WO2020261807A1 - アンテナモジュールおよびそれを搭載した通信装置 - Google Patents

アンテナモジュールおよびそれを搭載した通信装置 Download PDF

Info

Publication number
WO2020261807A1
WO2020261807A1 PCT/JP2020/019611 JP2020019611W WO2020261807A1 WO 2020261807 A1 WO2020261807 A1 WO 2020261807A1 JP 2020019611 W JP2020019611 W JP 2020019611W WO 2020261807 A1 WO2020261807 A1 WO 2020261807A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
feeding element
antenna module
ground electrode
feeding
Prior art date
Application number
PCT/JP2020/019611
Other languages
English (en)
French (fr)
Inventor
敬生 高山
良樹 山田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080004702.0A priority Critical patent/CN112602234B/zh
Priority to JP2020551439A priority patent/JP6798657B1/ja
Priority to US17/103,069 priority patent/US11322841B2/en
Publication of WO2020261807A1 publication Critical patent/WO2020261807A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths

Definitions

  • the present disclosure relates to an antenna module and a communication device on which the antenna module is mounted, and more specifically to an arrangement of radiation elements in an antenna module having a flat plate-shaped radiation element.
  • Patent Document 1 a flat plate-shaped patch antenna (radiating element) is arranged on one surface of a rectangular dielectric substrate, and a high-frequency semiconductor element is arranged on the other surface.
  • the antenna module is disclosed.
  • the antenna module disclosed in International Publication No. 2016/063759 may be used as an antenna for a mobile terminal such as a smartphone, for example.
  • a mobile terminal such as a smartphone
  • radio waves are radiated from the radiating element by electromagnetic field coupling between the radiating element and the ground electrode arranged opposite to the radiating element.
  • the ground electrode has an infinite size with respect to the radiating element.
  • the ground electrode cannot be made sufficiently large due to the limitation of the substrate size, so that in general, the antenna characteristics may be deteriorated as compared with the ideal case.
  • Mobile terminals are required to be further miniaturized and thinned, and antenna modules used in mobile terminals are also required to be further miniaturized.
  • the size of the dielectric substrate is limited due to the miniaturization of the antenna module, the area of the ground electrode included in the substrate is also limited. Therefore, it is feared that the electromagnetic field coupling between the radiating element and the ground electrode cannot be sufficiently secured, and the antenna characteristics deteriorate.
  • the present disclosure has been made to solve such a problem, and an object thereof is to suppress deterioration of antenna characteristics when the area of the ground electrode is limited in an antenna module using a patch antenna. It is to be.
  • An antenna module includes a first radiation element capable of radiating radio waves having a first direction as a polarization direction, and a first ground electrode arranged so as to face the first radiation element.
  • the first radiation element When the first radiation element is viewed in a plan view from the normal direction, the shortest distance along the first direction between the center of the first radiation element and the end of the first ground electrode is defined as the first distance, and the first radiation
  • the shortest distance between the center of the element and the end of the first ground electrode is the second distance, and the distance between the end of the first ground electrode and the end of the first radiation element in the second distance is the third.
  • the first distance is longer than the second distance
  • the third distance is shorter than 1/2 the size of the first radiating element.
  • the shortest distance along the first direction between the center of the radiation element and the end of the ground electrode is set as the first distance, and the distance is defined as the center of the radiation element.
  • the first distance is the second.
  • the radiation element is arranged with respect to the ground electrode so that it is longer than the distance and the third distance is shorter than 1/2 of the size of the radiation element.
  • FIG. 1 It is a block diagram of the communication device to which the antenna module according to Embodiment 1 is applied. It is a figure which shows the antenna module according to Embodiment 1.
  • FIG. It is a figure for demonstrating the mechanism which the antenna characteristic improves in Embodiment 1.
  • FIG. It is a figure for demonstrating the frequency bandwidth in Embodiment 1 and the comparative example.
  • FIG. It is a figure which shows the reflection loss in Embodiment 1 and the comparative example.
  • FIG. 1 is an example of a block diagram of a communication device 10 to which the antenna module 100 according to the first embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, a personal computer having a communication function, or the like.
  • An example of the frequency band of the radio wave used for the antenna module 100 according to the present embodiment is a radio wave in the millimeter wave band having a center frequency of, for example, 28 GHz, 39 GHz, 60 GHz, etc., but radio waves in frequency bands other than the above are also available. Applicable.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, and an antenna device 120.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal and radiates it from the antenna device 120, and down-converts the high-frequency signal received by the antenna device 120 to process the signal at the BBIC 200. To do.
  • FIG. 1 shows an example in which the antenna device 120 is formed by a plurality of feeding elements 121 arranged in a two-dimensional array, but the feeding elements 121 do not necessarily have to be a plurality of one.
  • the antenna device 120 may be formed by the feeding element 121. Further, it may be a one-dimensional array in which a plurality of power feeding elements 121 are arranged in a row.
  • the feeding element 121 is a patch antenna having a substantially square flat plate shape.
  • the RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesizer / demultiplexer. It includes 116, a mixer 118, and an amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT side, and the switch 117 is connected to the transmitting side amplifier of the amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the low noise amplifiers 112AR to 112DR side, and the switch 117 is connected to the receiving side amplifier of the amplifier circuit 119.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116, passes through four signal paths, and is fed to different feeding elements 121.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115D arranged in each signal path.
  • the received signal which is a high-frequency signal received by each feeding element 121, passes through four different signal paths and is combined by the signal synthesizer / demultiplexer 116.
  • the combined received signal is down-converted by the mixer 118, amplified by the amplifier circuit 119, and transmitted to the BBIC 200.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the devices switch, power amplifier, low noise amplifier, attenuator, phase shifter
  • corresponding to each feeding element 121 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding feeding element 121. ..
  • FIG. 2 (Antenna module configuration) Next, the details of the configuration of the antenna module 100 according to the first embodiment will be described with reference to FIG.
  • the upper row (FIG. 2 (a)) is a plan perspective view of the antenna module 100
  • the lower row (FIG. 2 (b)) is a cross-sectional perspective view of the antenna module.
  • the antenna module 100 includes a dielectric substrate 130, a feeding wiring 170, and a ground electrode GND in addition to the feeding element 121 and the RFIC 110.
  • the normal direction (radio wave radiation direction) of the dielectric substrate 130 is defined as the Z-axis direction
  • the plane perpendicular to the Z-axis direction is defined by the X-axis and the Y-axis.
  • the positive direction of the Z axis in each figure may be referred to as an upper side
  • the negative direction may be referred to as a lower side.
  • the dielectric substrate 130 includes, for example, a low temperature co-fired ceramics (LCC) multilayer substrate, a multilayer resin substrate formed by laminating a plurality of resin layers composed of resins such as epoxy or polyimide.
  • the dielectric substrate 130 does not necessarily have to have a multi-layer structure, and may be a single-layer substrate. In addition, in FIG. 2A and the plan perspective view described below, the dielectric substrate 130 and the power feeding wiring are omitted.
  • the dielectric substrate 130 has a substantially rectangular shape, and the feeding element 121 is arranged on the upper surface 131 (the surface in the positive direction of the Z axis) or the inner layer thereof.
  • the feeding element 121 is a patch antenna having a substantially square planar shape.
  • Each side of the feeding element 121 is arranged so as to be inclined by a predetermined angle with respect to the long side and the short side (that is, the X axis and the Y axis in the drawing) of the dielectric substrate 130.
  • the predetermined angle is approximately 45 °.
  • a flat plate-shaped ground electrode GND is arranged on the lower surface 132 (the surface in the negative direction of the Z axis) side of the feeding element 121, facing the feeding element 121.
  • the RFIC 110 is mounted on the lower surface 132 of the dielectric substrate 130 via the solder bumps 140.
  • the RFIC 110 may be connected to the dielectric substrate 130 by using a multi-pole connector instead of the solder connection.
  • a high frequency signal is supplied from the RFIC 110 to the feeding point SP1 of the feeding element 121 via the feeding wiring 170.
  • the feeding point SP1 passes through the center (diagonal intersection) CP of the feeding element 121 and is arranged at a position offset in the direction of the broken line CL1 parallel to the side of the feeding element 121 (first direction). ing.
  • radio waves having the above-mentioned first direction as the polarization direction are radiated.
  • the power feeding wiring 170 is formed by a wiring pattern formed between the layers of the dielectric substrate 130 and vias penetrating the layers.
  • the conductors constituting the radiation element, wiring pattern, electrodes, vias, etc. are made of aluminum (Al), copper (Cu), gold (Au), silver (Ag), and alloys thereof. It is made of metal as the main component.
  • the feeding element 121 is arranged so that each side of the feeding element 121 is tilted with respect to each side of the rectangular ground electrode GND. That is, the direction connecting the position P1 of the end of the ground electrode GND and the center CP of the feeding element 121, which is the shortest distance from the center CP of the feeding element 121 when the antenna module 100 is viewed in a plan view, and the polarization direction (
  • the power feeding element 121 is arranged so that the angle ⁇ formed with the first direction) is 0 ° ⁇ ⁇ 90 °.
  • the distance between the ground electrode GND and the power feeding element 121 when the antenna module 100 is viewed in a plan view, it is along the first direction between the center CP of the power feeding element 121 and the end portion of the ground electrode GND. If the shortest distance is the distance L1 (first distance) and the shortest distance between the center CP of the feeding element 121 and the end of the ground electrode GND is the distance L2 (second distance), the distance L1 is larger than the distance L2. Long (L1> L2). Further, assuming that the shortest distance between the end of the feeding element 121 and the end of the ground electrode GND at the distance L2 is the distance L3 (third distance), the distance L3 is the size (side length) of the feeding element 121. Shorter than 1/2.
  • deterioration of the antenna characteristics is suppressed by arranging the feeding element 121 at an angle with respect to the ground electrode GND.
  • a mechanism capable of suppressing deterioration of antenna characteristics by arranging such a feeding element 121 will be described.
  • FIG. 3 the upper row (FIG. 3 (a)) shows the antenna module 100 # of the comparative example, and the lower row (FIG. 3 (b)) shows the antenna module 100 of the first embodiment.
  • the figures on the right side of FIGS. 3 (a) and 3 (b) show the lines of electric force between the ground electrode GND and the feeding element 121 in the cross section along the polarization direction.
  • the feeding element 121 # is arranged so that each side is parallel to the X-axis and the Y-axis.
  • the feeding point SP1 is arranged at a position offset in the positive direction of the Y axis from the center of the feeding element 121 #, and a radio wave having the Y axis direction as the polarization direction is radiated from the feeding element 121 #. ..
  • the amplitude of the voltage is maximized at the end in the Y-axis direction, whereby the electric field strength between the feeding element 121 # and the ground electrode GND is also maximized at the end.
  • the distance LY between the end of the feeding element 121 # and the end of the ground electrode GND in the polarization direction (Y-axis direction) is short, so that the feeding element 121 # and the ground are grounded.
  • the amount of electric lines of force generated between the electrode GND and the power line is limited, and the coupling between the feeding element 121 # and the ground electrode GND cannot be sufficiently secured.
  • the capacitance of the feeding element 121 # with respect to the ground electrode GND cannot be sufficiently secured, and the frequency bandwidth becomes narrow.
  • the feeding element 121 is arranged at an angle with respect to the ground electrode GND in the polarization direction (direction of line CL1: first direction).
  • the distance LYA between the end of the feeding element 121 and the end of the ground electrode GND is longer than the distance LY in the case of the comparative example, and the coupling between the feeding element 121 and the ground electrode by the electric field is longer than in the case of the comparative example.
  • the capacitance of the feeding element 121 with respect to the ground electrode GND is also larger than that of the comparative example, so that the frequency bandwidth can be made wider than that of the comparative example.
  • the distance between the end of the feeding element and the end of the ground electrode GND in the direction orthogonal to the polarization direction affects the peak gain (directivity) of the emitted radio wave.
  • the distance between the end of the feeding element and the end of the ground electrode GND in the direction orthogonal to the polarization direction is the maximum (distance LX) in the case of the comparative example, and the inclination ⁇ from the state of the comparative example is large. It gradually becomes smaller as it becomes.
  • the inclination ⁇ of the feeding element with respect to the ground electrode GND is set to be in the range of 0 ° ⁇ ⁇ 90 ° in consideration of the desired frequency bandwidth and peak gain.
  • 45 ° is set so that both the frequency bandwidth and the peak gain are medium.
  • the distance LYA in the polarization direction between the feeding element 121 and the ground electrode GND is substantially the same as the distance LXA in the direction orthogonal to the polarization direction.
  • the shortest distance between the power feeding element 121 and the ground electrode GND is shorter than the predetermined distance.
  • the feeding element 121 by arranging the feeding element 121 at an angle with respect to the ground electrode GND as described above, it is possible to prevent both the frequency bandwidth and the peak gain from becoming extremely small. As a result, it is possible to suppress a decrease in antenna characteristics when the area of the ground electrode is limited.
  • the wavelength of the radio wave radiated from the feeding element 121 is ⁇
  • the distance L3 shown in FIG. 2 is shorter than ⁇ / 4
  • the amount of electric lines of force between the feeding element 121 and the ground electrode GND is smaller. Therefore, the effect of suppressing the deterioration of the antenna characteristics becomes large.
  • the wavelength of the radio wave reflecting the effective permittivity of the dielectric substrate is ⁇ ', and the distance L3 is shorter than ⁇ '/ 4, the electric force between the power feeding element 121 and the ground electrode GND Since the amount of wires is further increased, the effect of suppressing the deterioration of the antenna characteristics is further increased.
  • the distance L3 is shorter than twice the distance (thickness in the Z direction) d1 in the stacking direction between the power feeding element 121 and the ground electrode GND, the electric force between the power feeding element 121 and the ground electrode GND. Since the amount of wires is further increased, the effect of suppressing the deterioration of the antenna characteristics is further increased.
  • FIG. 4 and 5 are diagrams for explaining the results of simulating the frequency bandwidth in the first embodiment and the comparative example.
  • FIG. 4 as a reference, the frequency bandwidth when the feeding element is arranged on a substantially square dielectric substrate having a sufficiently large area of the ground electrode GND is also shown.
  • the frequency bandwidth at which the reflection loss of the feeding element is 10 dB or less is shown.
  • FIG. 5 is a graph showing the reflection loss in the first embodiment and the comparative example, and the right figure of FIG. 5 is an enlarged view of the region RG2 of the graph of the left figure.
  • the solid line LN10 shows the reflection loss in the case of the first embodiment
  • the broken line LN11 shows the reflection loss in the case of the comparative example.
  • the frequency bandwidth is 1.98 GHz. From this state, if the dimension of the ground electrode in the Y-axis direction (polarization direction) is shortened as in the comparative example, the frequency bandwidth is reduced to 1.36 GHz.
  • the reflection loss is reduced and the frequency bandwidth is improved to 1.51 GHz.
  • FIG. 6 is a diagram for explaining the influence of the shape of the dielectric substrate (ground electrode) and the arrangement of the feeding elements on the directivity.
  • the case of a square substrate is shown in the left column, and the case of a rectangular substrate is shown in the right column.
  • the upper part of FIG. 6 shows a comparative example in which the side of the dielectric substrate and the side of the feeding element are parallel, and the lower part shows the case where the feeding element is tilted with respect to the dielectric substrate.
  • the case of the first embodiment is shown.
  • the directivity is affected by the distance between the feeding element and the end of the ground electrode in the direction orthogonal to the polarization direction. Therefore, in the comparative example in the upper right column, the dielectric substrate is biased. The dimensions in the direction orthogonal to the wave direction are shortened.
  • the directivity is 6.5 dBi, which is the same value even if the angles of the feeding elements are different. It is considered that this is because the distance between the end of the ground electrode and the feeding element is sufficiently large, and the ratio of the distance in the direction orthogonal to the polarization direction to the distance in the polarization direction is the same.
  • the directivity is 5.8 dBi in the comparative example, and the directivity is 6.3 dBi in the first embodiment.
  • the first embodiment is improved.
  • the distance between the end of the ground electrode and the feeding element in the polarization direction is longer than that in the lower embodiment, but the direction orthogonal to the polarization direction is longer than that in the first embodiment. Is also getting shorter. That is, in the comparative example, the ratio of the distance in the direction orthogonal to the polarization direction to the distance in the polarization direction is smaller than that in the case of the first embodiment.
  • the directivity is improved by arranging the feeding element at an angle with respect to the ground electrode as in the first embodiment and balancing the ratio of the distance in the direction orthogonal to the polarization direction to the distance in the polarization direction. It will be possible to improve.
  • the antenna module using the flat plate-shaped feeding element when the area of the grounding electrode is limited, the position of the end of the grounding electrode and the feeding element where the distance from the center of the feeding element is the shortest.
  • the feeding element By arranging the feeding element with respect to the ground electrode so that the angle between the direction connecting the center and the polarization direction of the radiated radio wave is larger than 0 ° and smaller than 90 °, the antenna characteristics ( It is possible to suppress the decrease in frequency bandwidth and directional).
  • (A) Modification 1 In the first modification, the antenna module 100A when the feeding element 121 is arranged not at the center of the ground electrode GND but at the end side will be described. In such an antenna module 100A, the two distances between the feeding element 121 and the ground electrode GND in the polarization direction are different. In this case, the antenna characteristics are limited by the shorter distance.
  • the angle ⁇ formed by the direction connecting the center CP of the feeding element 121 in FIG. 7 and the position P1 at the end of the ground electrode GND and the polarization direction (direction of the line CL1) is 0 ° ⁇
  • the feeding element 121 is arranged so that ⁇ ⁇ 90 °. As a result, it is possible to suppress a decrease in antenna characteristics (frequency bandwidth, directivity) as in the first embodiment.
  • the shortest distance between the center CP of the feeding element 121 in the polarization direction and the end of the ground electrode GND when the antenna module 100A is viewed in a plan view is L1A (first distance).
  • L1A first distance
  • L2A second distance
  • the distance between the end of the feeding element 121 and the end of the ground electrode GND is L3A (third distance) at the distance L2A
  • the distance L3A is larger than 1/2 of the side length of the feeding element 121. It gets shorter.
  • (B) Modification example 2 The shape of the antenna element is not limited to the above-mentioned substantially square shape.
  • a circular feeding element 121A is used as the radiating element. Even in the case of such a feeding element 121A, when the area of the ground electrode GND is limited, the polarization direction of the feeding element 121A is tilted (0 ° ⁇ ⁇ 90 °) as in the above example. , It is possible to suppress the deterioration of antenna characteristics (frequency bandwidth, directivity).
  • the shortest distance between the center CP of the feeding element 121A in the polarization direction and the end of the ground electrode GND when the antenna module 100B is viewed in a plan view is L1B (first distance), and the feeding element 121 If the shortest distance between the center CP and the end of the ground electrode GND is L2B (second distance), then L1B> L2B. Further, assuming that the distance between the end of the feeding element 121A and the end of the ground electrode GND is L3B (third distance) at the distance L2B, the distance L3B is shorter than 1/2 of the side length of the feeding element 121A. Become.
  • (C) Modification 3 In the third modification, the antenna module 100C when the parasitic element 125 is arranged around the feeding element 121 as the radiating element will be described.
  • strip-shaped parasitic elements 125 are arranged so as to face each side of the substantially square feeding element 121.
  • the region including the entire feeding element 121 and the parasitic element 125 (broken line region RG1), the position of the end of the ground electrode GND and the feeding element 121 in which the distance from the center of the feeding element 121 is the shortest.
  • the feeding element 121 and the parasitic element 125 are arranged so that the angle ⁇ formed by the direction connecting the center and the polarization direction is 0 ° ⁇ ⁇ 90 °. With such a configuration, it is possible to suppress a decrease in antenna characteristics (frequency bandwidth, directivity).
  • the shortest distance between the center CP of the feeding element 121 in the polarization direction and the end of the ground electrode GND when the antenna module 100C is viewed in a plan view is L1C (first distance), and feeding is performed.
  • L1C first distance
  • L2C second distance
  • the distance between the end of the feeding element 121 and the end of the ground electrode GND is L3C (third distance) in the distance L2C
  • the distance L3C is from 1/2 of the length of one side of the outer edge of the region RG1. Will also be shorter.
  • FIG. 10 is a diagram for explaining the frequency bandwidth of the antenna module 100D according to the second embodiment and the antenna module 100 # 1 of the comparative example.
  • a high frequency signal is supplied to the feeding element 121 not only at the feeding point SP1 but also at the feeding point SP2.
  • the polarization direction of the radio wave radiated by the high frequency signal supplied to the feeding point SP1 and the polarization direction of the radio wave radiated by the high frequency signal supplied to the feeding point SP2 are orthogonal to each other. More specifically, in the antenna module 100 # 1 of the comparative example, the feeding point SP1 is arranged at a position offset in the positive direction of the Y axis from the center of the feeding element 121. As a result, when a high-frequency signal is supplied to the feeding point SP1, radio waves having the Y-axis direction as the polarization direction are radiated from the feeding element 121.
  • the feeding point SP2 is arranged at a position offset in the positive direction of the X-axis from the center of the feeding element 121.
  • a radio wave having the X-axis direction as the polarization direction is radiated from the feeding element 121.
  • the antenna module 100D of the second embodiment has a configuration in which the feeding element 121 of the antenna module 100 # 1 of the comparative example is arranged at an angle of 45 ° with respect to the ground electrode GND. From the antenna module 100D, radio waves whose polarization direction is the direction connecting the center of the feeding element 121 and the feeding point SP1 (first direction) and the direction connecting the center of the feeding element 121 and the feeding point SP2 (second direction). A radio wave whose polarization direction is (direction) is emitted.
  • the shortest distance along the polarization direction in the first direction between the center of the feeding element 121 and the end of the ground electrode GND is set as the first distance.
  • the shortest distance between the center of the feeding element 121A and the end of the ground electrode GND is set as the second distance, and the distance between the end of the ground electrode GND and the end of the feeding element 121 in the second distance is the third distance.
  • the first distance is longer than the second distance
  • the third distance is shorter than 1/2 the size of the feeding element 121.
  • the fourth distance is longer than the second distance.
  • the frequency bandwidth at which the reflection loss is smaller than 10 dB is 2.34 GHz. There is.
  • the frequency bandwidth is 1.40 GHz because the distance between the feeding element 121 and the end of the ground electrode GND is short.
  • the frequency bandwidth is 1.75 GHz for both polarizations.
  • the frequency band is slightly narrower than that of the polarization in the X-axis direction of the comparative example, but the difference between the frequency bands of the two polarizations is small, and the characteristics of each polarization are averaged.
  • FIG. 11 is a perspective perspective view of the antenna module 100E according to the third embodiment.
  • the antenna module 100E has a configuration in which four substantially square feeding elements 121 are arranged in a row along the X-axis direction so as to face the rectangular ground electrode GND.
  • the feeding elements 121 are arranged so that the polarization directions of the radio waves radiated from the feeding elements 121 are inclined with respect to each side of the ground electrode GND.
  • the feeding element 121 is arranged with respect to the ground electrode GND so that the angle ⁇ formed with the wave direction is 0 ° ⁇ ⁇ 90 °.
  • the shortest distance between the center of the feeding element 121 in the polarization direction and the end of the ground electrode GND when the antenna module 100E is viewed in a plan view is set as the first distance, and the center of the feeding element 121 and the ground electrode GND are set as the first distance. Assuming that the shortest distance to the end is the second distance, the first distance is longer than the second distance. Further, if the distance between the end of the feeding element 121 and the end of the ground electrode GND is the third distance in the second distance, the third distance is shorter than 1/2 of the size of the feeding element 121.
  • each feeding element 121 When the polarization direction of the radio wave radiated from each feeding element 121 is the Y-axis direction, the region of the ground electrode GND in the Y-axis direction of each feeding element 121 is limited. Further, when the polarization direction is the X-axis direction, a sufficient area of the ground electrode GND can be secured for the two central feeding elements 121, but the grounding electrode GND for the feeding element 121 arranged at the end. Area is limited.
  • the ground electrode GND is arranged in both the polarization direction and the direction orthogonal to the polarization direction. Area can be secured. As a result, it is possible to suppress the deterioration of the antenna characteristics of the feeding element 121 at the end, and also to suppress the deterioration of the characteristics of the entire array antenna.
  • the distance D1 between the adjacent power feeding elements 121 is set to be wider than 1/2 of the wavelength of the radiated radio wave.
  • the distance between adjacent radiating elements is set to 1/2 of the wavelength of the radio wave radiated from the radiating element.
  • the isolation between adjacent elements can be enhanced by making the distance between adjacent elements wider than in the general case.
  • the feeding elements at the ends and both ends of the dielectric substrate in the X-axis direction in FIG. may be 1/4 or less of the wavelength of the emitted radio wave.
  • the feeding elements at both ends of the array antenna correspond to the "first radiating element” of the present disclosure
  • the feeding elements adjacent to the feeding elements at both ends correspond to the "second radiating element” of the present disclosure. To do.
  • FIG. 12 is a perspective view of the antenna module 100F according to the fourth embodiment
  • FIG. 13 is a cross-sectional perspective view of the ZX plane including the bent portion of the antenna module 100F.
  • the dielectric substrate 130B has a substantially L-shaped cross section, and the Z-axis direction of FIGS. 12 and 13 is the normal direction.
  • the flat plate-shaped substrate 133A (second substrate), the flat plate-shaped substrate 133B (first substrate) whose normal direction is the X-axis direction of FIGS. 12 and 13, and the two substrates 133A and 133B are connected. Includes a bent portion 135.
  • feeding elements 121 are arranged in a row in the Y-axis direction on each of the two boards 133A and 133B.
  • the feeding element 121 is arranged so as to be exposed on the surfaces of the substrates 133A and 133B, but as shown in FIG. 2 of the first embodiment, the feeding element is described.
  • 121 may be arranged inside the dielectric substrate of the substrates 133A and 133B.
  • the substrate 133A has a substantially rectangular shape, and four feeding elements 121 are arranged in a row on the surface thereof. Further, the RFIC 110 is connected to the lower surface side (the surface in the negative direction of the Z axis) of the substrate 133A. The RFIC 110 is mounted on the surface 21 of the mounting substrate 20 via the solder bumps 180. The RFIC 110 may be mounted on the mounting board 20 by using a multi-pole connector instead of the solder connection.
  • the substrate 133B is connected to the bent portion 135 bent from the substrate 133A, and the inner surface thereof (the surface in the negative direction of the X-axis) is arranged so as to face the side surface 22 of the mounting substrate 20.
  • the substrate 133B has a structure in which a plurality of notched portions 136 are formed on a dielectric substrate having a substantially rectangular shape, and the bent portion 135 is connected to the notched portions 136.
  • the direction that is, the Z axis
  • the protruding portions 134A and 134B are formed so as to project in the positive direction of the above.
  • the positions of the protruding ends of the protruding portions 134A and 134B are located in the positive direction of the Z axis with respect to the lower surface side (the side facing the mounting board 20) of the substrate 133A.
  • the ground electrode GND is arranged on the surface or inner layer facing the mounting substrate 20.
  • a high frequency signal from the RFIC 110 is transmitted to the power feeding element 121 of the substrate 133A via the power feeding wiring 170. Further, a high frequency signal from the RFIC 110 is transmitted to the power feeding element 121 of the substrate 133B via the power feeding wiring 171.
  • the power feeding wiring 171 is connected from the RFIC 110 to the power feeding element 121 arranged on the substrate 133B through the inside of the dielectric of the substrates 133A and 133B and the inside (or surface) of the dielectric of the bent portion 135.
  • One feeding element 121 is arranged in each of the protruding portions 134A at the end of the substrate 133B. Further, two power feeding elements 121 are arranged on the protruding portion 134B in the central portion. Since the notch 136 is formed in the substrate 133B, the region of the ground electrode GND coupled to each feeding element 121 is greatly limited in the feeding element 121 arranged on the substrate 133B. In the example of FIG. 12, in particular, the dimensions of the substrate 133B in the Z-axis direction and the dimensions between the feeding element 121 and the notch 136 may be limited.
  • the polarization direction of the radio wave radiated from each feeding element 121 is inclined with respect to each side of the ground electrode GND of the substrate 133B. Be placed. That is, in each feeding element 121, the angle ⁇ formed by the direction connecting the position of the end of the ground electrode GND, which is the shortest distance from the center of the feeding element 121, and the center of the feeding element 121, and the polarization direction is 0.
  • the feeding element 121 is arranged so that ° ⁇ ⁇ 90 °.
  • the shortest distance between the center of the feeding element 121 in the polarization direction and the end of the ground electrode GND is set as the first distance for each feeding element 121.
  • the first distance is longer than the second distance.
  • the distance between the end of the feeding element 121 and the end of the ground electrode GND in the second distance is the third distance
  • the third distance is shorter than 1/2 of the side length of the feeding element 121.
  • the feeding element 121 arranged on the substrate 133A is arranged so that the polarization direction is parallel to the side of the ground electrode GND in the X-axis direction, but the substrate 133A
  • the feeding element 121 may be arranged at an angle as in FIG. 11 of the third embodiment.
  • FIG. 14 is a perspective view of the antenna module 100G of the modified example 4.
  • the dielectric substrate 130C has two substrates 133A and 133B, and protrusions 134C and 134D are formed on the substrates 133A and 133B, respectively.
  • the protruding portion 134D is formed at a position corresponding to the protruding portion 134C, and the bent portion 135 is formed between the cutout portion 137 of the substrate 133A and the cutout portion 136 of the substrate 133B.
  • the power feeding element 121 is arranged at a position where at least a part thereof overlaps the protruding portion on each substrate.
  • each feeding element 121 is individually arranged in the corresponding protrusion, the area of the ground electrode GND coupled with the feeding element 121 is greatly limited. Therefore, in the antenna module 100G, for both the feeding element 121 arranged on the substrate 133A and the feeding element 121 arranged on the substrate 133B, the polarization direction of the radio waves radiated from each feeding element 121 is the grounding of the substrate.
  • the electrodes are arranged so as to be inclined with respect to each side of the GND.
  • the position of the end of the ground electrode GND and the feeding element 121 where the distance from the center of the feeding element 121 is the shortest is the same as that of the feeding element 121 on the substrate 133B.
  • the power feeding element 121 is arranged so that the angle ⁇ formed by the direction connecting the center and the polarization direction (second direction) is 0 ° ⁇ ⁇ 90 °.
  • the shortest distance between the center of the feeding element 121 in the polarization direction and the end of the ground electrode GND is set to the fifth distance for each feeding element 121.
  • the fifth distance is longer than the sixth distance.
  • the seventh distance is shorter than 1/2 of the length of the side of the feeding element 121.
  • the region of the ground electrode GND in the polarization direction and the direction orthogonal to the polarization direction can be expanded, so that deterioration of the antenna characteristics can be suppressed.
  • FIG. 15 is a perspective view of the antenna module 100H of the modified example 5.
  • the substrate 133A having the Z-axis direction as the normal direction is formed in a substantially square flat plate shape, and is formed on the side side along the X-axis.
  • the substrate 133C is also formed on the side along the Y axis.
  • the substrate 133C has the same shape as the substrate 133B, and a plurality of protrusions 134C are formed.
  • the substrate 133C is connected to the substrate 133A by the bent portion 135C.
  • the power feeding element 121 is arranged so that at least a part thereof overlaps the protrusion 134C.
  • the antenna device 120C can radiate radio waves in the X-axis direction and the Y-axis direction.
  • the area of the ground electrode GND coupled to each feeding element 121 by the notch 136 is greatly limited as in the feeding element 121 arranged on the substrate 133B. Will be done. Therefore, in the antenna module 100H, the polarization directions of the radio waves radiated from each feeding element 121 are arranged so as to be inclined with respect to each side of the ground electrode GND of the substrate 133C.
  • the direction connecting the position of the end of the ground electrode GND, which has the shortest distance from the center of the feeding element 121, and the center of the feeding element 121, and the polarization direction ( The power feeding element 121 is arranged so that the angle ⁇ formed with the second direction) is 0 ° ⁇ ⁇ 90 °.
  • the shortest distance between the center of the feeding element 121 in the polarization direction and the end of the ground electrode GND is set to the fifth distance for each feeding element 121.
  • the fifth distance is longer than the sixth distance.
  • the seventh distance is shorter than 1/2 of the length of the side of the feeding element 121.
  • the region of the ground electrode GND in the polarization direction and the direction orthogonal to the polarization direction can be expanded, so that deterioration of the antenna characteristics can be suppressed.
  • FIG. 15 an example in which the feeding element is arranged on the substrate 133B and the substrate 133C having the X-axis and the Y-axis as the normal direction is shown, but in addition to this, the Z-axis direction is the normal direction.
  • a power feeding element may be further arranged on the substrate 133A to radiate radio waves in three directions.
  • FIG. 16 is a perspective view of the antenna module 100Y of the modified example 6.
  • the dielectric substrate 130Y has two substrates 133A and 133B, and the substrates 133A and 133B are not formed with cutouts. Then, the substrate 133A and the substrate 133B are connected by the bent portion 135.
  • Four power feeding elements 121 are arranged along the Y-axis direction on each of the substrates 133A and 133B.
  • the polarization direction of the radio waves radiated from each feeding element 121 of both the feeding element 121 arranged on the substrate 133A and the feeding element 121 arranged on the substrate 133B is the polarization direction of each substrate. It is arranged so as to be inclined with respect to the side along the Y axis.
  • the power feeding element 121 is arranged so that the angle ⁇ formed by the direction connecting the above and the polarization direction is 0 ° ⁇ ⁇ 90 °.
  • the shortest distance between the center of the feeding element 121 and the end of the ground electrode GND in the polarization direction is set as the fifth distance, and the feeding element is set.
  • the fifth distance is longer than the sixth distance.
  • the seventh distance is shorter than 1/2 of the length of the side of the feeding element 121.
  • the region of the ground electrode GND in the polarization direction and the direction orthogonal to the polarization direction can be expanded, so that deterioration of the antenna characteristics can be suppressed.
  • the feeding element formed on the substrate 133B corresponds to the "first radiating element” in the present disclosure
  • the feeding element formed on the substrate 133A or the substrate 133C is disclosed in the present disclosure.
  • FIG. 17 is a perspective perspective view of the antenna module 100I according to the fifth embodiment.
  • a feeding element 122 capable of radiating a radio wave having a frequency different from the radio wave radiated from the feeding element 121 is arranged between two adjacent feeding elements 121. That is, the antenna module 100I is a dual band type antenna module.
  • the feeding element 122 is a patch antenna having a substantially square flat plate shape.
  • the frequency of the radio wave radiated from the feeding element 122 (for example, 39 GHz) is higher than the frequency of the radio wave radiated from the feeding element 121 (for example, 28 GHz). Therefore, the size of the feeding element 122 is smaller than the size of the feeding element 121.
  • the feeding element 121 on the low frequency side which has a larger size, is the ground electrode GND. Will be limited to the area of. Therefore, in the antenna module 100I, by arranging the feeding element 121 at an angle with respect to the ground electrode, it is possible to suppress deterioration of the antenna characteristics of the feeding element 121.
  • the small-sized power feeding element 122 on the high frequency side may also be arranged at an angle in the same manner as the power feeding element 121.
  • Modification 7 In the fifth embodiment, a case where another radiating element that emits radio waves of different frequencies is a flat plate-shaped patch antenna has been described. In the modified example 7, the case where the other radiating element is a type of radiating element other than the patch antenna will be described.
  • FIG. 18 is a perspective perspective view of 100J of the antenna module of the modified example 7.
  • a dipole antenna 123 is arranged between two adjacent feeding elements 121.
  • the feeding element 121 which is a patch antenna
  • the feeding element 121 is arranged at an angle with respect to the ground electrode.
  • the radiating element arranged between the two feeding elements 121 may be other than the patch antenna and the dipole antenna.
  • the "feeding element 122" and the “dipole antenna 123” correspond to the "third radiating element” of the present disclosure.
  • FIG. 19 is a diagram showing an antenna module 100K according to the sixth embodiment.
  • the upper part (FIG. 19A) is a perspective perspective view of the antenna module 100K
  • the lower part (FIG. 19B) is a sectional perspective view of the antenna module 100K.
  • the antenna module 100K further includes a non-feeding element 124 arranged in a layer different from the feeding element 121 as a radiating element, in addition to the configuration of the first embodiment described with reference to FIG.
  • the feeding element 121 is arranged inside the dielectric substrate 130, and the non-feeding element 124 is arranged on the upper surface 131 side of the dielectric substrate 130 with respect to the feeding element 121 facing the feeding element 121.
  • the non-feeding element 124 may be arranged so as to be exposed on the upper surface 131 of the dielectric substrate 130, or may be arranged inside the dielectric substrate 130.
  • the size of the non-feeding element 124 is almost the same as the size of the feeding element 121. Further, when the antenna module 100K is viewed in a plan view from the normal direction, the non-feeding element 124 is arranged so as to overlap the feeding element 121. By arranging such a non-feeding element 124, the frequency bandwidth of the antenna module 100K can be expanded.
  • the feeding element 121 is arranged at an angle with respect to the ground electrode GND as in the case of the first embodiment.
  • the non-feeding element 124 is also arranged at an angle with respect to the ground electrode GND as in the feeding element 121.
  • FIG. 20 is a diagram showing the antenna module 100L of the modified example 8.
  • the upper part (FIG. 20A) is a perspective perspective view of the antenna module 100L
  • the lower part (FIG. 20B) is a sectional perspective view of the antenna module 100L.
  • the antenna module 100L includes a non-feeding element 124A arranged in a layer different from the feeding element 121 as a radiating element in addition to the configuration of the first embodiment described with reference to FIG.
  • the non-feeding element 124A is arranged in the layer between the feeding element 121 and the ground electrode GND so as to face the feeding element 121.
  • the entire feeding element 121 is arranged so as to overlap the non-feeding element 124A.
  • the power feeding wiring 170 penetrates the non-feeding element 124A and is connected to the power feeding element 121.
  • the size of the non-feeding element 124A is larger than the size of the feeding element 121. Therefore, the resonance frequency of the non-feeding element 124A is lower than the resonance frequency of the feeding element 121.
  • a high-frequency signal having a frequency corresponding to the resonance frequency of the non-feeding element 124A is supplied from the RFIC 110 to the feeding wiring 170, the feeding wiring 170 and the non-feeding element 124A are electromagnetically coupled, and radio waves are radiated from the non-feeding element 124A. Will be done.
  • the larger size non-feeding element 124A is more limited to the area of the ground electrode GND. Therefore, in the antenna module 100L, by arranging the non-feeding element 124A at an angle with respect to the ground electrode, it is possible to suppress deterioration of the antenna characteristics of the non-feeding element 124A. In the antenna module 100L, the feeding element 121 is also tilted and arranged in the same manner as the non-feeding element 124A.
  • FIG. 21 is a diagram showing the antenna module 100M of the modified example 9.
  • the upper row (FIG. 21 (a)) is a plan perspective view of the antenna module 100M
  • the lower row (FIG. 21 (b)) is a cross-sectional perspective view of the antenna module 100M.
  • the antenna module 100M includes a feeding element 121 and a feeding element 121A as radiation elements.
  • the feeding element 121A is arranged in a layer between the feeding element 121 and the ground electrode GND so as to face the feeding element 121.
  • the entire feeding element 121 is arranged so as to overlap the feeding element 121A.
  • the size of the power feeding element 121A is larger than the size of the power feeding element 121. Therefore, the resonance frequency of the feeding element 121A is lower than the resonance frequency of the feeding element 121. Therefore, when a high-frequency signal is supplied to the feeding element 121A, a radio wave having a frequency lower than the frequency of the radio wave radiated from the feeding element 121 is radiated from the feeding element 121A. Further, in the example of FIG. 21, two feeding points are provided for each of the feeding element 121 and the feeding element 121A. That is, the antenna module 100M is a dual band type and dual polarization type antenna module.
  • a high frequency signal is supplied to the feeding point SP1 via the feeding wiring 1701 and a high frequency signal is supplied to the feeding point SP2 via the feeding wiring 1702 to the feeding element 121.
  • the power supply wiring 1701 and the power supply wiring 1702 are connected to the power supply element 121 from the RFIC 110 through the power supply element 121A.
  • the power feeding element 121A is supplied with a high frequency signal to the feeding point SP3 via the feeding wiring 1703, and is supplied to the feeding point SP4 via the feeding wiring 1704.
  • feeding points are arranged so that the two polarizations are orthogonal to each other.
  • each side of the feeding element 121 and the feeding element 121A is arranged so as to be inclined with respect to each side of the rectangular ground electrode GND. That is, when the antenna module 100M is viewed in a plan view, the direction connecting the position of the end of the ground electrode GND, which is the shortest distance from the center of the feeding element, and the center of the feeding element, and the polarization direction in each feeding element.
  • Each feeding element is arranged so that the angle ⁇ between the two is 0 ° ⁇ ⁇ 90 °. In the example of FIG. 21, each feeding element is arranged at an angle of 45 ° with respect to the ground electrode GND.
  • FIG. 22 is a perspective perspective view of the antenna module 100 # 2 of the comparative example of the modified example 9.
  • each side of the feeding elements 121 and 121A is arranged so as to be parallel to the side of the ground electrode GND.
  • radio waves having the polarization direction in the Y-axis direction are radiated from the feeding element 121 and the feeding element 121A.
  • radio waves having the polarization direction in the X-axis direction are radiated from the feeding element 121 and the feeding element 121A.
  • the distance from each feeding element when the antenna module 100 # 2 is viewed in a plan view to the end of the ground electrode GND is sufficient.
  • the distance to the end of the ground electrode GND is limited as compared with the X-axis direction. Therefore, with respect to polarization in the Y-axis direction, antenna characteristics (frequency bandwidth and directivity) may be lower than those in the X-axis direction.
  • the distance from the feeding element to the end of the ground electrode GND can be secured for both orthogonal polarizations, so that one of the polarizations can be polarized. It is possible to suppress the extreme deterioration of the characteristics.
  • Modification example 10 In the modified example 10, an example of an array antenna in which a plurality of stack-type antenna modules are arranged one-dimensionally will be described.
  • FIG. 23 is a perspective perspective view of the antenna module 100N of the modified example 10.
  • the antenna module 100N has a configuration in which four radiation elements (feeding elements 121, 121A) in the antenna module 100M shown in the modification 9 are arranged along the X-axis direction.
  • the adjacent radiating elements are arranged with an interval D2.
  • the interval D2 is set to be wider than 1/2 of the wavelength of the radio wave on the low frequency side radiated from the feeding element 121A.
  • each feeding element can radiate radio waves in two polarization directions, but each feeding element radiates radio waves in one polarization direction. It may be configured to be.
  • 10 communication device 20 mounting board, 100, 100A to 100N, 100Y, 100 #, 100 # 1,100 # 2 antenna module, 110 RFID, 111A to 111D, 113A to 113D, 117 switch, 112AR to 112DR low noise amplifier, 112AT ⁇ 112DT power amplifier, 114A, 114D attenuator, 115A, 115D phase shifter, 116 signal synthesizer / demultiplexer, 118 mixer, 119 amplifier circuit, 120, 120A to 120C, 120Y antenna device, 121, 121A, 121 #, 122, 122 # power feeding element, 123 dipole antenna, 124, 124A non-feeding element, 125 parasitic element, 130, 130B, 130C, 130Y dielectric substrate, 133A to 133C substrate, 134 boundary part, 134A to 134D protruding part, 135, 135C bent part, 136,137 notch part, 140,180 solder bump, 170,171,1701-1704 power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

アンテナモジュール(100)は、第1方向を偏波方向とする電波を放射可能な給電素子(121)と、給電素子(121)に対向して配置される接地電極(GND)とを備える。アンテナモジュール(100)を法線方向から平面視した場合に、給電素子(121)の中心と接地電極(GND)の端部との間の第1方向に沿った最短距離を第1距離とし、給電素子(121)の中心と接地電極(GND)の端部との間の最短距離を第2距離とし、第2距離において接地電極(GND)の端部と給電素子(121)の端部との間の距離を第3距離とすると、第1距離は第2距離よりも長く、かつ、第3距離は給電素子(121)のサイズの1/2よりも短い。

Description

アンテナモジュールおよびそれを搭載した通信装置
 本開示は、アンテナモジュールおよびそれを搭載した通信装置に関し、より特定的には、平板状の放射素子を有するアンテナモジュールにおける放射素子の配置に関する。
 国際公開第2016/063759号(特許文献1)には、矩形状の誘電体基板の一方の面に平板状のパッチアンテナ(放射素子)が配置され、他方の面に高周波半導体素子が配置されたアンテナモジュールが開示されている。
国際公開第2016/063759号
 国際公開第2016/063759号(特許文献1)に開示されるアンテナモジュールは、たとえば、スマートフォンなどの携帯端末のアンテナとして用いられる場合がある。このようなパッチアンテナを用いたアンテナモジュールにおいては、放射素子とそれに対向して配置された接地電極との間の電磁界結合により、放射素子から電波が放射される。
 理想的なパッチアンテナにおいては、接地電極は放射素子に対して無限大の大きさを有することが前提とされている。しかしながら、実際には基板サイズの制約により接地電極を十分に大きくできないため、一般的には、理想的な場合に比べるとアンテナ特性は劣化し得る。
 携帯端末においては、さらなる小型化および薄型化が要求されており、携帯端末に用いられるアンテナモジュールについてもさらなる小型化が必要となっている。アンテナモジュールの小型化により誘電体基板のサイズが制限されると、基板に含まれる接地電極の面積も制限されてしまう。そのため、放射素子と接地電極との間の電磁界結合が十分に確保できず、アンテナ特性が悪化することが懸念される。
 本開示は、このような課題を解決するためになされたものであって、その目的は、パッチアンテナを用いたアンテナモジュールにおいて、接地電極の面積が制限される場合に、アンテナ特性の低下を抑制することである。
 本開示のある局面に従うアンテナモジュールは、第1方向を偏波方向とする電波を放射可能な第1放射素子と、第1放射素子に対向して配置される第1接地電極とを備える。第1放射素子を法線方向から平面視した場合に、第1放射素子の中心と第1接地電極の端部との間の第1方向に沿った最短距離を第1距離とし、第1放射素子の中心と第1接地電極の端部との間の最短距離を第2距離とし、第2距離において第1接地電極の端部と第1放射素子の端部との間の距離を第3距離とすると、第1距離は第2距離よりも長く、かつ、第3距離は第1放射素子のサイズの1/2よりも短い。
 本開示に従うアンテナモジュールにおいては、アンテナモジュールを平面視したときに、放射素子の中心と接地電極の端部との間の第1方向に沿った最短距離を第1距離とし、放射素子の中心と接地電極の端部との間の最短距離を第2距離とし、第2距離において接地電極の端部と放射素子の端部との間の距離を第3距離とすると、第1距離は第2距離よりも長く、かつ、第3距離は放射素子のサイズの1/2よりも短くなるように、接地電極に対して放射素子が配置される。これにより、偏波方向および偏波方向に直交する方向の双方において、アンテナモジュールを平面視したときの放射素子と接地電極の端部との距離をある程度確保することが可能となる。したがって、パッチアンテナを用いたアンテナモジュールにおいて、接地電極の面積が制限された場合において、アンテナ特性の低下を抑制することができる。
実施の形態1に従うアンテナモジュールが適用される通信装置のブロック図である。 実施の形態1に従うアンテナモジュールを示す図である。 実施の形態1においてアンテナ特性が改善するメカニズムを概略的に説明するための図である。 実施の形態1および比較例における周波数帯域幅を説明するための図である。 実施の形態1および比較例における反射損失を示す図である。 接地電極の形状と放射素子の配置の指向性への影響を説明するための図である。 変形例1のアンテナモジュールを示す図である。 変形例2のアンテナモジュールを示す図である。 変形例3のアンテナモジュールを示す図である。 実施の形態2に従うアンテナモジュールと比較例との周波数帯域幅を説明するための図である。 実施の形態3に従うアンテナモジュールの平面透視図である。 実施の形態4に従うアンテナモジュールの斜視図である。 図12のアンテナモジュールの断面透視図である。 変形例4のアンテナモジュールの斜視図である。 変形例5のアンテナモジュールの斜視図である。 変形例6のアンテナモジュールの斜視図である。 実施の形態5に従うアンテナモジュールの平面透視図である。 変形例7のアンテナモジュールの平面透視図である。 実施の形態6に従うアンテナモジュールを示す図である。 変形例8のアンテナモジュールを示す図である。 変形例9のアンテナモジュールを示す図である。 変形例9の比較例のアンテナモジュールを示す図である。 変形例10のアンテナモジュールの平面透視図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の基本構成)
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナ装置120から放射するとともに、アンテナ装置120で受信した高周波信号をダウンコンバートしてBBIC200にて信号を処理する。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数の給電素子121(放射素子)のうち、4つの給電素子121に対応する構成のみ示され、同様の構成を有する他の給電素子121に対応する構成については省略されている。なお、図1においては、アンテナ装置120が二次元のアレイ状に配置された複数の給電素子121で形成される例を示しているが、給電素子121は必ずしも複数である必要はなく、1つの給電素子121でアンテナ装置120が形成される場合であってもよい。また、複数の給電素子121が一列に配置された一次元アレイであってもよい。本実施の形態においては、給電素子121は、略正方形の平板状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる給電素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各給電素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各給電素子121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する給電素子121毎に1チップの集積回路部品として形成されてもよい。
 (アンテナモジュールの構成)
 次に、図2を用いて、実施の形態1におけるアンテナモジュール100の構成の詳細を説明する。図2において、上段(図2(a))はアンテナモジュール100の平面透視図であり、下段(図2(b))はアンテナモジュールの断面透視図である。
 図2においては、説明を容易にするために、アンテナモジュール100が放射素子として1つの給電素子121を有する場合を例として説明するが、後述するように、給電素子は2以上であってもよく、さらに給電素子が二次元配列されていてもよい。アンテナモジュール100は、給電素子121およびRFIC110に加えて、誘電体基板130と、給電配線170と、接地電極GNDとを含む。なお、以降の説明において、誘電体基板130の法線方向(電波の放射方向)をZ軸方向とし、Z軸方向に垂直な面をX軸およびY軸で規定する。また、各図におけるZ軸の正方向を上方側、負方向を下方側と称する場合がある。
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシまたはポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130は必ずしも多層構造でなくてもよく、単層の基板であってもよい。なお、図2(a)および以降で説明する平面透視図においては、誘電体基板130および給電配線は省略されている。
 誘電体基板130は略矩形形状を有しており、その上面131(Z軸の正方向の面)あるいは内部の層に給電素子121が配置されている。給電素子121は、略正方形の平面形状を有するパッチアンテナである。給電素子121の各辺は、誘電体基板130の長辺および短辺(すなわち、図中のX軸およびY軸)に対して所定の角度だけ傾いて配置される。図2の例においては、所定の角度は略45°である。
 誘電体基板130において給電素子121よりも下面132(Z軸の負方向の面)側の層に、給電素子121に対向して、平板形状の接地電極GNDが配置される。誘電体基板130の下面132には、はんだバンプ140を介してRFIC110が実装されている。なお、RFIC110は、はんだ接続に代えて、多極コネクタを用いて誘電体基板130に接続されてもよい。
 RFIC110から、給電配線170を介して、給電素子121の給電点SP1に高周波信号が供給される。図2の例においては、給電点SP1は、給電素子121の中心(対角線の交点)CPを通り、給電素子121の辺に平行な破線CL1の方向(第1方向)にオフセットした位置に配置されている。給電点SP1をこのような位置に配置することよって、上記の第1方向を偏波方向とする電波が放射される。
 給電配線170は、誘電体基板130の層間に形成された配線パターン、および層を貫通するビアによって形成されている。なお、アンテナモジュール100において、放射素子、配線パターン、電極、およびビア等を構成する導体は、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、および、これらの合金を主成分とする金属で形成されている。
 給電素子121は、矩形形状の接地電極GNDの各辺に対して、給電素子121の各辺が傾くように配置されている。すなわち、アンテナモジュール100を平面視したときに給電素子121の中心CPからの距離が最短となる接地電極GNDの端部の位置P1と給電素子121の中心CPとを結ぶ方向と、偏波方向(第1方向)とのなす角度θが0°<θ<90°となるように、給電素子121が配置されている。
 また、接地電極GNDと給電素子121との間の距離で表現すると、アンテナモジュール100を平面視した場合に、給電素子121の中心CPと接地電極GNDの端部との間の第1方向に沿った最短距離を距離L1(第1距離)とし、給電素子121の中心CPと接地電極GNDの端部との間の最短距離を距離L2(第2距離)とすると、距離L1は距離L2よりも長い(L1>L2)。また、距離L2において給電素子121の端部と接地電極GNDの端部との間の最短距離を距離L3(第3距離)とすると、距離L3は給電素子121のサイズ(辺の長さ)の1/2よりも短い。
 本実施の形態1のアンテナモジュール100においては、接地電極GNDに対して給電素子121を傾けて配置することによってアンテナ特性の悪化を抑制する。以下、図3を用いて、このような給電素子121の配置によってアンテナ特性の悪化を抑制できるメカニズムについて説明する。
 図3において、上段(図3(a))は比較例のアンテナモジュール100#を示し、下段(図3(b))は実施の形態1のアンテナモジュール100を示す。図3(a)および図3(b)の右側の図は、偏波方向に沿った断面における接地電極GNDと給電素子121との間の電気力線を示したものである。
 比較例のアンテナモジュール100#においては、各辺がX軸およびY軸と平行となるように給電素子121#が配置されている。比較例においては、給電点SP1が給電素子121#の中心からY軸の正方向にオフセットした位置に配置されており、給電素子121#からY軸方向を偏波方向とする電波が放射される。
 給電素子121#では、Y軸方向の端部において電圧の振幅が最大となり、それによって、当該端部において給電素子121#と接地電極GNDとの間の電界強度も最大となる。しかしながら、アンテナモジュール100#を平面視した場合に、偏波方向(Y軸方向)における給電素子121#の端部と接地電極GNDの端部との距離LYが短いため、給電素子121#と接地電極GNDとの間に生じる電気力線の量が制限されてしまい、給電素子121#と接地電極GNDとの間の結合が十分に確保できなくなる。これにより、接地電極GNDに対する給電素子121#の静電容量が十分に確保できず、周波数帯域幅が狭くなってしまう。
 一方、図3(b)の実施の形態1のアンテナモジュール100においては、給電素子121を接地電極GNDに対して傾けて配置することによって、偏波方向(線CL1の方向:第1方向)における給電素子121の端部と接地電極GNDの端部との距離LYAが比較例の場合の距離LYよりも長くなり、比較例の場合に比べて給電素子121と接地電極との間の電界による結合が強くなる。これにより、接地電極GNDに対する給電素子121の静電容量も比較例の場合に比べて大きくなるため、比較例の場合よりも周波数帯域幅を広くすることができる。
 また、偏波方向に直交する方向における給電素子の端部と接地電極GNDの端部との間の距離は、放射される電波のピークゲイン(指向性)に影響を与えることが知られており、給電素子の端部と接地電極GNDの端部との間の距離が長いほどピークゲインは大きくなる。これは、偏波方向に直交する方向に発生する磁界による給電素子121と接地電極との間の結合が変化するためである。
 偏波方向に直交する方向における給電素子の端部と接地電極GNDの端部との間の距離は、比較例の場合が最大(距離LX)であり、比較例の状態からの傾きθが大きくなるにしたがって徐々に小さくなる。上述のように、偏波方向の給電素子の端部と接地電極GNDの端部との間の距離については、θ=0°で最小となりθ=90°で最大となるのに対して、偏波方向に直交する方向における給電素子と接地電極GNDとの間の距離は、θ=0°で最大となりθ=90°で最小となる。すなわち、接地電極GNDに対する給電素子の傾きに対して、周波数帯域幅とピークゲインとはトレードオフの関係となる。そのため、実施の形態1においては、接地電極GNDに対する給電素子の傾きθは、所望の周波数帯域幅およびピークゲインを考慮して、0°<θ<90°の範囲となるように設定される。なお、図2および図3の例においては、周波数帯域幅およびピークゲインの双方が中程度となるように、θ=45°に設定されている。この場合、給電素子121と接地電極GNDとの間の偏波方向の距離LYAは、偏波方向と直交する方向の距離LXAとほぼ同じ長さとなる。
 このように、実施の形態1においては、誘電体基板130および接地電極GNDの形状(面積)が制限される場合において、給電素子121と接地電極GNDとの間の最短距離が所定距離よりも短くなる場合には、上記のように接地電極GNDに対して給電素子121を傾けて配置することによって、周波数帯域幅およびピークゲインのいずれもが極端に小さくなることが抑制される。これにより、接地電極の面積が制限された場合におけるアンテナ特性の低下を抑制することができる。
 特に、給電素子121から放射される電波の波長をλとした場合、図2で示した距離L3がλ/4よりも短い場合、給電素子121と接地電極GNDとの間の電気力線の量が多くなるため、アンテナ特性の低下抑制効果が大きくなる。
 さらに、誘電体基板の実効誘電率が反映された電波の波長をλ’とした場合、距離L3がλ’/4よりも短い場合には、給電素子121と接地電極GNDとの間の電気力線の量がさらに多くなるため、アンテナ特性の低下抑制効果がより大きくなる。
 また、給電素子121と接地電極GNDとの間の積層方向の距離(Z方向の厚み)d1の2倍よりも距離L3が短い場合には、給電素子121と接地電極GNDとの間の電気力線の量がより一層多くなるため、アンテナ特性の低下抑制効果がさらに大きくなる。
 次に図4~図6を用いて、実施の形態1のアンテナモジュール100のアンテナ特性と、比較例のアンテナモジュールのアンテナ特性との比較について説明する。
 図4および図5は、実施の形態1および比較例における周波数帯域幅についてシミュレーションした結果を説明するための図である。図4においては、参考として、接地電極GNDの面積が十分に広い略正方形の誘電体基板に給電素子が配置された場合の周波数帯域幅についても示されている。ここでは、給電素子の反射損失が10dB以下となる周波数帯域幅が示されている。また、図5は、実施の形態1および比較例における反射損失を示すグラフであり、図5の右図は、左図のグラフの領域RG2を拡大して示したものである。図5において、実線LN10が実施の形態1の場合の反射損失を示し、破線LN11が比較例の場合の反射損失を示している。
 図4および図5を参照して、略正方形の誘電体基板にY軸方向を偏波方向とする給電素子が配置された参考例において、周波数帯域幅は1.98GHzである。この状態から、比較例のように接地電極のY軸方向(偏波方向)の寸法を短くすると、周波数帯域幅は1.36GHzに低下する。
 比較例と同じ形状の接地電極に対して給電素子を傾けた実施の形態1においては、反射損失が低減され、周波数帯域幅が1.51GHzに改善されている。
 図6は、誘電体基板(接地電極)の形状および給電素子の配置による指向性への影響を説明するための図である。図6においては、左列に正方形基板の場合が示され、右列に長方形基板の場合が示されている。また、図6の上段には、誘電体基板の辺と給電素子の辺が平行とされた比較例の場合が示されており、下段には誘電体基板に対して給電素子が傾けられた実施の形態1の場合について示されている。なお、上述のように、指向性については偏波方向と直交する方向における、給電素子と接地電極の端部との距離が影響するため、上段右列の比較例においては、誘電体基板の偏波方向と直交する方向の寸法が短くされている。
 図6を参照して、正方形基板の場合(左列)には、給電素子の角度が異なっていてもいずれも指向性は6.5dBiと、同等の値となっている。これは、接地電極の端部と給電素子との距離が十分に大きいこと、および、偏波方向の距離に対する偏波方向と直交する方向の距離の比率がいずれも同じであるためと考えられる。
 一方で、接地電極の一方の辺を短くした長方形基板の場合(右列)には、比較例では指向性は5.8dBi、実施の形態1においては指向性は6.3dBiとなっており、実施の形態1のほうが改善されている。比較例の場合、偏波方向における接地電極の端部と給電素子との距離は下段の実施の形態1の場合よりも長いが、偏波方向に直交する方向については実施の形態1の場合よりも短くなっている。すなわち、比較例においては、偏波方向の距離に対する偏波方向と直交する方向の距離の比率が、実施の形態1の場合に比べて小さくなっている。
 このように、実施の形態1のように接地電極に対して給電素子を傾けて配置し、偏波方向の距離に対する偏波方向と直交する方向の距離の比率をバランスさせることで、指向性を改善することが可能となる。
 以上のように、平板形状の給電素子を用いたアンテナモジュールにおいて、接地電極の面積が制限される場合に、給電素子の中心からの距離が最短となる接地電極の端部の位置と給電素子の中心とを結ぶ方向と、放射される電波の偏波方向とのなす角度が、0°より大きくかつ90°より小さくなるように、接地電極に対して給電素子を配置することによって、アンテナ特性(周波数帯域幅,指向性)の低下を抑制することが可能となる。
 (変形例)
 図7~図9を用いて実施の形態1の変形例について説明する。
 (a)変形例1
 変形例1においては、給電素子121が接地電極GNDの中心ではなく端部側に配置された場合のアンテナモジュール100Aについて説明する。このようなアンテナモジュール100Aでは、偏波方向における給電素子121と接地電極GNDとの間の2つの距離が異なる。この場合、アンテナ特性については、短い方の距離によって制限を受ける。
 アンテナモジュール100Aにおいても、図7中の給電素子121の中心CPと接地電極GNDの端部の位置P1とを結ぶ方向と、偏波方向(線CL1の方向)とのなす角度θが0°<θ<90°となるように給電素子121が配置されている。これによって、実施の形態1と同様にアンテナ特性(周波数帯域幅,指向性)の低下を抑制することが可能となる。
 なお、変形例1においても、アンテナモジュール100Aを平面視したときの、偏波方向の給電素子121の中心CPと接地電極GNDの端部との間の最短距離をL1A(第1距離)とし、給電素子121の中心CPと接地電極GNDの端部との間の最短距離をL2A(第2距離)とすると、L1A>L2Aとなる。また、距離L2Aにおいて給電素子121の端部と接地電極GNDの端部との間の距離をL3A(第3距離)とすると、距離L3Aは給電素子121の辺の長さの1/2よりも短くなる。
 (b)変形例2
 アンテナ素子の形状については、上記のような略正方形には限られない。変形例2のアンテナモジュール100Bにおいては、放射素子として円形の給電素子121Aが用いられる。このような給電素子121Aの場合においても、接地電極GNDの面積が制限される場合には、上述の例のように給電素子121Aの偏波方向を傾ける(0°<θ<90°)ことによって、アンテナ特性(周波数帯域幅,指向性)の低下を抑制することが可能である。
 この場合においても、アンテナモジュール100Bを平面視したときの、偏波方向の給電素子121Aの中心CPと接地電極GNDの端部との間の最短距離をL1B(第1距離)とし、給電素子121の中心CPと接地電極GNDの端部との間の最短距離をL2B(第2距離)とすると、L1B>L2Bとなる。また、距離L2Bにおいて給電素子121Aの端部と接地電極GNDの端部とのの距離をL3B(第3距離)とすると、距離L3Bは給電素子121Aの辺の長さの1/2よりも短くなる。
 (c)変形例3
 変形例3においては、放射素子として、給電素子121の周囲に寄生素子125が配置された場合のアンテナモジュール100Cについて説明する。アンテナモジュール100Cにおいては、略正方形の給電素子121の各辺に対向して、短冊状の寄生素子125が配置されている。この場合には、給電素子121および寄生素子125の全体を包含する領域(破線の領域RG1)について、給電素子121の中心からの距離が最短となる接地電極GNDの端部の位置と給電素子121の中心とを結ぶ方向と、偏波方向とのなす角度θが0°<θ<90°となるように、給電素子121および寄生素子125を配置する。このような構成にすることによって、アンテナ特性(周波数帯域幅,指向性)の低下を抑制することが可能である。
 なお、この場合においても、アンテナモジュール100Cを平面視したときの、偏波方向の給電素子121の中心CPと接地電極GNDの端部との間の最短距離をL1C(第1距離)とし、給電素子121の中心CPと接地電極GNDの端部との間の最短距離をL2C(第2距離)とすると、L1C>L2Cとなる。また、距離L2Cにおいて給電素子121の端部と接地電極GNDの端部との間の距離をL3C(第3距離)とすると、距離L3Cは領域RG1の外縁の一辺の長さの1/2よりも短くなる。
 [実施の形態2]
 実施の形態2においては、偏波方向の異なる2つの偏波を放射可能な、いわゆるデュアル偏波タイプのアンテナモジュールについて本開示の特徴を適用した構成について説明する。
 図10は、実施の形態2に従うアンテナモジュール100Dと比較例のアンテナモジュール100#1との周波数帯域幅を説明するための図である。図10を参照して、アンテナモジュール100Dおよびアンテナモジュール100#1のいずれも、給電素子121には、給電点SP1に加えて給電点SP2にも高周波信号が供給される。
 給電点SP1に供給される高周波信号によって放射される電波の偏波方向と、給電点SP2に供給される高周波信号によって放射される電波の偏波方向とは直交している。より具体的には、比較例のアンテナモジュール100#1においては、給電点SP1は、給電素子121の中心からY軸の正方向にオフセットした位置に配置されている。これにより、給電点SP1に高周波信号が供給されると、給電素子121からY軸方向を偏波方向とする電波が放射される。一方、給電点SP2は、給電素子121の中心からX軸の正方向にオフセットした位置に配置されている。これにより、給電点SP2に高周波信号が供給されると、給電素子121からX軸方向を偏波方向とする電波が放射される。
 実施の形態2のアンテナモジュール100Dは、比較例のアンテナモジュール100#1の給電素子121を、接地電極GNDに対して45°傾けて配置した構成を有している。アンテナモジュール100Dからは、給電素子121の中心と給電点SP1とを結ぶ方向(第1方向)を偏波方向とする電波、および、給電素子121の中心と給電点SP2とを結ぶ方向(第2方向)を偏波方向とする電波が放射される。
 給電素子121の法線方向からアンテナモジュール100Dを平面視した場合、給電素子121の中心と接地電極GNDの端部との間の第1方向の偏波方向に沿った最短距離を第1距離とし、給電素子121Aの中心と接地電極GNDの端部との間の最短距離を第2距離とし、第2距離において接地電極GNDの端部と給電素子121の端部との間の距離を第3距離とすると、第1距離は第2距離よりも長く、かつ、第3距離は給電素子121のサイズの1/2よりも短い。
 さらに、給電素子121の中心と接地電極GNDの端部との間の第2方向の偏波方向に沿った最短距離を第4距離とすると、第4距離は第2距離よりも長い。
 比較例においては、X軸方向の偏波に対しては、給電素子121と接地電極GNDの端部との距離が長いため、反射損失が10dBより小さくなる周波数帯域幅は2.34GHzとなっている。一方、Y軸方向の偏波に対しては、給電素子121と接地電極GNDの端部との距離が短いために、周波数帯域幅は1.40GHzとなっている。
 これに対して、実施の形態2のアンテナモジュール100Dにおいては、2つの偏波ともに、周波数帯域幅は1.75GHzとなっている。比較例のX軸方向の偏波よりかは周波数帯域がやや狭くなっているが、2つの偏波の周波数帯域の差が小さくなっており、各偏波の特性が平均化されている。
 このように、デュアル偏波タイプのアンテナモジュールについても、接地電極の面積が制限される場合には、接地電極に対して給電素子を傾けて配置することによって、一方の偏波の特性が極端に低下することを抑制することができる。
 [実施の形態3]
 実施の形態3においては、複数の給電素子が配置されたアレイアンテナに本開示の特徴を適用した構成について説明する。
 図11は、実施の形態3に従うアンテナモジュール100Eの平面透視図である。アンテナモジュール100Eは、長方形の接地電極GNDに対向して、略正方形の4つの給電素子121がX軸方向に沿って一列に配置された構成を有している。そして、各給電素子121は、各給電素子121から放射される電波の偏波方向が接地電極GNDの各辺に対して傾くように配置されている。
 すなわち、各給電素子121について、給電素子121の中心からの距離が最短となる接地電極GNDの端部の位置と給電素子121の中心とを結ぶ方向と、給電素子121から放射される電波の偏波方向とのなす角度θが、0°<θ<90°となるように、接地電極GNDに対して給電素子121を配置する。
 このとき、アンテナモジュール100Eを平面視したときの偏波方向の給電素子121の中心と接地電極GNDの端部との間の最短距離を第1距離とし、給電素子121の中心と接地電極GNDの端部との間の最短距離を第2距離とすると、第1距離は第2距離より長くなる。また、第2距離において給電素子121の端部と接地電極GNDの端部との間の距離を第3距離とすると、第3距離は給電素子121のサイズの1/2よりも短くなる。
 各給電素子121から放射される電波の偏波方向がY軸方向の場合には、各給電素子121のY軸方向における接地電極GNDの領域が制限される。また、偏波方向がX軸方向の場合には、中央の2つの給電素子121については、接地電極GNDの領域を十分に確保できるが、端部に配置された給電素子121については接地電極GNDの領域が制限される。
 一方で、図11に示されたアンテナモジュール100Eにおいては、接地電極GNDに対して給電素子121を傾けて配置することによって、偏波方向および偏波方向に直交する方向の双方について、接地電極GNDの領域を確保することができる。これによって、端部の給電素子121においても、アンテナ特性の低下を抑制することができ、アレイアンテナ全体の特性の低下も抑制することができる。
 ここで、隣接する給電素子121同士の間隔D1は、放射される電波の波長の1/2よりも広くなるように設定することが好ましい。一般的に、アレイアンテナの場合には、隣接する放射素子の間隔は、当該放射素子から放射される電波の波長の1/2に設定される。しかしながら、図11のアンテナモジュール100Eのように、隣接する素子間隔を一般的な場合よりも広くすることによって、隣接する素子間のアイソレーションを高めることができる。これにより、アンテナモジュールにおいて、複数の放射素子を同時に駆動した際に、各放射素子の給電配線間における信号の回り込みを低減することができるので、放射素子を駆動した際のインピーダンス(いわゆるアクティブインピーダンス)の劣化を抑制することができる。したがって、アンテナゲインを広帯域化することが可能となる。
 なお、アンテナモジュールの設計において、誘電体基板のサイズを変更することなく、給電素子の間隔D1を拡大する場合には、図11におけるX軸方向の誘電体基板の端部と両端の給電素子との距離(図11におけるG1)は、放射される電波の波長の1/4以下としてもよい。
 なお、図11においては、給電素子が一次元配列されたアレイアンテナの例について説明したが、給電素子が二次元配列されたアレイアンテナにも本開示の特徴を適用可能である。
 なお、実施の形態3において、アレイアンテナの両端の給電素子が本開示の「第1放射素子」に対応し、両端の給電素子に隣接する給電素子が本開示の「第2放射素子」に対応する。
 [実施の形態4]
 実施の形態4においては、2つの異なる放射面を有するアンテナモジュールの場合について説明する。
 図12は、実施の形態4に従うアンテナモジュール100Fの斜視図であり、図13は、アンテナモジュール100Fの屈曲部を含むZX平面の断面透視図である。
 図12および図13を参照して、アンテナモジュール100Fのアンテナ装置120Aにおいて、誘電体基板130Bは、断面形状が略L字形状となっており、図12および図13のZ軸方向を法線方向とする平板状の基板133A(第2基板)と、図12および図13のX軸方向を法線方向とする平板状の基板133B(第1基板)と、当該2つの基板133A,133Bを接続する屈曲部135とを含む。
 アンテナモジュール100Fにおいては、2つの基板133A,133Bの各々に、4つの給電素子121がY軸方向に一列に配置されている。以下の説明において、理解を容易にするために、給電素子121が基板133A,133Bの表面に露出するように配置された例について説明するが、実施の形態1の図2のように、給電素子121は基板133A,133Bの誘電体基板の内部に配置されてもよい。
 基板133Aは略矩形形状を有しており、その表面に4つの給電素子121が一列に配置されている。また、基板133Aの下面側(Z軸の負方向の面)には、RFIC110が接続されている。RFIC110は、はんだバンプ180を介して、実装基板20の表面21に実装されている。なお、RFIC110は、はんだ接続に代えて、多極コネクタを用いて実装基板20に実装されてもよい。
 基板133Bは、基板133Aから屈曲した屈曲部135に接続されており、その内側の面(X軸の負方向の面)が実装基板20の側面22に面するように配置される。基板133Bは、略矩形形状の誘電体基板に複数の切欠部136が形成された構成となっており、この切欠部136に屈曲部135が接続されている。言い換えると、基板133Bにおいて切欠部136が形成されていない部分には、屈曲部135と基板133Bとが接続される境界部134から、当該基板133Bに沿って基板133Aに向かう方向(すなわち、Z軸の正方向)に突出した突出部134A,134Bが形成されている。この突出部134A,134Bの突出端の位置は、基板133Aの下面側(実装基板20に面する側)の面よりもZ軸の正方向に位置している。
 基板133A,133Bおよび屈曲部135において、実装基板20に面する表面あるいは内層には接地電極GNDが配置されている。基板133Aの給電素子121には、給電配線170を介して、RFIC110からの高周波信号が伝達される。また、基板133Bの給電素子121には、給電配線171を介して、RFIC110からの高周波信号が伝達される。給電配線171は、RFIC110から、基板133A,133Bの誘電体の内部、および、屈曲部135の誘電体の内部(あるいは表面)を通って、基板133Bに配置された給電素子121に接続される。
 基板133Bの端部にある突出部134Aの各々には、1つの給電素子121が配置される。また、中央部の突出部134Bには2つの給電素子121が配置される。基板133Bには切欠部136が形成されているため、基板133Bに配置される給電素子121においては、各給電素子121と結合する接地電極GNDの領域が大きく制限される。図12の例においては、特に基板133BのZ軸方向の寸法、および、給電素子121と切欠部136との間の寸法が制限され得る。
 そのため、アンテナモジュール100Fにおいては、基板133Bに配置される給電素子121については、各給電素子121から放射される電波の偏波方向が、基板133Bの接地電極GNDの各辺に対して傾くように配置される。すなわち、各給電素子121において、給電素子121の中心からの距離が最短となる接地電極GNDの端部の位置と給電素子121の中心とを結ぶ方向と、偏波方向とのなす角度θが0°<θ<90°となるように給電素子121が配置されている。
 このとき、基板133Bを法線方向から平面視した場合に、各給電素子121について、偏波方向の給電素子121の中心と接地電極GNDの端部との間の最短距離を第1距離とし、給電素子121の中心と接地電極GNDの端部との間の最短距離を第2距離とすると、第1距離は第2距離よりも長くとなる。また、第2距離において給電素子121の端部と接地電極GNDの端部との間の距離を第3距離とすると、第3距離は給電素子121の辺の長さの1/2よりも短くなる。
 このような構成とすることによって、誘電体基板(接地電極)の一部に切欠部が形成されて接地電極の面積が制限されるような場合においても、アンテナ特性の低下を抑制することができる。
 なお、図12のアンテナモジュール100Fにおいては、基板133Aに配置される給電素子121については、偏波方向が接地電極GNDのX軸方向の辺と平行になるように配置されているが、基板133AのX軸方向あるいはY軸方向の寸法が制限されるような場合には、実施の形態3の図11と同様に、給電素子121を傾けて配置するようにしてもよい。
 (変形例4)
 変形例4においては、実施の形態4のL字形状のアンテナモジュールにおいて、2つの基板の双方に切欠部が形成される場合の例について説明する。
 図14は、変形例4のアンテナモジュール100Gの斜視図である。アンテナモジュール100Gのアンテナ装置120Bにおいては、誘電体基板130Cは2つの基板133A,133Bを有しており、基板133A,133Bに突出部134C,134Dがそれぞれ形成されている。アンテナ装置120Bにおいては、突出部134Cと対応する位置に突出部134Dが形成されており、基板133Aの切欠部137と基板133Bの切欠部136との間に屈曲部135が形成されている。そして、給電素子121は、各基板において、少なくともその一部が突出部に重なる位置に配置されている。
 このような構成においては、各給電素子121が、対応する突出部に個別に配置されているため、給電素子121と結合する接地電極GNDの面積が大きく制限される。そのため、アンテナモジュール100Gにおいては、基板133Aに配置される給電素子121、および基板133Bに配置される給電素子121の双方について、各給電素子121から放射される電波の偏波方向が、基板の接地電極GNDの各辺に対して傾くように配置される。
 すなわち、基板133Aに配置される各給電素子121についても、基板133Bにおける給電素子121と同様に、給電素子121の中心からの距離が最短となる接地電極GNDの端部の位置と給電素子121の中心とを結ぶ方向と、偏波方向(第2方向)とのなす角度θが0°<θ<90°となるように給電素子121が配置されている。
 このとき、基板133Aを法線方向から平面視した場合に、各給電素子121について、偏波方向の給電素子121の中心と接地電極GNDの端部との間の最短距離を第5距離とし、給電素子121の中心と接地電極GNDの端部との間の最短距離を第6距離とすると、第5距離は第6距離よりも長くなる。また、第5距離において給電素子121の端部と接地電極GNDの端部との間の距離を第7距離とすると、第7距離は給電素子121の辺の長さの1/2よりも短くなる。
 これにより、偏波方向およびそれに直交する方向の接地電極GNDの領域を拡大できるので、アンテナ特性の低下を抑制することができる。
 (変形例5)
 変形例5においては、異なる2方向に電波を放射できる構成の他の例について説明する。
 図15は、変形例5のアンテナモジュール100Hの斜視図である。図15を参照して、アンテナモジュール100Hのアンテナ装置120Cにおいては、Z軸方向を法線方向とする基板133Aが、略正方形の平板状とされており、X軸に沿った辺側に形成された基板133Bに加えて、Y軸に沿った辺側にも基板133Cが形成されている。基板133Cは、基板133Bと同様の形状を有しており、複数の突出部134Cが形成されている。基板133Cは、屈曲部135Cによって基板133Aに接続されている。そして、基板133Cにおいて、給電素子121は、その少なくとも一部が突出部134Cに重なるように配置される。アンテナ装置120Cによって、X軸方向およびY軸方向に電波を放射することができる。
 このような構成において、基板133Cに配置される給電素子121についても、基板133Bに配置される給電素子121と同様に、切欠部136によって各給電素子121と結合する接地電極GNDの面積が大きく制限される。そのため、アンテナモジュール100Hにおいては、各給電素子121から放射される電波の偏波方向が、基板133Cの接地電極GNDの各辺に対して傾くように配置される。
 すなわち、基板133Cに配置される各給電素子121について、給電素子121の中心からの距離が最短となる接地電極GNDの端部の位置と給電素子121の中心とを結ぶ方向と、偏波方向(第2方向)とのなす角度θが0°<θ<90°となるように給電素子121が配置されている。
 このとき、基板133Cを法線方向から平面視した場合に、各給電素子121について、偏波方向の給電素子121の中心と接地電極GNDの端部との間の最短距離を第5距離とし、給電素子121の中心と接地電極GNDの端部との間の最短距離を第6距離とすると、第5距離は第6距離よりも長くとなる。また、第5距離において給電素子121の端部と接地電極GNDの端部との間の距離を第7距離とすると、第7距離は給電素子121の辺の長さの1/2よりも短くなる。
 これにより、偏波方向およびそれに直交する方向の接地電極GNDの領域を拡大できるので、アンテナ特性の低下を抑制することができる。
 なお、図15においては、X軸およびY軸を法線方向とする基板133Bおよび基板133Cに給電素子が配置される例について示したが、これに加えて、Z軸方向を法線方向とする基板133Aにも給電素子をさらに配置して、3方向に電波を放射する構成であってもよい。
 (変形例6)
 変形例6においては、実施の形態4のL字形状のアンテナモジュールにおいて、2つの基板のいずれにも切欠部が形成されない場合の例について説明する。
 図16は、変形例6のアンテナモジュール100Yの斜視図である。アンテナモジュール100Yのアンテナ装置120Yにおいては、誘電体基板130Yは2つの基板133A,133Bを有しており、基板133A,133Bには切欠部は形成されていない。そして、屈曲部135によって、基板133Aと基板133Bとが接続されている。基板133A,133Bの各々には、Y軸方向に沿って4つの給電素子121が配置されている。
 このような構成において、基板133AのY軸方向に沿った辺と基板133A上の給電素子121との距離が短くかつX軸方向を偏波方向とする場合、および/または、基板133BのY軸方向に沿った辺と基板133B上の給電素子121との距離が短くかつZ軸方向を偏波方向とする場合には、各給電素子121と結合する偏波方向の接地電極GNDの面積が制限される場合がある。そのため、アンテナモジュール100Yにおいては、基板133Aに配置される給電素子121、および基板133Bに配置される給電素子121の双方について、各給電素子121から放射される電波の偏波方向が、各基板のY軸に沿った辺に対して傾くように配置される。
 すなわち、基板133Aに配置される各給電素子121、および基板133Bにおける給電素子121の双方について、給電素子121の中心からの距離が最短となる接地電極GNDの端部の位置と給電素子121の中心とを結ぶ方向と、偏波方向とのなす角度θが0°<θ<90°となるように給電素子121が配置されている。
 このようにすることによって、各基板を法線方向から平面視した場合に、偏波方向における給電素子121の中心と接地電極GNDの端部との間の最短距離を第5距離とし、給電素子121の中心と接地電極GNDの端部との間の最短距離を第6距離とすると、第5距離は第6距離よりも長くとなる。また、第5距離において給電素子121の端部と接地電極GNDの端部との間の距離を第7距離とすると、第7距離は給電素子121の辺の長さの1/2よりも短くなる。
 これにより、偏波方向およびそれに直交する方向の接地電極GNDの領域を拡大できるので、アンテナ特性の低下を抑制することができる。
 なお、実施の形態4およびその変形例において、基板133Bに形成される給電素子は、本開示における「第1放射素子」に対応し、基板133Aあるいは基板133Cに形成される給電素子は、本開示における「第4放射素子」に対応する。
 [実施の形態5]
 実施の形態5においては、実施の形態3で説明したアレイアンテナにおいて、異なる周波数の高周波信号をさらに放射可能な構成について説明する。
 図17は、実施の形態5に従うアンテナモジュール100Iの平面透視図である。アンテナモジュール100Iにおいては、隣接した2つの給電素子121の間に、給電素子121から放射される電波とは異なる周波数の電波を放射することが可能な給電素子122が配置されている。すなわち、アンテナモジュール100Iは、デュアルバンドタイプのアンテナモジュールである。給電素子122は、給電素子121と同様に、略正方形の平板状を有するパッチアンテナである。
 図17の例においては、給電素子122から放射される電波の周波数(たとえば、39GHz)は、給電素子121から放射される電波の周波数(たとえば、28GHz)よりも高い。そのため、給電素子122のサイズは、給電素子121のサイズより小さい。
 図17のように、共通の誘電体基板に異なる周波数の電波を放射可能な給電素子が交互に配置される構成においては、サイズが大きくなる低周波側の給電素子121の方が、接地電極GNDの面積に対して制限されることになる。したがって、アンテナモジュール100Iにおいては、接地電極に対して給電素子121を傾けて配置することによって、給電素子121のアンテナ特性が低下することを抑制できる。
 なお、サイズの小さい高周波側の給電素子122についても、給電素子121と同様に傾けて配置してもよい。
 (変形例7)
 実施の形態5においては、異なる周波数の電波を放射する他の放射素子が平板状のパッチアンテナである場合について説明した。変形例7においては、当該他の放射素子が、パッチアンテナ以外のタイプの放射素子である場合について説明する。
 図18は、変形例7のアンテナモジュールの100Jの平面透視図である。アンテナモジュール100Jにおいては、隣接した2つの給電素子121の間に、ダイポールアンテナ123が配置されている。このような構成において、パッチアンテナである給電素子121について、接地電極GNDの面積に対して制限されることになる場合には、接地電極に対して給電素子121を傾けて配置する。このような構成とすることによって、給電素子121のアンテナ特性が低下することを抑制できる。
 なお、2つの給電素子121の間に配置される放射素子は、パッチアンテナおよびダイポールアンテナ以外であってもよい。
 実施の形態5において、「給電素子122」および「ダイポールアンテナ123」は、本開示の「第3放射素子」に対応する。
 [実施の形態6]
 実施の形態6においては、複数の放射素子が誘電体基板の積層方向に対向して配置されたスタック型のパッチアンテナの場合について説明する。
 図19は、実施の形態6に従うアンテナモジュール100Kを示す図である。図19において、上段(図19(a))はアンテナモジュール100Kの平面透視図であり、下段(図19(b))はアンテナモジュール100Kの断面透視図である。
 図19を参照して、アンテナモジュール100Kは、図2で説明した実施の形態1の構成に加えて、放射素子として給電素子121と異なる層に配置された無給電素子124をさらに含む。給電素子121は誘電体基板130の内部に配置されており、無給電素子124は給電素子121よりも誘電体基板130の上面131側に給電素子121と対向して配置される。なお、無給電素子124は、誘電体基板130の上面131に露出するように配置されてもよいし、誘電体基板130の内部に配置されてもよい。
 無給電素子124のサイズは、給電素子121のサイズとほぼ同じである。また、アンテナモジュール100Kを法線方向から平面視した場合に、無給電素子124は給電素子121と重なるように配置される。このような無給電素子124を配置することによって、アンテナモジュール100Kの周波数帯域幅を拡大することができる。
 アンテナモジュール100Kにおいても、接地電極GNDの面積が制限される場合には、実施の形態1の場合と同様に、給電素子121が接地電極GNDに対して傾けて配置される。このとき、無給電素子124についても給電素子121と同様に接地電極GNDに対して傾けて配置される。
 このような構成とすることによって、スタック型のアンテナモジュールについても、アンテナ特性の低下を抑制することができる。
 (変形例8)
 変形例8においては、デュアルバンドタイプのスタック型のアンテナモジュールについて説明する。
 図20は、変形例8のアンテナモジュール100Lを示す図である。図20において、上段(図20(a))はアンテナモジュール100Lの平面透視図であり、下段(図20(b))はアンテナモジュール100Lの断面透視図である。
 図20を参照して、アンテナモジュール100Lは、図2で説明した実施の形態1の構成に加えて、放射素子として給電素子121と異なる層に配置された無給電素子124Aを含む。無給電素子124Aは、給電素子121と接地電極GNDとの間の層に、給電素子121と対向して配置される。
 アンテナモジュール100Lを法線方向から平面視した場合に、給電素子121の全体が無給電素子124Aと重なるように配置される。給電配線170は、無給電素子124Aを貫通して給電素子121に接続される。
 無給電素子124Aのサイズは、給電素子121のサイズよりも大きい。そのため、無給電素子124Aの共振周波数は、給電素子121の共振周波数よりも低い。RFIC110から給電配線170に、無給電素子124Aの共振周波数に対応した周波数の高周波信号が供給されると、給電配線170と無給電素子124Aとが電磁界結合し、無給電素子124Aから電波が放射される。
 このような構成においては、サイズがより大きな無給電素子124Aの方が、接地電極GNDの面積に対してより制限されることになる。したがって、アンテナモジュール100Lにおいては、接地電極に対して無給電素子124Aを傾けて配置することによって、無給電素子124Aのアンテナ特性が低下することを抑制できる。なお、アンテナモジュール100Lにおいては、給電素子121についても、無給電素子124Aと同様に傾けて配置される。
 (変形例9)
 変形例9においては、スタック型のアンテナモジュールにおいて、2つの放射素子に対して、個別の給電配線で高周波信号が供給される場合について説明する。
 図21は、変形例9のアンテナモジュール100Mを示す図である。図21において、上段(図21(a))はアンテナモジュール100Mの平面透視図であり、下段(図21(b))はアンテナモジュール100Mの断面透視図である。
 図21を参照して、アンテナモジュール100Mは、放射素子として給電素子121および給電素子121Aを含む。給電素子121Aは、給電素子121と接地電極GNDとの間の層に、給電素子121と対向して配置される。アンテナモジュール100Mを法線方向から平面視した場合に、給電素子121の全体が給電素子121Aと重なるように配置される。
 給電素子121Aのサイズは、給電素子121のサイズよりも大きい。そのため、給電素子121Aの共振周波数は、給電素子121の共振周波数よりも低い。そのため、給電素子121Aに高周波信号が供給されると、給電素子121から放射される電波の周波数よりも低い周波数の電波が給電素子121Aから放射される。また、図21の例においては、給電素子121および給電素子121Aの各々について、2つの給電点が設けられている。すなわち、アンテナモジュール100Mは、デュアルバンドタイプかつデュアル偏波タイプのアンテナモジュールである。
 給電素子121には、給電配線1701を介して給電点SP1に高周波信号が供給され、給電配線1702を介して給電点SP2に高周波信号が供給される。給電配線1701および給電配線1702は、RFIC110から給電素子121Aを貫通して給電素子121に接続されている。また、給電素子121Aには、給電配線1703を介して給電点SP3に高周波信号が供給され、給電配線1704を介して給電点SP4に高周波信号が供給される。給電素子121および給電素子121Aの各々において、2つの偏波が互いに直交するように給電点が配置されている。
 そして、アンテナモジュール100Mにおいては、実施の形態1と同様に、矩形形状の接地電極GNDの各辺に対して、給電素子121および給電素子121Aの各辺が傾くように配置されている。すなわち、アンテナモジュール100Mを平面視した場合に、各給電素子において、給電素子の中心からの距離が最短となる接地電極GNDの端部の位置と給電素子の中心とを結ぶ方向と、偏波方向とのなす角度θが0°<θ<90°となるように、各給電素子が配置されている。なお、図21の例では、各給電素子は接地電極GNDに対して45°傾いて配置されている。
 図22は、変形例9の比較例のアンテナモジュール100#2の平面透視図である。アンテナモジュール100#2においては、給電素子121,121Aの各辺は、接地電極GNDの辺に対して平行となるように配置されている。
 図22の変形例においては、給電点SP1および給電点SP3に高周波信号が供給されることにより、Y軸方向を偏波方向とする電波が給電素子121および給電素子121Aから放射される。また、給電点SP2および給電点SP4に高周波信号が供給されることにより、X軸方向を偏波方向とする電波が給電素子121および給電素子121Aから放射される。
 この場合、接地電極GNDの長辺の延在方向であるX軸方向の偏波については、アンテナモジュール100#2を平面視した場合の各給電素子から接地電極GNDの端部までの距離が十分に確保できるが、Y軸方向の偏波についてはX軸方向に比べて接地電極GNDの端部までの距離が制限される。したがって、Y軸方向の偏波については、X軸方向の偏波に比べてアンテナ特性(周波数帯域幅および指向性)が低下する可能性がある。
 一方で、図21のアンテナモジュール100Mにおいては、給電素子を傾けることにより、直交する双方の偏波に対して給電素子から接地電極GNDの端部までの距離を確保できるので、一方の偏波の特性が極端に低下することが抑制できる。
 (変形例10)
 変形例10においては、複数のスタック型アンテナモジュールが一次元に配置されたアレイアンテナの例について説明する。
 図23は、変形例10のアンテナモジュール100Nの平面透視図である。アンテナモジュール100Nは、変形例9で示したアンテナモジュール100Mにおける放射素子(給電素子121,121A)が、X軸方向に沿って4つ配置された構成を有している。隣接する放射素子同士は、間隔D2をあけて配置されている。アンテナモジュール100Nにおいては、この間隔D2は、給電素子121Aから放射される低周波数側の電波の波長の1/2よりも広くなるように設定することが好ましい。
 このような構成とすることによって、図11における説明と同様に、隣接する放射素子間のアイソレーションを高めることができる。これにより、アンテナモジュールにおけるアクティブインピーダンスの劣化を抑制することができ、結果としてアンテナゲインを広帯域化することができる。なお、アンテナモジュール100Nにおいては、各給電素子が2つの偏波方向に電波を放射可能なデュアル偏波タイプのアンテナモジュールの例について説明したが、各給電素子が1つの偏波方向に電波を放射する構成であってもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 通信装置、20 実装基板、100,100A~100N,100Y,100#,100#1,100#2 アンテナモジュール、110 RFID、111A~111D,113A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A,114D 減衰器、115A,115D 移相器、116 信号合成/分波器、118 ミキサ、119 増幅回路、120,120A~120C,120Y アンテナ装置、121,121A,121#,122,122# 給電素子、123 ダイポールアンテナ、124,124A 無給電素子、125 寄生素子、130,130B,130C,130Y 誘電体基板、133A~133C 基板、134 境界部、134A~134D 突出部、135,135C 屈曲部、136,137 切欠部、140,180 はんだバンプ、170,171,1701~1704 給電配線、200 BBIC、GND 接地電極、SP1~SP4 給電点。

Claims (14)

  1.  第1方向を偏波方向とする電波を放射可能な平板状の第1放射素子と、
     前記第1放射素子に対向して配置される第1接地電極とを備え、
     前記第1放射素子の法線方向から平面視した場合に、前記第1放射素子の中心と前記第1接地電極の端部との間の前記第1方向に沿った最短距離を第1距離とし、前記第1放射素子の中心と前記第1接地電極の端部との間の最短距離を第2距離とし、前記第2距離において前記第1接地電極の端部と前記第1放射素子の端部との間の距離を第3距離とすると、前記第1距離は前記第2距離よりも長く、かつ、前記第3距離は前記第1放射素子のサイズの1/2よりも短い、アンテナモジュール。
  2.  前記第1放射素子から放射される電波の波長をλとすると、前記第3距離はλ/4よりも短い、請求項1に記載のアンテナモジュール。
  3.  前記第3距離は、前記第1放射素子と前記第1接地電極との間の積層方向の距離の2倍よりも短い、請求項1に記載のアンテナモジュール。
  4.  前記第1放射素子は、前記第1接地電極から互いに異なる高さに対向して配置された給電素子および無給電素子とを含み、
     前記アンテナモジュールを法線方向から平面視した場合に、前記給電素子と前記無給電素子とは重なっている、請求項1~3のいずれか1項に記載のアンテナモジュール。
  5.  前記給電素子に高周波信号を供給する給電配線をさらに備え、
     前記無給電素子は、前記給電素子と前記第1接地電極との間に配置され、
     前記給電配線は、前記無給電素子を貫通して前記給電素子に接続される、請求項4に記載のアンテナモジュール。
  6.  前記第1放射素子は、前記第1接地電極から互いに異なる高さに対向して配置された第1給電素子および第2給電素子を含み、
     前記アンテナモジュールを法線方向から平面視した場合に、前記第1給電素子と前記第2給電素子とは重なっている、請求項1~3のいずれか1項に記載のアンテナモジュール。
  7.  前記第1放射素子は、給電素子と、前記給電素子の周囲に配置された少なくとも1つの寄生素子とを含み、
     前記第1放射素子のサイズは、前記アンテナモジュールを法線方向から平面視した場合に、前記給電素子および前記少なくとも1つの寄生素子を含む領域の外縁の一辺の長さである、請求項1~3のいずれか1項に記載のアンテナモジュール。
  8.  前記第1放射素子は、前記第1方向とは異なる第2方向を偏波方向とする電波も放射可能であり、
     前記第1放射素子の中心と前記第1接地電極の端部との間の前記第2方向に沿った最短距離を第4距離とすると、前記第4距離は前記第2距離よりも長い、請求項1~7のいずれか1項に記載のアンテナモジュール。
  9.  前記第1接地電極に対向して配置される平板状の第2放射素子をさらに備え、
     前記第2放射素子は、前記第1方向を偏波方向とする電波を放射可能に構成される、請求項1~8のいずれか1項に記載のアンテナモジュール。
  10.  前記第1放射素子と前記第2放射素子との間に配置される第3放射素子をさらに備え、
     前記第3放射素子は、前記第1放射素子および前記第2放射素子から放射される電波とは異なる周波数の電波を放射することが可能に構成される、請求項9に記載のアンテナモジュール。
  11.  平板状の第4放射素子と、
     前記第4放射素子に対向して配置された第2接地電極をさらに備え、
     前記第4放射素子の法線方向は、前記第1放射素子の法線方向とは異なる、請求項1~7のいずれか1項に記載のアンテナモジュール。
  12.  前記第4放射素子は、第2方向を偏波方向とする電波を放射可能であり、
     前記第4放射素子の法線方向から平面視した場合に、前記第4放射素子の中心と前記第2接地電極の端部との間の前記第2方向に沿った最短距離を第5距離とし、前記第4放射素子の中心と前記第2接地電極の端部との間の最短距離を第6距離とし、前記第6距離において前記第2接地電極の端部と前記第4放射素子の端部との間の最短距離を第7距離とすると、前記第5距離は前記第6距離よりも長く、かつ、前記第7距離は前記第4放射素子のサイズの1/2よりも短い、請求項11に記載のアンテナモジュール。
  13.  各放射素子に高周波信号を供給するように構成された給電回路をさらに備える、請求項1~12のいずれか1項に記載のアンテナモジュール。
  14.  請求項1~13のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
PCT/JP2020/019611 2019-06-28 2020-05-18 アンテナモジュールおよびそれを搭載した通信装置 WO2020261807A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080004702.0A CN112602234B (zh) 2019-06-28 2020-05-18 天线模块以及搭载有该天线模块的通信装置
JP2020551439A JP6798657B1 (ja) 2019-06-28 2020-05-18 アンテナモジュールおよびそれを搭載した通信装置
US17/103,069 US11322841B2 (en) 2019-06-28 2020-11-24 Antenna module and communication device equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019120910 2019-06-28
JP2019-120910 2019-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/103,069 Continuation US11322841B2 (en) 2019-06-28 2020-11-24 Antenna module and communication device equipped with the same

Publications (1)

Publication Number Publication Date
WO2020261807A1 true WO2020261807A1 (ja) 2020-12-30

Family

ID=74059666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019611 WO2020261807A1 (ja) 2019-06-28 2020-05-18 アンテナモジュールおよびそれを搭載した通信装置

Country Status (3)

Country Link
JP (1) JP6973607B2 (ja)
CN (1) CN112602234B (ja)
WO (1) WO2020261807A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185917A1 (ja) * 2021-03-05 2022-09-09 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2022224650A1 (ja) * 2021-04-21 2022-10-27 株式会社村田製作所 アンテナモジュール
WO2023032805A1 (ja) * 2021-09-03 2023-03-09 株式会社村田製作所 アンテナ装置、アンテナモジュールおよび通信装置
WO2023037806A1 (ja) * 2021-09-09 2023-03-16 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2023037805A1 (ja) * 2021-09-09 2023-03-16 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2023188785A1 (ja) * 2022-03-28 2023-10-05 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2024034304A1 (ja) * 2022-08-10 2024-02-15 株式会社村田製作所 アンテナ装置、通信装置、及びアンテナ装置の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937236B (zh) * 2018-04-17 2023-06-16 古野电气株式会社 天线
WO2020261807A1 (ja) * 2019-06-28 2020-12-30 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
JP2022119232A (ja) 2021-02-04 2022-08-17 株式会社東海理化電機製作所 制御装置およびプログラム
WO2024106004A1 (ja) * 2022-11-16 2024-05-23 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026634A (ja) * 2000-07-10 2002-01-25 Kojima Press Co Ltd マイクロストリップアンテナ
JP2008061030A (ja) * 2006-08-31 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
JP2015056810A (ja) * 2013-09-12 2015-03-23 株式会社東芝 アンテナ装置
EP3065219A1 (en) * 2015-03-02 2016-09-07 Trimble Navigation Limited Dual-frequency patch antennas
JP2019004241A (ja) * 2017-06-13 2019-01-10 Tdk株式会社 アンテナ装置及びこれを備える回路基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374121A (ja) * 2001-06-13 2002-12-26 Japan Radio Co Ltd クロスパッチ平面配列アンテナ
CN201383542Y (zh) * 2009-03-05 2010-01-13 佳邦科技股份有限公司 晶片型天线装置
CN102377017B (zh) * 2010-08-13 2016-05-18 光宝电子(广州)有限公司 多回圈天线系统及具有该多回圈天线系统的电子装置
CN102386482B (zh) * 2010-09-06 2014-06-18 光宝电子(广州)有限公司 多回圈天线系统及具有该多回圈天线系统的电子装置
CN106340723B (zh) * 2015-07-10 2019-10-25 上海原田新汽车天线有限公司 天线模块和具备该天线模块的天线装置
JP6283970B1 (ja) * 2016-10-14 2018-02-28 パナソニックIpマネジメント株式会社 アンテナ、無線発信装置、および位置計測システム
US11245175B2 (en) * 2017-09-30 2022-02-08 Qualcomm Incorporated Antenna module configurations
CN212848850U (zh) * 2017-11-22 2021-03-30 株式会社村田制作所 高频模块以及通信装置
WO2020261807A1 (ja) * 2019-06-28 2020-12-30 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026634A (ja) * 2000-07-10 2002-01-25 Kojima Press Co Ltd マイクロストリップアンテナ
JP2008061030A (ja) * 2006-08-31 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
JP2015056810A (ja) * 2013-09-12 2015-03-23 株式会社東芝 アンテナ装置
EP3065219A1 (en) * 2015-03-02 2016-09-07 Trimble Navigation Limited Dual-frequency patch antennas
JP2019004241A (ja) * 2017-06-13 2019-01-10 Tdk株式会社 アンテナ装置及びこれを備える回路基板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185917A1 (ja) * 2021-03-05 2022-09-09 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2022224650A1 (ja) * 2021-04-21 2022-10-27 株式会社村田製作所 アンテナモジュール
WO2023032805A1 (ja) * 2021-09-03 2023-03-09 株式会社村田製作所 アンテナ装置、アンテナモジュールおよび通信装置
WO2023037806A1 (ja) * 2021-09-09 2023-03-16 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2023037805A1 (ja) * 2021-09-09 2023-03-16 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2023188785A1 (ja) * 2022-03-28 2023-10-05 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2024034304A1 (ja) * 2022-08-10 2024-02-15 株式会社村田製作所 アンテナ装置、通信装置、及びアンテナ装置の製造方法

Also Published As

Publication number Publication date
JP2021016198A (ja) 2021-02-12
JP6973607B2 (ja) 2021-12-01
CN112602234B (zh) 2021-09-28
CN112602234A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2020261807A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020261806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
CA2915243C (en) Switchable transmit and receive phased array antenna
JP6798657B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6954512B2 (ja) アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
JP6973663B2 (ja) アンテナモジュールおよび通信装置
WO2020241271A1 (ja) サブアレイアンテナ、アレイアンテナ、アンテナモジュール、および通信装置
WO2020217689A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021039075A1 (ja) アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
WO2023047801A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2022038868A1 (ja) 通信装置
JP7294525B2 (ja) アンテナモジュールおよびそれを搭載する通信装置
CN117501545A (zh) 天线模块和搭载该天线模块的通信装置
WO2020217971A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023188785A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022004111A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023032805A1 (ja) アンテナ装置、アンテナモジュールおよび通信装置
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2024135047A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20240291166A1 (en) Antenna module and communication apparatus including the same
WO2023037806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020184205A1 (ja) フィルタ装置、ならびに、それを備えたアンテナモジュールおよび通信装置
JP2024107757A (ja) アンテナモジュールおよびそれを搭載した通信装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020551439

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831776

Country of ref document: EP

Kind code of ref document: A1