WO2021182037A1 - アンテナモジュールおよびそれを搭載する通信装置 - Google Patents

アンテナモジュールおよびそれを搭載する通信装置 Download PDF

Info

Publication number
WO2021182037A1
WO2021182037A1 PCT/JP2021/005805 JP2021005805W WO2021182037A1 WO 2021182037 A1 WO2021182037 A1 WO 2021182037A1 JP 2021005805 W JP2021005805 W JP 2021005805W WO 2021182037 A1 WO2021182037 A1 WO 2021182037A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna module
dielectric substrate
radiating element
conductive member
feeding element
Prior art date
Application number
PCT/JP2021/005805
Other languages
English (en)
French (fr)
Inventor
航大 荒井
良 小村
薫 須藤
久夫 早藤
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180020616.3A priority Critical patent/CN115280598A/zh
Priority to JP2022505868A priority patent/JP7294525B2/ja
Publication of WO2021182037A1 publication Critical patent/WO2021182037A1/ja
Priority to US17/939,956 priority patent/US20230006350A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present disclosure relates to an antenna module and a communication device on which the antenna module is mounted, and more specifically, to a technique for realizing reduction of reflection loss over a wide band and ensuring wide directivity in the antenna module.
  • Patent Document 1 discloses an antenna module in which a feeding element and a high-frequency semiconductor element are integrally mounted on a dielectric substrate.
  • the antenna module disclosed in International Publication No. 2016/066969 (Patent Document 1) is mounted on a mobile terminal such as a mobile phone or a smartphone, for example.
  • the reflection characteristic is widened due to the decrease in the effective permittivity, but on the other hand, the peak gain becomes large and the directivity changes to sharp, so that the beam width that can achieve a predetermined gain becomes narrow. It may end up. That is, when lowering the effective permittivity, there is a trade-off relationship between reducing the reflection loss over a wide band and ensuring a wide directivity.
  • the present disclosure has been made to solve such a problem, and an object thereof is to realize reduction of reflection loss over a wide band and ensuring wide directivity in an antenna module.
  • the antenna module includes a first dielectric substrate on which a first radiating element is formed, a second dielectric substrate on which a ground electrode is formed, and a conductive member.
  • the second dielectric substrate is arranged so as to face the first dielectric substrate.
  • the conductive member is arranged around the first radiating element when viewed in a plan view from the normal direction of the first radiating element.
  • a low dielectric constant layer having a dielectric constant lower than that of the first dielectric substrate is formed between the first dielectric substrate and the second dielectric substrate, and the conductive member is formed on the low dielectric constant layer. ing.
  • the antenna module includes a first dielectric substrate on which the first radiating element is formed, a second dielectric substrate on which the ground electrode is formed, and a conductive member.
  • the second dielectric substrate is arranged so as to face the first dielectric substrate.
  • the conductive member is arranged around the first radiating element when viewed in a plan view from the normal direction of the first radiating element.
  • An air layer is formed between the first dielectric substrate and the second dielectric substrate, and the conductive member is formed in the air layer.
  • the dielectric substrate forming the antenna module is composed of a first dielectric substrate including a radiation element and a second dielectric substrate including a ground electrode, and two dielectrics are used.
  • a low dielectric constant layer (air layer) having a dielectric constant lower than that of the first dielectric substrate is formed between the substrates.
  • FIG. 5 is a block diagram of a communication device to which the antenna module according to the first embodiment is applied. It is a top view and a cross-sectional view of the antenna module which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the antenna characteristic of the antenna module which concerns on Embodiment 1, and the antenna module of the comparative example. It is a figure for demonstrating the gain characteristic in an antenna module. It is a figure for demonstrating the directivity of an antenna module. It is sectional drawing of the antenna module which concerns on Embodiment 2.
  • FIG. It is a figure which shows the detail of the vicinity of a conductive member when a resist is applied to a dielectric substrate. It is a figure for demonstrating the antenna characteristic of the antenna module which concerns on Embodiment 3.
  • FIG. It is a figure for demonstrating the antenna characteristic of the antenna module which concerns on Embodiment 4.
  • FIG. It is sectional drawing of the antenna module which concerns on Embodiment 5.
  • FIG. FIG. 5 is a plan view and a cross-sectional view of the antenna module according to the sixth embodiment. It is a figure for demonstrating the reflection loss of the second harmonic in the antenna module of FIG. It is a figure for demonstrating the modification of the arrangement of the conductive member. It is a figure for demonstrating the modification of the low dielectric constant layer.
  • FIG. 1 is an example of a block diagram of a communication device 10 to which the antenna module 100 according to the first embodiment is applied.
  • the communication device 10 is, for example, a mobile phone, a mobile terminal such as a smartphone or a tablet, a personal computer having a communication function, a base station, or the like.
  • An example of the frequency band of the radio wave used for the antenna module 100 according to the present embodiment is a radio wave in the millimeter wave band having a center frequency of, for example, 28 GHz, 39 GHz, 60 GHz, etc., but radio waves in frequency bands other than the above are also available. Applicable.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, and an antenna device 120.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal and radiates it from the antenna device 120, and down-converts the high-frequency signal received by the antenna device 120 to process the signal at the BBIC 200. do.
  • FIG. 1 shows an example in which the antenna device 120 is formed by a plurality of feeding elements 121 arranged in a two-dimensional array, but the feeding elements 121 do not necessarily have to be a plurality, and one feeding element 121 is required.
  • the antenna device 120 may be formed by the feeding element 121. Further, it may be a one-dimensional array in which a plurality of power feeding elements 121 are arranged in a row.
  • the feeding element 121 is a patch antenna having a substantially square flat plate shape.
  • the RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesizer / demultiplexer. It includes 116, a mixer 118, and an amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT side, and the switch 117 is connected to the transmitting side amplifier of the amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the low noise amplifiers 112AR to 112DR side, and the switch 117 is connected to the receiving side amplifier of the amplifier circuit 119.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116, passes through four signal paths, and is fed to different power feeding elements 121.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115D arranged in each signal path.
  • the received signal which is a high-frequency signal received by each feeding element 121, passes through four different signal paths and is combined by the signal synthesizer / demultiplexer 116.
  • the combined received signal is down-converted by the mixer 118, amplified by the amplifier circuit 119, and transmitted to the BBIC 200.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the devices switch, power amplifier, low noise amplifier, attenuator, phase shifter
  • corresponding to each power feeding element 121 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding power feeding element 121. ..
  • FIG. 2 a plan view of the antenna module 100 is shown in the upper row (FIG. 2 (a)), and a cross-sectional view taken along line II-II of the plan view is shown in the lower row (FIG. 2 (b)). There is.
  • the antenna module 100 includes a dielectric substrate 130, 140, a feeding wiring 150, conductive members 170, 180, and a ground electrode GND, in addition to the feeding element 121 and RFIC 110.
  • the positive direction of the Z axis in each figure may be referred to as the upper surface side, and the negative direction may be referred to as the lower surface side.
  • a part of the dielectric substrate 130 is omitted in order to make the internal configuration easy to see.
  • the dielectric substrates 130 and 140 are, for example, a multilayer resin substrate formed by laminating a plurality of low temperature co-fired ceramics (LTCC: Low Temperature Co-fired Ceramics) multilayer substrates and resin layers composed of resins such as epoxy and polyimide. , A multilayer resin substrate formed by laminating a plurality of resin layers composed of a liquid crystal polymer (LCP) having a lower dielectric constant, and formed by laminating a plurality of resin layers composed of a fluorine-based resin. A multilayer resin substrate or a ceramic multilayer substrate other than LTCC.
  • the dielectric substrates 130 and 140 do not necessarily have to have a multi-layer structure, and may be a single-layer substrate. In the antenna module 100 shown in FIG. 2, a case where the dielectric substrate 130 is formed of polyimide and the dielectric substrate 140 is formed of LTCC will be described as an example, but the dielectric substrate 130 and the dielectric substrate 140 will be described as an example. May be made of the same material
  • the dielectric substrate 130 and the dielectric substrate 140 have a rectangular flat plate shape, and the back surface 132 of the dielectric substrate 130 and the front surface 141 of the dielectric substrate 140 are arranged so as to face each other at a predetermined interval. ing. That is, an air layer 185 is formed between the dielectric substrate 130 and the dielectric substrate 140. Conductive members 170 and 180 are formed in the air layer 185, and the dielectric substrate 130 and the dielectric substrate 140 are connected via the conductive members 170 and 180.
  • a substantially square feeding element 121 is arranged on the inner layer of the dielectric substrate 130 or the surface 131 on the upper surface side.
  • a ground electrode GND is arranged on the dielectric substrate 140.
  • Conductive members 170 and 180 are connected to the surface 141 on the upper surface side of the dielectric substrate 140, and RFIC 110 is arranged on the back surface 142 on the lower surface side via solder bumps 160.
  • the power supply wiring 150 penetrates the ground electrode GND from the RFIC 110, and reaches the power supply point SP1 of the power supply element 121 via the conductive member 180.
  • the conductive member 180 functions as a connection electrode for connecting the portion of the power feeding wiring 150 in the dielectric substrate 130 and the portion in the dielectric substrate 140. With such a configuration, the high frequency signal supplied from the RFIC 110 is transmitted to the feeding point SP1 of the feeding element 121 via the feeding wiring 150.
  • the feeding point SP1 is arranged at a position offset in the negative direction of the X axis in FIG. 2 from the center of the feeding element 121 (intersection of diagonal lines).
  • the feeding element 121 radiates a radio wave having the polarization direction in the X-axis direction.
  • the portion of the power feeding wiring 150 inside the dielectric substrate 130 is not an essential configuration, and when the thickness of the dielectric substrate 130 is relatively thin, capacitive coupling between the conductive member 180 and the feeding element 121 is used. Then, the high frequency signal may be supplied to the feeding element 121 in a non-contact manner.
  • the conductive member 170 is any device or member formed including the conductive material.
  • the conductive member 170 may be, for example, a solder bump described later in the second embodiment (FIG. 6) and / or an electrode connecting material such as a columnar conductor column, a conductor pin, or a plated electrode (terminal). good.
  • the conductive member 170 may be an electronic component (resistor, capacitor, etc.) as described later in the ninth embodiment (FIG. 22).
  • the conductive member 170 is a rectangular conductive material having a size smaller than that of the feeding element 121.
  • a plurality of conductive members 170 are arranged around the feeding element 121 apart from the feeding element 121. There is. More specifically, the plurality of conductive members 170 are arranged at intervals from each other along each side of the rectangular power feeding element 121.
  • the conductive member 170 is provided to prevent a part of the electromagnetic field generated between the power feeding element 121 and the ground electrode GND. Therefore, when the wavelength of the radio wave radiated from the feeding element 121 is ⁇ , the conductive member 170 is preferably arranged within a range of ⁇ / 4 from the feeding element 121. As shown in FIG. 2B, the conductive member 170 may be directly connected to the ground electrode GND, or may be indirectly connected by capacitive coupling.
  • the antenna module as described above may be used in a mobile terminal such as a mobile phone or a smartphone.
  • mobile terminals have been required to realize further widening of antenna characteristics such as reflection loss and gain, as well as demands for miniaturization and thinning.
  • an antenna module using a flat plate-shaped patch antenna a method of increasing the distance between the radiation element and the ground electrode or an antenna module is formed in order to realize a wide band of reflection loss.
  • a method of reducing the effective dielectric constant of a dielectric substrate is known.
  • the thickness of the entire antenna module becomes thick as a result, which is a factor that hinders the reduction and miniaturization of the antenna module. obtain.
  • the peak gain becomes large and the directivity can be sharp in addition to the widening of the reflection loss.
  • Increasing the peak gain itself is preferable because the radiable distance of radio waves increases.
  • the space where a predetermined gain can be secured may be narrowed. Then, there is a possibility that the desired gain cannot be realized in the target spatial range.
  • the feeding element 121 and the ground electrode GND are formed on different dielectric substrates 130 and 140, respectively, and an air layer 185 is formed between the dielectric substrate 130 and the dielectric substrate 140. It is formed.
  • the permittivity of air is lower than the permittivity of the dielectric substrates 130 and 140. Therefore, by forming the air layer 185 on the dielectric substrate as in the antenna module 100, the effective dielectric constant between the feeding element 121 and the ground electrode GND can be reduced as compared with the case where the air layer 185 is not provided. can. As a result, the reflection loss can be reduced and the wide band of the reflection loss can be realized.
  • the conductive member 170 is arranged around the feeding element 121 when viewed in a plan view in the air layer 185.
  • the antenna module 100 functions as an antenna by coupling the feeding element 121 and the ground electrode GND with an electromagnetic field, and an electromagnetic field is generated between the feeding element 121 and the ground electrode GND.
  • the lines of electric force generated at this time are mainly between the side of the feeding element 121 orthogonal to the polarization direction (that is, the side parallel to the Y axis in FIG. 2) and the ground electrode GND, the arrow in FIG. It occurs like AR1.
  • the conductive member 170 by arranging the conductive member 170 at a position away from the power feeding element 121, a part of the generated electromagnetic field is captured by the conductive member 170. As a result, although the peak gain at the resonance frequency is slightly reduced, it is possible to suppress the decrease in gain in a wide range. Therefore, it is possible to suppress narrowing of directivity while maintaining a wide band of reflection loss.
  • FIG. 3 is a diagram for explaining the antenna characteristics of the antenna module 100 according to the first embodiment.
  • the antenna characteristics of the antenna module 100 according to the first embodiment will be described in comparison with the antenna characteristics of the two comparative examples.
  • FIG. 3 from the upper part, the configuration of the antenna modules of the first embodiment and the first and second comparative examples, a graph of the reflection loss, a bandwidth in which the reflection loss is smaller than 6 dB, a peak gain, and a peak gain of -3 dB. (Hereinafter referred to as "-3 dB angle”) is shown.
  • FIG. 4 is a diagram showing the gain of the radio wave radiated from the feeding element 121 in three dimensions.
  • the inclination angle around the Z axis from the X axis is indicated by “ ⁇ ”
  • the inclination angle around the X axis from the Z axis is indicated by “ ⁇ ”.
  • the gain peaks in the positive direction of the Z axis.
  • FIG. 5 is a diagram showing the gain when the inclination angle ⁇ around the Z axis is 90 °, with the inclination angle ⁇ around the X axis as a parameter.
  • the maximum value of the gain shown in FIG. 5 is defined as "peak gain”, and the width of the inclination angle ⁇ at which the gain decreases by 3 dB from the peak gain is defined as "-3 dB angle”.
  • the "-3 dB angle" corresponds to the radiation angle of the radio wave.
  • the antenna module 100 # 1 of Comparative Example 1 is an antenna module having a configuration in which an air layer is not provided between the feeding element 121 and the ground electrode GND.
  • the antenna module 100 # 2 of Comparative Example 2 is an antenna module having a configuration in which the conductive member 170 is removed from the configuration of the first embodiment.
  • the frequency bandwidth at which the reflection loss is 6 dB or less is 3.2 GHz, the peak gain is 6.64 dB, and the -3 dB angle is 92.0 °. ..
  • the frequency bandwidth at which the reflection loss is 6 dB or less is 3.4 GHz, and a wider band is realized as compared with Comparative Example 1.
  • the peak gain is 6.87 dB, which is larger than that of Comparative Example 1, and the -3 dB angle is also narrower, 88.4 °.
  • the frequency bandwidth at which the reflection loss is 6 dB or less is 3.4 GHz, which is wider than that of Comparative Example 1 as in Comparative Example 2.
  • the peak gain is 6.72 dB, which is larger than that of Comparative Example 1 but smaller than that of Comparative Example 2.
  • the -3 dB angle is also an intermediate value (89.2 °) between Comparative Example 1 and Comparative Example 2. That is, as compared with Comparative Example 2, it is possible to secure a wide directivity while maintaining the frequency bandwidth.
  • the influence of the conductive member 170 on the gain may change depending on the size, number, position, conductivity, etc. of the arranged conductive member 170. Therefore, the arrangement of the conductive member 170 is appropriately selected according to the desired gain characteristics.
  • the feeding element and the ground electrode are formed on different dielectric substrates, and an air layer is formed between the two dielectric substrates to reduce the reflection loss over a wide band and widen the directivity. It is possible to secure the sex.
  • the “feeding element 121" in the first embodiment corresponds to the "first radiating element” of the present disclosure. Further, the “dielectric substrate 130" and the “dielectric substrate 140" in the first embodiment correspond to the “first dielectric substrate” and the “second dielectric substrate” of the present disclosure, respectively.
  • the “air layer 185" in the first embodiment corresponds to the "low dielectric constant layer” and the “air layer” of the present disclosure.
  • FIG. 6 is a cross-sectional view of the antenna module 100A according to the second embodiment.
  • the conductive members 170 and 180 of the antenna module 100 of the first embodiment have a configuration formed of the electrode connecting material 175, and the other configurations are antennas. It is the same as the module 100.
  • the electrode connecting material 175 is connected to the electrode pad 190 formed on the back surface 132 of the dielectric substrate 130 and the electrode pad 195 formed on the front surface 141 of the dielectric substrate 140.
  • a protective resist may be formed on the back surface 132 of the dielectric substrate 130 and the front surface 141 of the dielectric substrate 140.
  • the resist 196 may be a clearance resist (FIG. 7 (a)) in which a resist 196 is formed by providing a gap between the resist 196 and the electrode pad, or a part of the electrode pad is used. It may be an overresist (FIG. 7B) in which the resist 196 is formed so as to cover it.
  • the antenna characteristics of the antenna module 100A of the second embodiment are basically the same as those of the antenna module 100 of the first embodiment shown in FIG. 3 as long as the conductivity of the conductive member and the electrode connecting material are the same. become. Therefore, even in the antenna module 100A, it is possible to reduce the reflection loss over a wide band and secure a wide directivity.
  • FIG. 8 is a diagram for explaining the antenna characteristics of the antenna module 100B according to the third embodiment.
  • the antenna module 100A shown in the second embodiment will be described as a comparative example.
  • the antenna module 100B of the third embodiment has a via electrode 197 connected to the electrode pad 195 of the dielectric substrate 140 in addition to the configuration of the antenna module 100A of the second embodiment. ing. One end of the via electrode 197 is connected to the electrode pad 195, and the other end is in an open state not connected to another conductive member.
  • the area that obstructs the electromagnetic field between the feeding element 121 and the ground electrode GND becomes large, and as a result, the directivity can be adjusted.
  • the peak gain is 6.72 dB and the -3 dB angle is 89.2 °.
  • the peak gain is 6.65 dB and the -3 dB angle is 90.4 °. That is, in the antenna module 100B, the directivity is expanded.
  • the directivity can be further expanded by forming the via electrode connected to the conductive member arranged in the air layer.
  • the "via electrode 197" in the third embodiment corresponds to the "first via electrode” in the present disclosure.
  • FIG. 9 is a diagram for explaining the antenna characteristics of the antenna module 100C according to the fourth embodiment.
  • the antenna module 100A of the second embodiment is used as a comparative example.
  • the basic configuration of the antenna module 100C is the same as that of the antenna module 100A of the second embodiment, but in the antenna module 100C, the air layer 185 is formed at a position closer to the feeding element 121 than the antenna module 100A.
  • the distance H0 between the feeding element 121 and the ground electrode GND is the same, but in the antenna module 100A, the conductive member is connected to the feeding element 121 in the dielectric substrate 130.
  • the distance H1 to (electrode pad 190) is made larger than the distance H2 from the ground electrode GND to the conductive member (electrode pad 195) on the dielectric substrate 140 (H1> H2).
  • the distance H1A from the feeding element 121 on the dielectric substrate 130 to the conductive member (electrode pad 190) is the distance H2A from the ground electrode GND on the dielectric substrate 140 to the conductive member (electrode pad 195). Is made smaller than (H1A ⁇ H2A).
  • the strength of the electromagnetic field formed between the feeding element 121 and the ground electrode GND tends to become stronger as it is closer to the feeding element 121. Therefore, the closer the air layer 185 is to the feeding element 121, the greater the effect of lowering the effective dielectric constant, and the greater the effect of widening the frequency bandwidth. Further, when the air layer 185 is brought closer to the feeding element 121, the conductive member is brought closer to the feeding element 121 accordingly, so that the electromagnetic field hindered by the conductive member increases. Therefore, the closer the air layer 185 is to the feeding element 121, the greater the effect of expanding the directivity.
  • the frequency bandwidth of the reflection loss is expanded from 3.4 GHz to 4.1 GHz.
  • the -3dB angle has also been expanded from 89.2 ° to 90.4 °. Therefore, by adjusting the thicknesses of the dielectric substrates 130 and 140 to bring the air layer 185 closer to the feeding element 121, it is possible to reduce the reflection loss over a wide band and secure a wide directivity.
  • the peak gain of the antenna module 100C is 6.56 dB, which is lower than the peak gain (6.64 dB) of the antenna module 100 # 1 without an air layer in FIG. Therefore, depending on the required peak gain specifications, the configuration of the antenna module 100C may not be suitable. That is, when the peak gain is emphasized, the distance between the feeding element 121 and the electrode pad 190 in the dielectric substrate 130 is set to the ground electrode GND and the electrode pad 195 of the dielectric substrate 140 as in the antenna module 100A. It is preferably greater than the distance between them.
  • the distance between the power feeding element 121 and the electrode pad 190 in the dielectric substrate 130 is set to the ground electrode GND and the electrode of the dielectric substrate 140 as in the antenna module 100C. It is preferably smaller than the distance from the pad 195.
  • FIG. 10 is a cross-sectional view of the antenna module 100D according to the fifth embodiment.
  • a phase adjusting circuit 155 is formed on the power feeding wiring 150 on the dielectric substrate 140.
  • the dielectric constant ⁇ 2 of the dielectric substrate 140 is larger than the dielectric constant ⁇ 1 of the dielectric substrate 130 ( ⁇ 1 ⁇ 2).
  • the phase adjustment circuit 155 is, for example, a coupler or a distributed constant type that utilizes a line length and / or a capacitance pattern when supplying a high frequency signal to two different feeding points and emitting radio waves in the same polarization direction. It is used to invert the phases of the supplied high frequency signals by forming a filter. Alternatively, it is used when a high frequency signal is supplied to two radiating elements having different resonance frequencies with the same feeding wiring, and a stub is formed on the feeding wiring to remove the signal on the other side.
  • the amount of phase adjustment by the phase adjustment circuit 155 is determined by the wavelength of the high frequency signal passing through the dielectric substrate and the length of the line forming the phase adjustment circuit 155.
  • the wavelength changes depending on the dielectric constant of the dielectric substrate on which the phase adjustment circuit 155 is formed, and the higher the dielectric constant, the shorter the wavelength. Therefore, when it is necessary to adjust the phase significantly, if the dielectric constant of the dielectric substrate is small, it is necessary to increase the size of the phase adjusting circuit 155. Therefore, the phase adjustment circuit 155 can be miniaturized by relatively increasing the dielectric constant of the dielectric substrate on which the phase adjustment circuit 155 is formed.
  • the reduction of the effective dielectric constant is more effective when the dielectric constant in the region close to the feeding element 121 is lowered. Therefore, the phase adjusting circuit 155 is formed on the dielectric substrate 140, which is farther from the feeding element 121, and the dielectric constant of the dielectric substrate 140 is made higher than that of the dielectric substrate 130, so that the reflection loss is widened. It is possible to improve the efficiency of the phase adjusting circuit 155 and to reduce the size of the phase adjusting circuit 155.
  • FIG. 11 is a diagram showing the configuration of the antenna module 100E according to the sixth embodiment.
  • a plan view of the antenna module 100E is shown in the upper row (FIG. 11 (a)), and a cross-sectional view taken along line XI-XI of the plan view is shown in the lower row (FIG. 11 (b)).
  • FIG. 11 (a) a plan view of the antenna module 100E is shown in the upper row
  • FIG. 11 (b) a cross-sectional view taken along line XI-XI of the plan view
  • a plurality of conductive members 170 are arranged in the air layer 185 along each side of the substantially square feeding element 121, similarly to the antenna module 100 of the first embodiment. ing. Then, two adjacent conductive members 170 are connected by a connecting wire 177 formed on the dielectric substrate 140. More specifically, six conductive members 170-1 to 170-6 are arranged along each side of the power feeding element 121, and the conductive member 170-1, the conductive member 170-2, and the conductive member 170-3. The conductive member 170-4 and each pair of the conductive member 170-5 and the conductive member 170-6 are connected by a connecting line 177.
  • the length of the connecting wire 177 is set so that the resonance frequency of the configuration formed by the connecting wire 177 and the two conductive members 170 connected to the connecting wire 177 is twice the resonance frequency of the feeding element 121. NS.
  • the second harmonics radiated from the feeding element 121 are captured by the configuration formed by the connecting wire 177 and the conductive member 170. Therefore, it is possible to reduce the second harmonic component in the radio wave radiated from the antenna module 100E.
  • the resonance frequency of the configuration formed by the connecting wire 177 and the two conductive members 170 connected to the connecting wire 177 is the resonance frequency of the feeding element 121.
  • the Nth harmonic component can be suppressed by adjusting the length of the connecting line 177 so that it is N times the resonance frequency (N is an integer of 3 or more).
  • N is an integer of 3 or more.
  • the size of the third-order or higher harmonic component is smaller than the size of the second-order harmonic component. The influence of harmonic components can be sufficiently reduced.
  • FIG. 12 is a diagram for explaining the reflection loss of the second harmonic in the antenna module 100E of FIG.
  • the solid line LN10 shows the case of the antenna module 100E of the sixth embodiment in which the conductive member 170 is connected
  • the broken line LN11 shows the case of the comparative example in which the conductive member 170 is not connected.
  • the frequency band of the radio wave radiated from the feeding element 121 is 26.5 to 29.5 GHz, and therefore the frequency band of the second harmonic is 53 to 59 GHz.
  • the reflection loss of the antenna module 100E is larger than that in the case of the comparative example. That is, in the antenna module 100E, the second harmonic is less likely to be radiated than in the comparative example. Therefore, the influence of the harmonic component on the radio wave radiated from the feeding element 121 is suppressed.
  • one of the conductive members connected by the connecting wire 177 corresponds to the "first member” of the present disclosure, and the other conductive member corresponds to the "second member” of the present disclosure.
  • the shape and arrangement of the conductive member may be in other embodiments as long as it can prevent the electromagnetic field between the feeding element and the ground electrode.
  • the conductive member 170A in the antenna module 100F of FIG. 13A may be formed in a continuous linear shape along each side of the feeding element 121.
  • linear members along each side are connected to each other and arranged so as to surround the power feeding element 121.
  • the rectangular feeding element 121 In the case of the rectangular feeding element 121, an electric field is generated mainly from the side orthogonal to the polarization direction. Therefore, it is effective to arrange the conductive member at least along the side orthogonal to the polarization direction.
  • a plurality of conductive members 170 may be arranged along the side of the feeding element 121 in the Y-axis direction.
  • the rectangular conductive member 170B may be arranged along the side of the feeding element 121 in the Y-axis direction.
  • a space (air layer 185) is formed between the dielectric substrate 130 and the dielectric substrate 140, but the portion of the air layer 185 is formed.
  • the low dielectric constant layer may be formed by using a material having a dielectric constant lower than that of the dielectric substrate 130.
  • the dielectric substrate 130 and the dielectric substrate 140 are filled with a dielectric 186 having a dielectric constant lower than that of the dielectric substrate 130. There may be. Further, as in the antenna module 100J of FIG. 14B, the side surface of the dielectric substrate 130 is also covered with the dielectric 186A in addition to the space between the dielectric substrate 130 and the dielectric substrate 140. May be good.
  • the low dielectric constant layer does not have to be entirely filled with a dielectric material.
  • the dielectric 186B may be arranged in a portion inside the conductive member 170, and a space may be formed in a portion outside the conductive member 170.
  • the dielectric 186C is arranged in the peripheral portion including the conductive member 170 between the dielectric substrate 130 and the dielectric substrate 140, and the dielectric 186C is arranged more than the dielectric 186C.
  • the mode may be such that a space is formed in the inner portion.
  • a dielectric may be partially formed in the thickness direction (Z-axis direction) between the dielectric substrate 130 and the dielectric substrate 140.
  • the feeding point SP1 arranged in the negative direction of the X-axis from the center of the feeding element 121 and the positive direction of the Y-axis from the center of the feeding element 121 as in the antenna module 100M of FIG. 15A.
  • a low dielectric constant layer is formed between the dielectric substrate 130 and the dielectric substrate 140, and the conductive member 170 is arranged in the low dielectric constant layer. You may do so.
  • the conductive member 170 is arranged along each side of the power feeding element 121.
  • a plurality of feeding points may be formed in each polarization direction.
  • a high frequency signal is supplied.
  • high-frequency signals are supplied from the center of the feeding element 121 to the feeding points SP2A arranged in the positive direction of the Y-axis and the feeding points SP2B arranged in the positive direction of the Y-axis.
  • phase adjustment circuit as described in the fifth embodiment is formed in each feeding wiring. As described in the fifth embodiment, this phase adjusting circuit is formed on the dielectric substrate 140 which is far from the feeding element 121, and the dielectric constant of the dielectric substrate 140 is larger than the dielectric constant of the dielectric substrate 130. It is preferable to do so.
  • FIG. 16 is a plan view of a first example of the array type antenna module according to the eighth embodiment.
  • the antenna module 100P of FIG. 16 two dielectric substrates 130A and 130B are arranged adjacent to each other on the common dielectric substrate 140 in the X-axis direction, and the feeding element 121A is arranged with respect to the dielectric substrates 130A and 130B. , 121B are formed, respectively.
  • a plurality of conductive members 170 are arranged along each side of the feeding element 121A and the feeding element 121B. ing.
  • the “dielectric substrate 130A” and “dielectric substrate 130B” in the first example correspond to the “first substrate” and the “second substrate” in the present disclosure, respectively. Further, the “feeding element 121A” and the “feeding element 121B” in the first example correspond to the "first radiating element” and the “third radiating element” in the present disclosure, respectively.
  • FIG. 17 is a plan view of a second example of the array type antenna module according to the eighth embodiment.
  • the feeding elements 121A and 121B are arranged on the common dielectric substrate 130 in the X-axis direction, and the dielectric substrate 130 is arranged on the dielectric substrate 140.
  • a plurality of conductive members 170 are arranged along each side of the feeding element 121A and the feeding element 121B. ..
  • each feeding element is surrounded by a plurality of conductive members.
  • the feeding elements are arranged on a common dielectric substrate as in the second example and radio waves can be emitted in both the polarization directions of the X-axis direction and the Y-axis direction, each of them. It is desirable to change the side length of the feeding element according to the length of the common dielectric substrate side in order to reduce the difference in the radiation characteristics of both polarized waves. More specifically, as shown in the antenna module 100Q1 of FIG. 18, when the dielectric substrate 130 has a rectangular shape with the long side in the X-axis direction, the feeding elements 121A and 121B are also in the X-axis direction. It is desirable that the dimension LX of the above is larger than LY in the Y-axis direction (LX> LY) so that the distance between the feeding elements is narrowed.
  • the configuration in which the dielectric substrate is shared corresponds to the configuration in which the dielectric is added to the space between the two dielectric substrates 130A and 130B as compared with the antenna module 100P of the first example.
  • the effective permittivity of the two feeding elements in the adjacent direction that is, the X-axis direction
  • the impedance of the feeding element with respect to the polarization in the X-axis direction can be changed.
  • the radiation characteristics of the radio waves whose polarization direction is the X-axis direction and the radiation characteristics of the radio waves whose polarization direction is the Y-axis direction may be different.
  • the impedance related to polarization in the X-axis direction can be adjusted. It is possible to reduce the difference between the radiation characteristics of the radio wave whose polarization direction is the axial direction and the radiation characteristics of the radio waves whose polarization direction is the Y-axis direction.
  • the radiation characteristics of radio waves with the X-axis direction as the polarization direction and the Y-axis direction may be reduced.
  • the feeding elements 121A and 121B are arranged so as to face the sides along the X-axis direction.
  • the conductive member 170 is made smaller than the conductive member 170 arranged so as to face the sides of the feeding elements 121A and 121B along the Y-axis direction. Therefore, the coupling between the radiating element and the conductive member in the Y-axis direction becomes smaller than the coupling between the radiating element and the conductive member in the X-axis direction, and the impedance in the Y-axis direction increases.
  • the impedance in the Y-axis direction is adjusted by changing the coupling with the conductive member, so that the two polarization directions
  • the difference in impedance can be reduced. Therefore, it is possible to reduce the difference in the radiation characteristics of the radio waves in the two polarization directions.
  • the antenna module 100R of FIG. 20 has a configuration in which the conductive member 170 between the feeding element 121A and the feeding element 121B is removed in the configuration of the antenna module 100Q of the third example of FIG.
  • the "feeding element 121A” and the “feeding element 121B” correspond to the "first radiating element” and the “fourth radiating element” in the present disclosure, respectively.
  • the antenna module 100S of FIG. 21 has a configuration in which a plurality of feeding elements are arranged on a common dielectric substrate shown in FIG. 20, and two sets are arranged on a common dielectric substrate 140. That is, the antenna module 100S is a 2 ⁇ 2 array antenna.
  • rectangular dielectric substrates 130 and 130C are arranged adjacent to the common dielectric substrate 140 in the Y-axis direction, and the dielectric substrate 130 has a feeding element.
  • 121A and 121B are arranged adjacent to each other in the X-axis direction.
  • Feeding elements 121C and 121D are arranged adjacent to each other in the X-axis direction on the dielectric substrate 130C.
  • a plurality of conductive members 170 are arranged around each feeding element. The conductive member 170 between the feeding element 121A and the feeding element 121B and the conductive member 170 between the feeding element 121C and the feeding element 121D are excluded.
  • FIG. 22 is a cross-sectional view of the antenna module 100T according to the ninth embodiment.
  • the antenna module 100T includes a feeding element 121 and a non-feeding element 122 as radiation elements.
  • the non-feeding element 122 is formed on the dielectric substrate 130.
  • the feeding element 121 is arranged on the dielectric substrate 140 so as to face the non-feeding element 122.
  • the sizes of the feeding element 121 and the non-feeding element 122 are substantially the same, and the resonance frequencies are also set to be substantially the same.
  • Ground electrodes GND1 and GND2 are arranged on the dielectric substrate 140 so as to face the feeding element 121.
  • the ground electrodes GND1 and GND2 are arranged below the feeding element 121 (in the negative direction of the Z axis), and the ground electrode GND1 is arranged in a layer between the feeding element 121 and the ground electrode GND2. That is, the feeding element 121 is arranged between the non-feeding element 122 and the ground electrode GND1.
  • the layer between the ground electrode GND1 and the ground electrode GND2 is used as a wiring layer.
  • the power feeding wiring 150 is connected to the power feeding element 121 from the RFIC 110 through the ground electrode GND1 and the ground electrode GND2.
  • An air layer 185 is formed between the dielectric substrate 130 and the dielectric substrate 140, and an electronic component 176 is arranged as a conductive member in the air layer 185.
  • the electronic component 176 is arranged around the radiating element (feeding element 121, non-feeding element 122) so as to be separated from the radiating element. Assuming that the wavelength of the emitted radio wave is ⁇ , the electronic components 176 are arranged so that the distance between adjacent electronic components 176 is ⁇ / 4 or less.
  • the frequency band of the reflection loss can be expanded. Further, since the air layer 185 (low dielectric constant layer) is formed between the dielectric substrates 130 and 140, the frequency band of the reflection loss can be further expanded. Then, by arranging the electronic component 176 (conductive member) in the air layer 185, a wide directivity can be ensured.
  • the electronic component 176 generally has higher dimensional accuracy in outer shape than solder. Therefore, by using the electronic component 176 as the conductive member, the dimensional accuracy of the air layer 185 in the height direction (Z-axis direction) can be improved.
  • the feeding element 121 is arranged on the dielectric substrate 140 in FIG. 22, the feeding element 121 may be arranged on the dielectric substrate 130.
  • the "non-feeding element 122" and the “feeding element 121” correspond to the "first radiating element” and the “second radiating element” of the present disclosure, respectively.
  • FIG. 23 is a cross-sectional view of the antenna module 100U according to the tenth embodiment.
  • the arrangement of the radiating elements is different from that of the antenna module 100T of the ninth embodiment.
  • the description of the configuration of the antenna module 100U that overlaps with that of the antenna module 100T will not be repeated.
  • the antenna module 100U includes a feeding element 121 arranged on the dielectric substrate 130 and a non-feeding element 123 arranged on the dielectric substrate 140 as radiation elements.
  • the feeding element 121 and the non-feeding element 123 are arranged so as to face each other, and the non-feeding element 123 is arranged between the feeding element 121 and the ground electrode GND1.
  • the size of the non-feeding element 123 is larger than the size of the feeding element 121. That is, the resonance frequency of the feeding element 121 is higher than the resonance frequency of the non-feeding element 123.
  • the power feeding wiring 150 penetrates the ground electrodes GND1 and GND2 and the non-feeding element 123 from the RFIC 110, and further feeds power via the conductive member 180 arranged in the air layer 185 between the dielectric substrate 130 and the dielectric substrate 140. It is connected to the element 121.
  • a high-frequency signal corresponding to the resonance frequency of the feeding element 121 is supplied from the RFIC 110 to the feeding wiring 150, so that radio waves are radiated from the feeding element 121.
  • the feeding wiring 150 and the non-feeding element 123 are electromagnetically coupled, and radio waves are radiated from the non-feeding element 123. That is, the antenna module 100U functions as a dual band type antenna module.
  • an air layer 185 is formed between the feeding element 121 and the non-feeding element 123. Therefore, it is possible to reduce the reflection loss over a wide band and secure a wide directivity, particularly for the radio wave radiated from the feeding element 121.
  • the non-feeding element 123 may be arranged on the dielectric substrate 130.
  • the air layer 185 is formed between the non-feeding element 123 and the ground electrode GND1
  • the reflection loss over a wide band and the wide directivity are ensured especially for the radio waves radiated from the non-feeding element 123. Can be realized.
  • the "feeding element 121" and the “non-feeding element 123" correspond to the "first radiating element” and the “second radiating element” of the present disclosure, respectively.
  • FIG. 24 is a diagram for explaining the antenna module 100V according to the eleventh embodiment.
  • FIG. 24 (a) in the upper row is a plan view of the antenna module 100V
  • FIG. 24 (b) in the lower row is a cross-sectional view of lines XXII-XXII in FIG. 24 (a).
  • the antenna module 100V includes a via electrode V2 formed on the dielectric substrate 130 and a connecting conductor 165 for connecting the via electrodes V2 in addition to the configuration of the antenna module 100T described in the ninth embodiment. , It has a structure having a via electrode formed on the dielectric substrate 140. In FIG. 24, the description of the elements overlapping with FIG. 22 will not be repeated.
  • the via electrode V1 connects the electronic component 176 and the ground electrode GND1 on the dielectric substrate 140. Further, the via electrode V2 penetrates the dielectric substrate 130, and one end thereof is connected to the electronic component 176. The other end of the via electrode V2 is connected to a connecting conductor 165 arranged on the surface 131 of the dielectric substrate 130.
  • the connecting conductor 165 is arranged so as to surround the non-feeding element 122 (and the feeding element 121) when the antenna module 100V is viewed in a plan view, and connects the via electrodes V2 to each other.
  • the via electrode and the connecting conductor increase the area that obstructs the electromagnetic field generated from the radiating element, it is possible to suppress the peak gain and secure a wide directivity. Further, by connecting the via electrode to the ground electrode, the influence of the outer electromagnetic field can be reduced.
  • the "via electrode V2" in the eleventh embodiment corresponds to the "second via electrode” in the present disclosure.
  • FIG. 25 is a plan view (FIG. 25 (a)) of the antenna module 100W according to the twelfth embodiment, and a cross-sectional view (FIG. 25 (b)) of lines XXIII-XXIII in the plan view.
  • two dielectric substrates 130A and 130B are arranged in the X-axis direction on the common dielectric substrate 140, similarly to the antenna module 100P shown in FIG. 16 of the eighth embodiment. It is configured to be arranged adjacent to.
  • a non-feeding element 122A is arranged on the dielectric substrate 130A
  • a non-feeding element 122B is arranged on the dielectric substrate 130B.
  • the feeding element 121A is arranged so as to face the non-feeding element 122A
  • the feeding element 121B is arranged so as to face the non-feeding element 122B.
  • An air layer 185 is formed between the dielectric substrate 130A and the dielectric substrate 140, and between the dielectric substrate 130B and the dielectric substrate 140.
  • a plurality of electronic components 176 are arranged in the air layer 185 so as to surround the periphery of each radiating element when the antenna module 100W is viewed in a plan view.
  • the electronic component 176 is connected to the ground electrode GND1 arranged on the dielectric substrate 140 by the via electrode V1. Further, the electronic component 176 is connected to the connecting conductor 165 formed on the surface of the dielectric substrates 130A and 130B by the via electrode V2 formed on the dielectric substrates 130A and 130B.
  • FIG. 26 is a plan view for explaining a first example of the antenna module 100X according to the thirteenth embodiment.
  • the antenna module 100 shown in the first embodiment is shown in the left figure (FIG. 26 (a)) for comparison, and the right figure (FIG. 26 (b)) shows the third embodiment.
  • the antenna module 100X is shown.
  • each side of the feeding element 121 is diagonally arranged so as to have an angle of 45 ° with respect to each side of the dielectric substrates 130X and 140X.
  • the feeding element 121 has the same size, but the sizes of the dielectric substrates 130X and 140X are smaller than those of the corresponding dielectric substrates 130 and 140 of the antenna module 100. There is. Along with this, the number of conductive members 170 arranged around the power feeding element 121 is reduced.
  • the distance from the end of the feeding element 121 to the end of the dielectric substrate 130X in the polarization direction is set to the antenna module 100. It can be secured to the same extent. Therefore, it is possible to prevent the frequency bandwidth from being narrowed due to the miniaturization of the dielectric substrate.
  • the radiating element is diagonally arranged with respect to the dielectric substrate in the antenna module, a wide directivity can be ensured by arranging the conductive member around the feeding element, and further, the antenna module. Can be miniaturized.
  • the distance between the conductive members 170 arranged around the feeding element 121 is not uniform, but as in the second example of the antenna module 100Y shown in FIG. 26, the dielectric substrate 130X The distance between the conductive members 170 arranged along each side may be equal.
  • the inclination angle of the feeding element 121 is not necessarily limited to 45 °, and if the distance from the end of the feeding element 121 to the end of the dielectric substrate 130X in the polarization direction can be secured, the angle may be other than 45 °. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

アンテナモジュール(100)は、給電素子(121)が形成される誘電体基板(130)と、接地電極(GND)が形成される誘電体基板(140)と、導電部材(170)とを備える。誘電体基板(140)は、誘電体基板(130)と対向して配置されている。導電部材(170)は、給電素子(121)の法線方向から平面視した場合に、給電素子(121)の周囲に配置される。誘電体基板(130)と誘電体基板(140)との間には空気層(185)が形成されており、導電部材(170)は当該空気層(185)に形成されている。

Description

アンテナモジュールおよびそれを搭載する通信装置
 本開示は、アンテナモジュールおよびそれを搭載する通信装置に関し、より特定的には、アンテナモジュールにおいて、広帯域にわたる反射損失の低減および広い指向性の確保を実現するための技術に関する。
 国際公開第2016/067969号明細書(特許文献1)には、誘電体基板に給電素子と高周波半導体素子とが一体化して実装されたアンテナモジュールが開示されている。国際公開第2016/067969号(特許文献1)に開示されたアンテナモジュールは、たとえば、携帯電話あるいはスマートフォンなどのような携帯端末に搭載される。
国際公開第2016/067969号明細書
 携帯端末においては、小型化および薄型化の要求に加えて、反射損失およびゲインなどのアンテナ特性についてもさらなる向上が求められている。
 一般的に、反射損失の広帯域化を実現する場合に、放射素子と接地電極との間の距離を拡大する手法、あるいは、アンテナモジュールを形成する誘電体基板の実効誘電率を低下させる手法が知られている。しかしながら、前者の場合には、アンテナモジュール全体の厚みが厚くなってしまうため、アンテナモジュールの小型化,低背化の妨げになってしまう。
 また、後者の場合には、実効誘電率の低下によって反射特性は広帯域化されるが、一方でピークゲインが大きくなり鋭い指向性に変化するため、所定のゲインを達成可能なビーム幅が狭くなってしまう場合がある。すなわち、実効誘電率を低下させる場合、広帯域にわたる反射損失の低減と広い指向性を確保することはトレードオフの関係となる。
 本開示は、このような課題を解決するためになされたものであって、その目的は、アンテナモジュールにおいて、広帯域にわたる反射損失の低減および広い指向性の確保を実現することである。
 本発明のある局面に係るアンテナモジュールは、第1放射素子が形成される第1誘電体基板と、接地電極が形成される第2誘電体基板と、導電部材とを備える。第2誘電体基板は、第1誘電体基板と対向して配置される。導電部材は、第1放射素子の法線方向から平面視した場合に、第1放射素子の周囲に配置される。第1誘電体基板と第2誘電体基板との間には、第1誘電体基板よりも低い誘電率を有する低誘電率層が形成されており、導電部材は当該低誘電率層に形成されている。
 本発明の他の局面に係るアンテナモジュールは、第1放射素子が形成される第1誘電体基板と、接地電極が形成される第2誘電体基板と、導電部材とを備える。第2誘電体基板は、第1誘電体基板と対向して配置される。導電部材は、第1放射素子の法線方向から平面視した場合に、第1放射素子の周囲に配置される。第1誘電体基板と第2誘電体基板との間には空気層が形成されており、導電部材は当該空気層に形成されている。
 本開示のアンテナモジュールによれば、アンテナモジュールを形成する誘電体基板が、放射素子を含む第1誘電体基板と、接地電極を含む第2誘電体基板とによって構成されており、2つの誘電体基板の間に、第1誘電体基板よりも誘電率が低い低誘電率層(空気層)が形成されている。この低誘電率層を形成することにより、実効誘電率が低減できるため広帯域にわたる反射損失の低減が実現できる。さらに、当該低誘電率層において、放射素子の周囲に導電部材を配置することによって、放射素子と接地電極との間に生じる電磁界の一部が妨げられるため、広い指向性を確保することができる。
実施の形態1に係るアンテナモジュールが適用される通信装置のブロック図である。 実施の形態1に係るアンテナモジュールの平面図および断面図である。 実施の形態1に係るアンテナモジュールおよび比較例のアンテナモジュールのアンテナ特性を説明するための図である。 アンテナモジュールにおけるゲイン特性を説明するための図である。 アンテナモジュールの指向性を説明するための図である。 実施の形態2に係るアンテナモジュールの断面図である。 誘電体基板にレジストを施した場合の、導電部材付近の詳細を示す図である。 実施の形態3に係るアンテナモジュールのアンテナ特性を説明するための図である。 実施の形態4に係るアンテナモジュールのアンテナ特性を説明するための図である。 実施の形態5に係るアンテナモジュールの断面図である。 実施の形態6に係るアンテナモジュールの平面図および断面図である。 図11のアンテナモジュールにおける2次高調波の反射損失を説明するための図である。 導電部材の配置の変形例を説明するための図である。 低誘電率層の変形例を説明するための図である。 実施の形態7に係るデュアル偏波タイプのアンテナモジュールの平面図である。 実施の形態8に係るアレイタイプのアンテナモジュールの第1例の平面図である。 実施の形態8に係るアレイタイプのアンテナモジュールの第2例の平面図である。 第2例のアンテナモジュールの第1変形例の平面図である。 第2例のアンテナモジュールの第2変形例の平面図である。 実施の形態8に係るアレイタイプのアンテナモジュールの第3例の平面図である。 実施の形態8に係るアレイタイプのアンテナモジュールの第4例の平面図である。 実施の形態9に係るアンテナモジュールの断面図である。 実施の形態10に係るアンテナモジュールの断面図である。 実施の形態11に係るアンテナモジュールの平面図および断面図である。 実施の形態12に係るアレイタイプのアンテナモジュールの平面図および断面図である。 実施の形態13に係るアンテナモジュールの第1例を説明するための平面図である。 実施の形態13に係るアンテナモジュールの第2例の平面図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の基本構成)
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末、通信機能を備えたパーソナルコンピュータ、または基地局などである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナ装置120から放射するとともに、アンテナ装置120で受信した高周波信号をダウンコンバートしてBBIC200にて信号を処理する。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数の給電素子121のうち、4つの給電素子121に対応する構成のみ示され、同様の構成を有する他の給電素子121に対応する構成については省略されている。なお、図1においては、アンテナ装置120が二次元のアレイ状に配置された複数の給電素子121で形成される例を示しているが、給電素子121は必ずしも複数である必要はなく、1つの給電素子121でアンテナ装置120が形成される場合であってもよい。また、複数の給電素子121が一列に配置された一次元アレイであってもよい。本実施の形態においては、給電素子121は、略正方形の平板状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる給電素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各給電素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各給電素子121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する給電素子121毎に1チップの集積回路部品として形成されてもよい。
 (アンテナモジュールの構成)
 次に、本実施の形態1におけるアンテナモジュール100の構成の詳細を説明する。図2においては、上段(図2(a))にアンテナモジュール100の平面図が示されており、下段(図2(b))には平面図の線II-IIにおける断面図が示されている。
 図2を参照して、アンテナモジュール100は、給電素子121およびRFIC110に加えて、誘電体基板130,140と、給電配線150と、導電部材170,180と、接地電極GNDとを含む。なお、以降の説明において、各図におけるZ軸の正方向を上面側、負方向を下面側と称する場合がある。また、図2(a)の平面図においては、内部の構成を見やすくするために、誘電体基板130の一部が省略されている。
 誘電体基板130,140は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130,140は必ずしも多層構造でなくてもよく、単層の基板であってもよい。なお、図2に示されるアンテナモジュール100においては、誘電体基板130がポリイミドで形成され、誘電体基板140がLTCCで形成される場合を例として説明するが、誘電体基板130および誘電体基板140は、同じ材料で形成されてもよい。
 誘電体基板130および誘電体基板140は矩形の平板形状を有しており、誘電体基板130の裏面132と誘電体基板140の表面141とが所定の間隔をあけて互いに対向するように配置されている。すなわち、誘電体基板130と誘電体基板140との間には空気層185が形成されている。空気層185には導電部材170,180が形成されており、当該導電部材170,180を介して誘電体基板130および誘電体基板140が接続されている。
 誘電体基板130の内部の層あるいは上面側の表面131に、略正方形の給電素子121が配置される。誘電体基板140には、接地電極GNDが配置される。誘電体基板140の上面側の表面141には、導電部材170,180が接続されており、下面側の裏面142には、はんだバンプ160を介してRFIC110が配置される。
 給電配線150は、RFIC110から接地電極GNDを貫通し、導電部材180を経由して給電素子121の給電点SP1へと至る。導電部材180は、給電配線150における誘電体基板130内にある部分と、誘電体基板140内にある部分とを接続するための接続電極として機能する。このような構成により、RFIC110から供給される高周波信号が、給電配線150を経由して給電素子121の給電点SP1に伝達される。給電点SP1は、給電素子121の中心(対角線の交点)から、図2のX軸の負方向にオフセットした位置に配置されている。給電点SP1に高周波信号が供給されることにより、給電素子121からはX軸方向を偏波方向とする電波が放射される。なお、給電配線150における誘電体基板130内にある部分は必須の構成ではなく、誘電体基板130の厚みが比較的薄い場合には、導電部材180と給電素子121との間の容量結合を利用して非接触で高周波信号を給電素子121に供給してもよい。
 導電部材170は、導電材料を含んで形成された任意の機器あるいは部材である。導電部材170は、たとえば、実施の形態2(図6)で後述するはんだバンプ、および/または、柱状の導体柱、導体ピン、メッキされた電極(端子)のような電極接続材料であってもよい。あるいは、導電部材170は、実施の形態9(図22)で後述するような電子部品(抵抗,コンデンサなど)であってもよい。アンテナモジュール100においては、導電部材170は、給電素子121よりも小さいサイズの矩形状の導電材料である。
 アンテナモジュール100においては、平板形状の給電素子121の法線方向からアンテナモジュール100を平面視した場合に、給電素子121の周囲に、給電素子121から離間して複数の導電部材170が配置されている。より具体的には、複数の導電部材170は、矩形状の給電素子121の各辺に沿って、互いに間隔をあけて配置されている。
 導電部材170は、後述するように、給電素子121と接地電極GNDとの間に生じる電磁界の一部を妨げるために設けられる。そのため、導電部材170は、給電素子121から放射される電波の波長をλとした場合に、給電素子121からλ/4以内の範囲内に配置されることが好ましい。なお、図2(b)に示されるように、導電部材170は、接地電極GNDに直接接続されてもよいし、容量結合により間接的に接続されていてもよい。
 上記のようなアンテナモジュールは、携帯電話あるいはスマートフォンなどのような携帯端末に用いられる場合がある。携帯端末においては、近年では、小型化および薄型化の要求とともに、反射損失およびゲインなどのアンテナ特性についてもさらなる広帯域化を実現することが求められている。
 一般的に、平板状のパッチアンテナを用いたアンテナモジュールにおいては、反射損失の広帯域化を実現する場合に、放射素子と接地電極との間の距離を拡大する手法、あるいは、アンテナモジュールを形成する誘電体基板の実効誘電率を低下させる手法が知られている。しかしながら、前者のように放射素子と接地電極との間の距離を拡大する場合、結果としてアンテナモジュール全体の厚みが厚くなってしまうため、アンテナモジュールの低背化,小型化を阻害する要因になり得る。
 一方で、後者のように誘電体基板の実効誘電率を低下させる場合には、反射損失の広帯域化に加えて、ピークゲインが大きくなり鋭い指向性となり得る。ピークゲインが大きくなること自体は、電波の放射可能距離が拡大するため好ましいことではある。しかしながら、放射される電波のエネルギがある方向に集中することで、所定のゲインを確保することが可能な空間が狭くなってしまう場合がある。そうすると、対象となる空間的な範囲において、所望のゲインが実現できない状態となる可能性がある。
 実施の形態1に係るアンテナモジュール100においては、給電素子121と接地電極GNDとを異なる誘電体基板130,140にそれぞれ形成し、誘電体基板130と誘電体基板140との間に空気層185が形成されている。一般的に、空気の誘電率は、誘電体基板130,140の誘電率よりも低い。そのため、アンテナモジュール100のように誘電体基板に空気層185を形成することによって、空気層185がない場合に比べて、給電素子121と接地電極GNDとの間の実効誘電率を低減することができる。これにより、反射損失を低減でき、反射損失の広帯域化を実現することができる。
 さらに、実施の形態1に係るアンテナモジュール100では、上述のように、当該空気層185において、平面視した際の給電素子121の周囲に導電部材170が配置されている。アンテナモジュール100は、給電素子121と接地電極GNDとが電磁界結合することによってアンテナとして機能し、給電素子121と接地電極GNDとの間に電磁界が生じる。このときに発生する電気力線は、主に、給電素子121における偏波方向に直交する辺(すなわち、図2においてY軸の平行な辺)と接地電極GNDとの間で、図2の矢印AR1のように発生する。そのため、給電素子121から離間した位置に導電部材170を配置することによって、発生する電磁界の一部が導電部材170によって捕捉される。これにより、共振周波数におけるピークゲインはやや低下するものの、広い範囲でのゲインの低下を抑制することができる。したがって、反射損失の広帯域化を維持しながら、指向性を狭めることを抑制することが可能となる。
 図3は、実施の形態1に係るアンテナモジュール100のアンテナ特性を説明するための図である。図3においては、実施の形態1に係るアンテナモジュール100のアンテナ特性を、2つの比較例のアンテナ特性と比較して説明する。図3においては、上段から、実施の形態1および比較例1,2のアンテナモジュールについての構成、反射損失のグラフ、反射損失が6dBよりも小さくなる帯域幅、ピークゲイン、および、ピークゲイン-3dBを達成できる角度(以下、「-3dB角度」と称する。)が示されている。
 ここで、上記の「ピークゲイン」および「-3dB角度」の定義について、図4および図5を用いてより詳細に説明する。図4は、給電素子121から放射される電波のゲインを3次元的に示す図である。図4においては、X軸からのZ軸周りの傾斜角が「φ」で示され、Z軸からのX軸周りの傾斜角が「θ」で示される。図4に示されるように、ゲインはZ軸の正方向においてピークとなる。また、図5は、Z軸周りの傾斜角φが90°である場合のゲインを、X軸周りの傾斜角θをパラメータとして示す図である。本実施の形態においては、図5に示すゲインの最大値を「ピークゲイン」とし、ゲインがピークゲインから3dB低下する傾斜角θの幅を「-3dB角度」と規定している。言い換えれば、「-3dB角度」は電波の放射角度に相当する。
 再び図3を参照して、比較例1のアンテナモジュール100#1は、給電素子121と接地電極GNDとの間に空気層が設けられない構成を有するアンテナモジュールである。比較例2のアンテナモジュール100#2は、実施の形態1の構成から導電部材170を除いた構成を有するアンテナモジュールである。
 比較例1のアンテナモジュール100#1においては、反射損失が6dB以下となる周波数帯域幅は3.2GHzであり、ピークゲインは6.64dBであり、-3dB角度は92.0°となっている。比較例2においては、反射損失が6dB以下となる周波数帯域幅は3.4GHzとなっており、比較例1に対して広帯域化が実現されている。一方で、ピークゲインは6.87dBと比較例1に比べて大きくなり、-3dB角度も88.4°と狭くなっている。
 これに対して、実施の形態1のアンテナモジュール100においては、反射損失が6dB以下となる周波数帯域幅は3.4GHzと、比較例2同様に比較例1よりも広帯域化となっている。そして、ピークゲインは6.72dBと比較例1よりも大きいが比較例2よりも小さくなっている。-3dB角度についても、比較例1および比較例2の中間的な値(89.2°)になっている。すなわち、比較例2と比べると、周波数帯域幅を維持した状態で、広い指向性の確保を実現することができている。
 なお、導電部材170のゲインへの影響については、配置される導電部材170の大きさ、数、位置、導電率等によって変化し得る。そのため、導電部材170の配置については、所望のゲイン特性に応じて適宜選択される。
 以上のように、アンテナモジュールにおいて、給電素子および接地電極をそれぞれ異なる誘電体基板に形成し、当該2つの誘電体基板の間に空気層を形成することによって、広帯域にわたる反射損失の低減および広い指向性の確保を実現することができる。
 なお、実施の形態1における「給電素子121」は、本開示の「第1放射素子」に対応する。また、実施の形態1における「誘電体基板130」および「誘電体基板140」は、本開示の「第1誘電体基板」および「第2誘電体基板」にそれぞれ対応する。実施の形態1における「空気層185」は、本開示の「低誘電率層」および「空気層」に対応する。
 [実施の形態2]
 実施の形態2においては、導電部材が電極接続材料で形成される場合について説明する。
 図6は、実施の形態2に係るアンテナモジュール100Aの断面図である。図6を参照して、アンテナモジュール100Aにおいては、実施の形態1のアンテナモジュール100の導電部材170,180が、電極接続材料175で形成された構成を有しており、その他の構成についてはアンテナモジュール100と同様である。電極接続材料175として、たとえば、はんだを使用することができる。電極接続材料175は、誘電体基板130の裏面132に形成された電極パッド190、および、誘電体基板140の表面141に形成された電極パッド195に接続される。
 なお、誘電体基板130の裏面132、および、誘電体基板140の表面141には、保護用のレジストが形成されてもよい。図7に示されるように、レジスト196は、電極パッドとの間に隙間を設けてレジスト196が形成されるクリアランスレジスト(図7(a))であってもよいし、電極パッドの一部を覆うようにレジスト196が形成されるオーバーレジスト(図7(b))であってもよい。
 なお、実施の形態2のアンテナモジュール100Aにおけるアンテナ特性は、導電部材と電極接続材料の導電率が同じであれば、基本的には、図3で示した実施の形態1のアンテナモジュール100と同等になる。したがって、アンテナモジュール100Aにおいても、広帯域にわたる反射損失の低減および広い指向性の確保を実現することができる。
 [実施の形態3]
 実施の形態3においては、接地電極が配置される誘電体基板に、導電部材に接続されたビアがさらに形成される構成について説明する。
 図8は、実施の形態3に係るアンテナモジュール100Bのアンテナ特性を説明するための図である。なお、図8においては、実施の形態2で示したアンテナモジュール100Aを比較例として説明する。
 図8を参照して、実施の形態3のアンテナモジュール100Bにおいては、実施の形態2のアンテナモジュール100Aの構成に加えて、誘電体基板140の電極パッド195に接続されたビア電極197を有している。ビア電極197の一方端は電極パッド195に接続されており、他方端は他の導電部材に接続されていない開放状態とされている。このようなビア電極を設けることにより、給電素子121と接地電極GNDとの間において電磁界を妨げる面積が大きくなり、結果として指向性を調整することが可能となる。
 図8に示されるように、ビア電極197を有しないアンテナモジュール100Aにおいては、ピークゲインは6.72dBであり-3dB角度は89.2°である。一方で、ビア電極197を有する実施の形態3のアンテナモジュール100Bにおいては、ピークゲインは6.65dBであり-3dB角度は90.4°となっている。すなわち、アンテナモジュール100Bにおいては、指向性が拡大されている。
 以上のように、接地電極が形成される誘電体基板において、空気層に配置された導電部材に接続されたビア電極を形成することによって、さらに指向性を拡大することができる。
 なお、実施の形態3における「ビア電極197」は、本開示における「第1ビア電極」に対応する。
 [実施の形態4]
 実施の形態4においては、給電素子と接地電極との間における空気層の位置を変化させることによって、アンテナ特性を調整する構成について説明する。
 図9は、実施の形態4に係るアンテナモジュール100Cのアンテナ特性を説明するための図である。図9においては、実施の形態2のアンテナモジュール100Aを比較例としている。
 アンテナモジュール100Cの基本的な構成は、実施の形態2のアンテナモジュール100Aと同様であるが、アンテナモジュール100Cにおいては、空気層185が、アンテナモジュール100Aよりも給電素子121に近い位置に形成されている。より詳細には、アンテナモジュール100Aおよびアンテナモジュール100Cにおいては、給電素子121と接地電極GNDとの間の距離H0は同じであるが、アンテナモジュール100Aでは、誘電体基板130における給電素子121から導電部材(電極パッド190)までの距離H1が、誘電体基板140における接地電極GNDから導電部材(電極パッド195)までの距離H2よりも大きくされている(H1>H2)。一方、アンテナモジュール100Cにおいては、誘電体基板130における給電素子121から導電部材(電極パッド190)までの距離H1Aが、誘電体基板140における接地電極GNDから導電部材(電極パッド195)までの距離H2Aよりも小さくされている(H1A<H2A)。
 一般的に、給電素子121と接地電極GNDとの間に形成される電磁界の強度は、給電素子121に近いほど強くなる傾向にある。そのため、空気層185が給電素子121に近いほうが、実効誘電率を低下させた効果が大きくなり、周波数帯域幅の広帯域化の効果が増大する。また、空気層185を給電素子121に近づけると、それに伴って導電部材が給電素子121に近づくため、導電部材により妨げられる電磁界が増加する。したがって、空気層185を給電素子121に近づけるほど、指向性の拡大効果も大きくなる。
 図9の例においては、アンテナモジュール100Aとアンテナモジュール100Cとを比較すると、反射損失については3.4GHzから4.1GHzへと周波数帯域幅が拡大している。また、-3dB角度についても89.2°から90.4°に拡大している。したがって、誘電体基板130,140の厚みを調整して、空気層185を給電素子121に近づけることによって、広帯域にわたる反射損失の低減および広い指向性を確保することができる。
 なお、アンテナモジュール100Cのピークゲインについては、6.56dBとなっており、図3における空気層のないアンテナモジュール100#1のピークゲイン(6.64dB)よりも低下している。そのため、必要とされるピークゲインの仕様によっては、アンテナモジュール100Cの構成が適さない場合も生じ得る。すなわち、ピークゲインを重視する場合には、アンテナモジュール100Aのように、誘電体基板130における給電素子121と電極パッド190との間の距離を、誘電体基板140の接地電極GNDと電極パッド195との間の距離よりも大きくすることが好ましい。逆に、より広い指向性を重視する場合には、アンテナモジュール100Cのように、誘電体基板130における給電素子121と電極パッド190との間の距離を、誘電体基板140の接地電極GNDと電極パッド195との間の距離よりも小さくすることが好ましい。
 [実施の形態5]
 実施の形態5においては、RFICから給電素子に高周波信号を伝達する給電配線に、位相調整回路が形成される構成について説明する。
 図10は、実施の形態5に係るアンテナモジュール100Dの断面図である。アンテナモジュール100Dは、実施の形態2で示したアンテナモジュール100Aの構成に加えて、誘電体基板140において、給電配線150に位相調整回路155が形成されている。そして、誘電体基板140の誘電率ε2は、誘電体基板130の誘電率ε1よりも大きくされている(ε1<ε2)。
 位相調整回路155は、たとえば、異なる2つの給電点に対して高周波信号を供給して同一偏波方向の電波を放射する際に、線路長さおよび/または容量パターンを利用したカプラあるいは分布定数型フィルタを形成することによって、供給される高周波信号の位相を互いに反転させる場合に用いられる。あるいは、異なる共振周波数を有する2つの放射素子に同一給電配線で高周波信号を供給する際に、給電配線にスタブを形成して相手側の信号を除去する場合に用いられる。
 位相調整回路155による位相の調整量は、誘電体基板内を通る高周波信号の波長と位相調整回路155を形成する線路の長さによって定まる。このうち波長は、位相調整回路155が形成される誘電体基板の誘電率によって変化し、誘電率が高いほど波長は短くなる。そのため、位相を大きく調整することが必要な場合に、誘電体基板の誘電率が小さいと、位相調整回路155のサイズを大きくすることが必要となる。したがって、位相調整回路155が形成される誘電体基板の誘電率を相対的に大きくすることで、位相調整回路155を小型化することができる。
 さらに、実施の形態4でも説明したように、実効誘電率の低減は、給電素子121に近い領域の誘電率を低くする方が効果的になる。したがって、位相調整回路155を、給電素子121からの距離が遠くなる誘電体基板140に形成し、さらに誘電体基板140の誘電率を誘電体基板130よりも高くすることによって、反射損失の広帯域化の効率を高めるとともに、位相調整回路155の小型化を実現することが可能となる。
 [実施の形態6]
 実施の形態6においては、空気層に配置された導電部材を利用して、放射素子から放射される電波の高次高調波を抑制する構成について説明する。
 図11は、実施の形態6に係るアンテナモジュール100Eの構成を示す図である。図11においては、上段(図11(a))にアンテナモジュール100Eの平面図が示されており、下段(図11(b))には平面図の線XI-XIにおける断面図が示されている。
 図11を参照して、アンテナモジュール100Eにおいては、実施の形態1のアンテナモジュール100と同様に、略正方形の給電素子121の各辺に沿って、複数の導電部材170が空気層185に配置されている。そして、誘電体基板140に形成された接続線177によって、隣り合う2つの導電部材170が接続されている。より具体的には、給電素子121の各辺に沿って6つの導電部材170-1~170-6が配置されており、導電部材170-1と導電部材170-2、導電部材170-3と導電部材170-4、および、導電部材170-5と導電部材170-6の各対が接続線177で接続されている。
 ここで、接続線177の長さは、接続線177とそれに接続される2つの導電部材170とによって形成される構成の共振周波数が、給電素子121の共振周波数の2倍となるように設定される。これによって、給電素子121から放射される2次高調波が、接続線177と導電部材170とによって形成される構成によって捕捉される。したがって、アンテナモジュール100Eから放射される電波における2次高調波成分を低減することが可能となる。
 なお、上記の例においては、2次高調波成分を低減する場合について説明したが、接続線177とそれに接続される2つの導電部材170とによって形成される構成の共振周波数が、給電素子121の共振周波数のN倍(Nは3以上の整数)となるように接続線177の長さを調整することによって、N次高調波成分を抑制することが可能である。ただし、一般的には、3次以上の高調波成分の大きさは2次高調波成分の大きさに比べて小さいため、実質的には、2次高調波成分を抑制することで、高次高調波成分の影響を十分に低減することができる。
 図12は、図11のアンテナモジュール100Eにおける2次高調波の反射損失を説明するための図である。図12において、実線LN10は導電部材170を接続した実施の形態6のアンテナモジュール100Eの場合を示しており、破線LN11は、導電部材170を接続していない比較例の場合を示している。なお、図12の例においては、給電素子121から放射される電波の周波数帯域は26.5~29.5GHzであり、したがって、2次高調波の周波数帯域は53~59GHzである。
 図12に示されるように、2次高調波の周波数帯域(図12の範囲BW)においては、アンテナモジュール100Eの反射損失は、比較例の場合に比べて大きくなっている。すなわち、アンテナモジュール100Eにおいては、比較例よりも2次高調波が放射されにくくなっている。したがって、給電素子121から放射される電波における高調波成分の影響が抑制されている。
 なお、実施の形態6において、接続線177で接続される導電部材の一方が本開示の「第1部材」に対応し、他方の導電部材が本開示の「第2部材」に対応する。
 (変形例)
 図13および図14においては、導電部材の配置の変形例および空気層の代替例について説明する。
 上述の各実施の形態のアンテナモジュールにおいては、矩形状の複数の導電部材が、略正方形状の給電素子の各辺に沿って互いに離間して配置される構成について説明した。しかしながら、導電部材の形状および配置については、給電素子と接地電極との間の電磁界を妨げることができれば、他の態様であってもよい。
 たとえば、図13(a)のアンテナモジュール100Fにおける導電部材170Aのように、給電素子121の各辺に沿って連続した直線状に形成されていてもよい。なお、アンテナモジュール100Fの導電部材170Aの例では、各辺に沿った直線状の部材が互いに接続されて、給電素子121の周囲を取り囲むように配置されている。
 矩形状の給電素子121の場合には、主に偏波方向に直交する辺から電界が発生する。そのため、導電部材は、少なくとも当該偏波方向に直交する辺に沿って配置することが効果的である。具体的には、図13(b)のアンテナモジュール100Gのように、給電素子121のY軸方向の辺に沿って複数の導電部材170が配置される態様であってもよい。あるいは、図13(c)のアンテナモジュール100Hのように、給電素子121のY軸方向の辺に沿って長方形の導電部材170Bが配置される態様であってもよい。
 また、上述の各実施の形態のアンテナモジュールにおいては、誘電体基板130と誘電体基板140との間には空間(空気層185)が形成される構成であったが、当該空気層185の部分については、誘電体基板130よりも誘電率の低い材料を用いて低誘電率層を形成してもよい。
 具体的には、図14(a)のアンテナモジュール100Iのように、誘電体基板130と誘電体基板140との間を、誘電体基板130よりも誘電率の低い誘電体186を充填した構成であってもよい。さらに、図14(b)のアンテナモジュール100Jのように、誘電体基板130と誘電体基板140との間に加えて、誘電体基板130の側面についても誘電体186Aで覆われた構成であってもよい。
 なお、当該低誘電率層については、全体が誘電体で満たされていなくてもよく、たとえば、図14(c)のアンテナモジュール100Kのように、誘電体基板130と誘電体基板140との間において、導電部材170よりも内側の部分に誘電体186Bが配置され、導電部材170よりも外側の部分には空間が形成される態様であってもよい。あるいは、図14(d)のアンテナモジュール100Lのように、誘電体基板130と誘電体基板140との間において、導電部材170を含む周囲部分に誘電体186Cが配置され、当該誘電体186Cよりも内側の部分に空間が形成される態様であってもよい。また、図には示されていないが、誘電体基板130と誘電体基板140との間において、厚み方向(Z軸方向)に部分的に誘電体が形成される構成であってもよい。
 [実施の形態7]
 上述の実施の形態においては、放射素子から放射される電波の偏波方向が一方向のシングル偏波タイプのアンテナモジュールについて説明したが、本開示の特徴は、放射素子から異なる2つの偏波方向に放射されるデュアル偏波タイプのアンテナモジュールにも適用可能である。
 具体的には、図15(a)のアンテナモジュール100Mのような、給電素子121の中心からX軸の負方向に配置された給電点SP1と、給電素子121の中心からY軸の正方向に配置された給電点SP2とに高周波信号が供給される構成について、誘電体基板130と誘電体基板140との間に低誘電率層を形成し、当該低誘電率層に導電部材170を配置するようにしてもよい。この場合、X軸方向およびY軸方向に電波が放射されるため、導電部材170は、給電素子121の各辺に沿って配置される。
 また、図15(b)のアンテナモジュール100Nのように、各偏波方向に対して複数の給電点が形成される構成であってもよい。具体的には、X軸方向を偏波方向とする電波については、給電素子121の中心からX軸の負方向に配置された給電点SP1AおよびX軸の正方向に配置された給電点SP1Bに高周波信号が供給される。Y軸方向を偏波方向とする電波については、給電素子121の中心からY軸の正方向に配置された給電点SP2AおよびY軸の正方向に配置された給電点SP2Bに高周波信号が供給される。
 なお、同じ偏波方向の2つの給電点に高周波信号を供給する場合には、各給電点には互いに位相が反転された高周波信号を供給することが必要とされる。そのため、図15(b)には示されていないが、各給電配線には、実施の形態5で説明したような位相調整回路が形成される。この位相調整回路は、実施の形態5で説明したように、給電素子121からの距離が遠い誘電体基板140に形成し、誘電体基板140の誘電率を誘電体基板130の誘電率よりも大きくすることが好ましい。
 <アレイアンテナ>
 [実施の形態8]
 実施の形態8においては、複数の放射素子がアレイ状に配置されたアレイタイプのアンテナモジュールの場合について説明する。
 (第1例)
 図16は、実施の形態8に係るアレイタイプのアンテナモジュールの第1例の平面図である。図16のアンテナモジュール100Pにおいては、共通の誘電体基板140に、2つの誘電体基板130A,130BがX軸方向に隣接して配置されており、誘電体基板130A,130Bに対して給電素子121A,121Bがそれぞれ形成されている。そして、誘電体基板130A,130Bと誘電体基板140との間の低誘電率層(空気層)に、給電素子121Aおよび給電素子121Bの各々の各辺に沿って複数の導電部材170が配置されている。
 上記のような構成とすることによって、アレイタイプのアンテナモジュールにおいても、広帯域にわたる反射損失の低減および広い指向性の双方の確保を実現することができる。
 なお、第1例における「誘電体基板130A」および「誘電体基板130B」は、本開示における「第1基板」および「第2基板」にそれぞれ対応する。また、第1例における「給電素子121A」および「給電素子121B」は、本開示における「第1放射素子」および「第3放射素子」にそれぞれ対応する。
 (第2例)
 図17は、実施の形態8に係るアレイタイプのアンテナモジュールの第2例の平面図である。図17のアンテナモジュール100Qにおいては、共通の誘電体基板130に給電素子121A,121BがX軸方向に配列されており、当該誘電体基板130が誘電体基板140に配置されている。そして、誘電体基板130と誘電体基板140との間の低誘電率層(空気層)において、給電素子121Aおよび給電素子121Bの各々の各辺に沿って複数の導電部材170が配置されている。アンテナモジュール100Qにおいては、個々の給電素子の周囲が複数の導電部材によって取り囲まれている。
 上記のようなアレイタイプのアンテナモジュールにおいても、広帯域にわたる反射損失の低減および広い指向性の確保を実現することができる。
 なお、第2例のような共通の誘電体基板に給電素子が配列される構成であって、X軸方向およびY軸方向の双方の偏波方向に電波を放射可能なアンテナモジュールの場合、各給電素子の辺の長さは、両偏波の放射特性の差を低減するために、共通の誘電体基板辺の長さに応じて変えることが望ましい。より具体的には、図18のアンテナモジュール100Q1に示されるように、誘電体基板130がX軸方向を長辺とする矩形形状である場合には、給電素子121A,121Bについても、X軸方向の寸法LXをY軸方向LYよりも大きく(LX>LY)として、給電素子間の間隔を狭めることが望ましい。
 誘電体基板が共通化されている構成は、第1例のアンテナモジュール100Pと比べると、2つの誘電体基板130A,130Bの間の空間に誘電体が追加された構成に対応する。これにより、2つの給電素子の隣接方向(すなわち、X軸方向)の実効誘電率が変化し、給電素子のX軸方向の偏波に関するインピーダンスが変化し得る。そうすると、X軸方向を偏波方向とする電波の放射特性と、Y軸方向を偏波方向とする電波の放射特性とが異なったものになり得る。
 このような場合に、アンテナモジュール100Q1のように給電素子121A,121BのX軸方向の寸法をY軸方向の寸法よりも大きくすることによって、X軸方向の偏波に関するインピーダンスを調整できるので、X軸方向を偏波方向とする電波の放射特性と、Y軸方向を偏波方向とする電波の放射特性との差を低減することができる。
 また、給電素子の寸法を変更することに代えて、給電素子の周囲に配置された導電部材170の形状を変えることによって、X軸方向を偏波方向とする電波の放射特性と、Y軸方向を偏波方向とする電波の放射特性との差を低減するようにしてもよい。
 具体的には、図19のアンテナモジュール100Q2に示されるように、誘電体基板130の法線方向から平面視した場合に、給電素子121A,121BのX軸方向に沿った辺に対向して配置された導電部材170は、給電素子121A,121BのY軸方向に沿った辺に対向して配置された導電部材170よりも小さくされている。そのため、X軸方向における放射素子と導電部材との間の結合よりも、Y軸方向における放射素子と導電部材との間の結合が小さくなり、Y軸方向のインピーダンスが増加する。このように、誘電体基板が共通化されることによるX軸方向のインピーダンス変化に対して、導電部材との結合を変化させることによってY軸方向のインピーダンスを調整することで、2つの偏波方向のインピーダンスの差を低減することができる。したがって、2つの偏波方向の電波の放射特性の差を低減することができる。
 (第3例)
 実施の形態8に係るアレイタイプのアンテナモジュールの第3例の平面図である。図20のアンテナモジュール100Rは、図17の第3例のアンテナモジュール100Qの構成において、給電素子121Aと給電素子121Bとの間の導電部材170が除かれた構成となっている。
 上記のような構成のアレイタイプのアンテナモジュールにおいても、広帯域にわたる反射損失の低減および広い指向性の確保を実現することができる。
 なお、第2例および第3例において、「給電素子121A」および「給電素子121B」は、本開示における「第1放射素子」および「第4放射素子」にそれぞれ対応する。
 (第4例)
 実施の形態8に係るアレイタイプのアンテナモジュールの第4例の平面図である。図21のアンテナモジュール100Sは、図20で示した、複数の給電素子が共通の誘電体基板に配置された構成が、共通の誘電体基板140に2組配置された構成を有している。すなわち、アンテナモジュール100Sは、2×2のアレイアンテナである。
 より具体的には、アンテナモジュール100Sにおいては、共通の誘電体基板140に、矩形状の誘電体基板130,130CがY軸方向に隣接して配置されており、誘電体基板130には給電素子121A,121BがX軸方向に隣接して配置されている。誘電体基板130Cには、給電素子121C,121DがX軸方向に隣接して配置されている。そして、誘電体基板130と誘電体基板140との間の低誘電率層(空気層)において、各給電素子の周囲に複数の導電部材170が配置されている。なお、給電素子121Aと給電素子121Bとの間の導電部材170、ならびに、給電素子121Cと給電素子121Dとの間の導電部材170は除かれている。
 上記のような構成のアレイタイプのアンテナモジュールにおいても、広帯域にわたる反射損失の低減および広い指向性の確保を実現することができる。
 なお、上記の例においては、1×2あるいは2×2のアレイアンテナに本開示の特徴を適用した場合について説明したが、より多くの給電素子を含むアレイアンテナについても、本開示の特徴を適用してもよい。
 <スタック型アンテナ>
 実施の形態1~実施の形態7で説明したアンテナモジュールは、単独の放射素子を有するアンテナモジュールについて説明した。以下の実施の形態9~実施の形態12においては、スタック型のアンテナモジュールに本開示の特徴を適用した構成について説明する。
 [実施の形態9]
 図22は、実施の形態9に係るアンテナモジュール100Tの断面図である。アンテナモジュール100Tにおいては、放射素子として、給電素子121および無給電素子122を含む。無給電素子122は、誘電体基板130に形成される。一方、給電素子121は、誘電体基板140において、無給電素子122に対向して配置される。給電素子121および無給電素子122のサイズは略同じであり、共振周波数も略同じとなるように設定される。
 誘電体基板140には、給電素子121に対向して接地電極GND1,GND2が配置されている。接地電極GND1,GND2は、給電素子121よりも下方(Z軸の負方向)に配置されており、接地電極GND1は給電素子121と接地電極GND2との間の層に配置されている。すなわち、給電素子121は、無給電素子122と接地電極GND1との間に配置されている。接地電極GND1と接地電極GND2との間の層は、配線層として使用される。給電配線150は、RFIC110から接地電極GND1および接地電極GND2を貫通して、給電素子121に接続される。
 誘電体基板130と誘電体基板140との間には空気層185が形成されており、当該空気層185には、導電部材として電子部品176が配置されている。アンテナモジュール100Tの法線方向から平面視した場合に、電子部品176は、放射素子(給電素子121,無給電素子122)の周囲に、放射素子から離間して配置されている。放射される電波の波長をλとすると、電子部品176は、隣接する電子部品176同士の距離がλ/4以下となるように配置される。
 アンテナモジュール100Tにおいては、給電素子121の放射方向に、共振周波数が近接している無給電素子122が配置されるため、反射損失の周波数帯域を拡大することができる。また、誘電体基板130,140との間に空気層185(低誘電率層)が形成されるため、さらに反射損失の周波数帯域を拡大することができる。そして、空気層185に、電子部品176(導電部材)が配置されることによって、広い指向性を確保することができる。電子部品176は、一般的に、はんだよりも外形の寸法精度が高い。そのため、導電部材として電子部品176を用いることによって、空気層185の高さ方向(Z軸方向)の寸法の精度を高めることができる。
 なお、図22においては、給電素子121は誘電体基板140に配置されているが、給電素子121は誘電体基板130に配置されていてもよい。
 実施の形態9において、「無給電素子122」および「給電素子121」は、本開示の「第1放射素子」および「第2放射素子」にそれぞれ対応する。
 [実施の形態10]
 実施の形態10においては、スタック型のデュアルバンドタイプのアンテナモジュールについて説明する。
 図23は、実施の形態10に係るアンテナモジュール100Uの断面図である。アンテナモジュール100Uにおいては、実施の形態9のアンテナモジュール100Tと比べて放射素子の配置が異なっている。なお、アンテナモジュール100Uにおいて、アンテナモジュール100Tと重複する構成の説明については繰り返さない。
 図23を参照して、アンテナモジュール100Uは、放射素子として、誘電体基板130に配置された給電素子121と、誘電体基板140に配置された無給電素子123とを含んでいる。給電素子121と無給電素子123とは互いに対向して配置されており、無給電素子123は、給電素子121と接地電極GND1との間に配置されている。無給電素子123のサイズは給電素子121のサイズよりも大きい。すなわち、給電素子121の共振周波数は無給電素子123の共振周波数よりも高い。
 給電配線150は、RFIC110から接地電極GND1,GND2および無給電素子123を貫通し、さらに、誘電体基板130と誘電体基板140との間の空気層185に配置された導電部材180を介して給電素子121に接続される。RFIC110から、給電素子121の共振周波数に対応した高周波信号が給電配線150に供給されることによって、給電素子121から電波が放射される。また、無給電素子123の共振周波数に対応した高周波信号が給電配線150に供給されると、給電配線150と無給電素子123とが電磁界結合し、無給電素子123から電波が放射される。すなわち、アンテナモジュール100Uは、デュアルバンドタイプのアンテナモジュールとして機能する。
 このような構成のアンテナモジュールにおいては、給電素子121と無給電素子123との間に空気層185が形成される。そのため、特に給電素子121から放射される電波について、広帯域にわたる反射損失の低減および広い指向性の確保を実現することができる。
 なお、アンテナモジュール100Uにおいても、無給電素子123を誘電体基板130に配置するようにしてもよい。この場合には、無給電素子123と接地電極GND1との間に空気層185が形成されるため、特に無給電素子123から放射される電波について、広帯域にわたる反射損失の低減および広い指向性の確保を実現することができる。
 実施の形態10において、「給電素子121」および「無給電素子123」は、本開示の「第1放射素子」および「第2放射素子」にそれぞれ対応する。
 [実施の形態11]
 実施の形態11では、2つの誘電体基板において、導電部材に結合されたビア電極が形成される構成について説明する。
 図24は、実施の形態11に係るアンテナモジュール100Vを説明するための図である。上段の図24(a)はアンテナモジュール100Vの平面図であり、下段の図24(b)は図24(a)における線XXII-XXIIの断面図である。
 図24を参照して、アンテナモジュール100Vは、実施の形態9で説明したアンテナモジュール100Tの構成に加えて、誘電体基板130形成されたビア電極V2およびビア電極V2同士を接続する接続導体165と、誘電体基板140に形成されたビア電極とを有する構成となっている。なお、図24において、図22と重複する要素の説明は繰り返さない。
 ビア電極V1は、誘電体基板140において、電子部品176と接地電極GND1とを接続している。また、ビア電極V2は、誘電体基板130を貫通しており、一方端が電子部品176に接続されている。ビア電極V2の他方端は、誘電体基板130の表面131に配置された接続導体165に接続されている。接続導体165は、アンテナモジュール100Vを平面視した場合に、無給電素子122(および給電素子121)の周囲を取り囲むように配置されており、ビア電極V2同士を接続している。
 このビア電極および接続導体によって、放射素子から生じる電磁界を妨げる面積が大きくなるため、ピークゲインを抑制して広い指向性を確保することができる。また、ビア電極を接地電極に接続することによって、外側電磁界による影響を低減することができる。
 なお、実施の形態11における「ビア電極V2」は、本開示における「第2ビア電極」に対応する。
 [実施の形態12]
 実施の形態12においては、実施の形態11のアンテナモジュール100Vがアレイ化された構成について説明する。図25は、実施の形態12に係るアンテナモジュール100Wの平面図(図25(a))、および、平面図における線XXIII-XXIIIにおける断面図(図25(b))である。
 図25を参照して、アンテナモジュール100Wにおいては、実施の形態8の図16に示したアンテナモジュール100Pと同様に、共通の誘電体基板140に、2つの誘電体基板130A,130BがX軸方向に隣接して配置された構成となっている。誘電体基板130Aには無給電素子122Aが配置されており、誘電体基板130Bには無給電素子122Bが配置されている。共通の誘電体基板140において、無給電素子122Aに対向して給電素子121Aが配置されており、無給電素子122Bに対向して給電素子121Bが配置されている。
 誘電体基板130Aと誘電体基板140との間、および、誘電体基板130Bと誘電体基板140との間には空気層185が形成されている。アンテナモジュール100Wにおいては、アンテナモジュール100Vと同様に、アンテナモジュール100Wを平面視した場合に各放射素子の周囲を取り囲むように、複数の電子部品176が空気層185に配置されている。電子部品176は、ビア電極V1によって誘電体基板140に配置された接地電極GND1に接続されている。さらに、電子部品176は、誘電体基板130A,130Bに形成されたビア電極V2によって、誘電体基板130A,130Bの表面に形成された接続導体165に接続されている。
 このようなアレイアンテナにおいても、電子部品,ビア電極および接続導体によって、放射素子から生じる電磁界を妨げる面積が大きくなるため、ピークゲインを抑制して広い指向性を確保することができる。また、ビア電極を接地電極に接続することによって、隣接する放射素子間のアイソレーションを高めることができる。また、互いに隣り合う2つの誘電体基板130A,130Bの間に空間が形成されて、誘電体基板130Aと誘電体基板130Bが接しないことにより、各基板から放射される電波のビームのばらつきを抑制することができる。
 [実施の形態13]
 実施の形態13においては、誘電体基板に対して放射素子を斜めに配置することによって、アンテナモジュールを小型化する構成について説明する。
 図26は、実施の形態13に係るアンテナモジュール100Xの第1例を説明するための平面図である。図26においては、左図(図26(a))に実施の形態1で示したアンテナモジュール100が比較のために示されており、右図(図26(b))に実施の形態13のアンテナモジュール100Xが示されている。
 図26を参照して、アンテナモジュール100Xにおいては、給電素子121の各辺が、誘電体基板130X,140Xの各辺に対して45°の角度となるように、斜めに配置されている。アンテナモジュール100およびアンテナモジュール100Xにおいて、給電素子121は同じ大きさであるが、誘電体基板130X,140Xの大きさは、アンテナモジュール100の対応する誘電体基板130,140に比べると小型化されている。これに伴って、給電素子121の周囲に配置された導電部材170の数が低減されている。
 なお、アンテナモジュール100Xにおいては、アンテナモジュール100に比べて誘電体基板が小さくなっても、偏波方向における給電素子121の端部から誘電体基板130Xの端部までの距離を、アンテナモジュール100と同程度に確保することができる。そのため、誘電体基板の小型化によって周波数帯域幅が狭くなることを抑制することができる。
 このように、アンテナモジュールにおいて、誘電体基板に対して放射素子を斜めに配置した構成においても、給電素子の周囲に導電部材を配置することによって広い指向性を確保することができ、さらにアンテナモジュールの小型化を実現することができる。
 なお、アンテナモジュール100Xにおいては、給電素子121の周囲に配置される導電部材170の間隔が一様ではないが、図26に示されるアンテナモジュール100Yの第2例のように、誘電体基板130Xの各辺に沿って配置される導電部材170の間隔を等間隔としてもよい。また、給電素子121の傾斜角度は必ずしも45°に限らず、偏波方向における給電素子121の端部から誘電体基板130Xの端部までの距離が確保できれば、45°以外の角度であってもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 通信装置、100,100A~100N,100P~100Y,100Q1,100Q2,100#1,100#2 アンテナモジュール、110 RFIC、111A~111D,113A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A~114D 減衰器、115A~115D 移相器、116 信号合成/分波器、118 ミキサ、119 増幅回路、121,121A~121D 給電素子、120 アンテナ装置、122,122A,122B,123 無給電素子、130,130A~130C,130X,140,140X 誘電体基板、150 給電配線、155 位相調整回路、160 はんだバンプ、165 接続導体、170,170A,170B,180 導電部材、175 電極接続材料、176 電子部品、177 接続線、185 空気層、186,186A~186C 誘電体、190,195 電極パッド、196 レジスト、197,V1,V2 ビア電極、200 BBIC、GND,GND1,GND2 接地電極、SP1A,SP1B,SP1,SP2,SP2A,SP2B 給電点。

Claims (20)

  1.  第1放射素子と、
     接地電極と、
     前記第1放射素子が形成される第1誘電体基板と、
     前記第1誘電体基板に対向して配置され、前記接地電極が形成される第2誘電体基板と、
     前記第1放射素子の法線方向から平面視した場合に、前記第1放射素子の周囲に、前記第1放射素子から離隔して配置された導電部材とを備え、
     前記第1誘電体基板と前記第2誘電体基板との間には、前記第1誘電体基板よりも低い誘電率を有する低誘電率層が形成されており、
     前記導電部材は、前記低誘電率層に形成される、アンテナモジュール。
  2.  前記低誘電率層の少なくとも一部に空間が形成されている、請求項1に記載のアンテナモジュール。
  3.  第1放射素子と、
     接地電極と、
     前記第1放射素子が形成される第1誘電体基板と、
     前記第1誘電体基板に対向して配置され、前記接地電極が形成される第2誘電体基板と、
     前記第1放射素子の法線方向から平面視した場合に前記第1放射素子の周囲に配置された導電部材とを備え、
     前記第1誘電体基板と前記第2誘電体基板との間には空気層が形成されており、
     前記導電部材は前記空気層に形成される、アンテナモジュール。
  4.  前記第2誘電体基板に形成された第1ビア電極をさらに備え、
     前記第1ビア電極の一方端は前記導電部材に接続され、他方端は開放されている、請求項1~3のいずれか1項に記載のアンテナモジュール。
  5.  前記第1誘電体基板における前記第1放射素子から前記導電部材までの前記法線方向の距離は、前記第2誘電体基板における前記接地電極から前記導電部材までの前記法線方向の距離よりも短い、請求項1~4のいずれか1項に記載のアンテナモジュール。
  6.  前記第1放射素子は、矩形の平板形状を有するパッチアンテナであり、
     前記導電部材は、前記第1放射素子から放射される電波の偏波方向に直交する辺に沿って配置されている、請求項1~5のいずれか1項に記載のアンテナモジュール。
  7.  前記導電部材は、第1部材および第2部材を含み、
     前記アンテナモジュールは、前記第2誘電体基板において前記第1部材および前記第2部材を接続する接続線をさらに備える、請求項1~6のいずれか1項に記載のアンテナモジュール。
  8.  前記接続線は、前記接続線によって接続された前記第1部材および前記第2部材の共振周波数が、前記第1放射素子の共振周波数の2倍となるような長さを有する、請求項7に記載のアンテナモジュール。
  9.  前記導電部材は、電子部品あるいは電極接続材料によって形成されている、請求項1~8のいずれか1項に記載のアンテナモジュール。
  10.  前記導電部材は、前記接地電極に接続されている、請求項1~9のいずれか1項に記載のアンテナモジュール。
  11.  前記導電部材に接続され、前記第1誘電体基板を貫通する第2ビア電極をさらに備える、請求項1~10のいずれか1項に記載のアンテナモジュール。
  12.  前記第1誘電体基板または前記第2誘電体基板に形成され、前記第1放射素子と前記接地電極との間に配置された第2放射素子をさらに備える、請求項1~11のいずれか1項に記載のアンテナモジュール。
  13.  前記第1放射素子は無給電素子であり、
     前記第2放射素子は給電素子である、請求項12に記載のアンテナモジュール。
  14.  前記第1放射素子は給電素子であり、
     前記第2放射素子は無給電素子であり、
     前記第1放射素子の共振周波数は、前記第2放射素子の共振周波数よりも高く、
     前記アンテナモジュールは、前記第2放射素子を貫通して前記第1放射素子に高周波信号を伝達する給電配線をさらに備える、請求項12に記載のアンテナモジュール。
  15.  前記第1誘電体基板は、互いに隣接して配置される第1基板および第2基板を含み、
     前記第1放射素子は、前記第1基板に形成されており、
     前記アンテナモジュールは、前記第2基板に形成された第3放射素子をさらに備え、
     前記導電部材は、前記第3放射素子の周囲にも配置される、請求項1~14のいずれか1項に記載のアンテナモジュール。
  16.  前記第1誘電体基板において、前記第1放射素子に隣接して配置された第4放射素子をさらに備え、
     前記導電部材は、前記第4放射素子の周囲にも配置される、請求項1~14のいずれか1項に記載のアンテナモジュール。
  17.  前記第1誘電体基板は、前記第1放射素子および前記第4放射素子の隣接方向を長辺とする矩形形状を有しており、
     前記第1放射素子および前記第4放射素子の各々は、前記隣接方向を偏波方向とする電波と、前記隣接方向に直交する方向を偏波方向とする電波を放射可能に構成されており、
     前記第1放射素子および前記第4放射素子の各々は、前記隣接方向を長辺とする矩形形状に形成されている、請求項16に記載のアンテナモジュール。
  18.  前記第1放射素子に高周波信号を伝達する給電配線と、
     前記第2誘電体基板において、前記給電配線に接続された位相調整回路とをさらに備え、
     前記第2誘電体基板の誘電率は、前記第1誘電体基板の誘電率よりも大きい、請求項1~11のいずれか1項に記載のアンテナモジュール。
  19.  各放射素子に高周波信号を供給するように構成された給電回路をさらに備える、請求項1~18のいずれか1項に記載のアンテナモジュール。
  20.  請求項1~19のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
PCT/JP2021/005805 2020-03-09 2021-02-17 アンテナモジュールおよびそれを搭載する通信装置 WO2021182037A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180020616.3A CN115280598A (zh) 2020-03-09 2021-02-17 天线模块和搭载天线模块的通信装置
JP2022505868A JP7294525B2 (ja) 2020-03-09 2021-02-17 アンテナモジュールおよびそれを搭載する通信装置
US17/939,956 US20230006350A1 (en) 2020-03-09 2022-09-08 Antenna module and communication device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020039703 2020-03-09
JP2020-039703 2020-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/939,956 Continuation US20230006350A1 (en) 2020-03-09 2022-09-08 Antenna module and communication device including the same

Publications (1)

Publication Number Publication Date
WO2021182037A1 true WO2021182037A1 (ja) 2021-09-16

Family

ID=77672272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005805 WO2021182037A1 (ja) 2020-03-09 2021-02-17 アンテナモジュールおよびそれを搭載する通信装置

Country Status (4)

Country Link
US (1) US20230006350A1 (ja)
JP (1) JP7294525B2 (ja)
CN (1) CN115280598A (ja)
WO (1) WO2021182037A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199503A (ja) * 1987-02-13 1988-08-18 Nippon Hoso Kyokai <Nhk> マイクロストリツプアンテナ
JP2000138525A (ja) * 1998-10-30 2000-05-16 Mitsubishi Electric Corp マイクロストリップアンテナおよびマイクロストリップアンテナ基板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199503A (ja) * 1987-02-13 1988-08-18 Nippon Hoso Kyokai <Nhk> マイクロストリツプアンテナ
JP2000138525A (ja) * 1998-10-30 2000-05-16 Mitsubishi Electric Corp マイクロストリップアンテナおよびマイクロストリップアンテナ基板

Also Published As

Publication number Publication date
US20230006350A1 (en) 2023-01-05
JP7294525B2 (ja) 2023-06-20
JPWO2021182037A1 (ja) 2021-09-16
CN115280598A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2020261807A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11171421B2 (en) Antenna module and communication device equipped with the same
JP6881675B2 (ja) アンテナモジュール
CN114521307B (zh) 天线模块和搭载该天线模块的通信装置以及电路基板
WO2020145392A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020217689A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020153098A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US12003015B2 (en) Antenna module, manufacturing method thereof, and collective board
US11322841B2 (en) Antenna module and communication device equipped with the same
JP7283585B2 (ja) アンテナモジュール
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6973663B2 (ja) アンテナモジュールおよび通信装置
WO2022264737A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021182037A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
US20220094074A1 (en) Antenna module, communication apparatus including the same, and circuit substrate
WO2023047801A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2023214473A1 (ja) 伝送線路、ならびに、それを含むアンテナモジュールおよび通信装置
WO2023188969A1 (ja) アンテナモジュール
WO2024127720A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022215421A1 (ja) アンテナモジュール
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20220384945A1 (en) Antenna module and communication device equipped with the same
US11894593B2 (en) Filter device, and antenna module and communication device including the same
WO2024106004A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023210118A1 (ja) アンテナモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768636

Country of ref document: EP

Kind code of ref document: A1