer than 3 lengths. In this way, by making the length of the feeding wiring from the RFIC 2110 to each feeding point different, the frequency characteristic of the impedance when viewed from the RFIC 2110 can be set to a different value. As a result, the operable bandwidths of the adjacent radiating elements are partially overlapped, so that the frequency bandwidth of the antenna characteristics (reflection loss, gain) can be expanded.
  • FIG. 43 is a diagram for explaining the frequency characteristic of the reflection loss of each radiating element in the 33rd embodiment.
  • FIG. 43 (a) shows the frequency characteristic (line LN130) in the case of the comparative example in which the feeding wiring from the RFIC 2110 to each radiating element has the same length
  • FIG. 43 (b) shows the frequency characteristic (line LN130) of the 33rd embodiment. The frequency characteristics of the case are shown.
  • the frequency characteristics of the radiating elements 2130C-1,2130C-4 having a long feeding wiring are shown by the line LN131 (solid line), and the frequency of the radiating elements 2130C-2, 2130C-3 having a short feeding wiring.
  • the characteristics are shown by line LN132 (dashed line).
  • the operable bandwidth partially overlaps in the 33rd embodiment, the operational bandwidth of the antenna module as a whole is expanded in the 33rd embodiment as compared with the comparative example. ing.
  • FIG. 44 is a diagram showing the frequency characteristics of the gain of the antenna module 2100C according to the 33rd embodiment.
  • the case of the comparative example in which the length of the feeding wiring to each radiating element is the same is shown by the line LN140 (broken line), and the case of the embodiment 33 in which the length of the feeding wiring is different is shown by the line LN141. It is shown by (solid line).
  • the peak gain is about 10.7 dBi
  • the frequency bandwidth (W140) at which the peak gain is -3 dB is 6.0 GHz.
  • the peak gain is about 10.1 dBi
  • the frequency bandwidth (W141) at which the peak gain is -3 dB is 6.9 GHz.
  • the antenna characteristics are partially overlapped by changing the feeding wiring for supplying the high frequency signal to the adjacent radiating elements to partially overlap the operable bandwidth.
  • Gain frequency bandwidth
  • Example 34 In the 34th embodiment, similarly to the 4th embodiment of the first embodiment, a configuration in which the frequency characteristics of the impedance of each radiating element are made different by arranging the stub in the power feeding wiring connected to the adjacent radiating element will be described. To do.
  • FIG. 45 is a plan view (FIG. 45 (a)) and a side perspective view (FIG. 45 (b)) of the antenna module 2100D according to the thirty-fourth embodiment.
  • the antenna module 2100D is a one-dimensional array antenna in which four radiating elements 2130D-1 to 2130D-4 having the same element size are arranged in a row, from RFIC 2110 to each radiating element.
  • the lengths of the power supply wirings 2150D-1 to 2150D-4 are the same.
  • stubs are arranged in the corresponding power feeding wirings for the inner radiating elements 2130D-2 and 2130D-3.
  • the stub 2170D-2 is arranged on the power feeding wiring 2150D-2
  • the stub 2170D-3 is arranged on the power feeding wiring 2150D-3.
  • the stubs 2170D-2 and 2170D-3 are not provided to cut off the frequency band of the radiating element on the other side, but are provided to adjust the impedance matching between the RFIC 2110 and each radiating element.
  • FIG. 46 is a diagram for explaining the frequency characteristics of the reflection loss of each radiating element in the 34th embodiment.
  • FIG. 46A shows the frequency characteristics (line LN150) in the case of the comparative example in which the feeding wiring from the RFIC 2110 to each radiating element has the same length and each feeding wiring is not provided with a stub. .. In this case, each radiating element has the same frequency characteristics.
  • the stub is in the power supply wiring.
  • the resonance frequency is shifted to the higher frequency side due to the change in impedance.
  • the operable bandwidth of the radiating elements 2130D-1,2130D-4 and the operable bandwidth of the radiating elements 2130D-2, 2130D-3 are partially overlapped.
  • the frequency bandwidth of the antenna characteristics in the antenna module 2100D can be expanded.
  • FIG. 47 is a diagram showing the frequency characteristics of the gain of the antenna module 2100D according to the 34th embodiment.
  • the case of the above comparative example is shown by the line LN160 (broken line), and the case of the embodiment 33 in which the stub is arranged in the power feeding wiring of the inner radiating elements 2130D-2 and 2130D-3 is the line LN161. It is shown by (solid line).
  • the peak gain is about 10.7 dBi
  • the frequency bandwidth (W160) at which the peak gain is -3 dB is 6.0 GHz.
  • the peak gain is about 9.8 dBi
  • the frequency bandwidth (W161) at which the peak gain is -3 dB is 7.8 GHz.
  • the antenna in the one-dimensional array antenna, is formed by arranging a stub on one of the feeding lines for supplying a high frequency signal to the adjacent radiating element and partially overlapping the operable bandwidth.
  • the frequency bandwidth of the characteristics can be expanded.
  • the stub is arranged in the power feeding wiring of the inner radiating elements 2130D-2 and 2130D-3, and the stub is not arranged in the power feeding wiring of the outer radiating elements 2130D-1,2130D-4.
  • the frequency characteristics of the impedance of the radiating element may be different by arranging stubs having different lengths for the inner radiating element and the outer radiating element in the feeding wiring.
  • Example 35 In the 35th embodiment, as in the 5th embodiment of the first embodiment, the frequency characteristics of the impedance of each radiating element are made different by making the dielectric constants of the dielectrics in which the adjacent radiating elements are arranged different. explain.
  • FIG. 48 is a plan view (FIG. 48 (a)) and a side perspective view (FIG. 48 (b)) of the antenna module 2100E according to the 35th embodiment. Similar to the antenna module 2100C of the 33rd embodiment, the antenna module 2100E is a one-dimensional array antenna in which four radiating elements 2130E-1 to 2130E-4 having the same element size are arranged in a row, from RFIC2110 to each radiating element. The lengths of the power supply wirings 2150E-1 to 2150E-4 are the same.
  • the dielectric constant ⁇ 32 of the dielectric in which the inner radiating elements 2130E-2 and 2130E-3 are arranged is the dielectric constant of the dielectric in which the outer radiating elements 2130E-1,2130E-4 are arranged.
  • the rate is higher than ⁇ 31.
  • it is arranged between the dielectric constant ⁇ 31 of the dielectric arranged between the radiating elements 2130E-1,2130E-4 and the ground electrode GND, and between the radiating elements 2130E-2, 2130E-3 and the ground electrode GND.
  • the dielectric constant of the dielectric is different from that of ⁇ 32 ( ⁇ 31 ⁇ ⁇ 32).
  • the dielectric constant between the radiating element and the ground electrode GND is different, a signal propagating through the dielectric substrate 2140.
  • the resonance frequency of the radiating element changes because the effective wavelength of the above changes. Therefore, by making the dielectric constant of the region where the radiating element is formed different, the operable bandwidth in each radiating element can be made different.
  • FIG. 49 is a diagram for explaining the frequency characteristics of the reflection loss of each radiating element in the 35th embodiment.
  • the frequency characteristics (line LN170) in the case of the comparative example are shown. In this case, the resonance frequency of each radiating element is 27 GHz, which has the same frequency characteristics.
  • the resonance frequency is the same as in FIG. 49 (a). Is 27 GHz (LN171: solid line in FIG. 49 (b)).
  • the operable bandwidth of the radiating elements 2130E-1,2130E-4 and the operable bandwidth of the radiating elements 2130E-2,2130E-3 are partially overlapped.
  • the frequency bandwidth of the antenna characteristics in the antenna module 2100E can be expanded.
  • FIG. 50 is a diagram showing the frequency characteristics of the gain of the antenna module 2100E according to the 35th embodiment.
  • the case of the above comparative example is shown by the line LN180 (broken line), and the case of Example 35 in which the dielectric constant of the dielectric in which the inner radiating elements 2130D-2 and 2130D-3 are arranged is changed.
  • the case is indicated by the line LN171 (solid line).
  • the peak gain is about 10.7 dBi
  • the frequency bandwidth (W180) at which the peak gain is -3 dB is 6.0 GHz.
  • the peak gain is about 9.3 dBi
  • the frequency bandwidth (W181) at which the peak gain is -3 dB is 8.0 GHz or more.
  • the operable bandwidths of the adjacent radiating elements are partially overlapped by making the dielectric rates of the dielectrics in which the radiating elements are arranged different.
  • the frequency bandwidth of the antenna characteristics can be expanded.
  • Example 35 As in Example 5 of Embodiment 1, instead of the configuration in which the dielectric material having a predetermined dielectric constant is arranged in the whole between the radiation element and the ground electrode, the radiation element and the radiation element By forming a cavity in a part of the dielectric between the dielectric and the ground electrode, or by partially arranging the dielectrics having different dielectric constants, the effective dielectric constants of the dielectric substrates are made different. May be good.
  • Example 36 In the 36th embodiment, a configuration will be described in which the frequency characteristics of the impedance of each radiating element are made different by arranging the positions of the feeding points connecting the feeding wiring and the radiating element at different positions depending on the radiating element.
  • FIG. 51 is a plan view of the antenna module 2100F according to the 36th embodiment.
  • the antenna module 2100F is a one-dimensional array antenna formed by using four radiating elements having different element sizes, similarly to the antenna module 2100B of the 33rd embodiment shown in FIG. 40. More specifically, the element size of the outer radiating elements 2130F-1,2130F-4 is set smaller than the element size of the inner radiating elements 2130F-2 and 2130F-3.
  • a high frequency signal is individually supplied to each radiation element from the RFIC 2110 by a power supply wiring having the same length.
  • the position of the feeding point of the outer radiating elements 2130F-1,2130F-4 is different from the position of the feeding point of the inner radiating elements 2130F-2 and 2130F-3. More specifically, for the radiating elements 2130F-1,2130F-4, the respective distances from the centers CP1 and CP4 of the radiating element to the feeding points SP11 and SP14 are set to SF11. On the other hand, for the radiating elements 2130F-2 and 2130F-3, the respective distances from the center CP2 and CP3 of the radiating element to the feeding points SP12 and SP13 are set to SF12 (SF11> SF12).
  • the impedance of the radiating element changes when the position of the feeding point changes.
  • the position of the feeding point at which the characteristic impedance (for example, 50 ⁇ ) is obtained is also different. Therefore, in the case of an array antenna formed by using radiating elements having different element sizes as shown in FIG. 51, the gain in each radiating element is optimized by appropriately arranging the positions of the feeding points according to the element size. be able to.
  • the frequency bandwidth of the entire antenna module is expanded by making the element sizes of adjacent radiating elements different. Then, the gain of the antenna module can be further improved by making the position of the feeding point in each radiating element different according to the element size and matching it with the characteristic impedance.
  • FIG. 52 is a diagram showing the frequency characteristics of the gain of the antenna module 2100F according to the 36th embodiment.
  • the frequency characteristics line LN190: broken line
  • the frequency characteristics line LN191: solid line
  • the frequency bandwidth at which the peak gain is -3 dB is about the same, but the peak gain is slightly higher in Example 36. That is, by optimizing the position of the feeding point, high gain can be realized while maintaining the frequency bandwidth.
  • the configuration in which the positions of the feeding points are different depending on the element size so as to have the characteristic impedance for the radiating elements having different element sizes has been described, but as in the sixth embodiment of the first embodiment.
  • the frequency bandwidth of the antenna module is expanded by partially overlapping the operable bandwidths by different positions of the feeding points for the radiating elements of the same element size arranged adjacent to each other. Good.
  • the one-dimensional array antenna has been described, but it may be applied to the two-dimensional array antenna.
  • a plurality of one-dimensional array antennas arranged in the X-axis direction may be arranged in the Y-axis direction, or the radiation elements arranged in the Y-axis direction may be arranged.
  • the configuration may have different impedance frequency characteristics as in the above embodiment.
  • FIG. 53 is a plan view of the antenna module 3100 according to the 41st embodiment of the fourth embodiment.
  • the antenna module 3100 four subarrays 3130-1 to 3130-4 are arranged in a row in the X-axis direction (first direction) on the rectangular dielectric substrate 3140.
  • Each subarray contains two radiating elements, and the arrangement direction of the two radiating elements is a direction (second direction) in which the two radiating elements are inclined by an angle ⁇ (0 ° ⁇ ⁇ 90 °) with respect to the X axis of the dielectric substrate 3140. Is located in.
  • the distance between the sub-array 3130-1 and the sub-array 3130-2 and the distance between the sub-array 3130-3 and the sub-array 3130-4 are both set to PT1.
  • the distance between the sub-array 3130-2 and the sub-array 3130-3 is set to PT2 (PT1 ⁇ PT2).
  • Each radiating element is formed by two radiating elements of different element sizes.
  • the sub-array 31301 includes a radiating element 3131-1 having a large element size and a radiating element 3132-1 having a small element size.
  • the sub-array 3130-2 includes a radiating element 3131-2 having a large element size and a radiating element 3132-2 having a small element size.
  • the subarray 3130-3 includes a radiating element 3131-3 having a large element size and a radiating element 3132-3 having a small element size.
  • the subarray 3130-4 includes a radiating element 3131-4 having a large element size and a radiating element 3132-4 having a small element size.
  • each sub-array high-frequency signals branched from a common power supply wiring are supplied to the two radiating elements.
  • the distance from the branch point of the feeding wiring to the feeding point of each radiating element is set to the same length.
  • the large-sized radiating elements 3131-1 and 3131-4 are set to the element size corresponding to 26 GHz
  • the small-sized radiating elements 3132-1 and 3132-4 are set to the element size corresponding to 28 GHz. There is.
  • the sub-array 3130-2 and the sub-array 3130-3 arranged inside both have the same configuration.
  • the large-sized radiating elements 3131-2 and 3131-3 are set to the element size corresponding to 25 GHz
  • the small-sized radiating elements 3132-2 and 3132-3 are set to the element size corresponding to 27 GHz. There is.
  • the operable bandwidth as the subarray can be expanded. Further, since the operable bandwidths of the adjacent subarrays are partially overlapped, the operable bandwidth of the entire antenna module 3100 can be expanded.
  • the sub-array by arranging the sub-array at an angle with respect to the side of the rectangular dielectric substrate 3140, from the end orthogonal to the polarization direction of the radiating element forming the sub-array to the end of the dielectric substrate 3140. You can secure a distance. Therefore, from these configurations, the frequency bandwidth of the antenna module 3100 can be expanded and the antenna gain can be widened.
  • FIG. 54 is a diagram for explaining the frequency characteristics of the gain of the antenna module according to the 41st embodiment.
  • line LN210 broken line
  • the element sizes of the two radiating elements included in each subarray are the same.
  • the frequency characteristics of the gain in the case of Comparative Example 42 of 26 GHz / 28 GHz (line LN211: alternate long and short dash line) and in the case of the antenna module 3100 of FIG. 53 (line LN212: solid line) are shown.
  • the peak gain is about 10.7 dBi, and the frequency bandwidth (W210) at which the peak gain is -3 dB is 6.0 GHz.
  • the peak gain is about 11.7 dBi, and the frequency bandwidth (W211) at which the peak gain is -3 dB is 6.75 GHz.
  • the peak gain is about 11.5 dBi, and the frequency bandwidth (W212) at which the peak gain is -3 dB is 7.0 GHz.
  • the peak gain is different in Comparative Example 42 and Example 41 in which the element sizes of the radiating elements in the subarray are different from those in Comparative Example 41 in which the element sizes of the radiating elements are all the same. It is higher and the frequency bandwidth of the gain is expanded.
  • Example 41 by making the element size of the inner subarrays 3130-2 and 3130-3 different from the element size of the outer subarrays 3130-1, 3130-4, the peak gain is higher than that of Comparative Example 42.
  • the gain frequency bandwidth can be increased, albeit slightly lower.
  • the "sub-array 3130-1”, “sub-array 3130-2”, “sub-array 3130-3” and “sub-array 3130-4" are the “first sub-array” and “second sub-array” in the present disclosure. , “Third sub-array” and “fourth sub-array” respectively.
  • the “radiating element 3131-1”, “radiating element 3132-1”, “radiating element 3131-2” and “radiating element 3132-2” in the 41st embodiment are the “first radiating element” and “second radiating element” in the present disclosure. Corresponds to “radiating element”, “third radiating element” and “fourth radiating element” respectively.
  • FIG. 55 is a plan view of the antenna module 3100A according to the 42nd embodiment to which these various methods are comprehensively applied.
  • the distances from the branch point of the feeding wiring to the feeding point may be different from each other for the two radiating elements in the sub-array.
  • Stubs of different lengths may be arranged in the wiring from the branch point to the feeding point, and the stubs may be arranged at different positions.
  • the distance from the center of the radiating element may be different for each radiating element.
  • the spacing of the radiating elements within the subarray and / or the spacing of the radiating elements between the subarrays may be different.
  • the dielectric constants of the dielectrics arranged between each radiating element and the ground electrode GND may be different.
  • the various methods shown above can be applied alone or in combination. Further, when adjusting the frequency characteristic of impedance by applying any of the above methods, the two radiating elements in the subarray may have the same element size.
  • FIG. 56 is a plan view of the antenna module 3100B of the 43rd embodiment, which is a dual polarization type and a dual band type.
  • Each sub-array in the antenna module 3100B includes two radiating elements, and each radiating element is formed of a feeding element and a non-feeding element facing each other.
  • Two feeding points are arranged on each feeding element so that two orthogonal polarized waves are radiated. Then, in the two feeding elements in the sub-array, high frequency signals branched from the common feeding wiring are supplied to each feeding point for radiating radio waves in the same polarization direction.
  • the feeding wiring penetrates the non-feeding wiring and is coupled to the feeding element.
  • the relationship between the radiating elements (feeding element, non-feeding element) in each sub-array and the relationship between the radiating elements between the sub-arrays are as described in FIGS. 53 and 55.
  • the frequency bandwidth of the antenna characteristics of the entire antenna module can be expanded.
  • 57 and 58 are diagrams showing a modified example of the dual polarization type and dual band type antenna module.
  • the two feeding points of the sub-array 3130C-4 are arranged at positions opposite to the corresponding feeding points of the sub-array 3130C-1.
  • the two feeding points of the sub-array 3130C-3 are arranged at positions opposite to the corresponding feeding points of the sub-array 3130C-2.
  • the radio waves radiated from the sub-array 3130C-1 and the sub-array 3130C-4 are symmetrical to each other, and the radio waves radiated from the sub-array 3130C-2 and the sub-array 3130C-3 are symmetrical to each other. Become. Thereby, the symmetry of the directivity radiated from the entire antenna module 3100C can be improved.
  • the two feeding points of the sub-array 3130D-2 are arranged at positions opposite to the corresponding feeding points of the sub-array 3130D-1. Further, the two feeding points of the sub-array 3130C-4 are arranged at positions opposite to the corresponding feeding points of the sub-array 3130C-3. Although the sub-array 3130D-1 and the sub-array 3130D-2 have different element size configurations, they radiate radio waves with adjacent frequency bandwidths that overlap each other.
  • the sub-array 3130D-1 and the sub-array 3130D-2 By arranging the feeding points at opposite positions, the directivity of the radiated radio waves can be improved by integrating the sub-array 3130D-1 and the sub-array 3130D-2.
  • the sub-array 3130D-3 and the sub-array 3130D-4 have the same configuration, so that the symmetry of the directivity radiated from the entire antenna module 3100D can be improved.
  • the radiating element in each of the above-described embodiments may be an inverted-F type patch antenna whose end is connected to the ground electrode by a via, as shown in the modified example 3 of FIG. 39.
  • the radiating element is formed as in the antenna module of the modified example shown in FIGS. 59 to 61.
  • the substrate to be formed and the substrate on which the ground electrode is formed are separated, and these substrates may be connected by bonding or solder mounting.
  • the antenna modules of FIGS. 59 and 60 are modifications of the antenna module 100 of the first embodiment shown in FIG. Further, the antenna module of FIG. 61 is a modification of the antenna module 1100 of the second embodiment shown in FIG. 31. In FIGS. 59 to 61, the description of the elements overlapping with FIGS. 2 or 31 will not be repeated.
  • the radiating elements 131 and 132 are formed on the dielectric substrate 140A, and the ground electrode GND is formed on the dielectric substrate 140B.
  • the common wiring 153 transmits a high frequency signal from the dielectric substrate 140B to the dielectric substrate 140A via the solder bump 180.
  • the common wiring 153 branches into the wiring 151 and the wiring 152 in the dielectric substrate 140A, and a high frequency signal is transmitted to the radiating elements 131 and 132.
  • the radiating elements 131 and 132 are formed on the dielectric substrate 140C, and the ground electrode GND is formed on the dielectric substrate 140D.
  • the common wiring 153 is arranged on the dielectric substrate 140D.
  • the wiring 151 branched from the common wiring 153 transmits a high frequency signal from the dielectric substrate 140D to the radiating element 131 formed on the dielectric substrate 140C via the solder bumps 181.
  • the wiring 152 branched from the common wiring 153 transmits a high frequency signal from the dielectric substrate 140D to the radiating element 132 formed on the dielectric substrate 140C via the solder bumps 182.
  • the dielectric substrate 140A in FIG. 59 and the dielectric substrate 140C in FIG. 60 are, for example, housings for communication devices.
  • the portions of the sub-arrays 1130-1 and 1130-2 including the radiating element are formed on the dielectric substrates 1140A-1 and 1140A-2, respectively, and the ground electrode GND is dielectric. It is formed on the body substrate 1140B.
  • the dielectric substrates 1140A-1 and 1140A-2 are connected by solder bumps (not shown), and the dielectric substrates 1140B are connected to the radiation elements included in the subarrays 1130-1 and 1130-2 via the solder bumps. A high frequency signal is transmitted.
  • the dielectric substrates 1140A-1 and 1140A-2 are of a size capable of including the radiation element of the sub-array, that is, the dielectric substrate when the antenna module 1100E is viewed in a plan view.
  • the size (area) of 1140A-1 and 1140A-2 is smaller than that of the dielectric substrate 1140B.
  • the size of the dielectric substrate on which the radiating element is formed may be smaller than that on the dielectric substrate on which the ground electrode is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

アンテナモジュール(100)は、第1偏波方向の電波を放射する放射素子(131,132)と、当該放射素子(131,132)に共通の高周波信号を供給する給電配線(150)とを備える。放射素子(131)および放射素子(132)は隣接して配置される。給電配線(150)は、共通配線(153)と、共通配線(153)から分岐した配線(151,152)とを含む。配線(151,152)は、放射素子(131,132)にそれぞれ結合されている。給電配線(150)の分岐点(BP)から放射素子(131,132)を見たときに、放射素子(131)のインピーダンスの周波数特性は、放射素子(132)のインピーダンスの周波数特性と異なっている。各放射素子において反射損失が所定以下となる周波数帯域を動作可能帯域幅と規定した場合に、放射素子(131)の動作可能帯域幅と放射素子(132)の動作可能帯域幅とは部分的に重複している。

Description

アンテナモジュールおよびそれを搭載する通信装置
 本開示は、アンテナモジュールおよびそれを搭載する通信装置に関し、より特定的には、アンテナモジュールの周波数帯域幅を拡大するための構造に関する。
 従来から、誘電体基板に平面形状を有するパッチアンテナが形成されたアンテナモジュールが知られている。たとえば、国際公開第2016/067969号(特許文献1)には、同一形状の複数のパッチアンテナが等ピッチで配列されたアレイアンテナが開示されている。
 特開2000-269735号公報(特許文献2)には、誘電体基板上に直線的に配列された、平板形状の複数の放射素子を有するアレイアンテナにおいて、内側の放射素子の素子幅が、外側の放射素子の素子幅よりも狭くされた構成が開示されている。特開2000-269735号公報(特許文献2)のような構成とすることによって、内側の放射素子の指向性利得が外側の放射素子の指向性利得よりも高くなり、放射される電波のサイドローブを低減することができる。
 また、特開2019-92130号公報(特許文献3)には、サイズの異なる2つのパッチアンテナに対して共通の給電配線から高周波信号が供給されるデュアルバンドタイプのパッチアンテナの構成が開示されている。特開2019-92130号公報(特許文献3)に開示された構成においては、給電配線の分岐点から各放射素子までの配線部分にオープンスタブが配置されており、一方の放射素子に供給される高周波信号が、他方の放射素子へ伝達されることを抑制することができる。
国際公開第2016/067969号 特開2000-269735号公報 特開2019-92130号公報
 近年、スマートフォンなどの携帯端末が普及し、さらにはIoTなどの技術革新により無線通信機能を有する家電製品や電子機器が増加している。これにより、無線ネットワークの通信トラフィックが増大し、通信速度および通信品質が低下することが懸念されている。
 このような課題を解決するための1つの対策として、第5世代移動通信システム(5G)の開発が進められている。5Gにおいては、複数の放射素子を用いて高度なビームフォーミングおよび空間多重を行なうとともに、従来から使用されている6GHz帯の周波数の信号に加えて、より高い周波数(数十GHz)のミリ波帯の信号を使用することによって、通信速度の高速化および通信品質の向上を図ることを目指している。
 このようなミリ波帯の高い周波数を用いる場合、通信に用いられるアンテナにおいては、広い動作周波数帯域幅を実現することが望まれている。具体的には、60GHz帯においては、従来の3GHzの周波数帯域幅よりも広い5GHzの周波数帯域幅で動作できることが求められている。
 本開示は、このような課題を解決するためになされたものであって、その目的は、アンテナモジュールにおける周波数帯域幅を拡大することである。
 本開示に係るアンテナモジュールは、第1偏波方向の電波を放射する第1放射素子および第2放射素子と、当該第1放射素子および第2放射素子に共通の高周波信号を供給する第1給電配線とを備える。第1放射素子および第2放射素子は隣接して配置される。第1給電配線は、第1共通配線と、第1共通配線から分岐した第1配線および第2配線とを含む。第1配線および第2配線は、第1放射素子および第2放射素子にそれぞれ結合されている。第1給電配線の分岐点から第1放射素子および第2放射素子を見たときに、第1放射素子のインピーダンスの周波数特性は、第2放射素子のインピーダンスの周波数特性と異なっている。各放射素子において反射損失が所定以下となる周波数帯域を動作可能帯域幅と規定した場合に、第1放射素子の動作可能帯域幅と第2放射素子の動作可能帯域幅とは部分的に重複している。
 本開示のアンテナモジュールによれば、共通の給電配線から高周波信号が供給される2つの放射素子のインピーダンスの周波数特性が異なっており、かつ、2つの放射素子の動作可能帯域幅が部分的に重複するように構成されている。このような構成とすることによって、アンテナモジュール全体の周波数帯域幅は、各放射素子の周波数帯域幅の重ね合わせとなる。したがって、アンテナモジュールにおける周波数帯域幅を拡大することができる。
実施の形態1に係るアンテナモジュールが適用される通信装置のブロック図である。 実施の形態1の実施例1に係るアンテナモジュールの平面図および側面透視図である。 実施の形態1において周波数帯域幅が拡大する原理を説明するための図である。 実施例1および比較例1における動作可能帯域幅を説明するための第1図である。 実施例1および比較例1における動作可能帯域幅を説明するための第2図である。 実施例2および比較例2における動作可能帯域幅を説明するための第1図である。 実施例2および比較例2における動作可能帯域幅を説明するための第2図である。 実施例3に係るアンテナモジュールの平面図である。 実施例3および比較例3における動作可能帯域幅を説明するための第1図である。 実施例3および比較例3における動作可能帯域幅を説明するための第2図である。 実施例3および比較例3における動作可能帯域幅を説明するための第3図である。 実施例3および比較例3における動作可能帯域幅を説明するための第4図である。 実施例4に係るアンテナモジュールの平面図である。 実施例4および比較例4における動作可能帯域幅を説明するための第1図である。 実施例4および比較例4における動作可能帯域幅を説明するための第2図である。 実施例5に係るアンテナモジュールの側面透視図である。 実施例5および比較例5における動作可能帯域幅を説明するための第1図である。 実施例5および比較例5における動作可能帯域幅を説明するための第2図である。 実施例6に係るアンテナモジュールの平面図である。 実施例6および比較例6における動作可能帯域幅を説明するための第1図である。 実施例6および比較例6における動作可能帯域幅を説明するための第2図である。 実施例6および比較例6における動作可能帯域幅を説明するための第3図である。 実施例7に係るアンテナモジュールの平面図である。 実施例8に係るアンテナモジュールの第1例の平面図および側面透視図である。 実施例8に係るアンテナモジュールの第2例の平面図である。 比較例8のアンテナモジュールの平面図である。 実施例8および比較例8における動作可能帯域幅を説明するための図である。 実施例9に係るアンテナモジュールの平面図である。 変形例1に係るアンテナモジュールの平面図である。 変形例2に係るアンテナモジュールの平面図である。 実施の形態2の実施例21に係るアンテナモジュールの平面図である。 比較例のアンテナモジュールの平面図である。 実施例22に係るアンテナモジュールの平面図である。 実施例23に係るアンテナモジュールの平面図である。 実施例24に係るアンテナモジュールの平面図である。 実施例25に係るアンテナモジュールの平面図である。 実施の形態3の実施例31に係るアンテナモジュールの平面図および側面透視図である。 実施例31における各放射素子の周波数特性を説明するための図である。 変形例3に係るアンテナモジュールの側面透視図である。 実施例32に係るアンテナモジュールの平面図である。 実施例32に係るアンテナモジュールのゲインの周波数特性を説明するための図である。 実施例33に係るアンテナモジュールの平面図および側面透視図である。 実施例33における各放射素子の周波数特性を説明するための図である。 実施例33に係るアンテナモジュールのゲインの周波数特性を説明するための図である。 実施例34に係るアンテナモジュールの平面図および側面透視図である。 実施例34における各放射素子の周波数特性を説明するための図である。 実施例34に係るアンテナモジュールのゲインの周波数特性を説明するための図である。 実施例35に係るアンテナモジュールの平面図および側面透視図である。 実施例35における各放射素子の周波数特性を説明するための図である。 実施例35に係るアンテナモジュールのゲインの周波数特性を説明するための図である。 実施例36に係るアンテナモジュールの平面図である。 実施例36に係るアンテナモジュールのゲインの周波数特性を説明するための図である。 実施の形態4の実施例41に係るアンテナモジュールの平面図である。 実施例41に係るアンテナモジュールのゲインの周波数特性を説明するための図である。 実施例42に係るアンテナモジュールの平面図である。 実施例43に係るアンテナモジュールの平面図である。 実施例43の第1の変形例に係るアンテナモジュールの平面図である。 実施例43の第2の変形例に係るアンテナモジュールの平面図である。 変形例4に係るアンテナモジュールの側面透視図である。 変形例5に係るアンテナモジュールの側面透視図である。 変形例6に係るアンテナモジュールの斜視図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 <通信装置の基本構成>
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。具体的な周波数帯域としては、3GPP(Third Generation Partnership Project)で用いられる、n258,n257,n261(24.25GHz~29.5GHz)、および、n260,n259(37GHz~43.5GHz)に適用することができる。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナ装置120から放射するとともに、アンテナ装置120で受信した高周波信号をダウンコンバートしてBBIC200にて信号を処理する。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数のサブアレイ130のうち、4つのサブアレイ130に対応する構成のみ示され、同様の構成を有する他のサブアレイ130に対応する構成については省略されている。サブアレイ130には、少なくとも1つの放射素子が含まれている。
 なお、図1においては、アンテナ装置120が二次元のアレイ状に配置された複数のサブアレイ130で形成される例を示しているが、サブアレイ130は必ずしも複数である必要はなく、1つのサブアレイ130でアンテナ装置120が形成される場合であってもよい。また、複数のサブアレイ130が一列に配置された一次元アレイであってもよい。本実施の形態1においては、サブアレイ130に含まれる放射素子は、略正方形の平板状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なるサブアレイ130に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各サブアレイ130の放射素子で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各サブアレイ130に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応するサブアレイ130毎に1チップの集積回路部品として形成されてもよい。
 <アンテナモジュールの構成>
 (実施例1)
 次に、図2を用いて、本実施の形態1の実施例1におけるアンテナモジュール100の構成の詳細を説明する。図2は、アンテナモジュール100の平面図(図2(a))および側面透視図(図2(b))である。
 図2を参照して、アンテナモジュール100は、RFIC110と、放射素子131,132と、誘電体基板140と、給電配線150と、接地電極GNDとを含む。なお、以降の説明において、各図におけるZ軸の正方向を上面側、負方向を下面側と称する場合がある。
 誘電体基板140は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板140は必ずしも多層構造でなくてもよく、単層の基板であってもよい。
 誘電体基板140は矩形の平面形状を有しており、誘電体基板140の内部の層あるいは上面側の表面141に、放射素子131,132が配置される。誘電体基板140において、放射素子131,132よりも下面側の層に平板状の接地電極GNDが配置される。また、誘電体基板140の下面側の裏面142には、はんだバンプ160を介してRFIC110が配置される。
 放射素子131,132は、略正方形の平板形状を有するパッチアンテナであり、X軸方向に隣接して配置される。図2において、素子間隔GPは、アンテナモジュール100を平面視した場合の、放射素子131と放射素子132との間の距離である。実施例1のアンテナモジュール100においては、放射素子131の素子サイズは放射素子132の素子サイズよりも大きい。すなわち、放射素子131の共振周波数は放射素子132の共振周波数よりも低い。なお、以降の説明において、放射素子の素子サイズを、当該放射素子の共振周波数を用いて表現する場合がある。
 給電配線150は、配線151、配線152および共通配線153を含む。共通配線153は、RFIC110を電気的に接続するはんだバンプ160から接地電極GNDを貫通して誘電体基板140内に立ち上がり、分岐点BPで配線151および配線152に分岐される。
 配線151は放射素子131の給電点SP1に結合される。配線152は放射素子132の給電点SP2に結合される。実施例1においては、配線151の長さおよび配線152の長さは同じ長さに設定されている。なお、配線151と放射素子131との結合、および、配線152と放射素子132との結合は、図2に示されるように配線が放射素子に直接接続されてもよいし、容量結合によって非接触で結合されてもよい。
 放射素子131の給電点SP1は、放射素子131の中心に対してX軸の負方向にオフセットした位置に配置される。また、放射素子132の給電点SP2についても、放射素子132の中心に対してX軸の負方向にオフセットした位置に配置される。このような位置に給電点を配置することによって、各放射素子からは、X軸方向を偏波方向とする電波が放射される。
 図2において、放射素子、電極、および、給電配線を形成するビア等を構成する導体は、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、および、これらの合金を主成分とする金属で形成されている。
 近年、スマートフォンなどの携帯端末の普及、およびIoTなどの技術革新により無線通信における通信トラフィックが増大し、通信速度および通信品質が低下することが懸念されている。このような課題を解決するための1つの対策として、第5世代移動通信システム(5G)の開発が進められている。5Gにおいては、複数の放射素子を用いて高度なビームフォーミングおよび空間多重を行なうとともに、従来から使用されている6GHz帯の周波数の信号に加えて、より高い周波数(数十GHz)のミリ波帯の信号を使用することによって、通信速度の高速化および通信品質の向上を図ることを目指している。このようなミリ波帯の高い周波数を用いる場合、通信に用いられるアンテナにおいては、広い動作周波数帯域幅を実現することが望まれている。
 一般的に、パッチアンテナにおいては、供給される高周波信号の周波数(以下、「駆動周波数」をも称する。)が素子の共振周波数に一致する場合に反射損失が最小となり、駆動周波数が共振周波数から離れるに従って反射損失が大きくなる傾向を有している。本実施の形態1の実施例1のアンテナモジュールにおいては、隣接配置された素子サイズが異なる2つの放射素子に対して共通の高周波信号が供給される。当該2つの放射素子は、異なる素子サイズを有しているため共振周波数が互いに異なっており、さらに放射素子が動作可能な周波数帯域が互いに重複するように設定される。このような構成により、同一の素子サイズの放射素子を用いた場合に比べて、アンテナモジュール全体としての周波数帯域幅を拡大することができる。
 次に、図3を用いて、実施の形態1において周波数帯域幅が拡大する原理を説明する。放射素子131および放射素子132の共振周波数をそれぞれf1およびf2(f1<f2)とした場合、分岐点BPから見たときに各放射素子のインピーダンスの周波数特性が異なるため、放射素子131および放射素子132の反射損失は、図3(a)に示されるように、それぞれ線LN1(実線)および線LN2(破線)のようになる。このとき、反射損失が所定値(たとえば6dB)となるしきい値を線LN3のように定め、当該しきい値よりも反射損失が低くなる領域を「動作可能帯域幅」とした場合、放射素子131の動作可能帯域幅はBW1となり、放射素子132の動作可能帯域幅はBW2となる。
 ここで、図3(a)に示されるように、2つの放射素子131,132の動作可能帯域幅が部分的に重複するように設定すると、アンテナモジュール100全体の反射損失は、図3(b)に示されるように、各放射素子の反射損失を重ね合わせた状態(線LN4)となる。これにより、アンテナモジュール100全体としての動作可能帯域幅BW0は、放射素子131の動作可能帯域幅の下限から放射素子132の動作可能帯域幅の上限までの範囲となる。このように、動作可能帯域幅が部分的に重複するような2つの放射素子に共通の高周波信号が供給されるような構成とすることによって、同一サイズの放射素子を用いる場合に比べて、アンテナモジュールの周波数帯域幅を拡大することが可能となる。
 図4および図5は、実施例1および比較例1におけるシミュレーション結果を説明するための図である。図4は、反射損失の周波数特性を示すグラフである。図5は、図4の各シミュレーション結果における動作可能帯域幅BW0を読み取ったものを示した表である。
 なお、図4および図5においては、2つの放射素子が同じ素子サイズ(27GHz/27GHz)である場合を比較例1とし、異なる素子サイズ(26GHz/28GHz)の放射素子において2つの素子間隔GPを変化させた場合のシミュレーション結果を実施例1-1~1-4で示している。具体的には、図4において、線LN10(破線)は比較例1の場合が示されており、線LN11(実線)は比較例1と同じ素子間隔(1.0mm)で素子サイズを異ならせた場合(実施例1-1)を示している。また、図4における線LN12(一点鎖線)、線LN13(二点鎖線)および線LN14(破線)は、それぞれ素子間隔GPを0.75mm(実施例1-2),0.50mm(実施例1-3),0.25mm(実施例1-4)と狭くした場合を示している。なお、本実施例において、素子間隔GPが0.75mmの場合は素子サイズの1/4に対応し、素子間隔GPが0.50mmの場合は素子サイズの1/6に対応し、素子間隔GPが0.25mmの場合は素子サイズの1/12に対応する。
 図4および図5から、同じ素子間隔1.0mmにおいて、素子サイズの異なる2つの放射素子を用いることで、反射損失が6dB以下となる動作可能帯域幅BW0は3.0GHzから3.3GHzへ拡大していることがわかる。また、異なる素子サイズの放射素子を用いた場合において、素子間隔GPを狭くすることによって、さらに動作可能帯域幅BW0が拡大していることがわかる。
 ただし、素子間隔GPを狭くしていくと、放射素子同士の結合が強まってしまい、反射損失のグラフにおける2つの谷の間の部分(動作可能帯域幅の重複部分)の反射損失が徐々に大きくなる。そのため、素子間隔GPを狭くしすぎるとかえって動作可能帯域幅BW0が狭くなってしまう。実施例1のように、26GHzおよび28GHzに対応する放射素子を用いる場合、素子間隔GPは、高周波数側の放射素子132の素子サイズの1/12以上とすることが好ましい。また、アンテナモジュール100の法線方向から平面視した場合に、放射素子131と放射素子132との間の中心間距離は、放射素子131から放射される電波の波長の1/2以下とすることが好ましい。
 以上のように、互いに異なる素子サイズを有し、動作可能帯域幅が部分的に重複する2つの放射素子に共通の高周波信号を供給する構成とすることによって、アンテナモジュールの周波数帯域幅を拡大することが可能となる。
 なお、実施例1において、「放射素子131」および「放射素子132」は、本開示における「第1放射素子」および「第2放射素子」にそれぞれ対応する。「給電点SP1」および「給電点SP2」は、本開示における「第1給電点」および「第2給電点」にそれぞれ対応する。実施例1における「給電配線150」は、本開示における「第1給電配線」に対応する。実施例1における「配線151」、「配線152」および「共通配線153」は、本開示における「第1配線」、「第2配線」および「第1共通配線」にそれぞれ対応する。
 (実施例2)
 実施例1における図4および図5の例では、2つの放射素子の素子サイズは固定した状態で、素子間隔を変更させた場合の周波数帯域幅について説明した。実施例2においては、素子間隔を固定した状態で、2つの放射素子の素子サイズを変更させた場合の周波数帯域幅について説明する。
 図6および図7は、実施例2および比較例2におけるシミュレーション結果を説明するための図である。図6は、反射損失の周波数特性を示すグラフである。図7は、図6の各シミュレーション結果における動作可能帯域幅BW0を読み取ったものを示した表である。
 図6および図7においては、2つの放射素子の素子間隔GPを0.5mmに固定し、2つの放射素子が同じ素子サイズ(27GHz/27GHz)である場合を比較例2(図7の線LN20:破線)とし、素子サイズが26GHz/28GHzの場合を実施例2-1(図7の線LN21:実線)、素子サイズが25GHz/29GHzの場合を実施例2-2(図7の線LN22:一点鎖線)、素子サイズが24GHz/30GHzの場合を実施例2-3(図7の線LN23:二点鎖線)としている。
 図6および図7からわかるように、素子サイズの差(すなわち、共振周波数の差)が大きくなるに従って、動作可能帯域幅BW0が拡大していることがわかる。ただし、図6に示されるように、反射損失の2つの谷の間の領域については、素子サイズの差が大きくなるにつれて反射損失が大きくなっている。これは、2つの放射素子の動作可能帯域幅の重複範囲が少なくなっているためであり、2つの放射素子の動作可能帯域幅が重複しなくなると、2つの谷の間の周波数において所望の反射損失が実現できない領域が生じる。すなわち、2つの放射素子の動作可能帯域幅が重複する範囲内であれば、素子サイズの差を大きくすることで、周波数帯域幅をより拡大することができる。
 (実施例3)
 実施例1および実施例2においては、素子サイズが異なる2つの放射素子を用いることによって、2つの放射素子のインピーダンスの周波数特性を異ならせる構成について説明した。
 実施例3においては、2つの放射素子に接続される給電配線を異なる長さとすることによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明する。
 図8は、実施例3に係るアンテナモジュール100Aの平面図である。アンテナモジュール100Aにおいては、サブアレイ130Aを形成する放射素子131A,132Aは同じ素子サイズを有している。しかしながら、給電配線150において、分岐点BPから各給電点までの長さ、すなわち配線151の長さSL1と配線152の長さSL2とが異なっている。分岐点BPから給電点SP1,SP2までの配線長さを異ならせて、配線のインダクタンスを異ならせることによって、分岐点BPから見たときの各放射素子のインピーダンスの周波数特性を異なる値とすることができる。これにより、各放射素子の動作可能帯域幅が部分的に重複した状態となるので、図3で説明したようにアンテナモジュール全体の周波数帯域幅を拡大することができる。
 なお、図8においては、説明を容易にするために、アンテナモジュール100Aの法線方向から平面視したときの分岐点BPと給電点SP1,SP2との間のX軸方向の直線的な距離をSL1,SL2と示しているが、実際には、Z軸方向およびY軸方向の配線長さが考慮される。
 図9および図10は、実施例3および比較例3におけるシミュレーション結果を説明するための図である。図9は、反射損失の周波数特性を示すグラフである。図10は、図9の各シミュレーション結果における動作可能帯域幅BW0を読み取ったものを示した表である。
 図9および図10のシミュレーションにおいては、2つの放射素子の素子サイズはいずれも27GHzと同一に設定されている。分岐点BPからの配線長さSL1,SL2がいずれも2.5mmである場合を比較例3(図9の線LN30:破線)とし、配線長さSL1,SL2が4.0mm,3.0mmの場合を実施例3-1(図9の線LN31:実線)、配線長さSL1,SL2が1.5mm,3.5mmの場合を実施例3-2(図9の線LN32:一点鎖線)、配線長さSL1,SL2が2.5mm,3.5mmの場合を実施例3-3(図9の線LN33:二点鎖線)としている。なお、各実施例においては、素子間隔GPを2.2mm,1.0mm,0.75mmとした場合に、アンテナモジュール全体の動作可能帯域幅が最も広くなるように配線長さを調整している。
 図9および図10を参照して、配線長さを同一とした比較例3の場合の動作可能帯域幅BW0は2.8GHzであるのに対して、実施例3-1,3-2,3-3の場合の動作可能帯域幅BW0は、それぞれ7.2GHz,7.2GHz,8.0GHzとなっている。すなわち、素子サイズが同じ2つの放射素子を用いる場合であっても、給電配線の長さを異ならせることによって、動作可能帯域幅BW0を拡大することができる。
 図11および図12は、図10で示した実施例3-1~実施例3-3と同じ配線長さおよび同じ素子間隔の場合において、さらに2つの放射素子の素子サイズを異ならせた場合のシミュレーション結果を説明するための図である。
 実施例3-4は、実施例3-1と同じ配線長さ(SL1,SL2)=(4.0mm,3.0mm)で素子間隔GPが2.2mmの場合において、放射素子131Aの素子サイズを26GHz、放射素子132Aの素子サイズを28GHzとした例である(図11の線LN34:実線)。この場合の動作可能帯域幅BW0は8.4GHzとなっており、実施例3-1の場合(7.2GHz)よりもさらに動作可能帯域幅BW0が拡大していることがわかる。
 同様に、実施例3-5の場合(図11の線LN35:一点鎖線)についても、実施例3-2の場合よりも動作可能帯域幅BW0がさらに拡大している。そして、実施例3-6の場合(図11の線LN36:二点鎖線)についても、実施例3-3の場合よりも動作可能帯域幅BW0がさらに拡大している。
 このように、実施例1および実施例2で説明した2つの放射素子の素子サイズを異ならせる構成と、分岐点から各放射素子までの配線長さを異ならせる構成とを組み合わせることによって、アンテナモジュール全体の周波数帯域幅をよりいっそう拡大することが可能となる。
 なお、実施例3において、「放射素子131A」および「放射素子132A」は、本開示における「第1放射素子」および「第2放射素子」にそれぞれ対応する。
 (実施例4)
 実施例4においては、2つの放射素子に接続される給電配線にスタブを配置することによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明する。
 図13は、実施例4に係るアンテナモジュール100Bの平面図である。アンテナモジュール100Bにおいては、サブアレイ130Bを形成する放射素子131B,132Bは同じ素子サイズに設定されている。そして、給電配線150において、分岐点BPから各給電点までの長さは同じ長さに設定されている。一方で、アンテナモジュール100Bにおいては、分岐点BPから給電点SP1までの配線151にはスタブ171が配置されており、さらに、分岐点BPから給電点SP2までの配線152にはスタブ172が配置されている。
 スタブ171は、配線151において、分岐点BPから距離SL12の位置(給電点SP1から距離SL11の位置)に配置される。また、スタブ172は、配線152において、分岐点BPから距離SL22の位置(給電点SP2から距離SL21の位置)に配置される。
 これらのスタブ171,172は、相手側の放射素子の周波数帯域を遮断するために設けられるのではなく、RFIC110と各放射素子とのインピーダンスマッチングを調整するために設けられる。すなわち、同じ素子サイズおよび同じ配線長さの放射素子であっても、スタブの長さおよび/または給電配線上におけるスタブの位置を異ならせることによって、2つの放射素子のインピーダンスの周波数特性を調整することができる。また、スタブを配置することによって、反射損失が極小となる極が追加されるため、この極の生成も周波数帯域の拡大に寄与する。
 図14および図15は、実施例4および比較例4におけるシミュレーション結果を説明するための図である。図14は、反射損失の周波数特性を示すグラフである。図15は、図14の各シミュレーション結果における動作可能帯域幅BW0を読み取ったものを示した表である。
 なお、図14および図15において、比較例4は素子サイズおよび配線長さが同一でスタブを配置しない場合の例(図14の線LN40:破線)であり、実施例4-1は長さの異なるスタブを各配線の同じ位置に配置した場合の例(図14の線LN41:実線)である。なお、比較例4および実施例4-1においては、素子間隔GPが同じ寸法になるように放射素子131B,132Bが配置されている。
 比較例4および実施例4-1を比較すると、反射損失が6dBより小さくなる動作可能帯域幅BW0は、比較例4の場合が2.9GHzであるのに対して、実施例4-1の場合には5.8GHzと拡大されている。したがって、分岐点BPから分岐後の給電配線に互いに異なるスタブを配置してインピーダンスの周波数特性を変更することによって、アンテナモジュール100B全体としての周波数帯域を拡大することができる。
 また、図14および図15において、実施例4-2~実施例4-4においては、スタブの追加に加えて、さらに異なる素子サイズの放射素子を用いた場合の例である。実施例4-2(図14の線LN42:一点鎖線)は、実施例4-1と同じ素子間隔において、異なる素子サイズの放射素子を用いた場合の例である。なお、実施例4-2において、各放射素子に対応するスタブは分岐点BPから同じ距離に配置されているが、実施例4-1とは異なった位置となっている。
 実施例4-3(図14の線LN43:二点鎖線)は、実施例4-2に対して素子間隔GPをさらに狭くした例である。実施例4-4(図14の線LN44:破線)は、実施例4-3に対してスタブの位置を変更するとともに、素子間隔GPをさらに狭くした例である。実施例4-5(図14の線LN45:一点鎖線)は、実施例4-4と同じ素子間隔GPにおいて、放射素子131B側のスタブの位置と放射素子132B側のスタブの位置を異ならせた例である。なお、各実施例において、インピーダンをスマッチングさせるために、スタブの長さは適宜調整されている。
 実施例4-2~実施例4-4のシミュレーション結果に示されるように、スタブの配置に加えて、異なる素子サイズの放射素子を用いることによって、動作可能帯域幅BW0を拡大することができる。また、素子間隔GPを狭くすること、および/または、2つの放射素子について給電配線上の異なる位置にスタブを配置することによって、さらに動作可能帯域幅BW0を拡大することができる。
 以上のように、2つの放射素子に接続される給電配線にスタブを配置することによって、アンテナモジュール全体の周波数帯域幅を拡大することができる。
 なお、実施例4において、「放射素子131B」および「放射素子132B」は、本開示における「第1放射素子」および「第2放射素子」にそれぞれ対応する。また、実施例3における「スタブ171」および「スタブ172」は、本開示の「第1スタブ」および「第2スタブ」にそれぞれ対応する。
 (実施例5)
 実施例5においては、放射素子が配置される誘電体基板を形成する誘電体の誘電率を異ならせることによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明する。
 図16は、実施例5に係るアンテナモジュール100Cの側面透視図である。アンテナモジュール100Cにおいては、サブアレイ130Cを形成する放射素子131C,132Cは同じ素子サイズを有しており、給電配線150の分岐点BPから各給電点SP1,SP2までの長さは同じ長さである。一方で、アンテナモジュール100Cにおいては、放射素子131Cが形成される領域の誘電体は、放射素子132Cが形成される領域の誘電体とは異なった誘電率を有している。言い換えると、放射素子131Cと接地電極GNDとの間に配置される誘電体1401の誘電率ε1は、放射素子132Cと接地電極GNDとの間に配置される誘電体1402の誘電率ε2とは異なっている(ε1≠ε2)。放射素子の素子サイズ、および、放射素子と接地電極GNDとの間の距離が同じであっても、放射素子と接地電極GNDとの間の誘電率が異なると、誘電体基板140を伝搬する信号の実効波長が変わるため、結果として放射素子の共振周波数が変化する。そのため、放射素子が形成される領域の誘電率を異ならせることによって、各放射素子における動作可能帯域幅を異ならせることができる。
 図17および図18は、実施例5および比較例5におけるシミュレーション結果を説明するための図である。図17は、反射損失の周波数特性を示すグラフである。図18は、図15の各シミュレーション結果における動作可能帯域幅BW0を読み取ったものを示した表である。
 比較例5(図17の線LN50:破線)は、放射素子131Cが形成される領域の誘電率ε1および放射素子132Cが形成される領域の誘電率ε2がいずれも2.9の場合の例である。実施例5(図17の線LN51:実線)は、放射素子131Cが形成される領域の誘電率ε1が2.9であり、放射素子132Cが形成される領域の誘電率ε2が3.5の場合の例である。
 図17および図18に示されるように、実施例5の動作可能帯域幅BW0(3.6GHz)は、同じ誘電率を用いる比較例5の動作可能帯域幅BW0(2.9GHz)よりも広くなっている。このように、各放射素子が形成される誘電体基板の領域の誘電率を異ならせることによって、アンテナモジュール全体の周波数帯域幅を拡大することができる。
 なお、図16においては、放射素子と接地電極との間の全体に、所定の誘電率を有する誘電体が配置される構成であったが、放射素子と接地電極との間において、誘電体の一部に空洞が形成されていたり、誘電率の異なる誘電体が部分的に配置されることによって、誘電体基板の実効誘電率を異ならせる場合であってもよい。
 なお、実施例5において、「放射素子131C」および「放射素子132C」は、本開示における「第1放射素子」および「第2放射素子」にそれぞれ対応する。
 (実施例6)
 実施例6においては、給電配線と放射素子とを結合する給電点の位置を放射素子ごとに異なる位置に配置することによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明する。
 図19は、実施例6に係るアンテナモジュール100Dの平面図である。アンテナモジュール100Dにおいては、サブアレイ130Dを形成する放射素子131D,132Dは同じ素子サイズを有しており、給電配線150の分岐点BPから各給電点SP1,SP2までの長さは同じ長さである。しかしながら、アンテナモジュール100Dにおいては、放射素子131D,132Dにおける給電点の位置が互いに異なっている。具体的には、放射素子131Dにおいて中心CP1に対する給電点SP1のオフセット量SF1が、放射素子132Dにおいて中心CP2に対する給電点SP2のオフセット量SF2よりも大きくなっている。
 パッチアンテナにおいて、給電点の位置が変化すると放射素子のインピーダンスが変化することが知られている。通常は、特性インピーダンス(たとえば、50Ω)となる位置(最適位置)に給電点を配置することで、使用帯域幅における反射損失を低減するように設計される。実施例6においては、2つの放射素子の少なくとも一方について、給電点の位置を最適位置からシフトさせることによって当該放射素子の共振周波数を変化させる。これによって、給電点がシフトされた放射素子単体については反射損失が多少劣化するものの、2つの放射素子の動作可能帯域幅がずれることにより、アンテナモジュール全体の周波数帯域幅を拡大することができる。
 図20~図22は、実施例6および比較例6におけるシミュレーション結果を説明するための図である。図20は、同一素子サイズの放射素子について給電点SP1のシフト量を変化させた場合の反射損失の周波数特性を示すグラフである。また、図21は、給電点のシフトに加えて、さらに、2つの放射素子の素子サイズを変更した場合の反射損失の周波数特性を示すグラフである。図22は、図20および図21の各シミュレーション結果における動作可能帯域幅BW0を読み取ったものを示した表である。
 比較例6(図20,図21の線LN60:破線)は、放射素子131D,132Dの素子サイズがいずれも27GHzであり、かつ、放射素子131Dにおける給電点SP1のオフセット量SF1および放射素子132Dにおける給電点SP2のオフセット量SF2のいずれもが0.7mmである場合の例である。実施例6-1(図20の線LN61:実線)および実施例6-2(図20の線LN62:一点鎖線)は、2つの放射素子の素子サイズはいずれも27GHzであるが、放射素子131Dにおける給電点のオフセット量SF1が1.3mmに設定された場合の例である。実施例6-1における素子間隔GPは、比較例6と同じ2.2mmに設定されており、実施例6-2においては素子間隔GPが0.75mmに狭められている。
 図20および図22に示されるように、同一の素子サイズであっても、給電点SP1のシフト量を変更することによって、動作可能帯域幅BW0が2.9GHz(比較例6)から5.0GHz(実施例6-1)に拡大している。さらに、素子間隔GPを狭めることによって、動作可能帯域幅BW0が5.4GHzへとさらに拡大している。
 また、実施例6-3(図21の線LN63:二点鎖線)および実施例6-4(図21の線LN64:一点鎖線)は、放射素子131Dにおける給電点のオフセット量SF1が1.3mmに設定され、さらに、放射素子131Dの素子サイズが26GHz、放射素子132Dの素子サイズが28GHzに設定された場合の例である。実施例6-3における素子間隔GPは、比較例6および実施例6-1と同じ2.2mmに設定されており、実施例6-4の素子間隔GPは、実施例6-2と同じ0.75mmに設定されている。
 図21および図22に示されるように、給電点SP1のシフトに加えて素子サイズを変更することによって、動作可能帯域幅BW0が5.7GHz(実施例6-3)へと拡大している。さらに、素子間隔GPを狭めることによって、動作可能帯域幅BW0が5.9GHz(実施例6-4)へと拡大している。
 以上のように、2つの放射素子の給電点の位置を異ならせてインピーダンスの周波数特性を変化させ、動作可能帯域幅が部分的に重複するようにすることによって、アンテナモジュール全体の周波数帯域幅を拡大することができる。
 なお、実施例6において、「放射素子131D」および「放射素子132D」は、本開示における「第1放射素子」および「第2放射素子」にそれぞれ対応する。
 (実施例7)
 上述の各実施例においては、各放射素子から単一の偏波方向の電波が放射される構成について説明した。実施例7においては、各放射素子から2つの偏波方向の電波が放射される、いわゆるデュアル偏波タイプのアンテナモジュールに上記の特徴を適用した例について説明する。
 図23は、実施例7に係るアンテナモジュール100Eの平面図である。アンテナモジュール100Eは、図2で示したアンテナモジュール100と同様に、異なる素子サイズの放射素子131E,132Eによってサブアレイ130Eが形成されている。そして、各放射素子においては、放射素子の中心からX軸方向にオフセットした給電点、および、放射素子の中心からY軸方向にオフセットした給電点に高周波信号が供給される。
 より具体的には、放射素子131Eにおいては、放射素子131Eの中心からX軸の負方向にオフセットした給電点SP11、および、放射素子131Eの中心からY軸の正方向にオフセットした給電点SP12に高周波信号が供給される。また、放射素子132Eにおいては、放射素子132Eの中心からX軸の負方向にオフセットした給電点SP21、および、放射素子132Eの中心からY軸の正方向にオフセットした給電点SP22に高周波信号が供給される。
 放射素子131Eの給電点SP11および放射素子132Eの給電点SP21には、給電配線150によって共通の高周波信号が供給される。図23においては、給電配線150の分岐点BP1と各給電点SP11,SP21との間の配線は同じ長さに設定されている。給電配線150によって放射素子131E,132Eに高周波信号を供給することによって、各放射素子からはX軸方向を偏波方向とする電波が放射される。
 同様に、放射素子131Eの給電点SP12および放射素子132Eの給電点SP22には、給電配線155によって共通の高周波信号が供給される。給電配線155の分岐点BP2と各給電点SP12,SP22との間の配線は同じ長さに設定されている。給電配線155によって放射素子131E,132Eに高周波信号を供給することによって、各放射素子からはY軸方向を偏波方向とする電波が放射される。
 このようなデュアル偏波タイプのアンテナモジュールにおいても、サブアレイを形成する2つの放射素子の素子サイズを異ならせて、各放射素子の動作可能帯域幅を部分的に重複させることによって、各偏波方向の電波に対する周波数帯域幅を拡大することが可能となる。
 なお、上記の図23においては、2つの放射素子の素子サイズを異ならせることによって、各放射素子のインピーダンスの周波数特性を変更させる例について説明したが、デュアル偏波タイプのアンテナモジュールについても、実施例2~実施例6で説明したような手法を単独であるいは組み合わせて適用してもよい。
 なお、実施例7において、「放射素子131E」および「放射素子132E」は、本開示における「第1放射素子」および「第2放射素子」にそれぞれ対応する。
 (実施例8)
 実施例8においては、各放射素子から2つの周波数の電波を放射可能な、いわゆるデュアルバンドタイプのアンテナモジュールに上記の特徴を適用した例について説明する。
 図24は、実施例8の第1例に係るアンテナモジュール100Fの平面図(図24(a))および側面透視図(図24(b))である。アンテナモジュール100Fにおいては、サブアレイ130Fを形成する放射素子131F,132FがX軸方向に隣接して配置されている。放射素子131F,132Fの各々は、給電素子とそれに対向する無給電素子によって構成されている。より具体的には、放射素子131Fは給電素子131F1および無給電素子131F2を含んでおり、放射素子132Fは給電素子132F1および無給電素子132F2を含んでいる。
 図24(b)に示されるように、給電素子131F1,132F1は、誘電体基板140の内部の層あるいは上面側の表面141に、接地電極GNDに対向して配置される。無給電素子131F2は、給電素子131F1と接地電極GNDとの間に、給電素子131F1と対向して配置される。無給電素子132F2は、給電素子132F1と接地電極GNDとの間に、給電素子132F1と対向して配置される。
 各放射素子においては、給電素子の素子サイズは無給電素子の素子サイズよりも小さい。すなわち、各放射素子において、給電素子の共振周波数は無給電素子の共振周波数よりも高い。たとえば、給電素子131F1,132F1は39GHz帯の電波を放射可能な素子サイズに設定されており、無給電素子131F2,132F2は27GHz帯の電波を放射可能な素子サイズに設定されている。
 給電素子132F1の素子サイズは給電素子131F1の素子サイズよりも小さく、たとえば、給電素子132F1の共振周波数は41GHz、給電素子131F1の共振周波数は37GHzに設定される。また、無給電素子132F2の素子サイズは無給電素子131F2の素子サイズよりも小さく、たとえば、無給電素子132F2の共振周波数は28GHz、無給電素子131F2の共振周波数は26GHzに設定される。
 給電素子131F1の給電点SP11および給電素子132F1の給電点SP21には、給電配線150により共通の高周波信号が供給される。給電配線150の分岐点BP1から給電点SP11までの配線151は、無給電素子131F2を貫通して給電点SP11に結合される。分岐点BP1から給電点SP21までの配線152は、無給電素子132F2を貫通して給電点SP21に結合される。
 給電点SP11,SP21は、対応する給電素子の中心からX軸の負方向に配置されている。そのため、給電配線150により39GHz帯の高周波信号が各給電素子に供給されると、給電素子131F1,132F1から、X軸方向を偏波方向とする39GHz帯の電波が放射される。また、給電配線150により27GHz帯の高周波信号が各給電素子に供給されると、無給電素子131F2,132F2から、X軸方向を偏波方向とする27GHz帯の電波が放射される。
 さらに、アンテナモジュール100Fにおいては、給電素子131F1の給電点SP12および給電素子132F1の給電点SP22にも、給電配線155により共通の高周波信号が供給される。給電点SP12,SP22は、対応する給電素子の中心からY軸の正方向に配置されている。給電配線155の分岐点BP2から給電点SP12までの配線156は、無給電素子131F2を貫通して給電点SP12に結合される。分岐点BP2から給電点SP22までの配線157は、無給電素子132F2を貫通して給電点SP22に結合される。これにより、給電配線155により39GHz帯の高周波信号が各給電素子に供給されると、給電素子131F1,132F1から、Y軸方向を偏波方向とする39GHz帯の電波が放射される。また、給電配線150により27GHz帯の高周波信号が各給電素子に供給されると、無給電素子131F2,132F2から、Y軸方向を偏波方向とする27GHz帯の電波が放射される。
 すなわち、アンテナモジュール100Fは、27GHz帯および39GHz帯の電波が放射可能なデュアルバンドタイプかつデュアル偏波タイプのアンテナモジュールである。
 アンテナモジュール100Fにおいては、39GHz帯の給電素子131F1,132F1の組み合わせが実施例1に対応する構成となり、さらに、27GHz帯の無給電素子131F2,132F2の組み合わせが実施例1に対応する構成となる。したがって、2つの周波数帯域の各々において動作可能帯域幅を拡大することができる。
 図25は、実施例8の第2例に係るアンテナモジュール100Gの平面図である。アンテナモジュール100Gにおいては、図24のアンテナモジュール100Fの構成に加えて、各給電配線の共通配線部分にスタブが配置される。
 アンテナモジュール100Gにおいては、サブアレイ130Gを形成する放射素子131G,132GがX軸方向に隣接して配置されている。放射素子131G,132Gの各々は、給電素子とそれに対向する無給電素子によって構成されている。より具体的には、放射素子131Gは給電素子131G1および無給電素子131G2を含んでおり、放射素子132Gは給電素子132G1および無給電素子132G2を含んでいる。そして、アンテナモジュール100Gにおいては、給電配線150の共通配線153にはスタブST11,ST12が配置され、給電配線155の共通配線158にはスタブST21,ST22が配置される。このスタブは、実施例4で説明したスタブとは異なり、他方の周波数帯域に対する影響を低減するために用いられる。
 言い換えると、給電素子131G1,132G1から39GHz帯の電波を放射する場合には、スタブにより27GHz帯の信号が遮断されるようにインピーダンスが調整される。これにより、無給電素子131G2,132G2から不要波が放射されることを防止できる。逆に、無給電素子131G2,132G2から27GHz帯の電波を放射させる場合には、スタブにより39GHz帯の信号が遮断されるようにインピーダンスが調整される。これにより、アンテナモジュールの周波数帯域幅をさらに改善することができる。
 上記のアンテナモジュール100F,100Gについて、図26の比較例8のアンテナモジュール100#と比較した場合の反射損失の周波数特性を図27に示す。なお、比較例8のアンテナモジュール100#においては、2つの放射素子について、給電素子131#1,132#1が同一の素子サイズ(39GHz)に設定され、かつ、無給電素子131#2,132#2が同一の素子サイズ(27GHz)に設定されている。そして、各放射素子の給電点にはそれぞれ個別に高周波信号が供給される。
 図27を参照して、線LN70(破線)は図26の比較例8の場合を示している。また、線LN71(実線)は図25の実施例8の第1例の場合を示しており、線LN72(一点鎖線)は図26の実施例8の第2例の場合を示している。図27に示されるように、実施例8の第1例および第2例のいずれの場合も、比較例8の場合に比べて、各周波数帯(27GHz,39GHz)における動作可能帯域幅が拡大している。したがって、デュアルバンドタイプのアンテナモジュールにおいても、同一周波数帯域を対象とする隣接配置された2つの放射素子について、動作周波数帯域幅を部分的に重複させることによって、各周波数帯域についての周波数帯域幅を拡大することが可能となる。
 なお、上記の実施例8においては、対象となる2つの放射素子の素子サイズを異ならせることによって、各放射素子のインピーダンスの周波数特性を変更させる例について説明したが、デュアルバンドタイプのアンテナモジュールについても、実施例2~実施例6で説明したような手法を単独であるいは組み合わせて適用してもよい。また、実施例8における無給電素子を給電素子に変更してもよい。
 なお、実施例8において、「放射素子131F」および「放射素子131G」は、本開示における「第1放射素子」に対応する。実施例8における「放射素子132F」および「放射素子132G」は、本開示における「第2放射素子」に対応する。実施例8における「給電素子131F1」および「給電素子131G1」は、本開示における「第1素子」に対応する。実施例8における「無給電素子131F2」および「無給電素子131G2」は、本開示における「第2素子」に対応する。実施例8における「給電素子132F1」および「給電素子132G1」は、本開示における「第3素子」に対応する。実施例8における「無給電素子132F2」および「無給電素子132G2」は、本開示における「第4素子」に対応する。
 (実施例9)
 上述の実施例1~実施例8においては、単独のサブアレイで形成されるアンテナモジュールについて説明した。実施例9においては、複数のサブアレイを用いたアレイアンテナの場合について説明する。
 図28は、実施例9に係るアンテナモジュール100Hの平面図である。アンテナモジュール100Hにおいては、図2で示した実施例1のサブアレイを2×2の二次元アレイに配列した構成を有している。より具体的には、アンテナモジュール100Hは、4つのサブアレイ130H1~130H4(以下、包括的に「サブアレイ130H」とも称する。)を含んでおり、サブアレイ130H1とサブアレイ130H2とがX軸方向に隣接して配置されている。サブアレイ130H3,130H4は、それぞれサブアレイ130H1,130H2のY軸の負方向に隣接して配置されている。
 各サブアレイは、素子サイズが異なる2つの放射素子を含んでおり、当該2つの放射素子はX軸方向に隣接して配置されている。図28のアンテナモジュール100Hにおいては、素子サイズの大きい放射素子を放射素子131H1~131H4(以下、包括的に「放射素子131H」とも称する。)とし、素子サイズの小さい放射素子を放射素子132H1~132H4(以下、包括的に「放射素子132H」とも称する。)とする。
 各サブアレイ130Hにおいて、放射素子131Hの中心と放射素子132Hの中心との距離を素子間ピッチPT0とし、X軸方向のサブアレイ間の距離(たとえば、放射素子131H1と放射素子131H2との間の距離)をX方向ピッチPTXとし、Y軸方向のサブアレイ間の距離(たとえば、放射素子131H1と放射素子131H3との間の距離)をY方向ピッチPTYとすると、X方向ピッチPTXおよびY方向ピッチPTYは、素子間ピッチPT0よりも大きくなるように各放射素子が配置される(PTX>PT0,PTY>PT0)。
 各サブアレイ130Hにおいて、2つの放射素子(131H/132H)の給電点には、分岐された給電配線によって共通の高周波信号が供給される。図28の例においては、各放射素子においては、放射素子の中心からX軸の負方向に給電点がオフセットしており、各放射素子からはX軸方向を偏波方向とする電波が放射される。
 このような構成により、実施例1で説明したように、各サブアレイ130Hにおいて周波数帯域幅を拡大することができるので、アンテナモジュール100H全体についても周波数帯域幅を拡大することができる。さらに、アンテナゲインおよび指向性の改善にも寄与する。
 なお、図28のアンテナモジュール100Hにおいては、X軸方向およびY軸方向にサブアレイが直線状に配置されているが、X軸方向またはY軸方向の配列がジグザグに配列されていてもよい。
 また、X軸方向および/またはY軸方向に3つ以上のサブアレイが配列されてもよい。その場合には、放射される電波の指向性を対称化するために、隣接するサブアレイ間隔が等ピッチとなるように配置されることが好ましい。
 アンテナモジュールは、X軸方向あるいはY軸方向のいずれか一方にのみ複数のサブアレイが配列された一次元アレイであってもよい。
 なお、上記の図28においては、各サブアレイの2つの放射素子の素子サイズを異ならせることによって、各放射素子のインピーダンスの周波数特性を変更させる例について説明したが、アレイアンテナのアンテナモジュールについても、実施例2~実施例6で説明したような手法を単独であるいは組み合わせて適用することによって、インピーダンスの周波数特性を変更させるようにしてもよい。さらに、実施例7および実施例8のような、デュアル偏波タイプおよび/またはデュアルバンドタイプのサブアレイでアレイアンテナを形成してもよい。
 なお、実施例9において、「サブアレイ130H1」および「サブアレイ130H3」は、本開示における「第1サブアレイ」に対応する。実施例9における「サブアレイ130H2」および「サブアレイ130H4」は、本開示における「第2サブアレイ」に対応する。実施例9における「放射素子131H1」および「放射素子131H3」は、本開示における「第1放射素子」に対応する。実施例9における「放射素子132H1」および「放射素子132H3」は、本開示における「第2放射素子」に対応する。実施例9における「放射素子131H2」および「放射素子131H4」は、本開示における「第3放射素子」に対応する。実施例9における「放射素子132H2」および「放射素子132H4」は、本開示における「第4放射素子」に対応する。
 (変形例)
 上述の実施例9においては、サブアレイを形成する略正方形状の2つの放射素子が、互いの辺が対向するように配置されるアレイアンテナの構成について説明した。以下で説明する変形例においては、サブアレイを形成する2つの放射素子の配置が異なったアレイアンテナの例について説明する。
 図29は、変形例1に係るアンテナモジュール100H1の平面図である。アンテナモジュール100H1においては、サブアレイ130H11~130H14の各々に含まれる2つの放射素子が、放射素子の対角線方向に配置されている。そして、各サブアレイにおいて、2つの放射素子には共通の給電配線から高周波信号が分岐されて供給される。なお、図29の例においては、各放射素子からはX軸方向を偏波方向とする電波が放射される。
 図30は変形例2に係るアンテナモジュール100H2の平面図である。アンテナモジュール100H2においては、サブアレイ130H21~130H24の各々に含まれる略正方形の2つの放射素子のうち、一方の放射素子131H21~131H24は、各辺がX軸あるはY軸に平行となるように配置されており、他方の放射素子132H21~132H24は、各辺がX軸あるいはY軸に対して45°傾斜して配置されている。サブアレイ130H21,130H24については2つの放射素子がY軸方向に隣接して配置されており、サブアレイ130H22,130H23については2つの放射素子がX軸方向に隣接して配置されている。そして、各サブアレイにおいて、2つの放射素子には共通の給電配線から高周波信号が分岐されて供給される。
 変形例のアンテナモジュール100H1,100H2においても、各サブアレイを形成する2つの放射素子について、上記の実施例1~6で説明したような手法を適用してインピーダンスの周波数特性を変更し、2つの放射素子の動作可能帯域幅を部分的に重複させることによって、アンテナモジュール全体の周波数帯域幅を拡大してもよい。また、アンテナモジュール100H1においても、実施例7および実施例8のような、デュアル偏波タイプおよび/またはデュアルバンドタイプのサブアレイでアレイアンテナを形成してもよい。
 [実施の形態2]
 上述のように、アンテナモジュールはスマートフォンなどの携帯端末に用いられる。このような携帯端末においては、小型化および薄型化のニーズが依然として高く、それに伴って、電波を放射するためのアンテナモジュールについてもさらなる小型化が望まれている。放射される電波の周波数は、基本的には放射素子のサイズに依存するため、放射素子のサイズについては、放射すべき電波の周波数によりある程度制限される。そのため、アンテナモジュールを小型化するためには、放射素子が形成される誘電体基板のサイズを小さくすることが必要となる。しかしながら、放射可能な電波の周波数帯域幅は、電波の偏波方向における放射素子の端部から誘電体基板の端部までの距離に影響されるため、誘電体基板のサイズを小さくすると、アンテナモジュールの所望の周波数帯域幅が実現できなくなる可能性がある。
 実施の形態2においては、実施の形態1で説明したようなサブアレイを用いたアレイアンテナにおいて、周波数帯域の低減を抑制しつつアンテナモジュールの小型化を実現するための構成について説明する。
 (実施例21)
 図31は、実施の形態2の実施例21に係るアンテナモジュール1100の平面図である。アンテナモジュール1100は、サブアレイ1130-1,1130-2を含むアレイアンテナである。サブアレイ1130-1は放射素子1131-1,1132-1を含んでおり、サブアレイ1130-2は放射素子1131-2,1132-2を含んでいる。放射素子1131-1および放射素子1131-2は、互いに同じ素子サイズ(たとえば、26GHz)を有している。また、放射素子1132-1および放射素子1132-2は、放射素子1131-1および放射素子1131-2よりも小さく、かつ互いに同一の素子サイズ(たとえば、28GHz)を有している。
 アンテナモジュール1100においては、サブアレイ1130-1,1130-2は、矩形状の誘電体基板1140において、図31のX軸方向(第1方向)に隣接して配置される。各サブアレイにおいて、2つの放射素子は、誘電体基板1140の一辺に沿ったX軸方向に対して角度φ(0°<φ<90°)だけ傾斜した方向(第2方向)に隣接して配置されている。上記の第2方向は、サブアレイ1130-1において放射素子1131-1から放射素子1132-1を見た方向である。また第2方向は、サブアレイ1130-2において放射素子1131-2から放射素子1132-2を見た方向である。
 サブアレイ1130-1において、放射素子1131-1,1132-1には、給電配線1150-1から共通の高周波信号が供給される。また、サブアレイ1130-2において、放射素子1131-2,1132-2には、給電配線1150-2から共通の高周波信号が供給される。放射素子1131-1の給電点SP1-1、放射素子1132-1の給電点SP2-1、放射素子1131-2の給電点SP1-2、および放射素子1132-2の給電点SP2-2は、対応する放射素子の中心から第2方向に沿ってオフセットした位置に配置されている。したがって、各放射素子からは第2方向に沿った方向を偏波方向とする電波が放射される。
 このような構成とすることより、実施の形態1で説明したように、各サブアレイにおいて、2つの放射素子の動作可能帯域幅を部分的に重複させることができる。その結果、各サブアレイの動作可能帯域幅を拡大することができ、アンテナモジュール全体の周波数帯域幅を拡大することができる。
 図32は、比較例のアンテナモジュール1100#の平面図である。アンテナモジュール1100#においては、各サブアレイ1130#-1,1130#-2における2つの放射素子が、Y軸に沿って隣接して配置されている。すなわち、図31における角度φが90°の場合である。
 図32のようなサブアレイの配置において、アンテナモジュールを小型化するために誘電体基板1140を小さくすると、偏波方向(図32ではY軸方向)において放射素子1131#-1,1131#-2の端部から誘電体基板1140の端部までの距離L1#、および、放射素子1132#-1,1132#-2の端部から誘電体基板1140の端部までの距離L2#がしだいに狭くなる。偏波方向の誘電体の領域が狭くなると、放射素子と接地電極との間の電磁界結合が弱くなりアンテナモジュールの周波数帯域幅が狭くなることが知られている。そうすると、比較例のようなサブアレイの配置の場合、アンテナモジュールの小型化に伴って周波数帯域幅が狭くなり、アンテナ特性が低下する可能性がある。
 一方、図31で示したアンテナモジュール1100のように、矩形状の誘電体基板1140に対してサブアレイが傾斜するように配置すると、偏波方向における放射素子の端部から誘電体基板の端部までの距離L1,L2を、比較例の場合よりも広くすることができる。したがって、周波数帯域幅の低減を抑制しつつアンテナモジュールの小型化を図ることができる。
 なお、アンテナモジュール1100においても、各サブアレイを形成する2つの放射素子について、実施の形態1の実施例1~6で説明したような手法を適用してインピーダンスの周波数特性を変更し、2つの放射素子の動作可能帯域幅を部分的に重複させることによって、アンテナモジュール全体の周波数帯域幅を拡大してもよい。また、アンテナモジュール1100においても、実施の形態1の実施例7および実施例8のような、デュアル偏波タイプおよび/またはデュアルバンドタイプのサブアレイでアレイアンテナを形成してもよい。
 なお、実施の形態2の各実施例において、サブアレイを形成する2つの放射素子のインピーダンスの周波数特性が異なることは必須ではなく、当該2つの放射素子のインピーダンスの周波数特性が同じであってもよい。
 また、隣接するサブアレイにおいて、素子サイズの大小関係が互いに逆になっていてもよい。すなわち、サブアレイ1130-1においては、放射素子1131-1の素子サイズを放射素子1132-1の素子サイズを大きくし、一方、サブアレイ1130-2においては、放射素子1132-2の素子サイズを放射素子1131-2の素子サイズを大きくするようにしてもよい。
 (実施例22)
 実施例21のアンテナモジュール1100においては、隣接するサブアレイが同じ構成を有する場合について説明した。実施例22においては、隣接するサブアレイの構成が異なる場合について説明する。
 図33は、実施例22に係るアンテナモジュール1100Aの平面図である。アンテナモジュール1100Aにおいては、上述の実施例21と同様に、矩形状の誘電体基板1140に、サブアレイ1130A-1およびサブアレイ1130A-2がX軸方向に隣接して配置されている。各サブアレイには、2つの放射素子が含まれており、当該2つの放射素子はX軸方向から傾斜した方向に沿って隣接して配置されている。
 サブアレイ1130A-1は、放射素子1131A-1および放射素子1132A-1を含む。放射素子1131A-1の素子サイズは、放射素子1132A-1の素子サイズよりも大きい。たとえば、放射素子1131A-1の素子サイズは26GHzであり、放射素子1132A-1の素子サイズは28GHzである。放射素子1131A-1および放射素子1132A-1には、共通の給電配線から高周波信号が供給される。
 また、サブアレイ1130A-2は、放射素子1131A-2および放射素子1132A-2を含む。放射素子1131A-2の素子サイズは、放射素子1132A-2の素子サイズよりも大きい。たとえば、放射素子1131A-12素子サイズは25GHzであり、放射素子1132A-1の素子サイズは27GHzである。放射素子1131A-2および放射素子1132A-2には、共通の給電配線から高周波信号が供給される。
 すなわち、サブアレイ1130A-1の構成はサブアレイ1130A-2の構成とは異なっている。そして、サブアレイ1130A-1において大きい素子サイズの放射素子1131A-1と、サブアレイ1130A-2において大きい素子サイズの放射素子1131A-2とを比較すると、放射素子1131A-2の素子サイズの方が大きい。同様に、サブアレイ1130A-1において小さい素子サイズの放射素子1132A-1と、サブアレイ1130A-2において小さい素子サイズの放射素子1132A-2とを比較すると、放射素子1132A-1の素子サイズの方が大きい。
 このような構成とすることによって、サブアレイにおいては、2つの放射素子の動作可能帯域幅が部分的に重複した状態となるため、サブアレイとしての動作可能帯域幅を拡大することができる。さらに、隣接したサブアレイについても、動作可能帯域幅が部分的に重複した状態となるため、アレイアンテナ全体の動作可能帯域幅を拡大することができる。したがって、アンテナモジュール1100Aの周波数帯域幅を拡大することができる。
 なお、アンテナモジュール1100Aにおいても、インピーダンスの周波数特性を変更する手法として、実施の形態1の実施例1~6で説明したような手法を適用してもよい。また、実施の形態1の実施例7および実施例8のような、デュアル偏波タイプおよび/またはデュアルバンドタイプのサブアレイでアレイアンテナを形成してもよい。
 (実施例23)
 実施例23においては、アンテナモジュールに含まれる3つ以上の複数のサブアレイが一方向に配列された一次元アレイのアレイアンテナの例について説明する。
 図34は、実施例23に係るアンテナモジュール1100Bの平面図である。アンテナモジュール1100Bにおいては、矩形状の誘電体基板1140に4つのサブアレイ1130B-1~1130B-4が、X軸方向に一列に配置されている。各サブアレイは2つの放射素子を含んでおり、実施例21,22と同様に、2つの放射素子の配置方向は誘電体基板1140の一辺(X軸)に対して傾斜するように配置されている。
 各放射素子は、異なる素子サイズの2つの放射素子によって形成されている。たとえば、大きい素子サイズを有する放射素子1131B-1,1131B-2,1131B-3,1131B-4の素子サイズは26GHzであり、小さい素子サイズを有する放射素子1132B-1,1132B-2,1132B-3,1132B-4の素子サイズは28GHzである。
 アンテナモジュール1100Bにおいては、各サブアレイは同じ構成に形成されており、4つのサブアレイはX軸方向に等ピッチで配置されている。すなわち、放射素子1131B-1と放射素子1131B-2との間の距離、放射素子1131B-2と放射素子1131B-3との間の距離、および、放射素子1131B-3と放射素子1131B-4との間の距離が、いずれもPT12となるように配置されている。
 図34に示されるように、サブアレイにおける2つの放射素子の中心間の距離をPT10とし、隣接する2つのサブアレイの各々における2つの放射素子の中心を通る仮想線間の距離をPT11とした場合、距離PT11が素子間距離PT10よりも長くなるように設定される。また、サブアレイ間のピッチPT12についても、素子間距離PT10よりも長くなるように設定される。
 サブアレイをこのような位置関係で配置することによって、サブアレイ内の2つの放射素子間の結合よりも、隣接するサブアレイ間の結合を弱くすることができるため、サブアレイ間のアイソレーションを確保することができ、サブアレイの周波数帯域幅の拡大効果を発揮することが可能となる。
 なお、図34においては4つのサブアレイで形成される一次元アレイアンテナについて説明したが、サブアレイの数は3つあるいは5つ以上であってもよい。
 (実施例24)
 実施例24においては、アンテナモジュールに含まれる4つのサブアレイが二次元のアレイ状に配置されたアレイアンテナの場合について説明する。
 図35は、実施例24に係るアンテナモジュール1100Cの平面図である。アンテナモジュール1100Cは、4つのサブアレイ1130C-1~1130C-4を含む。各サブアレイは、2つの放射素子によって形成されており、2つの放射素子の配置方向は誘電体基板1140のX軸に対して傾斜するように配置されている。
 各放射素子は、異なる素子サイズの2つの放射素子によって形成されている。たとえば、大きい素子サイズを有する放射素子1131C-1,1131C-2,1131C-3,1131C-4は26GHzの素子サイズであり、小さい素子サイズを有する放射素子1132C-1,1132C-2,1132C-3,1132C-4は28GHzの素子サイズである。
 サブアレイ1130C-2は、サブアレイ1130C-1に対してX軸の正方向に隣接して配置される。サブアレイ1130C-4は、サブアレイ1130C-3に対してX軸の正方向に隣接して配置される。また、サブアレイ1130C-3は、サブアレイ1130C-1に対してX軸に直交するY軸の負方向(第3方向)に隣接して配置される。サブアレイ1130C-4は、サブアレイ1130C-2に対してY軸の負方向に隣接して配置される。
 各サブアレイにおける2つの放射素子の中心間の距離をPT20とし、隣接する2つのサブアレイの各々における2つの放射素子の中心を通る仮想線間の距離をPT21とした場合、距離PT21が素子間距離PT20よりも長くなるように設定される。サブアレイをこのような位置関係で配置することによって、サブアレイ内の2つの放射素子間の結合よりも、隣接するサブアレイ間の結合を弱くすることができるため、サブアレイ間のアイソレーションを確保することができ、サブアレイの周波数帯域幅の拡大効果を発揮することが可能となる。
 また、X軸方向に隣接する2つのサブアレイの間隔(すなわち、放射素子1131C-1の中心と放射素子131C-2の中心との間の距離)をPT22とし、Y軸方向に隣接する2つのサブアレイの間隔(すなわち、放射素子1131C-1の中心と放射素子131C-3の中心との間の距離)をPT23とした場合、サブアレイ間隔PT22,PT23は、素子間距離PT20よりも長くなるように設定される。サブアレイをこのような位置関係で配置することによって、サブアレイ内の2つの放射素子間の結合よりも、隣接するサブアレイ間の結合を弱くすることができるため、サブアレイ間のアイソレーションを確保することができ、サブアレイの周波数帯域幅の拡大効果を発揮することが可能となる。
 なお、サブアレイ間隔については、各サブアレイに高周波信号を供給する給電配線の分岐点の間隔として定義してもよい。また、アンテナモジュール1100C全体から放射される電波のビーム形状を対称化するために、X軸方向のサブアレイ間隔PT22と、Y軸方向のサブアレイ間隔PT23とを等しく設定することが好ましい。
 図35においては、4つの放射素子が2×2の二次元アレイに配置されたアレイアンテナの例について説明したが、より多くの放射素子を用いてn×m(n,mはいずれも2以上の自然数)の二次元アレイとしてもよい。
 (実施例25)
 実施例24においては、二次元アレイアンテナにおいて、隣接するサブアレイが同じ構成とした例について説明した。実施例25においては、二次元アレイアンテナにおいて、隣接するサブアレイの放射素子の素子サイズの大小関係が逆になるように配置された構成について説明する。
 図36は、実施例25に係るアンテナモジュール1100Dの平面図である。アンテナモジュール1100Dは、4つのサブアレイ1130D-1~1130D-4を含む。各サブアレイは、2つの放射素子によって形成されており、2つの放射素子の配置方向は誘電体基板1140のX軸に対して傾斜するように配置されている。
 各放射素子は、異なる素子サイズの2つの放射素子によって形成されている。サブアレイ1130D-1,1130D-4については、放射素子1131D-1,1131D-4の素子サイズ(たとえば、26GHz)が、放射素子1132D-1,1132D-4の素子サイズ(たとえば、28GHz)よりも大きくなるように設定される。一方、サブアレイ1130D-2,1130D-3については、放射素子1131D-2,1131D-3の素子サイズ(たとえば、28GHz)は、放射素子1132D-2,1132D-3の素子サイズ(たとえば、26GHz)よりも小さくなるように設定される。
 このように隣接サブアレイ内の放射素子の大小関係が逆になるように配置することによって、放射される電波の指向性を調整することが可能となる。
 [実施の形態3]
 実施の形態1,2においては、サブアレイを形成する放射素子の動作可能帯域幅を部分的に重複させることによって全体の周波数帯域幅を拡大する構成について説明した。
 実施の形態3においては、単一の放射素子がアレイ状に配置されたアレイアンテナにおいて、周波数帯域幅を拡大する構成について説明する。
 (実施例31)
 図37は実施の形態3の実施例31に係るアンテナモジュール2100の平面図および側面透視図である。図37を参照して、アンテナモジュール2100は、誘電体基板2140と、放射素子2130-1,2130-2と、RFIC2110と、接地電極GNDとを含む。
 放射素子2130-1,2130-2は、誘電体基板2140の内部の層あるいは上面側の表面2141に、X軸方向に隣接して配置される。誘電体基板2140において、放射素子2130-1,2130-2よりも下面側の層に、放射素子2130-1,2130-2に対向して平板状の接地電極GNDが配置される。RFIC2110は、はんだバンプ2160を介して、誘電体基板2140の裏面2142に配置される。
 放射素子2130-1,2130-2には、共通の高周波信号が、個別の給電配線によって供給される。具体的には、放射素子2130-1には、給電配線2150-1によってRFIC2110から高周波信号が供給される。給電配線2150-1は、RFIC2110から接地電極GNDを貫通して、放射素子2130-1の給電点SP11に結合される。また、放射素子2130-2には、給電配線2150-2によってRFIC2110から高周波信号が供給される。給電配線2150-2は、RFIC2110から接地電極GNDを貫通して、放射素子2130-2の給電点SP12に結合される。
 放射素子2130-1の給電点SP11および放射素子2130-2の給電点SP12は、対応する放射素子の中心からX軸の負方向にオフセットした位置に配置されている。これにより、放射素子2130-1,2130-2からは、X軸方向を偏波方向とする電波が放射される。
 ここで、アンテナモジュール2100においては、放射素子2130-1の素子サイズは、放射素子2130-2の素子サイズよりも小さくなるように設定される。たとえば、アンテナモジュール2100から27GHz帯の高周波信号を放射する場合には、放射素子2130-1の素子サイズは28GHzに対応したサイズに設定され、放射素子2130-2の素子サイズは26GHzに対応したサイズに設定される。すなわち、RFIC2110から見たときの、放射素子2130-1のインピーダンスの周波数特性は、放射素子2130-2のインピーダンスの周波数特性とは異なっている。
 図38は、2つの放射素子を同じ素子サイズ(27GHz)とした比較例の場合および図37の実施例31の場合における、各放射素子の反射損失の周波数特性を示す図である。同一素子サイズの比較例の場合(図38(a))には、双方の放射素子の反射損失は線LN110のようになる。この場合に、反射損失が6dB以下となる動作可能帯域幅はBW30となる。
 一方、実施例31の場合(図38(b))には、放射素子2130-1の反射損失は線LN111(実線)となり、放射素子2130-2の反射損失は線LN112(破線)となる。すなわち、互いの動作可能帯域幅が部分的に重複する状態なる。これによって、アンテナモジュール2100全体の動作可能帯域幅はBW31となるため、比較例に比べて、アンテナモジュール2100の周波数帯域幅を拡大することができる。
 また、アンテナモジュールから放射される電波のゲインの周波数特性について見ると、比較例の場合には、2つの放射素子の特性が同じであるため、ピークゲインが高く急峻に減衰する(すなわち、周波数帯域幅が狭い)単峰性のゲイン特性となる。一方、実施例31の場合には、異なる2つのゲイン特性の合成となるため双方性のゲイン特性となる。そのため、トータルピークゲインは比較例に比べると低くなるものの、全体としてなだらかに減衰するゲイン特性となる。したがって、たとえば、ピークゲインから3dB低減したゲインを達成可能な領域(すなわち、電波のパワーがピークの50%以上となる領域)は、実施例31の方が比較例よりも広くなる。すなわち、ゲインの広帯域化を実現することができる。
 なお、図37においては、放射素子2130-1,2130-2が接地電極GNDと絶縁されたパッチアンテナの場合について説明したが、図39の変形例3のアンテナモジュール2100Aのように、放射素子2130A-1,2130A-2の端部が、ビアV1,V2によって接地電極GNDにそれぞれ接続された、逆F型のパッチアンテナであってもよい。
 (比較例32)
 実施例31においては、異なるサイズを有する2つの放射素子が配列されたアレイアンテナについて説明した。しかしながら、この場合には、アンテナモジュール全体として対称となっていないため、アンテナ特性(ゲイン,損失)についても対称性が実現できない場合がある。実施例32においては、実施例31で説明した構成を2組用いて対称配置することによって、アンテナ特性を対称化する構成について説明する。
 図40は、実施例32係るアンテナモジュール2100Bの平面図である。アンテナモジュール2100Bは、4つの放射素子2130B-1~2130B-4を含む一次元アレイアンテナである。放射素子2130B-1~2130B-4は、X軸方向に、放射素子2130B-1,2130B-2,2130B-3,2130B-4の順に一列に配置されている。
 アンテナモジュール2100Bにおいて、放射素子2130B-1と放射素子2130B-4とは同じ構成を有しており、放射素子2130B-2と放射素子2130B-3とは同じ構成を有している。すなわち、放射素子2130B-1および放射素子2130B-4の素子サイズは同じであり、たとえば28GHzの素子サイズに設定される。また、放射素子2130B-2および放射素子2130B-3の素子サイズは同じであり、たとえば26GHzの素子サイズに設定される。したがって、RFIC2110から見たときの、放射素子2130-3のインピーダンスの周波数特性は、放射素子2130-4のインピーダンスの周波数特性とは異なっている。なお、図40には示されていないが、実施例32においても、実施例31の場合と同様に、各放射素子には、共通の高周波信号が、個別の給電配線により高周波信号が供給される。
 実施例32においては、放射素子2130B-1と放射素子2130B-2との間の距離、ならびに、放射素子2130B-3と放射素子2130B-4との間の距離はいずれもPT31に設定されている。一方で、放射素子2130B-2と放射素子2130B-3との間の距離はPT32(>PT31)に設定されている。内側の放射素子2130B-2,2130B-3は、外側の放射素子2130B-1,2130B-4よりも素子サイズが大きいため、外側の放射素子2130B-1,2130B-4よりも広い接地電極GNDが必要となる。また、素子サイズが大きい放射素子同士であると、素子間の結合も増加し得る。そのため、放射素子2130B-2と放射素子2130B-3との間の距離PT32を、放射素子2130B-1と放射素子2130B-2との間(あるいは、放射素子2130B-3と放射素子2130B-4との間)の距離PT31よりも大きくすることで、相対的に素子サイズが大きい放射素子2130B-2,2130B-3の本来のアンテナ特性に近づけることが可能となる。
 放射素子2130B-1の給電点SP11および放射素子2130B-2の給電点SP12は、対応する放射素子の中心からX軸の負方向にオフセットして配置されている。また、放射素子2130B-3の給電点SP13および放射素子2130B-4の給電点SP14は、対応する放射素子の中心からX軸の正方向にオフセットして配置されている。そして、放射素子2130B-3および放射素子2130B-4については、放射素子2130B-1および放射素子2130B-2に供給される高周波信号に対して反転した位相を有する高周波信号が供給される。これにより、各放射素子からはX軸方向を偏波方向とする電波が放射される。
 図41は、実施例32に係るアンテナモジュール2100Bのゲインの周波数特性を示す図である。図41においては、4つの放射素子がすべて同じ素子サイズである比較例の場合が線LN120(破線)で示されており、放射素子間のピッチが同じ場合(PT31=PT32)が線LN121(一点鎖線)で、放射素子間のピッチが異なる場合(PT31<PT32)場合が線LN122(実線)で示されている。
 図41を参照して、比較例の場合(線LN120)には、ピークゲインは約10.7dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W120)は6.0GHzである。異なる素子サイズで同一の素子間ピッチの場合(線LN121)においては、ピークゲインは約9.9dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W121)は7.1GHzである。また、異なる素子サイズで素子間ピッチを異ならせた場合(線LN122)においては、ピークゲインは約10.2dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W122)は7.3GHzである。
 このように、アンテナモジュール2100Bにおいては、実施例31と同様に、隣接する放射素子のサイズを変更して動作可能帯域幅を部分的に重複させることによって、アンテナ特性(反射損失,ゲイン)の周波数帯域幅を拡大することができ、さらに、放射素子を対称に配置することよってアンテナ特性の対称性を改善することができる。また、放射素子間のピッチを調整することによって、ピークゲインの低下を抑制しつつ、ゲインの広域化を実現することができる。
 なお、実施例32においては、4つの放射素子を有する一次元アレイアンテナについて説明したが、放射素子の数は5つ以上であってもよい。
 (実施例33)
 実施例31,32においては、隣接する放射素子の素子サイズを異ならせることによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明した。
 実施例33においては、実施の形態1の実施例3と同様に、隣接する放射素子に接続される給電配線を異なる長さとすることによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明する。
 図42は、実施例33に係るアンテナモジュール2100Cの平面図(図42(a))および側面透視図(図42(b))である。アンテナモジュール2100Cは、実施例32のアンテナモジュール2100Bと同様に、4つの放射素子2130C-1~2130C-4が一列に配置される一次元アレイアンテナである。なお、アンテナモジュール2100Cにおいては、各放射素子はすべて同一の素子サイズとなっている。
 放射素子2130C-1~2130C-4には、それぞれ給電配線2150C-1~2150C-4によって、共通の高周波信号が供給される。外側の放射素子2130C-1,2130C-4に用いられる給電配線2150C-1,2150C-4の長さは、内側の放射素子2130C-2,2130C-3に用いられる給電配線2150C-2,2150C-3の長さよりも長い。このように、RFIC2110から各給電点へと至る給電配線の長さを異ならせることによって、RFIC2110から見た時のインピーダンスの周波数特性を異なる値とすることができる。これにより、隣接する放射素子の動作可能帯域幅が部分的に重複した状態となるので、アンテナ特性(反射損失,ゲイン)の周波数帯域幅を拡大することができる。
 図43は、実施例33における各放射素子の反射損失の周波数特性を説明するための図である。図43(a)は、RFIC2110から各放射素子までの給電配線が同じ長さである比較例の場合の周波数特性(線LN130)が示されており、図43(b)は、実施例33の場合の周波数特性が示されている。図43(b)において、給電配線が長い放射素子2130C-1,2130C-4の周波数特性が線LN131(実線)で示されており、給電配線が短い放射素子2130C-2,2130C-3の周波数特性が線LN132(破線)で示されている。図43に示されるように、実施例33においては動作可能帯域幅が部分的に重複しているため、比較例に比べて実施例33の方が、アンテナモジュール全体として動作可能帯域幅が拡大している。
 図44は、実施例33に係るアンテナモジュール2100Cのゲインの周波数特性を示す図である。図44においては、各放射素子への給電配線の長さが同じ比較例の場合が線LN140(破線)で示されており、給電配線の長さを異ならせた実施例33の場合が線LN141(実線)で示されている。比較例の場合には、ピークゲインは約10.7dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W140)は6.0GHzである。一方、実施例33の場合には、ピークゲインは約10.1dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W141)は6.9GHzである。
 このように、アンテナモジュール2100Cにおいては、一次元アレイアンテナにおいて、隣接する放射素子について高周波信号を供給する給電配線を変更して動作可能帯域幅を部分的に重複させることによって、アンテナ特性(反射損失,ゲイン)の周波数帯域幅を拡大することができる。
 (実施例34)
 実施例34においては、実施の形態1の実施例4と同様に、隣接する放射素子に接続される給電配線にスタブを配置することによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明する。
 図45は、実施例34に係るアンテナモジュール2100Dの平面図(図45(a))および側面透視図(図45(b))である。アンテナモジュール2100Dは、実施例33のアンテナモジュール2100Cと同様に、同一素子サイズの4つの放射素子2130D-1~2130D-4が一列に配置される一次元アレイアンテナであり、RFIC2110から各放射素子までの給電配線2150D-1~2150D-4の長さは同じ長さとなっている。しかしながら、アンテナモジュール2100Dにおいては、内側の放射素子2130D-2,2130D-3については、対応する給電配線にスタブが配置されている。具体的には、給電配線2150D-2にはスタブ2170D-2が配置され、給電配線2150D-3にはスタブ2170D-3が配置される。なお、これらのスタブ2170D-2,2170D-3は、相手側の放射素子の周波数帯域を遮断するために設けられるのではなく、RFIC2110と各放射素子とのインピーダンスマッチングを調整するために設けられる。
 図46は、実施例34における各放射素子の反射損失の周波数特性を説明するための図である。図46(a)は、RFIC2110から各放射素子までの給電配線が同じ長さであり、かつ各給電配線にスタブが設けられていない比較例の場合の周波数特性(線LN150)が示されている。この場合、各放射素子は同じ周波数特性となっている。
 一方、図46(b)に示されるように、給電配線にスタブが配置された放射素子2130D-2,2130D-3の場合(図46(b)のLN152:破線)においては、給電配線にスタブが配置されていない放射素子2130D-1,2130D-4の場合(図46(b)のLN151:実線)に比べて、インピーダンスの変化によって共振周波数が高周波数側にシフトしている。これにより、放射素子2130D-1,2130D-4における動作可能帯域幅と、放射素子2130D-2,2130D-3における動作可能帯域幅とが部分的に重複した状態となる。これにより、アンテナモジュール2100Dにおける、アンテナ特性の周波数帯域幅を拡大することができる。
 図47は、実施例34に係るアンテナモジュール2100Dのゲインの周波数特性を示す図である。図47においては、上記の比較例の場合が線LN160(破線)で示されており、内側の放射素子2130D-2,2130D-3の給電配線にスタブを配置した実施例33の場合が線LN161(実線)で示されている。比較例の場合には、ピークゲインは約10.7dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W160)は6.0GHzである。一方、実施例34の場合には、ピークゲインは約9.8dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W161)は7.8GHzである。
 このように、アンテナモジュール2100Dにおいては、一次元アレイアンテナにおいて、隣接する放射素子に高周波信号を供給する給電配線の一方にスタブを配置して動作可能帯域幅を部分的に重複させることによって、アンテナ特性(反射損失,ゲイン)の周波数帯域幅を拡大することができる。
 なお、図47の例においては、内側の放射素子2130D-2,2130D-3の給電配線にスタブを配置し、外側の放射素子2130D-1,2130D-4の給電配線にスタブを配置しない構成であったが、内側の放射素子と外側の放射素子とで異なる長さのスタブを給電配線に配置することによって、放射素子のインピーダンスの周波数特性を異ならせる構成としてもよい。
 (実施例35)
 実施例35においては、実施の形態1の実施例5と同様に、隣接する放射素子が配置される誘電体の誘電率を異ならせることによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明する。
 図48は、実施例35に係るアンテナモジュール2100Eの平面図(図48(a))および側面透視図(図48(b))である。アンテナモジュール2100Eは、実施例33のアンテナモジュール2100Cと同様に、同一素子サイズの4つの放射素子2130E-1~2130E-4が一列に配置される一次元アレイアンテナであり、RFIC2110から各放射素子までの給電配線2150E-1~2150E-4の長さは同じ長さとなっている。しかしながら、アンテナモジュール2100Eにおいては、内側の放射素子2130E-2,2130E-3が配置される誘電体の誘電率ε32が、外側の放射素子2130E-1,2130E-4が配置される誘電体の誘電率ε31よりも高くされている。言い換えれば、放射素子2130E-1,2130E-4と接地電極GNDとの間に配置される誘電体の誘電率ε31と、放射素子2130E-2,2130E-3と接地電極GNDとの間に配置される誘電体の誘電率ε32とが異なっている(ε31≠ε32)。放射素子の素子サイズ、および、放射素子と接地電極GNDとの間の距離が同じであっても、放射素子と接地電極GNDとの間の誘電率が異なると、誘電体基板2140を伝搬する信号の実効波長が変わるため、結果として放射素子の共振周波数が変化する。そのため、放射素子が形成される領域の誘電率を異ならせることによって、各放射素子における動作可能帯域幅を異ならせることができる。
 図49は、実施例35における各放射素子の反射損失の周波数特性を説明するための図である。図49(a)は、RFIC2110から各放射素子までの給電配線が同じ長さであり、かつ各放射素子が配置される誘電体の誘電率がすべてε31=2.9と同じ値に設定された比較例の場合の周波数特性(線LN170)が示されている。この場合、各放射素子の共振周波数は27GHzであり、同じ周波数特性となっている。
 図49(b)は、外側の放射素子2130E-1,2130E-4が配置される誘電体の誘電率をε31=2.9に設定し、内側の放射素子2130E-2,2130E-3が配置される誘電体の誘電率をε32=3.5に設定した場合の周波数特性である。図49(b)に示されるように、低い誘電率(ε31=2.9)の誘電体に配置された放射素子2130E-1,2130E-4については、図49(a)と同様に共振周波数は27GHzとなっている(図49(b)のLN171:実線)。一方、高い誘電率(ε32=3.5)の誘電体に配置された放射素子2130E-2,2130E-3の共振周波数は24GHzにシフトしている(図49(b)のLN172:破線)。これにより、放射素子2130E-1,2130E-4における動作可能帯域幅と、放射素子2130E-2,2130E-3における動作可能帯域幅とが部分的に重複した状態となる。これにより、アンテナモジュール2100Eにおける、アンテナ特性の周波数帯域幅を拡大することができる。
 図50は、実施例35に係るアンテナモジュール2100Eのゲインの周波数特性を示す図である。図50においては、上記の比較例の場合が線LN180(破線)で示されており、内側の放射素子2130D-2,2130D-3が配置される誘電体の誘電率を変更した実施例35の場合が線LN171(実線)で示されている。比較例の場合には、ピークゲインは約10.7dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W180)は6.0GHzである。一方、実施例35の場合には、ピークゲインは約9.3dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W181)は8.0GHz以上となっている。
 このように、アンテナモジュール2100Eにおいては、一次元アレイアンテナにおいて、隣接する放射素子について、当該放射素子が配置される誘電体の誘電率を異ならせて動作可能帯域幅を部分的に重複させることによって、アンテナ特性(反射損失,ゲイン)の周波数帯域幅を拡大することができる。
 なお、実施例35においても、実施の形態1の実施例5と同様に、放射素子と接地電極との間の全体に所定の誘電率を有する誘電体を配置する構成に代えて、放射素子と接地電極との間の誘電体の一部に空洞を形成したり、誘電率の異なる誘電体を部分的に配置する構成としたりすることによって、誘電体基板の実効誘電率を異ならせるようにしてもよい。
 (実施例36)
 実施例36においては、給電配線と放射素子とを結合する給電点の位置を放射素子によって異なる位置に配置することによって、各放射素子のインピーダンスの周波数特性を異ならせる構成について説明する。
 図51は、実施例36に係るアンテナモジュール2100Fの平面図である。アンテナモジュール2100Fは、図40で示した実施例33のアンテナモジュール2100Bと同様に、異なる素子サイズの4つの放射素子を用いて形成された一次元アレイアンテナである。より具体的には、外側の放射素子2130F-1,2130F-4の素子サイズは、内側の放射素子2130F-2,2130F-3の素子サイズよりも小さく設定されている。
 各放射素子には、RFIC2110から同じ長さの給電配線によって、各給電点に個別に高周波信号が供給される。アンテナモジュール2100Fにおいては、外側の放射素子2130F-1,2130F-4の給電点の位置が、内側の放射素子2130F-2,2130F-3の給電点の位置と異なっている。より具体的には、放射素子2130F-1,2130F-4については、放射素子の中心CP1,CP4から給電点SP11,SP14までのそれぞれの距離はSF11に設定されている。一方で、放射素子2130F-2,2130F-3については、放射素子の中心CP2,CP3から給電点SP12,SP13までのそれぞれの距離はSF12(SF11>SF12)に設定されている。
 パッチアンテナにおいて、給電点の位置が変化すると放射素子のインピーダンスが変化することが知られている。そして、素子サイズが異なると、特性インピーダンス(たとえば、50Ω)となる給電点の位置も異なる。そのため、図51のように素子サイズの異なる放射素子を用いて形成されるアレイアンテナの場合、素子サイズに応じて給電点の位置を適切に配置することによって、各放射素子におけるゲインを最適化することができる。
 アンテナモジュール2100Fにおいては、隣接する放射素子の素子サイズを異ならせることによってアンテナモジュール全体の周波数帯域幅を拡大している。そして、各放射素子における給電点の位置を素子サイズに応じて異ならせて、特性インピーダンスに整合させることによって、アンテナモジュールのゲインをさらに改善することができる。
 図52は、実施例36に係るアンテナモジュール2100Fのゲインの周波数特性を示す図である。図52においては、図51のアンテナモジュール2100Fにおいて、各放射素子における中心から給電点までの距離を同じ距離(SF11=SF12)とした比較例の場合の周波数特性(線LN190:破線)、および、各放射素子における給電点の位置を最適位置に配置した実施例36の場合の周波数特性(線LN191:実線)が示されている。
 図52に示されるように、比較例および実施例36では、ピークゲイン-3dBとなる周波数帯域幅は同程度であるが、ピークゲインについては、実施例36の方がやや高くなっている。すなわち、給電点の位置を最適化することによって、周波数帯域幅を維持しつつ高ゲイン化が実現できている。
 なお、上記の例においては、異なる素子サイズの放射素子について、特性インピーダンスとなるように給電点の位置を素子サイズに応じて異ならせる構成について説明したが、実施の形態1の実施例6のように、隣接して配置された同じ素子サイズの放射素子について、給電点の位置を異ならせることによって動作可能帯域幅が部分的に重複するようにして、アンテナモジュールの周波数帯域幅を拡大してもよい。
 上述の実施の形態3の各実施例においては、いわゆるシングル偏波タイプかつシングルバンドタイプのアンテナモジュールについて説明したが、デュアル偏波タイプおよび/またはデュアルバンドタイプのアンテナモジュールにも当該特徴を適用してもよい。
 また、各実施例においては、一次元アレイアンテナについて説明したが、二次元アレイアンテナに適用してもよい。二次元アレイアンテナの場合、上述したX軸方向に配列された一次元アレイアンテナを、Y軸方向に複数個配列する形態であってもよいし、あるいは、Y軸方向に配列された放射素子についても、上記の実施例のようにインピーダンスの周波数特性を異ならせた構成としてもよい。
 [実施の形態4]
 実施の形態4においては、実施の形態1~実施の形態3の態様を組み合わせた実施例について説明する。
 (実施例41)
 図53は、実施の形態4の実施例41に係るアンテナモジュール3100の平面図である。アンテナモジュール3100においては、矩形状の誘電体基板3140に、4つのサブアレイ3130-1~3130-4がX軸方向(第1方向)に一列に配置されている。各サブアレイは2つの放射素子を含んでおり、2つの放射素子の配置方向は誘電体基板3140のX軸に対して角度φ(0°<φ<90°)だけ傾斜する方向(第2方向)に配置されている。
 サブアレイ3130-1とサブアレイ3130-2との間の間隔、および、サブアレイ3130-3とサブアレイ3130-4との間の間隔は、ともにPT1に設定されている。一方、サブアレイ3130-2とサブアレイ3130-3との間の間隔はPT2(PT1<PT2)に設定されている。
 各放射素子は、異なる素子サイズの2つの放射素子によって形成されている。具体的には、サブアレイ3130-1は、大きい素子サイズを有する放射素子3131-1と、小さい素子サイズを有する放射素子3132-1とを含む。サブアレイ3130-2は、大きい素子サイズを有する放射素子3131-2と、小さい素子サイズを有する放射素子3132-2とを含む。サブアレイ3130-3は、大きい素子サイズを有する放射素子3131-3と、小さい素子サイズを有する放射素子3132-3とを含む。サブアレイ3130-4は、大きい素子サイズを有する放射素子3131-4と、小さい素子サイズを有する放射素子3132-4とを含む。
 各サブアレイにおいて、2つの放射素子には、共通の給電配線から分岐された高周波信号が供給される。各サブアレイにおいて、給電配線の分岐点から各放射素子の給電点までの距離は同じ長さに設定されている。
 外側に配置されているサブアレイ3130-1とサブアレイ3130-4は、ともに同じ構成を有している。たとえば、大きいサイズの放射素子3131-1,3131-4は26GHzに対応した素子サイズに設定されており、小さいサイズの放射素子3132-1,3132-4は28GHzに対応した素子サイズに設定されている。
 また、内側に配置されているサブアレイ3130-2とサブアレイ3130-3は、ともに同じ構成を有している。たとえば、大きいサイズの放射素子3131-2,3131-3は25GHzに対応した素子サイズに設定されており、小さいサイズの放射素子3132-2,3132-3は27GHzに対応した素子サイズに設定されている。
 アンテナモジュール3100においては、各サブアレイ内において、2つの放射素子の動作可能帯域幅が部分的に重複した状態となるため、サブアレイとしての動作可能帯域幅を拡大することができる。また、隣接したサブアレイについても、動作可能帯域幅が部分的に重複した状態となるため、アンテナモジュール3100全体の動作可能帯域幅を拡大することができる。
 さらに、矩形状の誘電体基板3140の辺に対して、サブアレイを傾斜して配置することによって、サブアレイを形成する放射素子の偏波方向に直交する端部から誘電体基板3140の端部までの距離を確保できる。したがって、これらの構成から、アンテナモジュール3100の周波数帯域幅を拡大することができるとともに、アンテナゲインを広域化することができる。
 図54は、実施例41に係るアンテナモジュールのゲインの周波数特性を説明するための図である。図54においては、各サブアレイに含まれる2つの放射素子の素子サイズがすべて同じ(27GHz)である比較例41の場合(線LN210:破線)、各サブアレイに含まれる2つの放射素子の素子サイズが26GHz/28GHzである比較例42の場合(線LN211:一点鎖線)、および、図53のアンテナモジュール3100の場合(線LN212:実線)のゲインの周波数特性が示されている。
 比較例41の場合(線LN210)において、ピークゲインは約10.7dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W210)は6.0GHzである。比較例42の場合(線LN211)において、ピークゲインは約11.7dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W211)は6.75GHzである。また、実施例41の場合(線LN212)において、ピークゲインは約11.5dBiであり、ピークゲイン-3dBとなる周波数帯域幅(W212)は7.0GHzである。
 図54に示されるように、放射素子の素子サイズがすべて同じ比較例41の場合に比べて、サブアレイ内の放射素子の素子サイズを異ならせた比較例42および実施例41においては、ピークゲインが高くなり、さらにゲインの周波数帯域幅が拡大されている。
 また、実施例41のように、内側のサブアレイ3130-2,3130-3の素子サイズを、外側のサブアレイ3130-1,3130-4の素子サイズと異ならせることによって、ピークゲインは比較例42よりもやや低くなるものの、ゲインの周波数帯域幅を拡大することができる。
 なお、サブアレイ内の2つの放射素子のインピーダンスの周波数特性の異ならせる手法、および、サブアレイ間の放射素子においてインピーダンスの周波数特性の異ならせる手法として、実施の形態1および実施の形態3で説明したような手法を適用することができる。
 なお、実施例41において、「サブアレイ3130-1」、「サブアレイ3130-2」、「サブアレイ3130-3」および「サブアレイ3130-4」は、本開示における「第1サブアレイ」、「第2サブアレイ」、「第3サブアレイ」および「第4サブアレイ」にそれぞれ対応する。実施例41における「放射素子3131-1」、「放射素子3132-1」、「放射素子3131-2」および「放射素子3132-2」は、本開示における「第1放射素子」、「第2放射素子」、「第3放射素子」および「第4放射素子」にそれぞれ対応する。
 (実施例42)
 図55は、これらの各種手法を包括的に適用した実施例42に係るアンテナモジュール3100Aの平面図である。アンテナモジュール3100Aにおいては、サブアレイ内の2つの放射素子について、給電配線の分岐点から給電点までの距離を互いに異なる長さにしてもよい。当該分岐点から給電点までの配線に、異なる長さのスタブが配置されてもよく、さらに、当該スタブは異なる位置に配置されてもよい。また、各放射素子の給電点の位置についても、放射素子の中心からの距離が放射素子ごとに異なっていてもよい。サブアレイ内の放射素子の間隔、および/または、サブアレイ間の放射素子の間隔が異なっていてもよい。さらに、各放射素子と接地電極GNDとの間に配置される誘電体の誘電率が異なっていてもよい。
 なお、上記に示した各種の手法については、単独であるいは組み合わせて適用することができる。また、上記のいずれかの手法を適用してインピーダンスの周波数特性を調整する場合には、サブアレイ内の2つの放射素子を同じ素子サイズとしてもよい。
 (実施例43)
 図56は、デュアル偏波タイプかつデュアルバンドタイプである実施例43のアンテナモジュール3100Bの平面図である。アンテナモジュール3100Bにおける各サブアレイには2つの放射素子が含まれており、さらに各放射素子は、互いに対向する給電素子および無給電素子から形成されている。
 各給電素子には、直交する2つの偏波が放射されるように2つの給電点が配置されている。そして、サブアレイ内の2つの給電素子において、同じ偏波方向の電波を放射するための各給電点には、共通の給電配線から分岐された高周波信号が供給される。給電配線は、無給電配線を貫通して給電素子と結合している。
 このようなアンテナモジュール3100Bの構成においても、各サブアレイ内の放射素子(給電素子,無給電素子)の関係、および、サブアレイ間の放射素子の関係について、図53および図55で説明したような手法を適用することによって、アンテナモジュール全体のアンテナ特性の周波数帯域幅を拡大することができる。
 図57および図58は、デュアル偏波タイプかつデュアルバンドタイプのアンテナモジュールの変形例を示す図である。図57のアンテナモジュール3100Cにおいては、サブアレイ3130C-4の2つの給電点が、サブアレイ3130C-1における対応する給電点と反対となる位置に配置されている。また、サブアレイ3130C-3の2つの給電点が、サブアレイ3130C-2における対応する給電点と反対となる位置に配置されている。
 アンテナモジュール3100Cのような構成とすることによって、サブアレイ3130C-1およびサブアレイ3130C-4から放射される電波が互いに対称となり、さらにサブアレイ3130C-2およびサブアレイ3130C-3から放射される電波が互いに対称となる。これにより、アンテナモジュール3100C全体から放射される指向性の対称性を改善することができる。
 また、図58のアンテナモジュール3100Dにおいては、サブアレイ3130D-2の2つの給電点が、サブアレイ3130D-1における対応する給電点と反対となる位置に配置されている。また、サブアレイ3130C-4の2つの給電点が、サブアレイ3130C-3における対応する給電点と反対となる位置に配置されている。サブアレイ3130D-1とサブアレイ3130D-2とは、素子サイズの構成は異なっているが、互いに重複する近接した周波数帯域幅の電波を放射する構成であるため、サブアレイ3130D-1とサブアレイ3130D-2とで給電点を反対の位置に配置することで、サブアレイ3130D-1およびサブアレイ3130D-2一体として、放射される電波の指向性を改善することができる。そして、サブアレイ3130D-3およびサブアレイ3130D-4についても同様の構成とすることよって、アンテナモジュール3100D全体から放射される指向性の対称性を改善することができる。
 なお、上述した各実施の形態における放射素子は、図39の変形例3で示したような、端部がビアによって接地電極に接続された逆F型のパッチアンテナであってもよい。
 また、各実施例においては、放射素子と接地電極とが同じ誘電体基板に形成される構成について説明したが、図59~図61に示される変形例のアンテナモジュールのように、放射素子が形成される基板と接地電極が形成される基板が分離されており、これらの基板を接着あるいははんだ実装などにより接続する構成であってもよい。
 図59および図60のアンテナモジュールは、図2で示した実施の形態1のアンテナモジュール100の変形例である。また、図61のアンテナモジュールは、図31で示した実施の形態2のアンテナモジュール1100の変形例である。図59~図61において、図2または図31と重複する要素の説明は繰り返さない。
 図59の変形例4のアンテナモジュール100Jにおいては、放射素子131,132が誘電体基板140Aに形成されており、接地電極GNDが誘電体基板140Bに形成されている。共通配線153は、はんだバンプ180を介して、誘電体基板140Bから誘電体基板140Aへ高周波信号を伝達する。共通配線153は、誘電体基板140A内において配線151および配線152に分岐し、放射素子131,132へ高周波信号が伝達される。
 図60の変形例5のアンテナモジュール100Kにおいては、放射素子131,132が誘電体基板140Cに形成されており、接地電極GNDが誘電体基板140Dに形成されている。アンテナモジュール100Kの場合、共通配線153は誘電体基板140Dに配置されている。共通配線153から分岐した配線151は、はんだバンプ181を介して誘電体基板140Dから誘電体基板140Cに形成された放射素子131へと高周波信号を伝達する。また、共通配線153から分岐した配線152は、はんだバンプ182を介して誘電体基板140Dから誘電体基板140Cに形成された放射素子132へと高周波信号を伝達する。
 なお、図59における誘電体基板140A、および、図60における誘電体基板140Cは、たとえば通信装置の筐体である。
 図61の変形例6のアンテナモジュール1100Eにおいては、放射素子を含むサブアレイ1130-1,1130-2の部分がそれぞれ誘電体基板1140A-1,1140A-2に形成されており、接地電極GNDが誘電体基板1140Bに形成されている。誘電体基板1140A-1,1140A-2は、図示しないはんだバンプによって接続されており、当該はんだバンプを介して、誘電体基板1140Bからサブアレイ1130-1,1130-2に含まれる各放射素子へと高周波信号が伝達される。
 図61に示されるように、誘電体基板1140A-1,1140A-2は、サブアレイの放射素子を含むことができる程度の大きさであり、すなわち、アンテナモジュール1100Eを平面視したときの誘電体基板1140A-1,1140A-2の大きさ(面積)は、誘電体基板1140Bよりも小さい。このように、放射素子が形成される誘電体基板の大きさは、接地電極が形成される誘電体基板よりも小さくてもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 通信装置、100,100A~100H,100H1,100H2,100J,100K,100#,1100,1100A~1100E,1100#,2100,2100A~2100F,3100,3100A~3100D アンテナモジュール、110,1110,2110 RFIC、111A~111D,113A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A~114D 減衰器、115A~115D 移相器、116 信号合成/分波器、118 ミキサ、119 増幅回路、120 アンテナ装置、130,130A~130F,130H,130H1~130H4,130H11~130H14,130H21~130H24,1130,1130A~1130D,1130#,3130,3130A~3130D サブアレイ、131,131A~131H,131H1~131H4,131H21~131H24,131#,132,132A~132H,132H1~132H4,132H21~132H24,132#,1131,1131A~1131D,1131#,1132,1132A~1132D,1132#,2130,2130A~2130F,3131,3131A,3132,3132A 放射素子、131#1,131F1,131G1,132#1,132F1,132G1,3131B1~3131D1,3132B1~3132D1 給電素子、131#2,131F2,131G2,132#2,132F2,132G2,3131B2~3131D2,3132B2~3132D2 無給電素子、140,140A~140D,1140,1140A,1140B,2140,3140 誘電体基板、141,2141 表面、142,2142 裏面、150,155,1150,2150,2150C,2150D,2150E 給電配線、151,152,156,157 配線、153,158 共通配線、160,180~182,2160 はんだバンプ、171,172,2170D,3171A,3172A,ST11,ST12,ST21,ST22 スタブ、200 BBIC、1401,1402 誘電体、BP,BP1,BP2 分岐点、CP1~CP4 中心、GND 接地電極、SP1,SP2,SP11~SP14,SP21,SP22 給電点、V1,V2 ビア。

Claims (15)

  1.  第1偏波方向の電波を放射する第1放射素子と、
     前記第1放射素子に隣接して配置され、前記第1偏波方向の電波を放射する第2放射素子と、
     前記第1放射素子および前記第2放射素子に共通の高周波信号を供給する第1給電配線とを備え、
     前記第1給電配線は、第1共通配線と、前記第1共通配線から分岐した第1配線および第2配線とを含み、
     前記第1配線および前記第2配線は、前記第1放射素子および前記第2放射素子にそれぞれ結合されており、
     前記第1給電配線の分岐点から前記第1放射素子および前記第2放射素子を見たときに、前記第1放射素子のインピーダンスの周波数特性は、前記第2放射素子のインピーダンスの周波数特性と異なっており、
     各放射素子において反射損失が所定以下となる周波数帯域を動作可能帯域幅と規定した場合に、前記第1放射素子の動作可能帯域幅と前記第2放射素子の動作可能帯域幅とは部分的に重複している、アンテナモジュール。
  2.  前記第1放射素子および前記第2放射素子の各々は、平板形状を有するパッチアンテナであり、
     前記第1放射素子のサイズは、前記第2放射素子のサイズよりも大きい、請求項1に記載のアンテナモジュール。
  3.  前記第1放射素子および前記第2放射素子は略正方形状を有しており、
     前記第1放射素子の法線方向から平面視した場合に、前記第1放射素子と前記第2放射素子との間の距離は、前記第2放射素子の一辺の長さの1/12以上である、請求項2に記載のアンテナモジュール。
  4.  前記第1放射素子の法線方向から平面視した場合に、前記第1放射素子と前記第2放射素子との間の中心間距離は、前記第1放射素子から放射される電波の波長の1/2以下である、請求項2または3に記載のアンテナモジュール。
  5.  前記第1配線の長さと前記第2配線の長さは異なっている、請求項1~4のいずれか1項に記載のアンテナモジュール。
  6.  前記第1配線に接続された第1スタブと、
     前記第2配線に接続され、前記第1スタブと長さが異なる第2スタブとをさらに備える、請求項1~5のいずれか1項に記載のアンテナモジュール。
  7.  前記第1放射素子および前記第2放射素子が形成される誘電体基板と、
     前記誘電体基板において、前記第1放射素子および前記第2放射素子に対向して配置される接地電極とをさらに備え、
     前記第1放射素子と前記接地電極との間の領域の実効誘電率は、前記第2放射素子と前記接地電極との間の領域の実効誘電率と異なる、請求項1~6のいずれか1項に記載のアンテナモジュール。
  8.  前記第1配線は、前記第1放射素子の第1給電点に接続され、
     前記第2配線は、前記第2放射素子の第2給電点に接続され、
     前記第1放射素子の中心から前記第1給電点までの距離は、前記第2放射素子の中心から前記第2給電点までの距離とは異なっている、請求項1~7のいずれか1項に記載のアンテナモジュール。
  9.  前記第1放射素子および前記第2放射素子は、前記第1偏波方向とは異なる第2偏波方向にも電波を放射可能に構成される、請求項1~8のいずれか1項に記載のアンテナモジュール。
  10.  前記第1放射素子および前記第2放射素子の各々は、異なる2つの周波数帯域の電波を放射可能に構成される、請求項1~9のいずれか1項に記載のアンテナモジュール。
  11.  前記第1放射素子および前記第2放射素子の各々は、平板形状を有するパッチアンテナであり、
     前記アンテナモジュールは、前記第1放射素子および前記第2放射素子に対向して配置される接地電極をさらに備え、
     前記第1放射素子は、
      第1素子と、
      前記第1素子と前記接地電極との間に配置され、前記第1素子よりもサイズが大きい第2素子とを含み、
     前記第2放射素子は、
      第3素子と、
      前記第3素子と前記接地電極との間に配置され、前記第3素子よりもサイズが大きい第4素子とを含み、
     前記第1配線は、前記第2素子を貫通して前記第1素子に接続され、
     前記第2配線は、前記第4素子を貫通して前記第3素子に接続される、請求項1に記載のアンテナモジュール。
  12.  前記第1偏波方向の電波を放射する第3放射素子および第4放射素子と、
     前記第3放射素子および前記第4放射素子に共通の高周波信号を供給する第2給電配線とをさらに備え、
     前記第2給電配線は、第2共通配線と、前記第2共通配線から分岐した第3配線および第4配線とを含み、
     前記第3配線および前記第4配線は、前記第3放射素子および前記第4放射素子にそれぞれ結合されており、
     前記第2給電配線の分岐点から前記第3放射素子および前記第4放射素子を見たときに、前記第3放射素子のインピーダンスの周波数特性は、前記第4放射素子のインピーダンスの周波数特性と異なっており、
     前記第3放射素子の動作可能帯域幅と前記第4放射素子の動作可能帯域幅は部分的に重複しており、
     前記第1放射素子および前記第2放射素子は第1サブアレイを形成し、
     前記第3放射素子および前記第4放射素子は第2サブアレイを形成し、
     前記第1サブアレイは、前記第2サブアレイと隣接して配置される、請求項1~11のいずれか1項に記載のアンテナモジュール。
  13.  前記第1サブアレイの動作可能帯域幅と前記第2サブアレイの動作可能帯域幅とは異なっており、
     前記アンテナモジュールは、
     前記第2サブアレイと共通の構成を有する第3サブアレイと、
     前記第1サブアレイと共通の構成を有する第4サブアレイとをさらに備え、
     前記第1~第4サブアレイは、第1方向に、前記第1サブアレイ、前記第2サブアレイ、前記第3サブアレイ、前記第4サブアレイの順に配置されており、
     前記第1サブアレイおよび前記第4サブアレイにおいては、前記第1放射素子および前記第2放射素子は第2方向に隣接して配置されており、
     前記第2サブアレイおよび前記第3サブアレイにおいては、前記第3放射素子および前記第4放射素子は前記第2方向に隣接して配置されており、
     前記第1方向と前記第2方向とのなす角は、0°より大きく90°よりも小さい、請求項12に記載のアンテナモジュール。
  14.  各放射素子に高周波信号を供給する給電回路をさらに備える、請求項1~13のいずれか1項に記載のアンテナモジュール。
  15.  請求項1~14のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
PCT/JP2020/039808 2019-12-26 2020-10-23 アンテナモジュールおよびそれを搭載する通信装置 WO2021131283A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/847,239 US20220328971A1 (en) 2019-12-26 2022-06-23 Antenna module and communication device equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019236701 2019-12-26
JP2019-236701 2019-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/847,239 Continuation US20220328971A1 (en) 2019-12-26 2022-06-23 Antenna module and communication device equipped with the same

Publications (1)

Publication Number Publication Date
WO2021131283A1 true WO2021131283A1 (ja) 2021-07-01

Family

ID=76574229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039808 WO2021131283A1 (ja) 2019-12-26 2020-10-23 アンテナモジュールおよびそれを搭載する通信装置

Country Status (2)

Country Link
US (1) US20220328971A1 (ja)
WO (1) WO2021131283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032581A1 (ja) * 2021-08-31 2023-03-09 株式会社村田製作所 アンテナモジュール、およびそれを搭載した通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601014A (ja) * 1983-06-20 1985-01-07 Nissan Motor Co Ltd 車両用空調装置
JP2003198230A (ja) * 2001-12-28 2003-07-11 Ntn Corp 誘電性樹脂統合アンテナ
JP2004112397A (ja) * 2002-09-19 2004-04-08 Yokohama Tlo Co Ltd 多周波共用アンテナ、及びマルチバンド送受信機
JP2018056937A (ja) * 2016-09-30 2018-04-05 沖電気工業株式会社 パッチアンテナ組立体およびパッチアンテナ
WO2019188471A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356492A (en) * 1981-01-26 1982-10-26 The United States Of America As Represented By The Secretary Of The Navy Multi-band single-feed microstrip antenna system
JP7077587B2 (ja) * 2017-11-17 2022-05-31 Tdk株式会社 デュアルバンドパッチアンテナ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601014A (ja) * 1983-06-20 1985-01-07 Nissan Motor Co Ltd 車両用空調装置
JP2003198230A (ja) * 2001-12-28 2003-07-11 Ntn Corp 誘電性樹脂統合アンテナ
JP2004112397A (ja) * 2002-09-19 2004-04-08 Yokohama Tlo Co Ltd 多周波共用アンテナ、及びマルチバンド送受信機
JP2018056937A (ja) * 2016-09-30 2018-04-05 沖電気工業株式会社 パッチアンテナ組立体およびパッチアンテナ
WO2019188471A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032581A1 (ja) * 2021-08-31 2023-03-09 株式会社村田製作所 アンテナモジュール、およびそれを搭載した通信装置

Also Published As

Publication number Publication date
US20220328971A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP6930591B2 (ja) アンテナモジュールおよび通信装置
WO2020261806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6881675B2 (ja) アンテナモジュール
JP6747624B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020241271A1 (ja) サブアレイアンテナ、アレイアンテナ、アンテナモジュール、および通信装置
WO2020145392A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11936125B2 (en) Antenna module and communication device equipped with the same
WO2021131284A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
JP7375936B2 (ja) アンテナモジュール、接続部材、およびそれを搭載した通信装置
WO2022185917A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020066604A1 (ja) アンテナモジュール、通信装置およびアレイアンテナ
WO2022130877A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021131283A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021039102A1 (ja) アンテナ装置、アンテナモジュールおよび通信装置
WO2021039075A1 (ja) アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
JP6760553B1 (ja) アンテナモジュールおよび通信装置
JP6973663B2 (ja) アンテナモジュールおよび通信装置
WO2021131285A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2022038868A1 (ja) 通信装置
WO2023090182A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023047801A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2024004283A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023032581A1 (ja) アンテナモジュール、およびそれを搭載した通信装置
WO2023214473A1 (ja) 伝送線路、ならびに、それを含むアンテナモジュールおよび通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP