WO2021039075A1 - アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板 - Google Patents

アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板 Download PDF

Info

Publication number
WO2021039075A1
WO2021039075A1 PCT/JP2020/024808 JP2020024808W WO2021039075A1 WO 2021039075 A1 WO2021039075 A1 WO 2021039075A1 JP 2020024808 W JP2020024808 W JP 2020024808W WO 2021039075 A1 WO2021039075 A1 WO 2021039075A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna module
filter
dielectric substrate
main surface
feeding
Prior art date
Application number
PCT/JP2020/024808
Other languages
English (en)
French (fr)
Inventor
航大 荒井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080060294.0A priority Critical patent/CN114365350A/zh
Publication of WO2021039075A1 publication Critical patent/WO2021039075A1/ja
Priority to US17/679,102 priority patent/US11916312B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present disclosure relates to an antenna module and a communication device on which the antenna module is mounted, and more specifically, to a structure of an antenna module having a filter built in a substrate on which an antenna element is formed.
  • Patent Document 1 discloses a patch antenna with a built-in filter in which a radiation conductor (antenna element) and a filter are provided in the same substrate made of a dielectric material.
  • Such an antenna may be applied to a communication terminal such as a mobile phone or a smartphone, for example.
  • a communication terminal such as a mobile phone or a smartphone, for example.
  • the entire antenna module can be miniaturized by arranging the filter on the same substrate as the antenna element (radiating element). In such a configuration, it is necessary to secure both antenna characteristics and filter characteristics. It is known that the frequency bandwidth of radio waves transmitted and received among the antenna characteristics becomes wider as the distance between the radiating element and the ground electrode increases. Further, in a filter formed as a strip line or a microstrip line in a dielectric substrate, it is known that the Q value is improved by increasing the thickness of the filter (that is, the thickness of the dielectric).
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to realize a low profile while maintaining the antenna characteristics and the filter characteristics in an antenna module having a built-in filter. Is.
  • An antenna module includes a dielectric substrate having a multi-layer structure, a radiation element, a first feeding wiring, a first filter, and a first ground electrode.
  • the dielectric substrate has a first main surface and a second main surface.
  • the radiating element is formed on the first main surface of the dielectric substrate or in an inner layer from the first main surface.
  • the first power feeding wiring transmits a high frequency signal to the radiating element.
  • the first filter is arranged on the first power feeding wiring.
  • the first ground electrode faces the radiating element and is arranged in a layer between the radiating element and the first filter.
  • a recess is formed on the second main surface of the dielectric substrate.
  • the first filter is arranged at a position where it does not overlap with the recess when viewed in a plan view from the normal direction of the dielectric substrate.
  • a circuit board is a device for supplying a high frequency signal to a radiating element, and includes a dielectric substrate having a multi-layer structure, a feeding wiring, a filter, and a ground electrode.
  • the power supply wiring transmits a high frequency signal to the radiating element.
  • the filter is placed on the feed wiring.
  • the ground electrode is arranged in a layer between the first main surface of the dielectric substrate and the filter.
  • a recess is formed on the second main surface of the dielectric substrate.
  • the filter is arranged at a position where it does not overlap with the recess when viewed in a plan view from the normal direction of the dielectric substrate.
  • the dielectric substrate on which the filter is formed has a recess formed on the second main surface (back surface), and does not overlap with the recess when the dielectric substrate is viewed in a plan view.
  • a filter is placed at the position.
  • FIG. 1 is an example of a block diagram of a communication device 10 to which the antenna module 100 according to the first embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, a personal computer having a communication function, or the like.
  • An example of the frequency band of the radio wave used for the antenna module 100 according to the present embodiment is a radio wave in the millimeter wave band having a center frequency of, for example, 28 GHz, 39 GHz, 60 GHz, etc., but radio waves in frequency bands other than the above are also available. Applicable.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, an antenna device 120, and a filter device 105.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal by the RFIC 110, and radiates it from the antenna device 120 via the filter device 105. Further, the communication device 10 transmits the high frequency signal received by the antenna device 120 to the RFIC 110 via the filter device 105, down-converts the signal, and processes the signal by the BBIC 200.
  • FIG. 1 shows an example in which the antenna device 120 is formed by a plurality of feeding elements 121 arranged in a two-dimensional array, but the one-dimensional array in which the plurality of feeding elements 121 are arranged in a row. It may be the case where there is only one feeding element.
  • the feeding element 121 is a patch antenna having a substantially square flat plate shape.
  • the RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesizer / demultiplexer. It includes 116, a mixer 118, and an amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT side, and the switch 117 is connected to the transmitting side amplifier of the amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the low noise amplifiers 112AR to 112DR side, and the switch 117 is connected to the receiving side amplifier of the amplifier circuit 119.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116, passes through four signal paths, and is fed to different feeding elements 121.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115D arranged in each signal path.
  • the received signal which is a high-frequency signal received by each feeding element 121, passes through four different signal paths and is combined by the signal synthesizer / demultiplexer 116.
  • the combined received signal is down-converted by the mixer 118, amplified by the amplifier circuit 119, and transmitted to the BBIC 200.
  • the filter device 105 includes filters 105A to 105D.
  • the filters 105A to 105D are connected to switches 111A to 111D in the RFIC 110, respectively.
  • the filters 105A to 105D have a function of attenuating a signal in a specific frequency band.
  • the filters 105A to 105D may be a bandpass filter, a highpass filter, a lowpass filter, or a combination thereof.
  • the high frequency signal from the RFIC 110 passes through the filters 105A to 105D and is supplied to the corresponding power feeding element 121.
  • the longer the transmission line the greater the tendency for the signal from the transmission path to be attenuated. Therefore, it is preferable to shorten the distance between the filter device 105 and the feeding element 121 as much as possible. That is, by passing the filter device 105 immediately before radiating the high frequency signal from the feeding element 121, it is possible to suppress the emission of unnecessary waves from the feeding element. Further, the unnecessary wave included in the received signal can be removed by passing the filter device 105 through the feeding element 121 immediately after the reception.
  • the filter device 105 and the antenna device 120 are shown separately, but in the present disclosure, the filter device 105 is formed inside the antenna device 120, as will be described later.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the devices switch, power amplifier, low noise amplifier, attenuator, phase shifter
  • corresponding to each power feeding element 121 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding power feeding element 121. ..
  • FIG. 2 shows a side perspective view of the antenna module 100
  • FIG. 3 shows a plan view of the antenna module 100.
  • the antenna module 100 includes a non-feeding element 122, a dielectric substrate 130, a feeding wiring 140, and ground electrodes GND1 to GND4. And.
  • the feeding element 121 and the non-feeding element 122 are collectively referred to as a "radiating element 125".
  • the normal direction (radio wave radiation direction) of the dielectric substrate 130 is defined as the Z-axis direction, and the plane perpendicular to the Z-axis direction is defined by the X-axis and the Y-axis.
  • the positive direction of the Z axis may be referred to as an upper side, and the negative direction may be referred to as a lower side.
  • the dielectric substrate 130 includes, for example, a low temperature co-fired ceramics (LCC) multilayer substrate, a multilayer resin substrate formed by laminating a plurality of resin layers composed of resins such as epoxy and polyimide.
  • the dielectric substrate 130 does not necessarily have to have a multi-layer structure, and may be a single-layer substrate.
  • the dielectric substrate 130 has a substantially rectangular cross section, and the radiating element 125 is arranged in a layer close to the first main surface 131 (the surface in the positive direction of the Z axis). More specifically, among the radiating elements 125, the non-feeding element 122 is arranged on the first main surface 131 of the dielectric substrate 130 or in the inner layer of the first main surface 131 as shown in FIG.
  • the feeding element 121 faces the non-feeding element 122 and is arranged so as to be separated from the layer below the non-feeding element 122.
  • the feeding element 121 and the non-feeding element 122 are patch antennas having a substantially square planar shape.
  • the feeding element 121 and the non-feeding element 122 have substantially the same size, and have resonance frequencies that are the same as or close to each other.
  • the non-feeding element 122 also resonates accordingly. This makes it possible to increase the bandwidth of the radiated radio waves.
  • a flat plate-shaped ground electrode GND1 is arranged further below the power feeding element 121.
  • the feeding element 121 is formed in a layer between the non-feeding element 122 and the ground electrode GND1.
  • a high-frequency signal is supplied to the feeding element 121, and the feeding element 121 and the ground electrode GND1 are electromagnetically coupled to radiate radio waves from the feeding element 121 to function as an antenna.
  • a recess 170 is formed in a part of the second main surface 132 (back surface) of the dielectric substrate 130.
  • the RFIC 110 is mounted in the recess 170 via the solder bump 160.
  • the RFIC 110 may be connected to the dielectric substrate 130 by using a multi-pole connector instead of the solder connection.
  • the ground electrode GND2 is provided on the second main surface 132 other than the recess 170, or on the inner layer (that is, between the second main surface 132 and the ground electrode GND1) of the second main surface 132. It is formed. Further, the ground electrode GND4 is arranged in the inner layer of the dielectric substrate 130 in the recess 170 (that is, between the recess 170 and the ground electrode GND1). The ground electrode GND4 is formed so as to close the opening of the ground electrode GND1 formed in the portion of the recess 170. The ground electrode GND2 and the ground electrode GND4 are electrically connected by a plurality of vias 190. The ground electrode GND2 and the ground electrode GND4 prevent the electromagnetic field generated in the dielectric substrate 130 from leaking to the lower side of the dielectric substrate 130.
  • ground electrode GND3 is further arranged between the ground electrode GND1 and the ground electrodes GND2 and GND4.
  • the layer between the ground electrode GND1 and the ground electrode GND3 functions as a wiring layer for arranging the wiring for connecting the elements in the dielectric substrate 130.
  • the filter device 105 is arranged in a layer between the ground electrode GND2 and the ground electrode GND3.
  • the filter device 105 is, for example, a resonance line type filter having a configuration in which a plurality of lines having a length of ⁇ / 4 or ⁇ / 2 are adjacent to each other in a state where they are not connected to each other when the wavelength of the emitted radio wave is ⁇ . It is formed by.
  • a region formed by the filter device 105 and the dielectric material between the ground electrode GND2 and the ground electrode GND3, which substantially functions as a filter is referred to as a filter region 180.
  • the filter device 105 is arranged so that the filter region 180 does not overlap with the recess 170 when the dielectric substrate 130 is viewed in a plan view from the normal direction.
  • the power feeding wiring 140 transmits a high frequency signal from the RFIC 110 to the power feeding element 121 via the filter device 105. After passing through the filter device 105, the power feeding wiring 140 penetrates the ground electrode GND3, extends the wiring layer, and reaches the power feeding element 121 from directly below the power feeding element 121.
  • the feeding point SP1 of the feeding element 121 is arranged at a position offset in the positive direction of the X axis from the center of the feeding element 121.
  • radio waves having the polarization direction in the X-axis direction are radiated from the power feeding element 121.
  • the radiation element, the ground electrode, and the wiring pattern and via forming the power feeding wiring are mainly composed of aluminum (Al), copper (Cu), gold (Au), silver (Ag), and alloys thereof. It is made of metal.
  • the frequency bandwidth of the radiated radio wave is determined by the distance H1 between the feeding element 121 and the ground electrode GND1. More specifically, the larger the distance H1, the wider the frequency bandwidth.
  • the Q value is affected by the thickness of the dielectric in the filter region 180 (that is, the distance H2 between the ground electrode GND2 and the ground electrode GND3). More specifically, as shown by line LN10 in FIG. 4, the thicker the dielectric thickness, the higher the Q value of the filter. That is, when the filter is formed as a strip line as shown in FIG. 2, it is desirable to make the thickness of the dielectric between the ground electrodes in the filter region 180 (H2 in FIG. 2) as thick as possible in order to secure a high Q value. ..
  • the thickness of the dielectric substrate As described above, from the viewpoint of antenna characteristics and filter characteristics, it may be required to make the thickness of the dielectric substrate as thick as possible in order to realize the desired specifications. On the other hand, there is still a high demand for miniaturization and / or thinning of the communication device, and therefore it may be necessary to further reduce the height of the antenna module.
  • RFICs or other electronic components may be mounted on the antenna module, or terminals (connectors) for connecting to an external board may be arranged.However, if these external devices are simply attached to the antenna module, The thickness (height) of the entire antenna module increases, which may hinder the reduction in height.
  • a recess 170 is formed on the second main surface 132 (back surface) of the dielectric substrate 130, and the RFIC 110 is arranged inside the recess 170. It is configured to be.
  • the filter device 105 is arranged so that the filter region 180 does not overlap the recess 170 when the antenna module 100 is viewed in a plan view from the normal direction of the dielectric substrate 130. With such a configuration, it is possible to suppress an increase in the thickness of the entire antenna module 100 including the RFIC 110 while maintaining the distance H1 and the distance H2 in FIG. 2 as compared with the case where the recess 170 is not provided. it can.
  • the case where the RFIC 110 is arranged in the recess 170 has been described as an example, but other electronic components may be arranged in the recess 170 in place of and / or in addition to the RFIC 110. However, it may be the case that terminals (flat plate electrodes, connectors, etc.) for connecting to an external board and an external device are formed.
  • the electronic parts and terminals as described above are not formed and a space is simply formed by the recesses.
  • the antenna module is arranged so that the electronic component can be inserted in the space provided by the recess. It is possible to reduce the dimensions of the entire configuration including the mounting board and the antenna module.
  • the RFIC 110 or other electronic components are arranged in the recess 170, as shown in the antenna module 100X of FIG. 5, the inside of the portion corresponding to the recess 170 of FIG. 2 is filled with a dielectric. May be good.
  • the dielectric in the recess 170 may be a dielectric of the same material as the dielectric substrate 130, or may be a dielectric of a different material.
  • the antenna module 100X is formed in the dielectric substrate 130 in a recess formed by the ground electrodes GND2, GND4 and via 190, which is offset in the direction from the second main surface 132 toward the first main surface 131, such as RFIC110.
  • the electronic components of the above are arranged.
  • the "power supply wiring 140" of the first embodiment corresponds to the “first power supply wiring” of the present disclosure.
  • the “filter device 105” of the first embodiment corresponds to the “first filter” of the present disclosure.
  • the "ground electrode GND1" and “ground electrode GND2” of the first embodiment correspond to the "first ground electrode” and “second ground electrode” of the present disclosure, respectively.
  • Modification example 1 In the antenna module 100 of the first embodiment, an example of a configuration in which the recess 170 is arranged directly below the radiating element 125 has been described. Since the filter region 180 is formed so as not to overlap the recess 170, the filter region 180 is formed at a position not overlapping with the radiating element 125 when the antenna module 100 is viewed in a plan view.
  • the dielectric substrate can be miniaturized, and the distance of the feeding wiring from the filter to the feeding element is shortened, so that the insertion loss of the antenna module can be improved.
  • FIGS. 6 and 7 are side perspective views and plan views of the antenna module 100A according to the first modification, respectively.
  • the dimensions of the dielectric substrate 130A in the X-axis direction and the Y-axis direction are shorter than those of the antenna module 100 of FIG.
  • the recess 170A is formed so as to have a rectangular shape with the long side in the Y-axis direction. Further, the RFIC 110A is also shaped so that it can be arranged in the recess 170A.
  • the filter device 105 is arranged so that a part of the filter region 180 overlaps with the radiating element 125.
  • the antenna module has a low profile without deteriorating the antenna characteristics and the filter characteristics. Can be achieved. Further, since the distance of the feeding wiring from the filter to the feeding element can be shortened, the insertion loss of the antenna module can be improved.
  • FIG. 8 is a plan view of the antenna module 100 according to the second modification.
  • FIG. 9 is a side perspective view of the antenna module 100 as viewed from the surface along the line VIII-VIII of FIG.
  • the antenna module 100 is an array antenna in which four radiation elements 125 (radiation elements 1251-1254) are arranged adjacent to each other in a 2 ⁇ 2 two-dimensional manner on a dielectric substrate 130. ..
  • the radiating element 1251 includes a feeding element 1211 and a non-feeding element 1221
  • the radiating element 1252 includes a feeding element 1212 and a non-feeding element 1222
  • the radiating element 1253 includes a feeding element 1213 and a non-feeding element 1223
  • the radiating element 1254 feeds. Includes element 1214 and non-feeding element 1224.
  • the feeding element 121 and the non-feeding element 122 in each radiation element 125 have substantially the same size, and the feeding element 121 is arranged between the non-feeding element 122 and the ground electrode GND1. ing.
  • the high frequency signal from the RFIC 100 is transmitted to each feeding element 121 via the feeding wiring through the filter device 105.
  • the feeding wiring 141 is connected to the feeding point SP11 of the feeding element 1211 via the filter 105A.
  • the power feeding wiring 142 is connected to the feeding point SP12 of the feeding element 1212 via the filter 105B.
  • high frequency signals are transmitted from the RFIC 100 to the feeding elements 1213 and 1214 with the same connection configuration.
  • a recess 170 is formed on the second main surface 132 of the dielectric substrate 130, and the RFIC 110 is arranged in the recess 170.
  • the filter regions 181, 182 formed by the filters 105A and 105B are arranged between the ground electrode GND3 and the ground electrode GND4, and the dielectric substrate 130 is viewed in a plan view from the normal direction.
  • the filters 105A and 105B are arranged so that the filter regions 181, 182 do not overlap with the recess 170.
  • the radiating element and the corresponding filter overlap at least a part when the dielectric substrate 130 is viewed in a plan view as in the first modification.
  • a recess is provided in the dielectric substrate so that equipment such as RFIC is housed in the recess and does not overlap with the recess when the dielectric substrate is viewed in a plan view.
  • the "feeding element 1211" and the “feeding element 1212” in the modified example 2 are examples of the “first feeding element” and the “second feeding element” in the present disclosure, respectively.
  • the "power feeding wiring 141" and the “power feeding wiring 142” in the modified example 2 are examples of the “first power feeding wiring” and the “second power feeding wiring” in the present disclosure, respectively.
  • the recess 170Y is surrounded by two surfaces along the Y axis, and the recess 170Y is recessed to the end along the X axis of the dielectric substrate 130. 170Y is open. In other words, the recess 170Y penetrates the dielectric substrate 130 in the X-axis direction.
  • the recess may be penetrated in the Y-axis direction, and one of the four surfaces parallel to the X-axis or the Y-axis is the end portion of the dielectric substrate 130. May be open to.
  • FIG. 11 is a side perspective view of the antenna module 100Z according to the modified example 4.
  • the radiation element 125 (feeding element 121, non-feeding element 122) is formed on the dielectric substrate 130Z1, and elements other than the radiation element 125 are formed on the circuit board 300 independent of the dielectric substrate 130Z1. It has a structure.
  • the dielectric substrate 130Z1 is arranged so that the second main surface 132Z1 of the dielectric substrate 130Z1 faces the first main surface 131Z2 of the circuit board 300.
  • the dielectric substrate 130Z1 and the circuit board 300 are connected by solder bumps 161.
  • a connection connector or a connection cable may be used instead of the solder bump 161.
  • the circuit board 300 has a configuration in which elements other than the radiation element 125 in the antenna module 100 of FIG. 2 are arranged on the dielectric board 130Z2.
  • a flat plate-shaped ground electrode GND1 is formed in the inner layer of the first main surface 131Z2 of the dielectric substrate 130Z2.
  • a recess 170 is formed in a part of the second main surface 132Z2 of the dielectric substrate 130Z2.
  • the RFIC 110 is mounted in the recess 170 via the solder bump 160.
  • the ground electrode GND2 is provided on the second main surface 132Z2 other than the recess 170, or on the inner layer (that is, between the second main surface 132Z2 and the ground electrode GND1) than the second main surface 132Z2. It is formed. Further, the ground electrode GND4 is arranged in the inner layer of the dielectric substrate 130Z2 in the recess 170 (that is, between the recess 170 and the ground electrode GND1). The ground electrode GND4 is formed so as to close the opening of the ground electrode GND1 formed in the portion of the recess 170. The ground electrode GND2 and the ground electrode GND4 are electrically connected by a plurality of vias 190.
  • ground electrode GND3 is further arranged between the ground electrode GND1 and the ground electrodes GND2 and GND4.
  • the layer between the ground electrode GND1 and the ground electrode GND3 functions as a wiring layer for arranging the wiring for connecting the elements in the dielectric substrate 130Z2.
  • the filter device 105 is arranged in a layer between the ground electrode GND2 and the ground electrode GND3.
  • the filter device 105 is arranged at a position that does not overlap with the recess 170 when viewed in a plan view from the normal direction of the dielectric substrate 130Z2.
  • the power feeding wiring 140 transmits a high frequency signal from the RFIC 110 to the power feeding element 121 via the filter device 105. After passing through the filter device 105, the power feeding wiring 140 penetrates the ground electrode GND3 and extends the wiring layer to a position directly below the power feeding element 121. The power feeding wiring 140 penetrates the ground electrode GND1 from there, reaches the dielectric substrate 130Z1 via the solder bumps 161 and is connected to the power feeding point SP1 of the power feeding element 121.
  • the degree of freedom in arranging the equipment in the communication device can be increased by forming the circuit board on which the RFIC is arranged and the dielectric substrate on which the radiating element is formed as separate substrates. it can.
  • the circuit board may be arranged on the motherboard and the radiating element may be arranged on the housing.
  • FIG. 12 is a block diagram of a communication device 10A to which the antenna module 100B according to the second embodiment is applied.
  • the communication device 10A includes an antenna module 100B and a BBIC 200.
  • the antenna module 100B includes an RFIC 110B, an antenna device 120A, and a filter device 106.
  • the antenna device 120A is a dual polarization type antenna device as described above, and each feeding element 121 (121A to 121D) is subjected to a high frequency signal for the first polarization and a high frequency for the second polarization from the RFIC 100B. The signal is supplied.
  • the RFIC 110B includes switches 111A to 111H, 113A to 113H, 117A, 117B, power amplifiers 112AT to 112HT, low noise amplifiers 112AR to 112HR, attenuators 114A to 114H, phase shifters 115A to 115H, and signal synthesis / minute. It includes a wave device 116A, 116B, a mixer 118A, 118B, and an amplifier circuit 119A, 119B.
  • the configuration of the amplifier circuit 119A is a circuit for a high frequency signal for the first polarization.
  • the configuration of the amplifier circuit 119B is a circuit for a high frequency signal for the second polarization.
  • the switches 111A to 111H and 113A to 113H are switched to the power amplifiers 112AT to 112HT side, and the switches 117A and 117B are connected to the transmitting side amplifiers of the amplifier circuits 119A and 119B.
  • the switches 111A to 111H and 113A to 113H are switched to the low noise amplifiers 112AR to 112HR, and the switches 117A and 117B are connected to the receiving side amplifiers of the amplifier circuits 119A and 119B.
  • the filter device 106 includes filters 106A to 106H.
  • the filters 106A to 106H are connected to the switches 111A to 111H in the RFIC 110B, respectively.
  • Each of the filters 106A to 106H has a function of attenuating a high frequency signal in a specific frequency band.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuits 119A and 119B, and up-converted by the mixers 118A and 118B.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116A and 116B, passes through the corresponding signal path, and is fed to different power feeding elements 121.
  • the high frequency signals from the switches 111A and 111E are supplied to the power feeding element 121A via the filters 106A and 106E, respectively.
  • the high frequency signals from the switches 111B and 111F are supplied to the feeding element 121B via the filters 106B and 106F, respectively.
  • the high frequency signals from the switches 111C and 111G are supplied to the feeding element 121C via the filters 106C and 106G, respectively.
  • the high frequency signals from the switches 111D and 111H are supplied to the power feeding element 121D via the filters 106D and 106H, respectively.
  • the directivity of the antenna device 120A can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115H arranged in each signal path.
  • the received signal which is a high-frequency signal received by each feeding element 121, is transmitted to the RFIC 110B via the filter device 106, and is combined in the signal synthesizers / demultiplexers 116A and 116B via four different signal paths.
  • the combined received signal is down-converted by the mixers 118A and 118B, amplified by the amplifier circuits 119A and 119B, and transmitted to the BBIC 200.
  • FIG. 13 shows a side perspective view of the antenna module 100B
  • FIG. 14 shows a plan view of the antenna module 100B.
  • FIGS. 13 and 14 the detailed description of the elements overlapping with FIGS. 2 and 3 of the first embodiment is not repeated.
  • a recess 170 is formed in the second main surface 132 of the dielectric substrate 130, and the RFIC 110B is arranged in the recess 170.
  • the high frequency signal from the RFIC 110B is transmitted to the feeding point SP1 of the feeding element 121 by the feeding wiring 141 via the filter 1061. Further, the high frequency signal from the RFIC 110B is also transmitted to the feeding point SP2 of the feeding element 121 by the feeding wiring 142 via the filter 1062.
  • the feeding point SP1 of the feeding element 121 is arranged at a position offset in the positive direction of the X axis from the center of the feeding element 121.
  • a radio wave having the X-axis direction (first direction) as the polarization direction is radiated from the feeding element 121.
  • the feeding point SP2 of the feeding element 121 is arranged at a position offset in the negative direction of the Y axis from the center of the feeding element 121.
  • a radio wave having the Y-axis direction (second direction) as the polarization direction is radiated from the feeding element 121.
  • the filter region 181 by the filter 1061 and the filter region 182 by the filter 1062 are both arranged between the ground electrode GND3 and the ground electrode GND4. Further, as shown in FIG. 14, the filters 1061 and 1062 are arranged so that the filter regions 181, 182 do not overlap with the recess 170 when the dielectric substrate 130 is viewed in a plan view from the normal direction.
  • the recess is formed.
  • filter 1061 and “filter 1062” in the second embodiment are examples of the “first filter” and the “second filter” in the present disclosure, respectively.
  • power supply wiring 141" and the “power supply wiring 142” in the second embodiment are examples of the “first power supply wiring” and the “second power supply wiring” in the present disclosure, respectively.
  • FIG. 15 is a block diagram of a communication device 10B to which the antenna module 100C according to the third embodiment is applied.
  • the communication device 10B includes an antenna module 100C and a BBIC 200.
  • the antenna module 100C includes an RFIC 110B, an antenna device 120B, and a filter device 106.
  • the antenna device 120B is a dual band type antenna device as described above, and each radiating element 126 arranged in the antenna device 120B includes two feeding elements 121 and 123. High-frequency signals are individually supplied from the RFIC 110B to the feeding elements 121 and 123.
  • the RFIC 110B basically has the same equipment configuration as the RFIC described in the second embodiment. However, in the antenna module 100C of the third embodiment, switches 111A to 111D, 113A to 113D, 117A, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, signals.
  • the configuration of the synthesizer / demultiplexer 116A, the mixer 118A, and the amplifier circuit 119A is a circuit for a high frequency signal for the feeding element 121, and the switches 111E to 111H, 113E to 113H, 117B, the power amplifier 112ET to 112HT, and the low noise.
  • the configuration of the amplifiers 112ER to 112HR, the attenuators 114E to 114H, the phase shifters 115E to 115H, the signal synthesizer / demultiplexer 116B, the mixer 118B, and the amplifier circuit 119B is a circuit for a high frequency signal for the feeding element 123. ..
  • the filters 106A to 106D are formed as a filter having the frequency band of the radio wave radiated from the feeding element 121 as the pass band.
  • the filters 106E to 106H are formed as a filter whose pass band is the frequency band of the radio wave radiated from the feeding element 123.
  • FIG. 16 shows a side perspective view of the antenna module 100C
  • FIG. 17 shows a plan view of the antenna module 100C.
  • FIGS. 16 and 17 the detailed description of the elements overlapping with FIGS. 2 and 3 of the first embodiment or 13 and 14 of the second embodiment is not repeated.
  • a recess 170 is formed in the second main surface 132 of the dielectric substrate 130, and the RFIC 110B is arranged in the recess 170.
  • the power feeding element 121 is arranged on the first main surface 131 of the dielectric substrate 130 or in the inner layer of the first main surface 131. Further, the feeding element 123 is arranged in a layer below the feeding element 121 so as to face the feeding element 121. That is, the power feeding element 123 is arranged in the layer between the power feeding element 121 and the ground electrode GND1 so as to face the power feeding element 121.
  • the feeding element 121 and the feeding element 123 are patch antennas having a substantially square planar shape.
  • the size of the feeding element 121 is smaller than the size of the feeding element 123. Therefore, the resonance frequency of the feeding element 121 is higher than the resonance frequency of the feeding element 123. Therefore, the power feeding element 121 radiates radio waves in a frequency band higher than that of the power feeding element 123.
  • the high frequency signal from the RFIC 110B is transmitted to the feeding point SP1 of the feeding element 121 by the feeding wiring 141 via the filter 1061. Further, the high frequency signal from the RFIC 110B is also transmitted to the feeding point SP3 of the feeding element 123 by the feeding wiring 143 via the filter 1063.
  • the filter region 181 formed by the filter 1061 and the filter region 183 formed by the filter 1063 are both arranged between the ground electrode GND3 and the ground electrode GND4. Further, as shown in FIG. 17, the filters 1061 and 1063 are arranged so that the filter regions 181 and 183 do not overlap with the recess 170 when the dielectric substrate 130 is viewed in a plan view from the normal direction.
  • a recess is provided in the dielectric substrate to accommodate equipment such as RFIC in the recess, and the dielectric substrate does not overlap with the recess when viewed in a plan view.
  • the “feeding element 121" and “feeding element 123" in the third embodiment correspond to the “first feeding element” and the “second feeding element” in the present disclosure, respectively.
  • the “filter 1061” and “filter 1063” in the third embodiment correspond to the “first filter” and the “second filter” in the present disclosure, respectively.
  • the "power supply wiring 141" and the “power supply wiring 143” in the third embodiment correspond to the “first power supply wiring” and the "second power supply wiring” in the present disclosure, respectively.
  • a dual band type configured to radiate radio waves in different frequency bands from the feeding element and the non-feeding element by passing a feeding wiring for supplying a high frequency signal to the feeding element through the non-feeding element.
  • FIG. 18 is a block diagram of the communication device 10C to which the antenna module 100D according to the fourth embodiment is applied. Further, FIG. 19 is a side perspective view of the antenna module 100D of FIG. In addition, in FIGS. 18 and 19, the detailed description of the elements overlapping with FIGS. 2 and the like is not repeated.
  • the communication device 10C includes an antenna module 100D and a BBIC 200.
  • the antenna module 100D includes an RFIC 110B, an antenna device 120C, and a filter device 107.
  • the antenna device 120C is a dual band type antenna device, and each radiating element 127 arranged in the antenna device 120C includes a feeding element 121 and a feeding element 124.
  • the feeding element 121 and the feeding element 124 are patch antennas having a substantially square planar shape.
  • the non-feeding element 124 is arranged on the dielectric substrate 130 in a layer between the feeding element 121 and the ground electrode GND1.
  • the power feeding wiring 140 passes through the non-feeding element 124 via the diplexer 107A and is connected to the feeding point SP1 of the feeding element 121.
  • the size of the non-feeding element 124 is larger than the size of the feeding element 121, and the resonance frequency of the non-feeding element 124 is lower than the resonance frequency of the feeding element 121.
  • the RFIC 110B basically has the same configuration as the RFIC described in the third embodiment. That is, switches 111A to 111D, 113A to 113D, 117A, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, signal synthesizer / demultiplexer 116A, mixer 118A, and
  • the configuration of the amplifier circuit 119A is a circuit for a high frequency signal for the feeding element 121, and the switches 111E to 111H, 113E to 113H, 117B, the power amplifier 112ET to 112HT, the low noise amplifier 112ER to 112HR, the attenuator 114E to 114H,
  • the configuration of the phase shifters 115E to 115H, the signal synthesizer / demultiplexer 116B, the mixer 118B, and the amplifier circuit 119B is a circuit for a high
  • the filter device 107 includes diplexers 107A to 107D.
  • Each diplexer has a high-pass filter (filters 107A1, 107B1, 107C1, 107D1) that passes high-frequency signals in a high frequency band, and a low-pass filter (filters 107A2, 107B2, 107C2, 107D2) that passes high-frequency signals in a low frequency band.
  • the filters 107A1, 107B1, 107C1, 107D1 are connected to switches 111A to 111D in the RFIC 110B, respectively. Further, the filters 107A2, 107B2, 107C2, 107D2 are connected to the switches 111E to 111H in the RFIC110B, respectively.
  • Each of the diplexers 107A to 107D is connected to the corresponding power feeding element 121.
  • the transmission signal from the switches 111A to 111D of the RFIC 110B is radiated from the corresponding power feeding element 121 via the filters 107A1 to 107D1 which are high-pass filters.
  • the transmission signal from the switches 111E to 111H of the RFIC 100B is radiated from the corresponding non-feeding element 124 via the filters 107A2 to 107D2, which are low-pass filters.
  • a recess 170 is formed in the second main surface 132 of the dielectric substrate 130, and the RFIC 110B is arranged in the recess 170.
  • the filter region 184 formed by the diplexer 107A is arranged between the ground electrode GND3 and the ground electrode GND4, and the filter region 184 overlaps with the recess 170 when the dielectric substrate 130 is viewed in a plan view from the normal direction.
  • the diplexer 107A is arranged so as not to become.
  • a recess is provided in the dielectric substrate to accommodate equipment such as RFIC in the recess.
  • the filter region so as not to overlap the concave portion when the dielectric substrate is viewed in a plan view, it is possible to reduce the height of the antenna module while maintaining the antenna characteristics and the filter characteristics.
  • the “feeding element 121" in the fourth embodiment corresponds to the "first feeding element” in the present disclosure.
  • the “Diplexer 107A” in the fourth embodiment is an example of the “first filter” in the present disclosure.
  • the “feed power supply wiring 140” in the fourth embodiment corresponds to the “first power supply wiring” in the present disclosure.
  • the dielectric substrate 130 is formed of a single type of dielectric has been described, but the region where the antenna is formed (from the first main surface 131 to the ground electrode) has been described.
  • 10, 10A to 10C communication device 100, 100A to 100D, 100X to 100Z antenna module, 105 to 107 filter device, 105A to 105D, 106A to 106H, 107A1 to 107D1, 107A2 to 107D2, 1061 to 1063 filter, 107A to 107D Diplexer, 110, 110A, 110B RFIC, 111A-111H, 113A-113H, 117, 117A, 117B switch, 112AR-112HR low noise amplifier, 112AT-112HT power amplifier, 114A-114H attenuator, 115A, 115D, 115E, 115H transfer Phase unit, 116,116A, 116B signal synthesizer / demultiplexer, 118,118A, 118B mixer, 119,119A, 119B amplifier circuit, 120,120A-120C antenna device, 121,121A-121D, 123,1211-1214 power supply Element, 122,124,1221-1224

Abstract

アンテナモジュール(100)は、多層構造の誘電体基板(130)と、放射素子(125)と、給電配線(140)と、フィルタ装置(105)と、接地電極(GND1)とを備える。誘電体基板は、第1主面(131)および第2主面(132)を有する。放射素子は、誘電体基板の第1主面上、または、第1主面よりも内層に形成される。給電配線は、放射素子に対して高周波信号を伝達する。フィルタ装置は、給電配線上に配置される。接地電極(GND1)は、放射素子に対向し、放射素子とフィルタ装置との間の層に配置される。誘電体基板の第2主面には、凹部(170)が形成されている。誘電体基板の法線方向から平面視した場合に、フィルタ装置は、凹部と重ならない位置に配置されている。

Description

アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
 本開示は、アンテナモジュールおよびそれを搭載した通信装置に関し、より特定的には、アンテナ素子が形成される基板内にフィルタを内蔵したアンテナモジュールの構造に関する。
 特開2001-094336号公報(特許文献1)には、放射導体(アンテナ素子)とフィルタとが、誘電体材料の同じ基体内に設けられた、フィルタ内蔵型パッチアンテナが開示されている。
特開2001-094336号公報
 このようなアンテナは、たとえば、携帯電話あるいはスマートフォンなどの通信端末に適用される場合がある。このような通信端末においては、機器の小型化および薄型化が望まれている。
 特開2001-094336号公報(特許文献1)のように、アンテナ素子(放射素子)と同じ基板内にフィルタを配置することで、アンテナモジュール全体を小型化することが可能である。このような構成においては、アンテナ特性およびフィルタ特性の双方を確保することが必要となる。アンテナ特性のうち送受信される電波の周波数帯域幅は、放射素子と接地電極との間の間隔が大きくなると広くなることが知られている。また、誘電体基板内にストリップ線路あるいはマイクロストリップ線路として形成されるフィルタにおいては、フィルタの厚み(すなわち、誘電体の厚み)を厚くすることでQ値が向上することが知られている。
 ここで、アンテナモジュールが形成される基板における電波の放射方向と反対の面には、給電回路であるRFICなどの電子部品が実装されたり、実装基板に接続するための端子(コネクタ)などが配置される場合がある。このような場合に、所望のアンテナ特性およびフィルタ特性を実現するために誘電体基板の厚みを確保すると、アンテナモジュール全体のサイズが大きくなり、低背化および薄型化を阻害する状態となる可能性がある。
 本開示は、上記のような課題を解決するためになされたものであって、その目的は、フィルタ内蔵型のアンテナモジュールにおいて、アンテナ特性およびフィルタ特性を維持しつつ、低背化を実現することである。
 本開示のある局面に従うアンテナモジュールは、多層構造の誘電体基板と、放射素子と、第1給電配線と、第1フィルタと、第1接地電極とを備える。誘電体基板は、第1主面および第2主面を有する。放射素子は、誘電体基板の第1主面上、または、第1主面よりも内層に形成される。第1給電配線は、放射素子に対して高周波信号を伝達する。第1フィルタは、第1給電配線上に配置される。第1接地電極は、放射素子に対向し、放射素子と第1フィルタとの間の層に配置される。誘電体基板の第2主面には、凹部が形成されている。誘電体基板の法線方向から平面視した場合に、第1フィルタは、凹部と重ならない位置に配置されている。
 本開示の他の局面に従う回路基板は、放射素子に高周波信号を供給するための装置であり、多層構造の誘電体基板と、給電配線と、フィルタと、接地電極とを備える。給電配線は、放射素子に対して高周波信号を伝達する。フィルタは、給電配線上に配置される。接地電極は、誘電体基板の第1主面とフィルタとの間の層に配置される。誘電体基板の第2主面には、凹部が形成されている。誘電体基板の法線方向から平面視した場合に、フィルタは、凹部と重ならない位置に配置されている。
 本開示に従うアンテナモジュールおよび回路基板においては、フィルタが形成される誘電体基板において第2主面(裏面)に凹部が形成されており、誘電体基板を平面視したときに、当該凹部と重ならない位置にフィルタが配置される。このような構成とすることによって、アンテナ特性およびフィルタ特性を実現するために必要な誘電体の厚みを確保しつつ、凹部内にRFIC等の他の部品を収容することが可能となる。したがって、アンテナ特性およびフィルタ特性を維持しつつ、アンテナモジュール全体の低背化を実現することができる。
実施の形態1に従うアンテナモジュールが適用される通信装置のブロック図である。 図1のアンテナモジュールの側面透視図である。 図1のアンテナモジュールの平面図である。 誘電体の厚みとQ値との関係を説明するための図である。 実施の形態1に従うアンテナモジュールの他の例の側面透視図である。 変形例1に従うアンテナモジュールの側面透視図である。 変形例1に従うアンテナモジュールの平面図である。 変形例2に従うアンテナモジュールの平面図である。 変形例2に従うアンテナモジュールの側面透視図である。 変形例3に従うアンテナモジュールの平面図である。 変形例4に従うアンテナモジュールの側面透視図である。 実施の形態2に従うアンテナモジュールが適用される通信装置のブロック図である。 図12のアンテナモジュールの側面透視図である。 図12のアンテナモジュールの平面図である。 実施の形態3に従うアンテナモジュールが適用される通信装置のブロック図である。 図15のアンテナモジュールの側面透視図である。 図15のアンテナモジュールの平面図である。 実施の形態4に従うアンテナモジュールが適用される通信装置のブロック図である。 図18のアンテナモジュールの側面透視図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の構成)
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120と、フィルタ装置105とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を、RFIC110にて高周波信号にアップコンバートし、フィルタ装置105を介してアンテナ装置120から放射する。また、通信装置10は、アンテナ装置120で受信した高周波信号をフィルタ装置105を介してRFIC110へ送信し、ダウンコンバートしてBBIC200にて信号を処理する。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数の給電素子(放射素子)121のうち、4つの給電素子121に対応する構成のみ示され、同様の構成を有する他の給電素子121に対応する構成については省略されている。なお、図1においては、アンテナ装置120が二次元のアレイ状に配置された複数の給電素子121で形成される例を示しているが、複数の給電素子121が一列に配置された一次元アレイであってもよいし、給電素子が1つのい場合であってもよい。本実施の形態においては、給電素子121は、略正方形の平板状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる給電素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各給電素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 フィルタ装置105は、フィルタ105A~105Dを含む。フィルタ105A~105Dは、RFIC110におけるスイッチ111A~111Dにそれぞれ接続される。フィルタ105A~105Dは、特定の周波数帯域の信号を減衰させる機能を有する。フィルタ105A~105Dは、バンドパスフィルタ、ハイパスフィルタ、ローパスフィルタ、あるいは、これらの組み合わせであってもよい。RFIC110からの高周波信号は、フィルタ105A~105Dを通過して、対応する給電素子121に供給される。
 ミリ波帯の高周波信号の場合、伝送線路が長くなると、伝送経路による信号が大きく減衰する傾向にある。そのため、フィルタ装置105と給電素子121との距離をできるだけ短くすることが好ましい。すなわち、給電素子121から高周波信号を放射する直前にフィルタ装置105を通過させることによって、給電素子から不要波が放射されることを抑制することができる。また、給電素子121における受信直後にフィルタ装置105を通過させることによって、受信信号に含まれる不要波を除去することができる。
 なお、図1においては、フィルタ装置105とアンテナ装置120が個別に記されているが、本開示においては、後述するように、フィルタ装置105はアンテナ装置120の内部に形成される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各給電素子121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する給電素子121毎に1チップの集積回路部品として形成されてもよい。
 (アンテナモジュールの構成)
 次に、図2および図3を用いて、本実施の形態1におけるアンテナモジュール100の構成の詳細を説明する。図2および図3においては、説明を容易にするために、給電素子121が1つの場合について説明する。図2にはアンテナモジュール100の側面透視図が示されており、図3にはアンテナモジュール100の平面図が示されている。
 図2および図3を参照して、アンテナモジュール100は、給電素子121、フィルタ装置105およびRFIC110に加えて、無給電素子122と、誘電体基板130と、給電配線140と、接地電極GND1~GND4とを備える。なお、以降の説明において、給電素子121および無給電素子122をあわせて「放射素子125」とも称する。また、誘電体基板130の法線方向(電波の放射方向)をZ軸方向とし、Z軸方向に垂直な面をX軸およびY軸で規定する。各図におけるZ軸の正方向を上方側、負方向を下方側と称する場合がある。
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130は必ずしも多層構造でなくてもよく、単層の基板であってもよい。
 誘電体基板130は、略矩形状の断面を有しており、第1主面131(Z軸の正方向の面)に近い層に放射素子125が配置されている。より具体的には、放射素子125のうち、無給電素子122が、誘電体基板130の第1主面131上、あるいは、図2のように第1主面131よりも内層に配置される。給電素子121は、無給電素子122に対向し、無給電素子122よりも下方側の層に離間して配置される。
 給電素子121および無給電素子122は、略正方形の平面形状を有するパッチアンテナである。給電素子121および無給電素子122は、ほぼ同じサイズを有しており、互いに同一または近接した共振周波数を有している。給電素子121から電波が放射されると、それに伴って無給電素子122も共振する。これによって、放射される電波の帯域幅を拡大することができる。
 誘電体基板130において、給電素子121よりもさらに下方側に、平板状の接地電極GND1が配置される。言い換えれば、給電素子121は、無給電素子122と接地電極GND1との間の層に形成されている。給電素子121に高周波信号が供給されて、給電素子121と接地電極GND1とが電磁的に結合することによって、給電素子121から電波が放射されてアンテナとして機能する。
 誘電体基板130の第2主面132(裏面)の一部には、凹部170が形成されている。当該凹部170内に、はんだバンプ160を介してRFIC110が実装されている。なお、RFIC110は、はんだ接続に代えて、多極コネクタを用いて誘電体基板130に接続されてもよい。
 誘電体基板130において、凹部170以外の第2主面132上、あるいは、第2主面132よりも内層(すわなち、第2主面132と接地電極GND1との間)に接地電極GND2が形成される。また、凹部170における誘電体基板130の内層(すなわち、凹部170と接地電極GND1との間)に接地電極GND4が配置される。接地電極GND4は、凹部170の部分に形成された接地電極GND1の開口部を塞ぐように形成されている。接地電極GND2と接地電極GND4とは、複数のビア190によって電気的に接続されている。接地電極GND2および接地電極GND4は、誘電体基板130内で生じる電磁界が誘電体基板130の下方側へ漏洩することを防止する。
 また、接地電極GND1と接地電極GND2,GND4との間に、接地電極GND3がさらに配置される。接地電極GND1と接地電極GND3との間の層は、誘電体基板130内の要素を接続する配線を配置するための配線層として機能する。
 フィルタ装置105は、接地電極GND2と接地電極GND3との間の層に配置される。フィルタ装置105は、たとえば、放射される電波の波長をλとした場合に、λ/4あるいはλ/2の長さの複数の線路が互いに非接続の状態で隣接した構成を有する共振線路型フィルタなどで形成される。本開示においては、フィルタ装置105と、接地電極GND2および接地電極GND3の間の誘電体とで形成される、実質的にフィルタとして機能する領域をフィルタ領域180と称する。図3に示されるように、アンテナモジュール100においては、誘電体基板130を法線方向から平面視した場合に、フィルタ領域180が凹部170と重ならないように、フィルタ装置105が配置されている。
 給電配線140は、RFIC110からの高周波信号を、フィルタ装置105を介して給電素子121に伝達する。給電配線140は、フィルタ装置105を経由した後、接地電極GND3を貫通し、配線層を延伸して給電素子121の直下から給電素子121へと至る。
 図2および図3の例においては、給電素子121の給電点SP1は、給電素子121の中心からX軸の正方向にオフセットした位置に配置されている。これにより、給電素子121からはX軸方向を偏波方向とする電波が放射される。また、放射素子、接地電極、ならびに、給電配線を形成する配線パターンおよびビアは、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、および、これらの合金を主成分とする金属で形成されている。
 上述のような構成を有するアンテナモジュールにおいて、給電素子121と接地電極GND1との間の距離H1によって、放射される電波の周波数帯域幅が定められる。より具体的には、距離H1が大きくなるほど周波数帯域幅も広くなる。一方、フィルタ領域180における誘電体の厚み(すなわち、接地電極GND2と接地電極GND3との間の距離H2)によって、Q値が影響を受ける。より具体的には、図4の線LN10に示されるように、誘電体の厚みが厚くなるほどフィルタのQ値は高くなる。すなわち、図2のようにフィルタをストリップラインとして形成する場合、高いQ値を確保するためにはフィルタ領域180における接地電極間の誘電体の厚み(図2におけるH2)をできるだけ厚くすることが望ましい。
 このように、アンテナ特性およびフィルタ特性の観点からは、所望の仕様を実現するために、誘電体基板の厚みをできるだけ厚くすることが要求される場合がある。一方で、依然として通信装置の小型化および/または薄型化の要求も高く、そのためアンテナモジュールのさらなる低背化が必要となる場合もある。
 アンテナモジュールには、RFICあるいは他の電子部品が実装されたり、外部の基板に接続するための端子(コネクタ)が配置される場合があるが、これらの外部機器を単純にアンテナモジュールに取り付けると、アンテナモジュール全体の厚み(高さ)が増加してしまい、低背化の妨げになるおそれがある。
 実施の形態1におけるアンテナモジュール100においては、図2で説明したように、誘電体基板130の第2主面132(裏面)に凹部170が形成されており、当該凹部170の内部にRFIC110が配置される構成となっている。そして、誘電体基板130の法線方向からアンテナモジュール100を平面視した場合に、フィルタ領域180が凹部170と重ならないようにフィルタ装置105が配置されている。このような構成とすることによって、凹部170を設けない場合に比べて、図2における距離H1および距離H2を維持したまま、RFIC110を含むアンテナモジュール100全体の厚みが増加することを抑制することができる。
 なお、上記のアンテナモジュール100においては、凹部170にRFIC110が配置される場合を例として説明したが、RFIC110に代えておよび/または加えて、他の電子部品が凹部170内に配置されてもよいし、外部基板および外部機器と接続するための端子(平板電極,コネクタなど)が形成される場合であってもよい。
 また、上記のような電子部品および端子が形成されておらず、単に凹部による空間が形成される場合であってもよい。たとえば、アンテナモジュールが実装される実装基板において、アンテナモジュールの対向面に電子部品が配置されるような場合に、当該凹部による空間内に当該電子部品が入るように、アンテナモジュールを配置することによって、実装基板とアンテナモジュールとを含んだ全体の構成の寸法を低減することが可能となる。
 さらに、凹部170内にRFIC110あるいは他の電子部品が配置される場合に、図5のアンテナモジュール100Xに示されるように、図2の凹部170に対応する部分の内部を誘電体で満たした構成としてもよい。この場合、凹部170内の誘電体は、誘電体基板130と同じ材料の誘電体であってもよいし、異なる材料の誘電体であってもよい。言い換えれば、アンテナモジュール100Xは、誘電体基板130内において、接地電極GND2,GND4およびビア190で形成された、第2主面132から第1主面131に向かう方向にオフセットした凹部に、RFIC110等の電子部品が配置された構成となっている。
 なお、本実施の形態1の「給電配線140」は、本開示の「第1給電配線」に対応する。本実施の形態1の「フィルタ装置105」は、本開示の「第1フィルタ」に対応する。また、本実施の形態1の「接地電極GND1」および「接地電極GND2」は、それぞれ本開示の「第1接地電極」および「第2接地電極」に対応する。
 (変形例1)
 実施の形態1のアンテナモジュール100においては、凹部170が放射素子125の直下に配置された構成の例について説明した。凹部170と重ならないようにフィルタ領域180が形成されるため、アンテナモジュール100を平面視した場合に、フィルタ領域180は放射素子125と重ならない位置に形成される。
 一方で、誘電体基板の主面の面積が制限される場合においては、図2および図3で示したような、凹部およびフィルタ領域の配置が実現できない場合が生じ得る。そこで、変形例1においては、アンテナモジュールを平面視した場合に、フィルタ領域の少なくとも一部が放射素子と重なるようにする。これによって、誘電体基板の小型化が図れるとともに、フィルタから給電素子までの給電配線の距離が短くなるためアンテナモジュールの挿入損失を改善することができる。
 図6および図7は、それぞれ変形例1に従うアンテナモジュール100Aの側面透視図および平面図である。図6および図7を参照して、アンテナモジュール100Aにおいては、誘電体基板130AのX軸方向およびY軸方向の寸法が、図2のアンテナモジュール100に比べて短くなっている。
 これに伴って、アンテナモジュール100Aを平面視した場合に、凹部170Aは、Y軸方向を長辺とする長方形となるように形成されている。また、RFIC110Aについても、凹部170A内に配置できるような形状とされている。
 さらに、アンテナモジュール100Aを平面視した場合に、フィルタ領域180の一部が、放射素子125と重なるようにフィルタ装置105が配置される。このような構成とすることによって、アンテナモジュールの小型化等によって誘電体基板の主面の面積が制限される場合であっても、アンテナ特性およびフィルタ特性を低下させることなく、アンテナモジュールの低背化を図ることができる。また、フィルタから給電素子までの給電配線の距離を短くできるため、アンテナモジュールの挿入損失を向上させることができる。
 (変形例2)
 変形例2においては、アンテナ装置120がアレイアンテナである場合について説明する。図8は、変形例2に従うアンテナモジュール100の平面図である。また、図9は、図8のVIII-VIII線に沿った面から見たアンテナモジュール100の側面透視図である。
 図8および図9を参照して、アンテナモジュール100は、誘電体基板130に4つの放射素子125(放射素子1251~1254)が互いに隣接して2×2の二次元配列されたアレイアンテナである。放射素子1251は給電素子1211および無給電素子1221を含み、放射素子1252は給電素子1212および無給電素子1222を含み、放射素子1253は給電素子1213および無給電素子1223を含み、放射素子1254は給電素子1214および無給電素子1224を含む。実施の形態1と同様に、各放射素子125における給電素子121および無給電素子122は、ほぼ同じサイズを有しており、無給電素子122と接地電極GND1との間に給電素子121が配置されている。
 RFIC100からの高周波信号は、給電配線によってフィルタ装置105を介して各給電素子121に伝達される。具体的には、図9においては、給電配線141は、フィルタ105Aを介して給電素子1211の給電点SP11に接続される。また、給電配線142は、フィルタ105Bを介して給電素子1212の給電点SP12に接続される。なお、図には示していないが、給電素子1213,1214についても、同様の接続構成により、RFIC100から高周波信号が伝達される。
 誘電体基板130の第2主面132に凹部170が形成されており、当該凹部170内にRFIC110が配置されている。図9に示されるように、フィルタ105A,105Bにより形成されるフィルタ領域181,182は、接地電極GND3と接地電極GND4との間に配置されており、誘電体基板130を法線方向から平面視した場合に、フィルタ領域181,182が凹部170と重ならないように、フィルタ105A,105Bが配置されている。なお、変形例2においては、誘電体基板130のサイズの制約により、変形例1のように、誘電体基板130を平面視した場合に、放射素子および対応するフィルタが少なくとも一部分において重なっている。
 このように、アンテナモジュールがアレイアンテナの場合においても、誘電体基板に凹部を設けてRFIC等の機器を凹部内に収容し、かつ、誘電体基板を平面視した場合に凹部と重ならないようにフィルタ領域を配置することによって、アンテナ特性およびフィルタ特性を維持しつつ、アンテナモジュールの低背化を実現することができる。
 なお、変形例2における「給電素子1211」および「給電素子1212」は、それぞれ本開示における「第1給電素子」および「第2給電素子」の一例である。また、変形例2における「給電配線141」および「給電配線142」は、それぞれ本開示における「第1給電配線」および「第2給電配線」の一例である。
 (変形例3)
 上述の各アンテナモジュールにおいては、RFIC等の機器が配置される誘電体基板の凹部が、X軸またはY軸に平行な4つの面に囲まれた形状に形成される例について説明した。しかしながら、誘電体基板に形成される凹部を囲む面の一部は開放されていてもよい。
 たとえば、図10に示される変形例3のアンテナモジュール100Yのように、凹部170Yは、Y軸に沿った2つの面で囲まれており、誘電体基板130のX軸に沿った端部まで凹部170Yが開放されている。言い換えれば、凹部170Yは、誘電体基板130をX軸方向に貫通している。
 また、図には示されていないが、凹部はY軸方向に貫通されていてもよいし、X軸またはY軸に平行な4つの面の内の1つの面が誘電体基板130の端部まで開放されていてもよい。
 (変形例4)
 上述の各アンテナモジュールにおいては、放射素子および接地電極が同じ誘電体基板に形成される構成について説明した。しかしながら、放射素子は、その他の要素が形成される誘電体基板とは異なる誘電体基板に形成される構成であってもよい。
 図11は、変形例4に係るアンテナモジュール100Zの側面透視図である。アンテナモジュール100Zにおいては、放射素子125(給電素子121,無給電素子122)が誘電体基板130Z1に形成されており、放射素子125以外の要素が誘電体基板130Z1から独立した回路基板300に形成された構成となっている。誘電体基板130Z1は、誘電体基板130Z1の第2主面132Z1が、回路基板300の第1主面131Z2と対向するように配置されている。誘電体基板130Z1と回路基板300とは、はんだバンプ161によって結合されている。なお、はんだバンプ161に代えて、接続コネクタあるいは接続用ケーブルが用いられてもよい。
 回路基板300は、誘電体基板130Z2に、図2のアンテナモジュール100における放射素子125以外の要素が配置された構成を有している。誘電体基板130Z2の第1主面131Z2よりも内層に平板状の接地電極GND1が形成されている。誘電体基板130Z2の第2主面132Z2の一部には、凹部170が形成されている。当該凹部170内に、はんだバンプ160を介してRFIC110が実装されている。
 誘電体基板130Z2において、凹部170以外の第2主面132Z2上、あるいは、第2主面132Z2よりも内層(すわなち、第2主面132Z2と接地電極GND1との間)に接地電極GND2が形成される。また、凹部170における誘電体基板130Z2の内層(すなわち、凹部170と接地電極GND1との間)に接地電極GND4が配置される。接地電極GND4は、凹部170の部分に形成された接地電極GND1の開口部を塞ぐように形成されている。接地電極GND2と接地電極GND4とは、複数のビア190によって電気的に接続されている。
 また、接地電極GND1と接地電極GND2,GND4との間に、接地電極GND3がさらに配置される。接地電極GND1と接地電極GND3との間の層は、誘電体基板130Z2内の要素を接続する配線を配置するための配線層として機能する。
 フィルタ装置105は、接地電極GND2と接地電極GND3との間の層に配置される。フィルタ装置105は、誘電体基板130Z2の法線方向から平面視した場合に、凹部170と重ならない位置に配置されている。
 給電配線140は、RFIC110からの高周波信号を、フィルタ装置105を介して給電素子121に伝達する。給電配線140は、フィルタ装置105を経由した後、接地電極GND3を貫通し、給電素子121の直下の位置まで配線層を延伸する。給電配線140は、そこから接地電極GND1を貫通し、はんだバンプ161を介して誘電体基板130Z1に至り、給電素子121の給電点SP1に接続される。
 このように、RFICが配置される回路基板と、放射素子が形成される誘電体基板とが個別の基板として形成される構成とすることによって、通信装置内の機器配置の自由度を高めることができる。たとえば、回路基板をマザーボードに配置し、放射素子を筐体に配置する構成とすることができる。
 [実施の形態2]
 (通信装置の構成)
 実施の形態2においては、放射素子から2つの異なる偏波を放射することが可能な、いわゆるデュアル偏波タイプのアンテナモジュールの場合について説明する。
 図12は、実施の形態2に従うアンテナモジュール100Bが適用される通信装置10Aのブロック図である。図12を参照して、通信装置10Aは、アンテナモジュール100Bと、BBIC200とを備える。アンテナモジュール100Bは、RFIC110Bと、アンテナ装置120Aと、フィルタ装置106とを含む。
 アンテナ装置120Aは、上述のようにデュアル偏波タイプのアンテナ装置であり、各給電素子121(121A~121D)には、RFIC100Bから、第1偏波用の高周波信号および第2偏波用の高周波信号が供給される。
 RFIC110Bは、スイッチ111A~111H,113A~113H,117A,117Bと、パワーアンプ112AT~112HTと、ローノイズアンプ112AR~112HRと、減衰器114A~114Hと、移相器115A~115Hと、信号合成/分波器116A,116Bと、ミキサ118A,118Bと、増幅回路119A、119Bとを備える。このうち、スイッチ111A~111D,113A~113D,117A、パワーアンプ112AT~112DT、ローノイズアンプ112AR~112DR、減衰器114A~114D、移相器115A~115D、信号合成/分波器116A、ミキサ118A、および増幅回路119Aの構成が、第1偏波用の高周波信号のための回路である。また、スイッチ111E~111H,113E~113H,117B、パワーアンプ112ET~112HT、ローノイズアンプ112ER~112HR、減衰器114E~114H、移相器115E~115H、信号合成/分波器116B、ミキサ118B、および増幅回路119Bの構成が、第2偏波用の高周波信号のための回路である。
 高周波信号を送信する場合には、スイッチ111A~111H,113A~113Hがパワーアンプ112AT~112HT側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111H,113A~113Hがローノイズアンプ112AR~112HR側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの受信側アンプに接続される。
 フィルタ装置106は、フィルタ106A~106Hを含む。フィルタ106A~106Hは、RFIC110Bにおけるスイッチ111A~111Hにそれぞれ接続される。フィルタ106A~106Hの各々は、特定の周波数帯域の高周波信号を減衰させる機能を有する。
 BBIC200から伝達された信号は、増幅回路119A,119Bで増幅され、ミキサ118A,118Bでアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116A,116Bで4分波され、対応する信号経路を通過して、それぞれ異なる給電素子121に給電される。
 スイッチ111A,111Eからの高周波信号は、フィルタ106A,106Eをそれぞれ経由して給電素子121Aに供給される。同様に、スイッチ111B,111Fからの高周波信号は、フィルタ106B,106Fをそれぞれ経由して給電素子121Bに供給される。スイッチ111C,111Gからの高周波信号は、フィルタ106C,106Gをそれぞれ経由して給電素子121Cに供給される。スイッチ111D,111Hからの高周波信号は、フィルタ106D,106Hをそれぞれ経由して給電素子121Dに供給される。
 各信号経路に配置された移相器115A~115Hの移相度が個別に調整されることにより、アンテナ装置120Aの指向性を調整することができる。
 各給電素子121で受信された高周波信号である受信信号は、フィルタ装置106を介してRFIC110Bに伝達され、それぞれ異なる4つの信号経路を経由して信号合成/分波器116A,116Bにおいて合波される。合波された受信信号は、ミキサ118A,118Bでダウンコンバートされ、増幅回路119A,119Bで増幅されてBBIC200へ伝達される。
 (アンテナモジュールの構成)
 次に、図13および図14を用いて、本実施の形態2におけるアンテナモジュール100Bの構成の詳細を説明する。図13にはアンテナモジュール100Bの側面透視図が示されており、図14にはアンテナモジュール100Bの平面図が示されている。なお、図13および図14において、実施の形態1の図2および図3と重複する要素の詳細な説明は繰り返さない。
 図13および図14を参照して、アンテナモジュール100Bにおいても、誘電体基板130の第2主面132に凹部170が形成されており、当該凹部170内にRFIC110Bが配置されている。
 アンテナモジュール100Bにおいては、RFIC110Bからの高周波信号は、フィルタ1061を介して、給電配線141によって給電素子121の給電点SP1に伝達される。また、RFIC110Bからの高周波信号は、フィルタ1062を介して、給電配線142によって給電素子121の給電点SP2にも伝達される。
 給電素子121の給電点SP1は、給電素子121の中心からX軸の正方向にオフセットした位置に配置されている。これにより、給電点SP1に高周波信号が供給されると、給電素子121からはX軸方向(第1方向)を偏波方向とする電波が放射される。また、給電素子121の給電点SP2は、給電素子121の中心からY軸の負方向にオフセットした位置に配置されている。これにより、給電点SP2に高周波信号が供給されると、給電素子121からはY軸方向(第2方向)を偏波方向とする電波が放射される。
 アンテナモジュール100Bにおいても、フィルタ1061によるフィルタ領域181およびフィルタ1062によるフィルタ領域182は、ともに接地電極GND3と接地電極GND4との間に配置される。また、図14に示されるように、誘電体基板130を法線方向から平面視した場合に、フィルタ領域181,182が凹部170と重ならないように、各フィルタ1061,1062が配置されている。
 このように、デュアル偏波タイプのフィルタ内蔵型のアンテナモジュールにおいても、誘電体基板に凹部を設けてRFIC等の機器を凹部内に収容し、かつ、誘電体基板を平面視した場合に凹部と重ならないようにフィルタ領域を配置することによって、アンテナ特性およびフィルタ特性を維持しつつ、アンテナモジュールの低背化を実現することができる。
 なお、実施の形態2においても、実施の形態1の変形例1で説明したように、誘電体基板を平面視した場合に、アンテナ領域の一部と放射素子とが重なるようにしてもよい。
 なお、実施の形態2における「フィルタ1061」および「フィルタ1062」は、それぞれ本開示における「第1フィルタ」および「第2フィルタ」の一例である。また、実施の形態2における「給電配線141」および「給電配線142」は、それぞれ本開示における「第1給電配線」および「第2給電配線」の一例である。
 [実施の形態3]
 (通信装置の構成)
 実施の形態3においては、放射素子から2つの異なる周波数帯域の電波が放射可能な、いわゆるデュアルバンドタイプのアンテナモジュールの場合について説明する。
 図15は、実施の形態3に従うアンテナモジュール100Cが適用される通信装置10Bのブロック図である。図15を参照して、通信装置10Bは、アンテナモジュール100Cと、BBIC200とを備える。アンテナモジュール100Cは、RFIC110Bと、アンテナ装置120Bと、フィルタ装置106とを含む。
 アンテナ装置120Bは、上述のようにデュアルバンドタイプのアンテナ装置であり、アンテナ装置120Bに配列された各放射素子126は、2つの給電素子121,123を含んでいる。給電素子121,123には、RFIC110Bから高周波信号が個別に供給される。
 RFIC110Bは、基本的には実施の形態2で説明したRFICと同様の機器構成を有している。しかしながら、実施の形態3のアンテナモジュール100Cにおいては、スイッチ111A~111D,113A~113D,117A、パワーアンプ112AT~112DT、ローノイズアンプ112AR~112DR、減衰器114A~114D、移相器115A~115D、信号合成/分波器116A、ミキサ118A、および増幅回路119Aの構成が、給電素子121用の高周波信号のための回路であり、スイッチ111E~111H,113E~113H,117B、パワーアンプ112ET~112HT、ローノイズアンプ112ER~112HR、減衰器114E~114H、移相器115E~115H、信号合成/分波器116B、ミキサ118B、および増幅回路119Bの構成が、給電素子123用の高周波信号のための回路である。
 また、フィルタ装置106においては、フィルタ106A~106Dは、給電素子121から放射される電波の周波数帯域を通過帯域とするフィルタとして形成されている。一方、フィルタ106E~106Hは、給電素子123から放射される電波の周波数帯域を通過帯域とするフィルタとして形成されている。
 (アンテナモジュールの構成)
 次に、図16および図17を用いて、本実施の形態3におけるアンテナモジュール100Cの構成の詳細を説明する。図16にはアンテナモジュール100Cの側面透視図が示されており、図17にはアンテナモジュール100Cの平面図が示されている。なお、図16および図17において、実施の形態1の図2および図3または実施の形態2の図13および図14と重複する要素の詳細な説明は繰り返さない。
 図16および図17を参照して、アンテナモジュール100Cにおいても、誘電体基板130の第2主面132に凹部170が形成されており、当該凹部170内にRFIC110Bが配置されている。
 誘電体基板130の第1主面131上、あるいは、第1主面131よりも内層に給電素子121が配置される。さらに、給電素子121よりも下方側の層に、給電素子123が給電素子121に対向して配置される。すなわち、給電素子123は、給電素子121と接地電極GND1との間の層に、給電素子121に対向して配置される。
 給電素子121および給電素子123は、略正方形の平面形状を有するパッチアンテナである。給電素子121のサイズは、給電素子123のサイズよりも小さい。そのため、給電素子121の共振周波数は給電素子123の共振周波数よりも高い。したがって、給電素子121からは給電素子123よりも高い周波数帯域の電波が放射される。
 アンテナモジュール100Cにおいては、RFIC110Bからの高周波信号は、フィルタ1061を介して、給電配線141によって給電素子121の給電点SP1に伝達される。また、RFIC110Bからの高周波信号は、フィルタ1063を介して、給電配線143によって給電素子123の給電点SP3にも伝達される。
 アンテナモジュール100Cにおいても、フィルタ1061により形成されるフィルタ領域181およびフィルタ1063により形成されるフィルタ領域183は、ともに接地電極GND3と接地電極GND4との間に配置される。また、図17に示されるように、誘電体基板130を法線方向から平面視した場合に、フィルタ領域181,183が凹部170と重ならないように、各フィルタ1061,1063が配置されている。
 このように、デュアルバンドタイプのフィルタ内蔵型アンテナモジュールにおいても、誘電体基板に凹部を設けてRFIC等の機器を凹部内に収容し、かつ、誘電体基板を平面視した場合に凹部と重ならないようにフィルタ領域を配置することによって、アンテナ特性およびフィルタ特性を維持しつつ、アンテナモジュールの低背化を実現することができる。
 なお、実施の形態3における「給電素子121」および「給電素子123」は、それぞれ本開示における「第1給電素子」および「第2給電素子」に対応する。実施の形態3における「フィルタ1061」および「フィルタ1063」は、それぞれ本開示における「第1フィルタ」および「第2フィルタ」に対応する。また、実施の形態3における「給電配線141」および「給電配線143」は、それぞれ本開示における「第1給電配線」および「第2給電配線」に対応する。
 [実施の形態4]
 実施の形態3においては、誘電体基板の積層方向に対向配置された2つの給電素子の各々に対して個別に高周波信号を供給するように構成されたデュアルバンドタイプのアンテナモジュールについて説明した。
 実施の形態4においては、給電素子に高周波信号を供給する給電配線を無給電素子に貫通させることによって、給電素子および無給電素子から異なる周波数帯域の電波を放射するように構成されたデュアルバンドタイプのアンテナモジュールについて、図18および図19を用いて説明する。
 図18は、実施の形態4に従うアンテナモジュール100Dが適用される通信装置10Cのブロック図である。また、図19は、図18のアンテナモジュール100Dの側面透視図である。なお、図18および図19において、図2等と重複する要素の詳細な説明は繰り返さない。
 図18を参照して、通信装置10Cは、アンテナモジュール100Dと、BBIC200とを備える。アンテナモジュール100Dは、RFIC110Bと、アンテナ装置120Cと、フィルタ装置107とを含む。アンテナ装置120Cは、デュアルバンドタイプのアンテナ装置であり、アンテナ装置120Cに配列された各放射素子127は、給電素子121および無給電素子124を含んでいる。
 図19に示されるように、給電素子121および無給電素子124は、略正方形の平面形状を有するパッチアンテナである。無給電素子124は、誘電体基板130において、給電素子121と接地電極GND1との間の層に配置されている。給電配線140は、ダイプレクサ107Aを経由し、無給電素子124を貫通して給電素子121の給電点SP1に接続されている。無給電素子124のサイズは、給電素子121のサイズよりも大きく、無給電素子124の共振周波数は、給電素子121の共振周波数よりも低い。無給電素子124の共振周波数に対応した高周波信号を給電配線140に供給することにより、無給電素子124から給電素子121よりも低い周波数帯域の電波を放射することができる。
 RFIC110Bは、基本的には実施の形態3で説明したRFICと同様の構成を有している。すなわち、スイッチ111A~111D,113A~113D,117A、パワーアンプ112AT~112DT、ローノイズアンプ112AR~112DR、減衰器114A~114D、移相器115A~115D、信号合成/分波器116A、ミキサ118A、および増幅回路119Aの構成が、給電素子121用の高周波信号のための回路であり、スイッチ111E~111H,113E~113H,117B、パワーアンプ112ET~112HT、ローノイズアンプ112ER~112HR、減衰器114E~114H、移相器115E~115H、信号合成/分波器116B、ミキサ118B、および増幅回路119Bの構成が、無給電素子124用の高周波信号のための回路である。
 フィルタ装置107は、ダイプレクサ107A~107Dを含む。各ダイプレクサは、高い周波数帯域の高周波信号を通過させるハイパスフィルタ(フィルタ107A1,107B1,107C1,107D1)、および、低い周波数帯域の高周波信号を通過させるローパスフィルタ(フィルタ107A2,107B2,107C2,107D2)を含む。フィルタ107A1,107B1,107C1,107D1は、RFIC110Bにおけるスイッチ111A~111Dにそれぞれ接続される。また、フィルタ107A2,107B2,107C2,107D2は、RFIC110Bにおけるスイッチ111E~111Hにそれぞれ接続される。ダイプレクサ107A~107Dの各々は、対応する給電素子121に接続される。
 RFIC110Bのスイッチ111A~111Dからの送信信号は、ハイパスフィルタであるフィルタ107A1~107D1をそれぞれ経由して対応する給電素子121から放射される。RFIC100Bのスイッチ111E~111Hからの送信信号は、ローパスフィルタであるフィルタ107A2~107D2をそれぞれ経由して対応する無給電素子124から放射される。
 アンテナモジュール100Dにおいても、誘電体基板130の第2主面132に凹部170が形成されており、当該凹部170内にRFIC110Bが配置されている。ダイプレクサ107Aにより形成されるフィルタ領域184は、接地電極GND3と接地電極GND4との間に配置されており、誘電体基板130を法線方向から平面視した場合に、フィルタ領域184が凹部170と重ならないように、ダイプレクサ107Aが配置されている。
 このように、給電素子および無給電素子で形成される放射素子を用いた、デュアルバンドタイプのフィルタ内蔵型アンテナモジュールにおいても、誘電体基板に凹部を設けてRFIC等の機器を凹部内に収容し、かつ、誘電体基板を平面視した場合に凹部と重ならないようにフィルタ領域を配置することによって、アンテナ特性およびフィルタ特性を維持しつつ、アンテナモジュールの低背化を実現することができる。
 なお、実施の形態4における「給電素子121」は、本開示における「第1給電素子」に対応する。実施の形態4における「ダイプレクサ107A」は、本開示における「第1フィルタ」の一例である。実施の形態4における「給電配線140」は、本開示における「第1給電配線」に対応する。
 なお、上述の実施の形態および変形例においては、誘電体基板130が単一の種類の誘電体で形成される場合について説明したが、アンテナが形成される領域(第1主面131から接地電極GND1までの間)にはアンテナに適した誘電率の誘電体を使用し、フィルタが形成される領域(接地電極GND2と接地電極GND3との間)にはフィルタに適した誘電率の誘電体を使用するようにしてもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,10A~10C 通信装置、100,100A~100D,100X~100Z アンテナモジュール、105~107 フィルタ装置、105A~105D,106A~106H,107A1~107D1,107A2~107D2,1061~1063 フィルタ、107A~107D ダイプレクサ、110,110A,110B RFIC、111A~111H,113A~113H,117,117A,117B スイッチ、112AR~112HR ローノイズアンプ、112AT~112HT パワーアンプ、114A~114H 減衰器、115A,115D,115E,115H 移相器、116,116A,116B 信号合成/分波器、118,118A,118B ミキサ、119,119A,119B 増幅回路、120,120A~120C アンテナ装置、121,121A~121D,123,1211~1214 給電素子、122,124,1221~1224 無給電素子、125~127,1251~1254 放射素子、130,130A,130Z1,130Z2 誘電体基板、131,131Z1,131Z2,132,132Z1,132Z2 主面、140~143 給電配線、160,161 はんだバンプ、170,170A,170Y 凹部、180~184 フィルタ領域、190 ビア、200 BBIC、300 回路基板、GND1~GND4 接地電極、SP1~SP3,SP11~SP14 給電点。

Claims (15)

  1.  第1主面および第2主面を有する多層構造の誘電体基板と、
     前記誘電体基板の前記第1主面上、または、前記第1主面よりも内層に形成された放射素子と、
     前記放射素子に対して高周波信号を伝達する第1給電配線と、
     前記第1給電配線上に配置された第1フィルタと、
     前記放射素子に対向し、前記放射素子と前記第1フィルタとの間の層に配置された第1接地電極とを備え、
     前記誘電体基板の前記第2主面には、凹部が形成されており、
     前記誘電体基板の法線方向から平面視した場合に、前記第1フィルタは、前記凹部と重ならない位置に配置されている、アンテナモジュール。
  2.  前記凹部に形成され、外部機器と電気的に接続するための端子をさらに備える、請求項1に記載のアンテナモジュール。
  3.  前記凹部内に配置された電子部品をさらに備える、請求項1または2に記載のアンテナモジュール。
  4.  前記電子部品は、給電回路を含む、請求項3に記載のアンテナモジュール。
  5.  前記凹部内は、誘電体で満たされている、請求項3または4に記載のアンテナモジュール。
  6.  前記誘電体基板の法線方向から平面視した場合に、前記第1フィルタは、前記放射素子と重なる位置に配置されている、請求項1~5のいずれか1項に記載のアンテナモジュール。
  7.  前記誘電体基板の前記第2主面上、または、前記第2主面と前記第1接地電極との間に配置された第2接地電極をさらに備え、
     前記第1フィルタは、前記第1接地電極と前記第2接地電極との間に配置される、請求項1~6のいずれか1項に記載のアンテナモジュール。
  8.  前記放射素子は、
      第1給電素子と、
      前記第1給電素子と前記第1接地電極との間の層に、前記第1給電素子に対向して配置された無給電素子とを含み、
     前記第1給電配線は、前記無給電素子を貫通して前記第1給電素子に接続され、
     前記無給電素子から放射される電波の周波数帯域は、前記第1給電素子から放射される周波数帯域とは異なる、請求項1~7のいずれか1項に記載のアンテナモジュール。
  9.  前記放射素子に対して高周波信号を伝達する第2給電配線と、
     前記第2給電配線上に配置された第2フィルタとをさらに備え、
     前記誘電体基板の法線方向から平面視した場合に、前記第2フィルタは、前記凹部と重ならない位置に配置されている、請求項1~7のいずれか1項に記載のアンテナモジュール。
  10.  前記第1給電配線によって伝達される高周波信号によって、前記放射素子から第1方向に偏波方向を有する電波が放射され、
     前記第2給電配線によって伝達される高周波信号によって、前記放射素子から前記第1方向に直交する第2方向に偏波方向を有する電波が放射される、請求項9に記載のアンテナモジュール。
  11.  前記放射素子は、
      前記第1給電配線により高周波信号が伝達される第1給電素子と、
      前記第1給電素子と前記第1接地電極との間の層に前記第1給電素子に対向して配置され、前記第2給電配線により高周波信号が伝達される第2給電素子とを含み、
     前記第2給電素子から放射される電波の周波数帯域は、前記第1給電素子から放射される周波数帯域とは異なる、請求項9に記載のアンテナモジュール。
  12.  前記放射素子は、
      前記第1給電配線により高周波信号が伝達される第1給電素子と、
      前記第1給電素子に隣接して配置され、前記第2給電配線により高周波信号が伝達される第2給電素子とを含む、請求項9に記載のアンテナモジュール。
  13.  第1主面および第2主面を有する多層構造の誘電体基板と、
     前記誘電体基板の前記第1主面上、または、前記第1主面よりも内層に形成された放射素子と、
     前記放射素子に対して高周波信号を伝達する給電配線と、
     前記給電配線上に配置されたフィルタと、
     前記放射素子に対向し、前記放射素子と前記フィルタとの間の層に配置された第1接地電極と、
     前記誘電体基板の前記第2主面上、または、前記第2主面よりも内層に形成された第2接地電極と、
     電子部品とを備え、
     前記第2接地電極には、前記第2主面から前記第1主面の方向に向かってオフセットした凹部が形成されており、
     前記電子部品は、前記凹部内に配置されており、
     前記誘電体基板の法線方向から平面視した場合に、前記フィルタは、前記凹部と重ならない位置に配置されている、アンテナモジュール。
  14.  請求項1~13のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
  15.  放射素子に高周波信号を供給するように構成された回路基板であって、
     第1主面および第2主面を有する多層構造の誘電体基板と、
     前記放射素子に対して高周波信号を伝達する給電配線と、
     前記給電配線上に配置されたフィルタと、
     前記第1主面と前記フィルタとの間の層に配置された接地電極とを備え、
     前記誘電体基板の前記第2主面には、凹部が形成されており、
     前記誘電体基板の法線方向から平面視した場合に、前記フィルタは、前記凹部と重ならない位置に配置されている、回路基板。
PCT/JP2020/024808 2019-08-27 2020-06-24 アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板 WO2021039075A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080060294.0A CN114365350A (zh) 2019-08-27 2020-06-24 天线模块和搭载有该天线模块的通信装置以及电路基板
US17/679,102 US11916312B2 (en) 2019-08-27 2022-02-24 Antenna module, communication device mounting the same, and circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019154880 2019-08-27
JP2019-154880 2019-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/679,102 Continuation US11916312B2 (en) 2019-08-27 2022-02-24 Antenna module, communication device mounting the same, and circuit board

Publications (1)

Publication Number Publication Date
WO2021039075A1 true WO2021039075A1 (ja) 2021-03-04

Family

ID=74685808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024808 WO2021039075A1 (ja) 2019-08-27 2020-06-24 アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板

Country Status (3)

Country Link
US (1) US11916312B2 (ja)
CN (1) CN114365350A (ja)
WO (1) WO2021039075A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444381B2 (en) * 2019-01-17 2022-09-13 Kyocera International, Inc. Antenna array having antenna elements with integrated filters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274259A (ja) * 2003-03-06 2004-09-30 Tdk Corp アンテナ一体型モジュールおよび通信機
JP2005019649A (ja) * 2003-06-25 2005-01-20 Kyocera Corp アンテナ一体型高周波素子収納用パッケージおよびアンテナ装置
WO2014045966A1 (ja) * 2012-09-21 2014-03-27 株式会社村田製作所 偏波共用アンテナ
WO2018074377A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 アンテナ素子、アンテナモジュールおよび通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094336A (ja) 1999-09-20 2001-04-06 Tdk Corp フィルタ内蔵パッチアンテナ
JP3863464B2 (ja) * 2002-07-05 2006-12-27 株式会社ヨコオ フィルタ内蔵アンテナ
EP2166490B1 (en) * 2007-07-17 2015-04-01 Murata Manufacturing Co. Ltd. Wireless ic device and electronic apparatus
JP5677499B2 (ja) * 2013-04-11 2015-02-25 太陽誘電株式会社 高周波回路モジュール
JP6658704B2 (ja) * 2017-09-20 2020-03-04 Tdk株式会社 アンテナモジュール
WO2020153283A1 (ja) * 2019-01-22 2020-07-30 株式会社村田製作所 アンテナモジュールおよび通信装置
CN110165399B (zh) * 2019-05-29 2021-07-23 中天宽带技术有限公司 单端口馈电的双频天线和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274259A (ja) * 2003-03-06 2004-09-30 Tdk Corp アンテナ一体型モジュールおよび通信機
JP2005019649A (ja) * 2003-06-25 2005-01-20 Kyocera Corp アンテナ一体型高周波素子収納用パッケージおよびアンテナ装置
WO2014045966A1 (ja) * 2012-09-21 2014-03-27 株式会社村田製作所 偏波共用アンテナ
WO2018074377A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 アンテナ素子、アンテナモジュールおよび通信装置

Also Published As

Publication number Publication date
US11916312B2 (en) 2024-02-27
US20220181781A1 (en) 2022-06-09
CN114365350A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2020261806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6973607B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
KR102533885B1 (ko) 서브 어레이 안테나, 어레이 안테나, 안테나 모듈 및 통신 장치
WO2021038965A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20210242569A1 (en) Wiring substrate, antenna module, and communication device
WO2020217689A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11322841B2 (en) Antenna module and communication device equipped with the same
WO2021059738A1 (ja) アンテナモジュールおよびその製造方法、ならびに、集合基板
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021039075A1 (ja) アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
JP6760553B1 (ja) アンテナモジュールおよび通信装置
US20220094074A1 (en) Antenna module, communication apparatus including the same, and circuit substrate
WO2022038868A1 (ja) 通信装置
JP7059385B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020240998A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023214473A1 (ja) 伝送線路、ならびに、それを含むアンテナモジュールおよび通信装置
WO2020184205A1 (ja) フィルタ装置、ならびに、それを備えたアンテナモジュールおよび通信装置
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022004111A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021019899A1 (ja) アンテナ装置、アンテナモジュールおよび通信装置
WO2020162437A1 (ja) アンテナモジュールおよび通信装置
WO2021182037A1 (ja) アンテナモジュールおよびそれを搭載する通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP