WO2022038868A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2022038868A1
WO2022038868A1 PCT/JP2021/022030 JP2021022030W WO2022038868A1 WO 2022038868 A1 WO2022038868 A1 WO 2022038868A1 JP 2021022030 W JP2021022030 W JP 2021022030W WO 2022038868 A1 WO2022038868 A1 WO 2022038868A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
opening
antenna
radiating element
electrode
Prior art date
Application number
PCT/JP2021/022030
Other languages
English (en)
French (fr)
Inventor
薫 須藤
健吾 尾仲
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202190000641.0U priority Critical patent/CN219513349U/zh
Publication of WO2022038868A1 publication Critical patent/WO2022038868A1/ja
Priority to US18/109,279 priority patent/US20230188223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • This disclosure relates to a communication device, and more specifically, to the installation of an antenna in the communication device.
  • Patent Document 1 discloses an electronic device provided with a microstrip antenna inside.
  • heat dissipation is required because the antenna generates heat. In particular, it is required to prevent the housing from becoming hot.
  • the heat sink is made of a conductive material such as metal, if a heat sink is provided between the housing and the antenna so that the housing does not get hot, the heat sink will block radio waves. There is a possibility that the function as a communication device will be deteriorated.
  • the present disclosure has been made to solve such a problem, and an object thereof is to provide a communication device capable of suppressing a decrease in the function as a communication device while suppressing the housing from becoming hot. It is to be.
  • the communication device includes an antenna module provided with a flat plate-shaped radiating element, a housing for accommodating the antenna module, a heat sink, and electrodes.
  • the heat radiating plate is arranged between the housing and the antenna module, and an opening is formed at a position facing the radiating element.
  • the electrodes are arranged at positions facing the radiating element in the normal direction of the radiating element.
  • the heat sink is arranged between the housing and the antenna module, it is possible to prevent the heat generated from the antenna module from being dissipated by the heat sink and the housing from becoming hot. .. Further, by arranging the electrode at a position facing the radiating element, the electrode functions as a non-feeding element. As a result, the electrode surface becomes the radial surface of the antenna module. As a result, the radio waves shielded by the heat sink are reduced, and the reduction of the function as a communication device can be suppressed.
  • FIG. 1 This is an example of a block diagram of a communication device according to the present embodiment. It is an external view of a communication device. It is a figure which shows the inside of the housing which concerns on Embodiment 1.
  • FIG. It is a figure which shows the simulation result which compared the antenna characteristic in the antenna module of the communication apparatus which concerns on Embodiment 1 and the antenna module (comparative example) of the communication apparatus which the electrode is not arranged.
  • FIG. It is a figure which shows the inside of the housing of the communication device which concerns on Embodiment 3.
  • FIG. It is a figure which shows the inside of the housing of the communication apparatus which concerns on Embodiment 4.
  • FIG. 1 It is a figure which shows the simulation result which compared the antenna characteristic in the antenna module of the communication apparatus which concerns on Embodiment 1 and the antenna module of the communication apparatus which concerns on Embodiment 4. It is sectional drawing of the communication apparatus which concerns on Embodiment 5.
  • FIG. It is sectional drawing of the communication apparatus which concerns on Embodiment 6.
  • FIG. It is a top view of the heat sink of the communication device which concerns on Embodiment 9.
  • FIG. 10 It is a top view of the heat sink of the communication device which concerns on Embodiment 10.
  • FIG. 1 is an example of a block diagram of the communication device 10 according to the present embodiment.
  • the communication device 10 is a mobile terminal having a generally flat plate shape, such as a smartphone or a tablet.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a feeding circuit, and an antenna device 120.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal and radiates it from the antenna device 120, and down-converts the high-frequency signal received by the antenna device 120 to process the signal in the BBIC 200. do.
  • the frequency band of the radio wave used for the antenna module 100 is, for example, a frequency band higher than 6 GHz, and is typically a millimeter wave band so-called "FR2 (Frequency Range 2)". be.
  • the frequency band of FR2 is, for example, 24.25 GHz to 52.6 GHz.
  • the frequency band of the radio wave used for the antenna module 100 may be a frequency band of 6 GHz or less.
  • FIG. 1 shows an example in which the antenna device 120 is formed by a plurality of antenna elements 121 arranged in a two-dimensional array, but the number of antenna elements 121 does not necessarily have to be a plurality and one. It may be the case that the antenna device 120 is formed by the antenna element 121. Further, it may be a one-dimensional array in which a plurality of antenna elements 121 are arranged in a row.
  • the antenna element 121 is a patch antenna having a substantially square flat plate shape
  • the antenna element 121 may be a dipole antenna or a monopole antenna.
  • the antenna element 121 may be a dipole antenna or a monopole antenna used in combination with the patch antenna.
  • the RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesizers / demultiplexers. It includes an 116, a mixer 118, and an amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT side, and the switch 117 is connected to the transmitting side amplifier of the amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the low noise amplifiers 112AR to 112DR side, and the switch 117 is connected to the receiving side amplifier of the amplifier circuit 119.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116, passes through the four signal paths, and is fed to different antenna elements 121.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the phase shift degrees of the phase shifters 115A to 115D arranged in each signal path. Further, the attenuators 114A to 114D adjust the strength of the transmitted signal.
  • the received signal which is a high-frequency signal received by each antenna element 121, passes through four different signal paths and is combined by the signal synthesizer / demultiplexer 116.
  • the combined received signal is down-converted by the mixer 118, amplified by the amplifier circuit 119, and transmitted to the BBIC 200.
  • the RFIC 110 is formed, for example, as an integrated circuit component of one chip including the above circuit configuration.
  • the equipment (switch, power amplifier, low noise amplifier, attenuator, phase shifter) corresponding to each antenna element 121 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding antenna element 121. ..
  • FIG. 2 is an external view of the communication device 10.
  • the upper row (FIG. 2 (a)) is a front view of the communication device 10
  • the lower row (FIG. 2 (b)) is a rear view of the communication device 10.
  • the communication device 10 is, for example, a smartphone
  • the antenna module 100 is housed in the housing 30.
  • the antenna module 100 is housed in the housing 30 on the rear side where the display 32 is not arranged, and is arranged so as to radiate radio waves from the rear side where the display 32 is not arranged.
  • the storage position of the antenna module 100 is not limited to the position shown in FIG.
  • the antenna module 100 includes an RFIC 110 as a feeding circuit, and since the RFIC 110 includes a power amplifier 112AT to 112DT and a low noise amplifier 112AR to 112DR, heat is generated from the RFIC 110. Therefore, the communication device 10 is required to be configured so that the heat from the antenna module 100 is dissipated before being transferred to the housing 30 in order to prevent the housing 30 from becoming hot. There is.
  • the heat sink acts as a shield to block radio waves, so that communication is possible. There is a possibility that the function as the device 10 will be deteriorated.
  • the installation of the antenna module 100 that suppresses the reduction of the function as the communication device 10 while suppressing the housing 30 from becoming hot will be described below.
  • FIG. 3 is a diagram showing the inside of the housing 30 according to the first embodiment.
  • the upper row (FIG. 3 (a)) is a cross-sectional view of the communication device 10
  • the middle row (FIG. 3 (b)) is a plan view of the heat sink 40
  • the lower row (FIG. 3 (c)) is an antenna. It is a top view of the module 100.
  • the normal direction (radio wave radiation direction) of the antenna element 121 is defined as the Z-axis direction
  • the plane perpendicular to the Z-axis direction is defined as the XY plane.
  • the positive direction of the Z axis may be referred to as "up” and the negative direction may be referred to as "down”.
  • the position of the opening 42 is shown by a broken line in order to explain the positional relationship between the opening 42 and the antenna element 121.
  • the communication device 10 has a heat sink 40 and electrodes 20 in addition to the antenna module 100 and the housing 30.
  • the antenna module 100 includes a dielectric substrate 130, a feeding wiring 170, and a ground electrode GND in addition to the RFIC 110 and the antenna element 121 which is a radiating element.
  • the antenna module 100 will be described as having one antenna element 121, but as will be described later, the antenna module 100 may have two or more antenna elements 121. Often, the antenna elements 121 may be one-dimensionally arranged or two-dimensionally arranged.
  • the dielectric substrate 130 is, for example, a co-fired ceramics (LTCC) multilayer substrate, a multilayer resin substrate formed by laminating a plurality of resin layers made of a resin such as epoxy or polyimide.
  • LCP liquid crystal polymer
  • It is a resin substrate, a multilayer resin substrate formed by laminating a plurality of resin layers composed of PET (Polyethylene Terephthalate) material, or a ceramic multilayer substrate other than LTCC.
  • the dielectric substrate 130 does not necessarily have to have a multi-layer structure, and may be a single-layer substrate. In addition, in FIG. 3C and the plan view described below, the dielectric substrate 130 and the feeding wiring are omitted.
  • a flat plate-shaped ground electrode GND is arranged on the lower surface 132 (the surface in the negative direction of the Z axis) side of the antenna element 121, facing the antenna element 121.
  • the RFIC 110 is mounted on the lower surface 132 of the dielectric substrate 130 via the solder bumps 140.
  • the RFIC 110 may be connected to the dielectric substrate 130 by using a multi-pole connector instead of the solder connection.
  • a high frequency signal is supplied from the RFIC 110 to the feeding point SP1 of the antenna element 121 via the feeding wiring 170.
  • the antenna element 121 has a rectangular shape and is arranged so that two sides are inclined with respect to the X axis in the XY plane.
  • the feeding point SP1 passes through the center (diagonal intersection) CP of the antenna element 121 and is arranged at a position offset in the direction (first direction) of the broken line CL1 parallel to the side of the antenna element 121.
  • the power feeding wiring 170 is formed by a wiring pattern formed between the layers of the dielectric substrate 130 and vias penetrating the layer.
  • the conductors constituting the radiation element, wiring pattern, electrodes, vias, etc. are made of aluminum (Al), copper (Cu), gold (Au), silver (Ag), and alloys thereof. It is made of metal as the main component.
  • the heat sink 40 is arranged between the housing 30 and the antenna module 100.
  • the heat sink 40 is formed with an opening 42 at a position facing the antenna element 121 of the antenna module 100.
  • the heat sink 40 is, for example, a metal plate.
  • the metal plate has high thermal conductivity and high heat dissipation.
  • the heat from the antenna module 100 is widely diffused by the heat sink 40. As a result, it is possible to prevent the housing 30 from becoming hot.
  • the distance L1 between the opening 42 and the antenna element 121 from the center CP of the antenna element 121 to the end portion 422 of the opening 42 is radiated from the direction of the broken line CL1 (from the antenna element 121). It is arranged in the communication device 10 so as to be maximum in the polarization direction of the radio wave). By doing so, the radio wave in the polarization direction can efficiently pass through the opening 42, and the antenna characteristics can be improved.
  • the positional relationship between the opening 42 and the antenna element 121 is not limited to the positional relationship shown in FIG. 3, and the opening 42 is formed at a position facing the antenna element 121. Just do it.
  • the opening 42 is larger than the antenna element 121, and has a size such that the antenna element 121 fits in the opening 42 when viewed in a plan view from the Z-axis direction, for example.
  • the opening 42 is larger than the electrode 20, and has a size such that the electrode 20 can be accommodated in the opening 42 when viewed in a plan view from the Z-axis direction, for example. If the opening 42 is too large, the heat dissipation capacity of the heat radiating plate 40 is lowered. Therefore, the opening 42 needs to be able to radiate radio waves from the antenna element 121 and radiate radio waves from the electrode 20 serving as a radiating surface. It is preferable that it has a sufficient size.
  • the electrode 20 is located on the positive direction side of the Z axis of the antenna element 121 of the antenna module 100 and at a position facing the antenna element 121.
  • the electrode 20 has a resonance frequency close to the resonance frequency of the antenna element 121.
  • the electrode 20 preferably has the same shape and size as the antenna element 121.
  • the resonance frequencies of the electrode 20 and the antenna element 121 can be made substantially the same.
  • it is preferable that the resonance frequency of the antenna element 121 and the co-advance frequency of the electrode 20 are the same. If the resonance frequency of the electrode 20 is close to the resonance frequency of the antenna element 121, the shape of the electrode 20 and the shape of the antenna element 121 may be different from each other, and the size of the electrode 20 and the size of the antenna element 121 may be different. It may be different from.
  • the shape of the electrode 20 may be a cross shape.
  • the electrode 20 By arranging the electrode 20 at a position facing the antenna element 121, the electrode 20 receives radio waves from the antenna element 121 and resonates, and the electrode 20 functions as a radiation source (non-feeding element). As a result, the electrode 20 becomes the radiation surface of the antenna module 100, and the radio waves shielded by the heat radiating plate 40 can be reduced, so that the radiation efficiency of the radio waves can be improved. Further, since the electrode 20 serves as the radial surface of the antenna module 100, the distance from the ground electrode GND to the radial surface can be extended, and the frequency bandwidth can be widened.
  • the opening 42 has a size in which the electrode 20 fits in the opening 42 when viewed in a plane from the Z-axis direction, and the electrode 20 is formed on the same plane as the heat sink 40. ing. More specifically, both the electrode 20 and the heat sink 40 are installed in the housing 30. By arranging the electrode 20 and the heat sink 40 on the same plane, both the electrode 20 and the heat sink 40 can be installed in the housing 30, and the installation cost can be reduced. In particular, when the electrode 20 and the heat sink 40 are both made of a common metal, it is only necessary to attach one metal plate to the housing 30 and then cut out between the opening 42 and the electrode 20. The electrode 20 and the heat sink 40 can be installed in the housing 30.
  • the electrode 20 and the heat sink 40 do not have to be arranged on the same plane. For example, even if the electrode 20 is arranged above the heat sink 40, it is arranged below the heat sink 40. It may have been done. More specifically, the electrode 20 may be arranged above the heat sink 40 by embedding the electrode 20 in the housing 30. Further, the heat sink 40 may be separated from the housing 30 toward the antenna element 121, and the electrode 20 may be arranged between the heat sink 40 and the housing 30.
  • FIG. 4 is a diagram showing simulation results comparing antenna characteristics in the antenna module 100 of the communication device 10 and the antenna module (comparative example) of the communication device in which the electrodes 20 are not arranged according to the first embodiment.
  • the communication device according to the comparative example is common to the communication device 10 according to the first embodiment in that a heat sink having an opening formed between the housing and the antenna module is arranged, but the electrodes 20 are arranged. It is different from the communication device 10 according to the first embodiment in that it is not performed.
  • the reflection characteristics (upper row) and the gain (lower row) are shown.
  • the frequency band used is a millimeter wave frequency band (GHz band)
  • GHz band millimeter wave frequency band
  • the frequency band in which the reflection loss can secure 10 dB is in the range of 26.7 to 29.8 GHz (RNG1A), and the frequency. The bandwidth is 3.1 GHz.
  • the frequency band in which the reflection loss can secure 10 dB is in the range of 27.5 to 33.1 GHz (RNG1), and the frequency bandwidth is It is 5.6 GHz.
  • the antenna module 100 of the first embodiment has a wider frequency bandwidth than the antenna module of the comparative example.
  • the gain (M2) in the normal direction (azimuth angle 0 degree) of the antenna element 121 radiated from the antenna module 100 in the first embodiment is the antenna element radiated from the antenna module in the comparative example. It is higher than the gain (M2A) in the normal direction (azimuth angle 0 degrees) of.
  • the antenna module 100 of the first embodiment has a higher antenna gain of the radio wave radiated in the normal direction of the antenna element than the antenna module of the comparative example.
  • the electrode 20 By providing the electrode 20 at a position facing the antenna element 121 of the antenna module 100 in this way, the frequency bandwidth can be expanded and the antenna gain can be improved.
  • FIG. 5 is a plan view of the heat sink 40B of the communication device according to the second embodiment.
  • the description of the electrode is omitted.
  • the opening 42B and the antenna element 121B are arranged in the communication device 10 so that the orientation of the antenna element 121B and the orientation of the opening 42B match when viewed in a plan view from the Z-axis direction. You may.
  • the opening 42B has a rectangular shape, and is arranged so that two sides are parallel to the X axis and the other two sides are parallel to the Y axis in the XY plane.
  • the antenna element 121B has a quadrangular shape similar to the opening 42B, so that two sides are parallel to the X axis and the other two sides are parallel to the Y axis in the XY plane. Is located in. That is, the shape of the antenna element 121B is similar to the shape of the opening 42B. Further, each side of the antenna element 121B is arranged so as to be parallel to each side of the corresponding opening 42B.
  • the positional relationship between the opening and the antenna element is not limited to the relationship shown in the first embodiment.
  • FIG. 6 is a diagram showing the inside of the housing 30C of the communication device 10C according to the third embodiment.
  • the upper row (FIG. 6 (a)) is a cross-sectional view of the communication device 10C
  • the lower row (FIG. 6 (b)) is a plan view of the heat sink 40C.
  • FIG. 6B the description of the electrode 20C is omitted.
  • a high frequency signal is supplied to the antenna element 121C of the antenna module 100C not only at the feeding point SP1 but also at the feeding point SP2.
  • the polarization direction of the radio wave radiated by the high frequency signal supplied to the feeding point SP1 is different from the polarization direction of the radio wave radiated by the high frequency signal supplied to the feeding point SP2. More specifically, the feeding point SP1 passes through the center (diagonal intersection) CP of the antenna element 121C and is arranged at a position offset in the direction (first direction) of the broken line CL1 parallel to the side of the antenna element 121C. There is. By arranging the feeding point SP1 at such a position, radio waves having the above-mentioned first direction (direction of the broken line CL1) as the polarization direction are radiated.
  • the feeding point SP2 passes through the central CP of the antenna element 121C and is arranged at a position offset in the direction of the broken line CL2 (second direction) orthogonal to the first direction (direction of the broken line CL1). By arranging the feeding point SP2 at such a position, a radio wave having a polarization direction in the second direction (direction of the broken line CL2) orthogonal to the first direction is emitted.
  • the antenna element 121C of the antenna module 100C is a dual polarization type antenna module configured to be able to radiate a radio wave having a second direction as a polarization direction in addition to a radio wave having a first direction as the polarization direction. be.
  • the antenna element 121C illustrated in FIG. 6 can radiate radio waves in two orthogonal directions, the first direction and the second direction do not have to be orthogonal to each other.
  • the distance L1 in FIG. 6B is the end portion 422C of the opening 42C from the center CP of the antenna element 121C in the direction of the broken line CL1 (the first direction among the polarization directions of the radio waves radiated from the antenna element 121C).
  • the distance L2 in FIG. 6B is the end portion 422C of the opening 42C from the center CP of the antenna element 121C in the direction of the broken line CL2 (the second direction of the polarization directions of the radio waves radiated from the antenna element 121C).
  • the opening 42C and the antenna element 121C are arranged in the communication device 10C so that the distance L1 and the distance L2 are equal to each other.
  • the shield range of the heat sink 40C against the polarization in the first direction and the second The shield range of the heat sink 40C with respect to the direction is about the same. As a result, it is possible to prevent the characteristics of one of the polarizations from being extremely deteriorated.
  • the heat radiating plate 40C and the antenna element 121C are arranged in the housing so that the symmetry axis of the antenna element 121C and the symmetry axis of the opening 42 coincide with each other when viewed in a plan view.
  • the feeding point SP1 and the feeding point SP2 are arranged symmetrically with the diagonal line of the antenna element 121C parallel to the Y axis as the axis of symmetry. Therefore, the symmetry of the current flowing through the conductor and the symmetry of the surrounding electromagnetic field are maintained, and the isolation between the feeding points can be maintained.
  • the opening 42C and the antenna element 121C may be arranged in the communication device 10C so that the distance L1 is maximized. Further, the opening 42C and the antenna element 121C may be arranged in the communication device 10C so that the distance L2 is maximized.
  • FIG. 7 is a diagram showing the inside of the housing 30D of the communication device 10D according to the fourth embodiment.
  • the upper row (FIG. 7 (a)) is a cross-sectional view of the communication device 10D
  • the lower row (FIG. 7 (b)) is a plan view of the heat sink 40D.
  • FIG. 7B the description of the electrode 20D is omitted.
  • the heat sink 40D is formed with a slit 44 in addition to the opening 42D.
  • the slit 44 is a rectangular elongated opening.
  • the slit 44 is formed around the opening 42D.
  • slits 44 are formed in each of the four directions around the opening 42D, and a total of four slits 44 are formed in one opening 42D.
  • each of the two slits 44 is arranged at a position facing one side of the antenna element 121D parallel to the X axis, and the long side is arranged so as to be parallel to the X axis. .. Further, the other two slits 44 are arranged at positions facing one side of the antenna element 121D parallel to the Y axis, and are arranged so that the long side is parallel to the Y axis.
  • the slit 44 is formed at least in the polarization direction of the radio wave radiated from the antenna element 121D (the direction of the broken line CL1 in the figure). By forming the slit 44 in the polarization direction of the radio wave radiated from the antenna element 121D, the range shielded by the heat radiating plate 40D with respect to the polarization direction is narrowed, so that the antenna characteristics are improved.
  • the slit 44 is formed so that the long side of the slit 44 is orthogonal to the polarization direction of the radio wave radiated from the antenna element 121D.
  • “orthogonal” does not necessarily have to be 90 degrees, and for example, the angle ⁇ formed by the long side of the slit 44 and the broken line CL1 may be 45 degrees ⁇ ⁇ 135 degrees.
  • the width W of the slit 44 is preferably longer than the length L3 of one side of the antenna element 121D facing the slit 44.
  • the slit 44 also functions as a slit antenna. Therefore, the width W of the slit 44 is preferably half the wavelength of the operating frequency in the electrical length of the antenna element 121D. By setting the width W of the slit 44 to a half wavelength in this way, it is possible to radiate a radio wave having substantially the same frequency as the radio wave radiated from the antenna element 121D from the slit 44 functioning as a slit antenna. ..
  • FIG. 8 is a diagram showing simulation results comparing the antenna characteristics of the antenna module 100 of the communication device 10 according to the first embodiment and the antenna module 100D of the communication device 10D according to the fourth embodiment.
  • the gain (M2B) in the normal direction (azimuth angle 0 degree) of the antenna element 121D radiated from the antenna module 100D according to the fourth embodiment is obtained from the antenna module 100 according to the first embodiment. It is higher than the gain (M2) in the normal direction (azimuth angle 0 degrees) of the radiated antenna element 121.
  • FIG. 9 is a cross-sectional view of the communication device 10E according to the fifth embodiment.
  • the electrodes are formed separately from the antenna module.
  • the electrodes may be provided on the antenna module 100E. More specifically, the electrode 20E is arranged on the dielectric substrate 130E. That is, the electrode 20E and the antenna element 121E are integrally mounted on the dielectric substrate 130E.
  • the dielectric substrate 130E has a convex portion 134.
  • the electrode 20E is arranged on the convex portion 134. Since the dielectric substrates on both sides of the convex portion 134 are scraped, the effective dielectric constant from the electrode 20E to the antenna element 121E is lowered as compared with the case where the electrodes are arranged on the rectangular dielectric substrate. Can be done. As a result, the frequency bandwidth can be expanded. Further, in the dielectric substrate 130E, the volume of the dielectric can be reduced by scraping the dielectric substrates on both side surfaces of the convex portion 134. By reducing the volume of the dielectric in this way, the loss of the antenna due to the dielectric is reduced, and as a result, the antenna performance can be improved.
  • the electrode 20E is arranged at a position facing the antenna element 121E in the radiation direction of the radio wave radiated from the antenna element 121E, similarly to the electrodes of the communication devices according to the first to fourth embodiments. As a result, the electrode 20E is arranged at a position facing the opening 42E.
  • the heat sink and the electrode are formed on the same plane, but as shown in FIG. 9, the electrode 20E is arranged below the heat sink 40E. May be.
  • FIG. 10 is a cross-sectional view of the communication device 10F according to the sixth embodiment.
  • the electrodes are formed separately from the housing.
  • the electrodes may be integrally formed with the housing.
  • the electrode 20F is arranged inside the housing 30F and is integrated with the housing 30F.
  • the electrode 20F is arranged at a position facing the antenna element 121F in the radiation direction of the radio wave radiated from the antenna element 121F, similarly to the electrodes of the communication devices according to the first to fourth embodiments. As a result, the electrode 20F is arranged at a position facing the opening 42F.
  • the electrode 20F is arranged above the heat sink 40F. May be.
  • the electrodes 20F By arranging the electrodes 20F inside the housing 30F in this way, even if the antenna module 100F is brought closer to the housing 30F and the thickness of the communication device is reduced, the ground electrode GND to the radiation surface (electrode 20F) is reached. You can secure the distance.
  • FIG. 11 is a cross-sectional view of the communication device 10I according to the seventh embodiment.
  • the dielectric substrate may further contain other elements. More specifically, the dielectric substrate 130I in the communication device 10I includes vias 50R and 50L in addition to the antenna element 121I, the feeding wiring 170I, and the ground electrode GND.
  • the vias 50R and 50L are thermal vias having a heat exhausting effect.
  • the vias 50R and 50L are arranged around the antenna element 121I so as to be separated from the antenna element 121I.
  • the via 50R is arranged on the positive direction side of the X axis of the antenna element 121I
  • the via 50L is arranged on the negative direction side of the X axis of the antenna element 121I.
  • the vias 50R and 50L may be arranged, for example, at positions where the antenna element 121I overlaps with the antenna element 121I when viewed from the side in the Y-axis direction.
  • the vias 50R and 50L are arranged between the heat sink 40I and the RFIC. It is desirable that the vias 50R and 50L are arranged at positions overlapping with the heat radiating plate 40I when viewed in a plan view from the Z-axis direction.
  • the vias 50L and 50R are filled with a medium having at least a higher thermal conductivity than the dielectric substrate 130I.
  • a metal such as copper is filled in the vias 50R and 50L.
  • the medium filled in the vias 50R and 50L is not limited to metal, and may be, for example, air.
  • the heat generated from the RFIC is more efficiently transferred to the heat sink 40I via a medium having a higher thermal conductivity than the dielectric substrate 130I.
  • the heat generated from the RFIC can be easily transferred to the heat sink 40I.
  • the metal filled in the vias 50R and 50L is connected to the ground electrode GND.
  • the metal filled in the vias 50R and 50L has the same potential as the ground electrode GND, and it is possible to suppress the surface wave. Further, the metal filled in the vias 50R and 50L may not be connected to the ground electrode GND.
  • FIG. 12 is a plan view of the heat sink 40G of the communication device according to the eighth embodiment.
  • the description of the electrode and the feeding point is omitted.
  • the antenna module may include a plurality of antenna elements 121G.
  • the heat sink 40G may be formed with one large opening 42G so as to face all of the plurality of antenna elements 121G.
  • the antenna gain of the antenna module can be improved by aligning each antenna element 121G, or the antenna module can be radiated by adjusting the phase difference between the antenna elements 121. You can control the direction and shape of the radio waves. Further, even when one large opening 42G is provided, the heat from the antenna module can be diffused over a wide range by the heat sink 40G, so that it is possible to prevent the housing from becoming hot. Further, forming one large opening 42G requires less time and effort to form the opening than forming the opening for each of the plurality of antenna elements 121G.
  • the opening 42G is preferably large enough to accommodate all the antenna elements 121G within the opening 42G when viewed in a plan view from the Z-axis direction. Further, in the example shown in FIG. 12, the plurality of antenna elements 121G are arranged in a single row, but may be arranged two-dimensionally.
  • FIG. 13 is a plan view of the heat sink 40H of the communication device according to the ninth embodiment.
  • the description of the electrode and the feeding point is omitted.
  • the antenna module includes a plurality of antenna elements 121H1, 121H2, 121H3, 121H4, the heat sink 40H is opened separately for each of the antenna elements 121H1, 121H2, 121H3, 121H4.
  • a portion (opening 42H1, 42H2, 42H3, 42H4) may be formed.
  • each antenna element can be aligned to improve the antenna gain of the antenna module, or the phase difference between the antenna elements can be adjusted to direct the radio wave radiated from the antenna module. And the shape can be controlled. Further, the opening range of the heat sink 40H is narrower than that in the case where one large opening (opening 42G in FIG. 12) is formed. Therefore, the area of the heat radiating plate 40H can be secured, and a higher heat radiating effect can be obtained as compared with the case where one large opening is formed.
  • each of the openings 42H1 to 42H4 is a quadrangle. Further, the openings 42H1 to 42H4 are arranged so as to be inclined with respect to the arrangement direction (X-axis direction) of the antenna elements 121H1 to 121H4. Further, to explain the positional relationship of the openings 42H1 to 42H4 from another viewpoint, the openings adjacent to each other in the arrangement direction of the antenna elements are adjacent sides (sides S1 and S2 in FIG. 13 or sides S3). The sides S4) are formed so as not to be parallel to each other.
  • the antenna module is assumed to be provided with four antenna elements 121H1 to 121H4, but may be provided with three or less or five or more. Further, although the plurality of antenna elements are arranged in a single row, they may be arranged two-dimensionally.
  • FIG. 14 is a plan view of the heat sink 40J of the communication device according to the tenth embodiment.
  • the antenna module includes a plurality of antenna elements 121J1, 121J2, 121J3, 121J4. Further, the heat radiating plate 40J is formed with openings (openings 42J1, 42J2, 42J3, 42J4) separately for each of the antenna elements 121J1 to 121J4.
  • each antenna element can be aligned to improve the antenna gain of the antenna module, or the phase difference between the antenna elements can be adjusted to direct the radio wave radiated from the antenna module. And the shape can be controlled. Further, the opening range of the heat radiating plate 40J is narrower than that in the case where one large opening (opening 42G in FIG. 12) is formed. Therefore, the area of the heat radiating plate 40J can be secured, and a higher heat radiating effect can be obtained as compared with the case where one large opening is formed.
  • the openings 42J1 and 42J2 when viewed in a plan view from the Z-axis direction, are such that the side S1 of the opening 42J1 and the side S2 of the opening 42J2 adjacent to the side S1 are parallel to each other. It is formed to be.
  • the antenna module is assumed to be provided with four antenna elements 121J1 to 121J4, but may be provided with three or less or five or more. Further, although the plurality of antenna elements are arranged in a single row, they may be arranged two-dimensionally.

Abstract

通信装置(10)は、平板形状のアンテナ素子(121)が設けられたアンテナモジュール(100)と、アンテナモジュール(100)を収容する筐体(30)と、放熱板(40)と、電極(20)とを備える。放熱板(40)は、筐体(30)とアンテナモジュール(100)との間に配置されており、アンテナ素子(121)と対向する位置に開口部(42)が形成されている。電極(20)は、アンテナ素子(121)の法線方向であって、アンテナ素子(121)と対向する位置に配置されている。

Description

通信装置
 本開示は通信装置に関し、より特定的には、通信装置内へのアンテナの設置に関する。
 特開2014-212361号公報(特許文献1)には、マイクロストリップアンテナを内部に設けた電子機器が開示されている。
特開2014-212361号公報
 アンテナを内部に設けた電子機器である通信装置に対しては、アンテナが発熱するため、放熱性が求められている。特に、筐体が熱くならないようにすることが求められている。
 アンテナから生じた熱を放熱させる方法として、金属のような熱伝導率の高い放熱板を通信装置内部に設けることで、放熱板を介して熱を逃がす方法がある。
 しかし、放熱板が金属のような導電性を有する材質から構成されている場合、筐体が熱くならないように筐体とアンテナとの間に放熱板を設けると、放熱板が電波を遮断するシールドとして作用してしまい、通信装置としての機能を低下させてしまう可能性がある。
 本開示は、このような課題を解決するためになされたものであって、その目的は、筐体が熱くなることを抑制しつつ、通信装置としての機能の低減を抑制可能な通信装置を提供することである。
 本開示に係る通信装置は、平板形状の放射素子が設けられたアンテナモジュールと、アンテナモジュールを収容する筐体と、放熱板と、電極とを備える。放熱板は、筐体とアンテナモジュールとの間に配置されており、放射素子と対向する位置に開口部が形成されている。電極は、放射素子の法線方向であって、放射素子と対向する位置に配置されている。
 本開示に係る通信装置によれば、筐体とアンテナモジュールとの間に放熱板が配置されるため、アンテナモジュールから発生する熱が放熱板によって放熱されて、筐体が熱くなることを抑制できる。さらに、電極が放射素子と対向する位置に配置されることで、電極が無給電素子として機能する。これにより、電極面がアンテナモジュールの放射面となる。その結果、放熱板によってシールドされる電波が軽減されて、通信装置としての機能の低減を抑制できる。
本実施の形態にかかる通信装置のブロック図の一例である。 通信装置の外観図である。 実施の形態1にかかる筐体内部を示す図である。 実施の形態1にかかる通信装置のアンテナモジュールおよび電極が配置されていない通信装置のアンテナモジュール(比較例)におけるアンテナ特性を比較したシミュレーション結果を示す図である。 実施の形態2にかかる通信装置の放熱板の平面図である。 実施の形態3にかかる通信装置の筐体内部を示す図である。 実施の形態4にかかる通信装置の筐体内部を示す図である。 実施の形態1にかかる通信装置のアンテナモジュールおよび実施の形態4にかかる通信装置のアンテナモジュールにおけるアンテナ特性を比較したシミュレーション結果を示す図である。 実施の形態5にかかる通信装置の断面図である。 実施の形態6にかかる通信装置の断面図である。 実施の形態7にかかる通信装置の断面図である。 実施の形態8にかかる通信装置の放熱板の平面図である。 実施の形態9にかかる通信装置の放熱板の平面図である。 実施の形態10にかかる通信装置の放熱板の平面図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [通信装置の基本構成]
 図1は、本実施の形態にかかる通信装置10のブロック図の一例である。通信装置10は、たとえばスマートフォンあるいはタブレットのような、概して平板形状を有する携帯端末である。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナ装置120から放射するとともに、アンテナ装置120で受信した高周波信号をダウンコンバートしてBBIC200にて信号を処理する。
 本実施の形態にかかるアンテナモジュール100に用いられる電波の周波数帯域は、たとえば、6GHzよりも高い周波数帯域であり、代表的にはいわゆる「FR2(Frequency Range 2)」と称されるミリ波帯である。FR2の周波数帯域は、たとえば24.25GHz~52.6GHzである。なお、アンテナモジュール100に用いられる電波の周波数帯域は、6GHz以下の周波数帯域であってもよい。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数のアンテナ素子(放射素子)121のうち、4つのアンテナ素子121に対応する構成のみ示され、同様の構成を有する他のアンテナ素子121に対応する構成については省略されている。なお、図1においては、アンテナ装置120が二次元のアレイ状に配置された複数のアンテナ素子121で形成される例を示しているが、アンテナ素子121は必ずしも複数である必要はなく、1つのアンテナ素子121でアンテナ装置120が形成される場合であってもよい。また、複数のアンテナ素子121が一列に配置された一次元アレイであってもよい。本実施の形態においては、アンテナ素子121は、略正方形の平板形状を有するパッチアンテナである場合を例として説明するが、アンテナ素子121はダイポールアンテナあるいはモノポールアンテナであってもよい。また、アンテナ素子121は、パッチアンテナとともに、ダイポールアンテナあるいはモノポールアンテナを併用するものであってもよい。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なるアンテナ素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。また、減衰器114A~114Dは送信信号の強度を調整する。
 各アンテナ素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各アンテナ素子121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応するアンテナ素子121毎に1チップの集積回路部品として形成されてもよい。
 図2は、通信装置10の外観図である。図2において、上段(図2(a))は通信装置10の正面図であり、下段(図2(b))は通信装置10の背面図である。本実施の形態において、通信装置10は、一例としてスマートフォンであり、筐体30内にアンテナモジュール100が収納されている。図2に示す例では、アンテナモジュール100は、ディスプレイ32が配置されていない背面側の筐体30内に収納されており、ディスプレイ32が配置されていない背面側から電波を放射するように配置されている。なお、アンテナモジュール100の収納位置は、図2に示した位置に限定されない。
 図1を参照して説明したように、アンテナモジュール100は、給電回路としてRFIC110を備えており、RFIC110がパワーアンプ112AT~112DT、ローノイズアンプ112AR~112DRを備えているため、RFIC110から熱が生じる。そのため、通信装置10に対しては、筐体30が熱くならないようにするために、アンテナモジュール100からの熱が筐体30に伝わる前に放熱されるように構成されていることが求められている。
 筐体30が熱くならないようにするために、金属板などの放熱板を筐体30とアンテナモジュール100との間に設けた場合、放熱板が電波を遮断するシールドとして作用してしまうため、通信装置10としての機能を低下させてしまう可能性がある。
 以下には、筐体30が熱くなることを抑制しつつ、通信装置10としての機能の低減を抑制するアンテナモジュール100の設置について説明する。
 [実施の形態1]
 (アンテナモジュール100の配置)
 図3は、実施の形態1にかかる筐体30内部を示す図である。図3において、上段(図3(a))は通信装置10の断面図であり、中段(図3(b))は放熱板40の平面図であり、下段(図3(c))はアンテナモジュール100の平面図である。以下では、アンテナ素子121の法線方向(電波の放射方向)をZ軸方向とし、Z軸方向に垂直な面をXY平面とする。また、各図におけるZ軸の正方向を「上」、負方向を「下」と称する場合がある。なお、図3(c)においては、開口部42とアンテナ素子121との位置関係を説明するために、破線で開口部42の位置が示されている。
 図3を参照して、通信装置10は、アンテナモジュール100および筐体30に加えて、放熱板40と、電極20とを有する。
 アンテナモジュール100は、RFIC110および放射素子であるアンテナ素子121に加えて、誘電体基板130と、給電配線170と、接地電極GNDとを含む。図3においては、説明を容易にするために、アンテナモジュール100は、アンテナ素子121を1つ有しているものとして説明するが、後述するように、アンテナ素子121を2以上有していてもよく、アンテナ素子121が一次元配列または二次元配列されていてもよい。
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシまたはポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、PET(Polyethylene Terephthalate)材から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130は必ずしも多層構造でなくてもよく、単層の基板であってもよい。なお、図3(c)および以降で説明する平面図においては、誘電体基板130および給電配線は省略されている。
 誘電体基板130においてアンテナ素子121よりも下面132(Z軸の負方向の面)側の層に、アンテナ素子121に対向して、平板形状の接地電極GNDが配置されている。誘電体基板130の下面132には、はんだバンプ140を介してRFIC110が実装されている。なお、RFIC110は、はんだ接続に代えて、多極コネクタを用いて誘電体基板130に接続されてもよい。
 RFIC110から、給電配線170を介して、アンテナ素子121の給電点SP1に高周波信号が供給される。図3の例においては、アンテナ素子121は、四角形状であって、XY平面内において二辺がX軸に対して傾斜するように配置されている。また、給電点SP1は、アンテナ素子121の中心(対角線の交点)CPを通り、アンテナ素子121の辺に平行な破線CL1の方向(第1方向)にオフセットした位置に配置されている。給電点SP1をこのような位置に配置することよって、上記の第1方向(破線CL1の方向)を偏波方向とする電波が放射される。
 給電配線170は、誘電体基板130の層間に形成された配線パターン、および層を貫通するビアによって形成されている。なお、アンテナモジュール100において、放射素子、配線パターン、電極、およびビア等を構成する導体は、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、および、これらの合金を主成分とする金属で形成されている。
 放熱板40は、筐体30とアンテナモジュール100との間に配置されている。放熱板40には、アンテナモジュール100のアンテナ素子121と対向する位置に開口部42が形成されている。放熱板40は、たとえば、金属板である。金属板は、熱伝導率が高く、高い放熱性を有する。アンテナモジュール100からの熱は、放熱板40によって広範囲に拡散される。その結果、筐体30が熱くなることを抑制できる。
 また、実施の形態1において、開口部42とアンテナ素子121とは、アンテナ素子121の中心CPから開口部42の端部422までの距離L1が、破線CL1の方向(アンテナ素子121から放射される電波の偏波方向)において最大となるように通信装置10に配置されている。このようにすることで、偏波方向の電波が開口部42を効率的に通過することができ、アンテナ特性を向上させることができる。
 なお、後述するように、開口部42とアンテナ素子121との位置関係は、図3に示した位置関係に限定されるものではなく、アンテナ素子121と対向する位置に開口部42が形成されていればよい。
 また、開口部42は、アンテナ素子121よりも大きく、たとえば、Z軸方向から平面視した場合に、開口部42内にアンテナ素子121が収まる程度の大きさを有している。また、開口部42は、電極20よりも大きく、たとえば、Z軸方向から平面視した場合に、開口部42内に電極20が収まる程度の大きさを有している。なお、開口部42が大きすぎると放熱板40の放熱能力が低下するため、開口部42は、アンテナ素子121からの電波を放射でき、かつ、放射面となる電極20からの電波を放射できる必要十分な大きさを有していることが好ましい。
 電極20は、アンテナモジュール100のアンテナ素子121よりもZ軸の正方向側であって、アンテナ素子121と対向する位置に配置されている。
 電極20は、アンテナ素子121の共振周波数と近い共振周波数を有している。たとえば、電極20は、アンテナ素子121と同一形状かつ同一サイズであることが好ましい。電極20およびアンテナ素子121の形状とサイズとを同一にすることで、電極20およびアンテナ素子121の共振周波数をほぼ同一にできる。また、アンテナ素子121の共振周波数と電極20の共進周波数とは同じであることが好ましい。なお、電極20の共振周波数がアンテナ素子121の共振周波数と近ければ、電極20の形とアンテナ素子121の形とは異なる形であってもよく、また、電極20の大きさとアンテナ素子121の大きさとは異なっていてもよい。たとえば、電極20の形状は、十字型であってもよい。
 電極20がアンテナ素子121と対向する位置に配置されることで、電極20がアンテナ素子121からの電波を受けて共振し、電極20は放射源(無給電素子)として機能する。これにより、電極20がアンテナモジュール100の放射面となり、放熱板40によってシールドされてしまう電波を軽減できるため、電波の放射効率を向上させることができる。さらに、電極20がアンテナモジュール100の放射面となることで、接地電極GNDから放射面までの距離を伸ばすことができ、周波数帯域幅を広くできる。
 図3においては、開口部42は、Z軸方向から平面視した場合に、開口部42内に電極20が収まる大きさを有しており、電極20が放熱板40と同一平面上に形成されている。より具体的には、電極20および放熱板40は、いずれも、筐体30に設置されている。電極20と放熱板40とを同一平面上に配置することで、電極20および放熱板40をいずれも筐体30に設置することができ設置コストを削減できる。特に、電極20と放熱板40とがいずれも共通の金属から構成されている場合、一枚の金属板を筐体30に取り付けてから、開口部42と電極20との間を切り抜くだけで、電極20と放熱板40とを筐体30に設置できる。
 なお、後述するように、電極20と放熱板40とは、同一平面上に配置されている必要はなく、たとえば、電極20は、放熱板40よりも上に配置されていても、下に配置されていてもよい。より具体的には、筐体30内に電極20を埋め込むことで、電極20を放熱板40よりも上に配置してもよい。また、放熱板40を筐体30からアンテナ素子121側に離し、放熱板40と筐体30との間に電極20を配置してもよい。
 (シミュレーション結果)
 図4は、実施の形態1にかかる通信装置10のアンテナモジュール100および電極20が配置されていない通信装置のアンテナモジュール(比較例)におけるアンテナ特性を比較したシミュレーション結果を示す図である。比較例にかかる通信装置は、筐体とアンテナモジュールとの間に開口部が形成された放熱板が配置されている点で実施の形態1にかかる通信装置10と共通するものの、電極20が配置されていない点で実施の形態1にかかる通信装置10と異なる。
 図4においては、反射特性(上段)と、利得(下段)とが示されている。なお、以下のシミュレーションにおいては、使用する周波数帯域がミリ波の周波数帯域(GHz帯域)である例について説明するが、本開示の構成は、ミリ波以外の周波数帯域についても適用可能である。
 図4を参照して、比較例における反射損失(図4の線LN1A)において、反射損失が10dBを確保できる周波数帯域は、26.7~29.8GHzの範囲(RNG1A)となっており、周波数帯域幅は、3.1GHzである。一方、実施の形態1における反射損失(図4の線LN1)において、反射損失が10dBを確保できる周波数帯域は、27.5~33.1GHzの範囲(RNG1)となっており、周波数帯域幅は、5.6GHzである。このように、実施の形態1のアンテナモジュール100のほうが、比較例のアンテナモジュールよりも広い周波数帯域幅となっている。
 図4を参照して、実施の形態1におけるアンテナモジュール100から放射されるアンテナ素子121の法線方向(方位角0度)の利得(M2)は、比較例におけるアンテナモジュールから放射されるアンテナ素子の法線方向(方位角0度)の利得(M2A)よりも高い。このように、実施の形態1のアンテナモジュール100のほうが、比較例のアンテナモジュールよりもアンテナ素子の法線方向に放射される電波のアンテナ利得が高い。
 このように、アンテナモジュール100のアンテナ素子121と対向する位置に電極20を設けることで、周波数帯域幅を拡大するとともに、アンテナ利得を向上させることができる。
 [実施の形態2]
 図5は、実施の形態2にかかる通信装置の放熱板40Bの平面図である。なお、図5においては、電極の記載を省略している。図5に示すように、Z軸方向から平面視した場合に、アンテナ素子121Bの向きと、開口部42Bの向きとが一致するように、開口部42Bおよびアンテナ素子121Bを通信装置10に配置してもよい。
 より具体的には、開口部42Bは、四角形状であって、XY平面において二辺がX軸に対して平行であり、他の二辺がY軸に対して平行となるように配置されている。また、アンテナ素子121Bは、開口部42Bと相似形である四角形状であって、XY平面において二辺がX軸に対して平行であり、他の二辺がY軸に対して平行となるように配置されている。すなわち、アンテナ素子121Bの形状は、開口部42Bの形状と相似している。また、アンテナ素子121Bの各辺は、対応する開口部42Bの各辺と平行となるように配置されている。
 以上のように、開口部とアンテナ素子との位置関係は、実施の形態1に示した関係に限定されない。
 [実施の形態3]
 図6は、実施の形態3にかかる通信装置10Cの筐体30C内部を示す図である。図6において、上段(図6(a))は通信装置10Cの断面図であり、下段(図6(b))は放熱板40Cの平面図である。なお、図6(b)においては、電極20Cの記載を省略している。
 アンテナモジュール100Cのアンテナ素子121Cには、給電点SP1に加えて給電点SP2にも高周波信号が供給される。
 給電点SP1に供給される高周波信号によって放射される電波の偏波方向と、給電点SP2に供給される高周波信号によって放射される電波の偏波方向とは、異なる。より具体的には、給電点SP1は、アンテナ素子121Cの中心(対角線の交点)CPを通り、アンテナ素子121Cの辺に平行な破線CL1の方向(第1方向)にオフセットした位置に配置されている。給電点SP1をこのような位置に配置することよって、上記の第1方向(破線CL1の方向)を偏波方向とする電波が放射される。給電点SP2は、アンテナ素子121Cの中心CPを通り、第1方向(破線CL1の方向)と直交する破線CL2の方向(第2方向)にオフセットした位置に配置されている。給電点SP2をこのような位置に配置することよって、第1方向に直交する第2方向(破線CL2の方向)を偏波方向とする電波が放射される。
 すなわち、アンテナモジュール100Cのアンテナ素子121Cは、第1方向を偏波方向とする電波に加えて、第2方向を偏波方向とする電波を放射可能に構成されたデュアル偏波タイプのアンテナモジュールである。なお、図6に例示したアンテナ素子121Cは、直交する2方向の電波を放射可能としたが、第1方向と第2方向とは、直交していなくともよい。
 また、図6(b)を参照して、アンテナ素子121Cと開口部42Cとの位置関係について説明する。図6(b)中の距離L1は、破線CL1の方向(アンテナ素子121Cから放射される電波の偏波方向のうちの第1方向)におけるアンテナ素子121Cの中心CPから開口部42Cの端部422Cまでの最短距離である。図6(b)中の距離L2は、破線CL2の方向(アンテナ素子121Cから放射される電波の偏波方向のうちの第2方向)におけるアンテナ素子121Cの中心CPから開口部42Cの端部422Cまでの最短距離である。開口部42Cとアンテナ素子121Cとは、距離L1と距離L2とが等しくなるように通信装置10Cに配置されている。
 このように、距離L1と距離L2とが等しくなるように開口部42Cとアンテナ素子121Cとを通信装置10Cに配置することで、第1方向の偏波に対する放熱板40Cのシールド範囲と、第2方向に対する放熱板40Cのシールド範囲とが同程度となる。その結果、一方の偏波の特性が極端に低下することを抑制できる。
 さらに、本実施の形態において、平面視したときに、アンテナ素子121Cの対称軸と開口部42の対称軸とが一致するように、放熱板40Cおよびアンテナ素子121Cが筐体内に配置されている。また、Y軸に平行なアンテナ素子121Cの対角線を対称軸として、給電点SP1および給電点SP2は対称に配置されている。そのため、導体に流れる電流の対称性および周辺の電磁界の対称性が保たれ、各給電点間のアイソレーションを保つことができる。
 なお、実施の形態1と同様、開口部42Cとアンテナ素子121Cとは、距離L1が最大となるように通信装置10Cに配置されてもよい。また、開口部42Cとアンテナ素子121Cとは、距離L2が最大となるように通信装置10Cに配置されてもよい。
 [実施の形態4]
 図7は、実施の形態4にかかる通信装置10Dの筐体30D内部を示す図である。図7において、上段(図7(a))は通信装置10Dの断面図であり、下段(図7(b))は放熱板40Dの平面図である。なお、図7(b)においては、電極20Dの記載を省略している。
 図7を参照して、放熱板40Dには、開口部42Dに加えて、スリット44が形成されている。スリット44は、長方形の細長い開口である。スリット44は、開口部42Dの周囲に形成されている。図7においては、開口部42Dの周囲四方向のそれぞれにスリット44が形成されており、一の開口部42Dに対して合計4つのスリット44が形成されている。
 より具体的には、2つのスリット44は各々、X軸に平行なアンテナ素子121Dの一辺と対向する位置に配置されており、かつ、長辺がX軸と平行になるように配置されている。また、他の2つのスリット44は各々、Y軸に平行なアンテナ素子121Dの一辺と対向する位置に配置されており、かつ、長辺がY軸と平行になるように配置されている。
 なお、スリット44は、少なくとも、アンテナ素子121Dから放射される電波の偏波方向(図中の破線CL1の方向)に形成されていることが好ましい。アンテナ素子121Dから放射される電波の偏波方向にスリット44が形成されることで、偏波方向に対して放熱板40Dがシールドする範囲が狭くなるため、アンテナ特性が向上する。
 また、スリット44は、アンテナ素子121Dから放射される電波の偏波方向に対して、スリット44の長辺が直交するように形成されていることが好ましい。なお、「直交」とは、必ずしも90度である必要はなく、たとえば、スリット44の長辺と、破線CL1との成す角θが、45度<θ<135度であればよい。なお、スリット44の長辺と、破線CL1との成す角θを90度とすることで、アンテナ特性の対称性を保つことができる。
 Z軸方向から平面視した場合に、スリット44の幅Wは、スリット44と対向するアンテナ素子121Dの一辺の長さL3よりも長いことが好ましい。このように、スリット44の幅Wをアンテナ素子121Dの一辺の長さL3よりも長くすることで、偏波方向に対してシールドする範囲が狭くなるため、アンテナ特性が向上する。
 また、スリット44は、スリットアンテナとしても機能する。そのため、スリット44の幅Wは、アンテナ素子121Dの電気長において、動作周波数の2分の1波長の長さであることが好ましい。このように、スリット44の幅Wを2分の1波長の長さとすることで、スリットアンテナとして機能するスリット44からアンテナ素子121Dから放射される電波とほぼ同じ周波数の電波を放射することができる。
 図8は、実施の形態1にかかる通信装置10のアンテナモジュール100および実施の形態4にかかる通信装置10Dのアンテナモジュール100Dにおけるアンテナ特性を比較したシミュレーション結果を示す図である。
 図8を参照して、実施の形態4にかかるアンテナモジュール100Dから放射されるアンテナ素子121Dの法線方向(方位角0度)の利得(M2B)は、実施の形態1にかかるアンテナモジュール100から放射されるアンテナ素子121の法線方向(方位角0度)の利得(M2)よりも高い。このように、開口部に加えてスリット44を放熱板に形成することで、アンテナ利得を向上させることができ、アンテナ特性が向上する。
 [実施の形態5]
 図9は、実施の形態5にかかる通信装置10Eの断面図である。実施の形態1~4において、電極は、アンテナモジュールとは別体に形成されているものとした。なお、電極は、アンテナモジュール100Eに設けられていてもよい。より具体的には、電極20Eは、誘電体基板130Eに配置されている。すなわち、電極20Eおよびアンテナ素子121Eは、誘電体基板130Eに一体化して実装されている。
 このように、一体化することで、一体化していない場合に比べて、アンテナ素子121Eと電極20Eとの距離、アンテナ素子121Eと電極20Eとの電気的な結合などをコントロールしやすく、アンテナモジュール100Eの性能を向上させることができる。また、一体化させることで、組み立て時にアンテナ素子121Eと電極20Eとの位置合わせをする必要がないため、通信装置10Eごとのばらつきを抑えることができるとともに、組み立てコストも削減できる。
 誘電体基板130Eは、凸部134を有する。電極20Eは、凸部134に配置されている。凸部134の両側面の誘電体基板が削れていることにより、電極が直方体状の誘電体基板に配置されている場合に比べて、電極20Eからアンテナ素子121Eまでの実効誘電率を低くすることができる。その結果、周波数帯域幅を拡大できる。また、誘電体基板130Eは、凸部134の両側面の誘電体基板が削れていることにより、誘電体の体積を減らすことができる。このように、誘電体の体積を減らすことで、誘電体によるアンテナの損失が低減し、その結果、アンテナ性能を向上できる。
 電極20Eは、実施の形態1~4にかかる通信装置の電極と同様に、アンテナ素子121Eから放射される電波の放射方向であって、アンテナ素子121Eと対向する位置に配置されている。そして、その結果、電極20Eは、開口部42Eと対向する位置に配置されることとなる。なお、上記実施の形態1~4においては、放熱板と電極とが同一平面上に形成されているとしたが、図9に示すように、電極20Eは、放熱板40Eよりも下に配置されていてもよい。
 [実施の形態6]
 図10は、実施の形態6にかかる通信装置10Fの断面図である。実施の形態1~4において、電極は、筐体とは別体に形成されているものとした。なお、電極は、筐体と一体に形成されていてもよい。具体的には、電極20Fは、筐体30Fの内部に配置されており、筐体30Fと一体化している。
 電極20Fは、実施の形態1~4にかかる通信装置の電極と同様に、アンテナ素子121Fから放射される電波の放射方向であって、アンテナ素子121Fと対向する位置に配置されている。そして、その結果、電極20Fは、開口部42Fと対向する位置に配置されることとなる。なお、上記実施の形態1~4においては、放熱板と電極とが同一平面上に形成されているとしたが、図10に示すように、電極20Fは、放熱板40Fよりも上に配置されていてもよい。
 このように、電極20Fを筐体30Fの内部に配置することで、アンテナモジュール100Fを筐体30Fに近づけて通信装置の厚みを薄くしたとしても、接地電極GNDから放射面(電極20F)までの距離を確保できる。
 [実施の形態7]
 図11は、実施の形態7にかかる通信装置10Iの断面図である。実施の形態1~6では、アンテナ素子、給電配線、および接地電極が誘電体基板に含まれる構成について説明した。誘電体基板には、さらに他の要素が含まれていてもよい。より具体的には、通信装置10Iにおける誘電体基板130Iは、アンテナ素子121I、給電配線170I、接地電極GNDに加えて、ビア50R,50Lを含む。ビア50R,50Lは、排熱効果を有するサーマルビアである。ビア50R,50Lは、アンテナ素子121Iの周囲に、アンテナ素子121Iから離間して配置される。具体的には、ビア50Rは、アンテナ素子121IのX軸の正方向側に配置され、ビア50Lは、アンテナ素子121IのX軸の負方向側に配置される。ビア50R,50Lは、たとえば、アンテナ素子121IのY軸方向から側面視したときにアンテナ素子121Iと重なる位置に配置されてもよい。ビア50R,50Lは、放熱板40IとRFICとの間に配置される。ビア50R,50Lは、Z軸方向から平面視した場合に、放熱板40Iと重なる位置に配置されることが望ましい。
 ビア50L,50Rには、少なくとも誘電体基板130Iよりも熱伝導率が高い媒体が充填される。図11の例では、たとえば、銅などの金属がビア50R,50Lに充填されている。なお、ビア50R,50Lに充填される媒体は、金属に限られず、たとえば空気であってもよい。RFICから発生する熱は、誘電体基板130Iよりも熱伝導率が高い媒体を介して、より効率的に放熱板40Iに伝達される。換言すれば、通信装置10Iでは、RFICから発生する熱を放熱板40Iへ容易に伝達させることができる。これにより、実施の形態7にかかる通信装置10Iでは、筐体30が熱くなることをより効率的に抑制することができる。
 さらに、図11に示されるように、ビア50R,50Lに充填されている金属は、接地電極GNDに接続されている。これにより、ビア50R,50Lに充填されている金属は、接地電極GNDと同電位となり、表面波を抑圧することが可能となる。また、ビア50R,50Lに充填されている金属は、接地電極GNDに接続されていなくてもよい。
 [実施の形態8]
 図12は、実施の形態8にかかる通信装置の放熱板40Gの平面図である。なお、図12においては、電極および給電点の記載を省略している。図12に示すように、アンテナモジュールは、複数のアンテナ素子121Gを備えていてもよい。この場合に、放熱板40Gには、複数のアンテナ素子121Gのすべてに対向するように一つの大きな開口部42Gが形成されてもよい。
 このように、複数のアンテナ素子121Gを備えることにより、各アンテナ素子121Gを整列させることでアンテナモジュールのアンテナ利得を改善できたり、アンテナ素子121間の位相差を調整することでアンテナモジュールから放射される電波の方向や形状をコントロールできたりする。また、一つの大きな開口部42Gを設けた場合であっても、放熱板40Gによってアンテナモジュールからの熱を広範囲に拡散できるため、筐体が熱くなることを抑制できる。また、一つの大きな開口部42Gを形成することは、複数のアンテナ素子121Gごとに開口部を形成することに比較して、開口部の形成に要する手間が少ない。
 なお、開口部42Gは、Z軸方向から平面視した場合に、開口部42G内にすべてのアンテナ素子121Gが収まる程度の大きさであることが好ましい。また、図12に示す例では、複数のアンテナ素子121Gは、一列に配列されているものとしたが、二次元配列されていてもよい。
 [実施の形態9]
 図13は、実施の形態9にかかる通信装置の放熱板40Hの平面図である。なお、図13においては、電極および給電点の記載を省略している。図13に示すように、複数のアンテナ素子121H1,121H2,121H3,121H4をアンテナモジュールが備える場合に、放熱板40Hには、アンテナ素子121H1,121H2,121H3,121H4、それぞれに対して、別々に開口部(開口部42H1,42H2,42H3,42H4)が形成されていてもよい。
 このように、アンテナ素子121H1~121H4を備えることにより、各アンテナ素子を整列させてアンテナモジュールのアンテナ利得を改善できたり、アンテナ素子間の位相差を調整してアンテナモジュールから放射される電波の方向や形状をコントロールできたりする。また、放熱板40Hの開口範囲は、一つの大きな開口部(図12の開口部42G)を形成した場合に比べて狭い。そのため、放熱板40Hの面積を確保でき、一つの大きな開口部を形成する場合に比べて高い放熱効果が得られる。
 図13に示すように、開口部42H1~42H4の各々は、四角形である。また、各開口部42H1~42H4は、アンテナ素子121H1~121H4の配列方向(X軸方向)に対して、傾いて配置されている。また、他の観点から開口部42H1~42H4の各々の位置関係を説明すると、アンテナ素子の配列方向に隣り合う開口部は、隣り合う辺(図13中の辺S1と辺S2、あるいは、辺S3と辺S4)が平行とならないように形成されている。
 なお、図13に示す例では、アンテナモジュールは、4つのアンテナ素子121H1~121H4を備えているものとしたが、3つ以下または5つ以上備えていてもよい。また、複数のアンテナ素子は、一列に配列されているものとしたが、二次元配列されていてもよい。
 [実施の形態10]
 図14は、実施の形態10にかかる通信装置の放熱板40Jの平面図である。なお、図14においては、電極および給電点の記載を省略している。アンテナモジュールは複数のアンテナ素子121J1,121J2,121J3,121J4を備える。また、放熱板40Jには、アンテナ素子121J1~121J4、それぞれに対して、別々に開口部(開口部42J1,42J2,42J3,42J4)が形成されている。
 このように、アンテナ素子121J1~121J4を備えることにより、各アンテナ素子を整列させてアンテナモジュールのアンテナ利得を改善できたり、アンテナ素子間の位相差を調整してアンテナモジュールから放射される電波の方向や形状をコントロールできたりする。また、放熱板40Jの開口範囲は、一つの大きな開口部(図12の開口部42G)を形成した場合に比べて狭い。そのため、放熱板40Jの面積を確保でき、一つの大きな開口部を形成する場合に比べて高い放熱効果が得られる。
 実施の形態10にかかる通信装置においては、Z軸方向から平面視した場合に、開口部42J1,42J2は、開口部42J1の辺S1と辺S1と隣り合う開口部42J2の辺S2とが平行となるように形成されている。
 なお、図14に示す例では、アンテナモジュールは、4つのアンテナ素子121J1~121J4を備えているものとしたが、3つ以下または5つ以上備えていてもよい。また、複数のアンテナ素子は、一列に配列されているものとしたが、二次元配列されていてもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,10C~10E,10I 通信装置、20,20C~20F,20I 電極、30,30C~30F,30I 筐体、32 ディスプレイ、40,40C~40J 放熱板、42,42B~42J4 開口部、44 スリット、50L,50R ビア、100,100C~100F,100I アンテナモジュール、111A~111D,113A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A~114D 減衰器、115A~115D 移相器、116 信号合成/分波器、118 ミキサ、119 増幅回路、120 アンテナ装置、121,121B~121J4 アンテナ素子、130,130E,130I 誘電体基板、132 下面、134 凸部、140 はんだバンプ、170,170I 給電配線、200 BBIC、422,422C 端部、GND 接地電極、SP1,SP2 給電点。

Claims (17)

  1.  第1方向を偏波方向とする電波を放射可能な平板形状の第1放射素子が設けられたアンテナモジュールと、
     前記アンテナモジュールを収納する筐体と、
     前記筐体と前記アンテナモジュールとの間に配置され、前記第1放射素子と対向する位置に第1開口部が形成された放熱板と、
     前記第1放射素子の法線方向であって、当該第1放射素子と対向する位置に配置された第1電極とを備える、通信装置。
  2.  前記第1開口部は、前記第1放射素子の法線方向から平面視した場合に、当該第1開口部内に前記第1電極が収容される大きさである、請求項1に記載の通信装置。
  3.  前記放熱板と前記第1電極とは、同一平面上に配置されている、請求項2に記載の通信装置。
  4.  前記第1電極は、前記第1放射素子の共振周波数と同じ共振周波数を有する、請求項1~3のうちいずれか1項に記載の通信装置。
  5.  前記第1電極は、前記第1放射素子と同一形状かつ同一サイズである、請求項1~4のうちいずれか1項に記載の通信装置。
  6.  前記第1放射素子は、前記第1方向とは異なる第2方向の偏波をさらに放射可能である、請求項1~5のうちいずれか1項に記載の通信装置。
  7.  前記第1放射素子の法線方向から平面視した場合に、前記第1方向における前記第1放射素子の中心から前記第1開口部の端部までの最短距離を第1距離とし、前記第2方向における前記第1放射素子の中心から前記第1開口部の端部までの最短距離を第2距離とすると、前記第1距離と前記第2距離とは等しい、請求項6に記載の通信装置。
  8.  前記第1開口部は、前記第1放射素子の法線方向から平面視した場合に、前記第1放射素子の中心から前記第1開口部の端部までの最短距離が前記第1方向において最大となるように形成される、請求項1~7のいずれか1項に記載の通信装置。
  9.  前記放熱板には、前記第1開口部の周囲に少なくとも1つのスリットが形成されている、請求項1~8のいずれか1項に記載の通信装置。
  10.  前記スリットは、前記第1放射素子の法線方向から平面視した場合に、前記第1方向に形成されている、請求項9に記載の通信装置。
  11.  前記スリットは、前記第1放射素子の法線方向から平面視した場合に、前記第1方向に対して当該スリットの長辺が直交するように形成されている、請求項10に記載の通信装置。
  12.  前記アンテナモジュールは、誘電体を有し、
     前記第1放射素子および前記第1電極は、各々、前記誘電体に配置されている、請求項1~11のいずれか1項に記載の通信装置。
  13.  前記第1電極は、前記筐体の内部に配置されている、請求項1~11のいずれか1項に記載の通信装置。
  14.  前記アンテナモジュールには、第2放射素子がさらに設けられ、
     前記第2放射素子と対向する位置に配置された第2電極をさらに備え、
     前記第1開口部は、前記第1放射素子および前記第2放射素子と対向する位置に形成されている、請求項1~13のいずれか1項に記載の通信装置。
  15.  前記アンテナモジュールには、第2放射素子がさらに設けられ、
     前記第2放射素子と対向する位置に配置された第2電極をさらに備え、
     前記放熱板には、前記第2放射素子と対向する位置に第2開口部がさらに形成されている、請求項1~13のいずれか1項に記載の通信装置。
  16.  前記第1開口部および前記第2開口部の各々は、四角形であり、前記第1放射素子と前記第2放射素子との配列方向に対して傾いて形成されている、請求項15に記載の通信装置。
  17.  前記第1開口部および前記第2開口部の各々は、四角形であり、前記第1開口部の一辺と、前記第1開口部の一辺と隣り合う前記第2開口部の一辺とが平行となるように形成されている、請求項15に記載の通信装置。
PCT/JP2021/022030 2020-08-19 2021-06-10 通信装置 WO2022038868A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202190000641.0U CN219513349U (zh) 2020-08-19 2021-06-10 通信装置
US18/109,279 US20230188223A1 (en) 2020-08-19 2023-02-14 Communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-138591 2020-08-19
JP2020138591 2020-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/109,279 Continuation US20230188223A1 (en) 2020-08-19 2023-02-14 Communication apparatus

Publications (1)

Publication Number Publication Date
WO2022038868A1 true WO2022038868A1 (ja) 2022-02-24

Family

ID=80322912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022030 WO2022038868A1 (ja) 2020-08-19 2021-06-10 通信装置

Country Status (3)

Country Link
US (1) US20230188223A1 (ja)
CN (1) CN219513349U (ja)
WO (1) WO2022038868A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120467A1 (ja) * 2021-12-22 2023-06-29 株式会社村田製作所 アンテナモジュールおよびそれを搭載する通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233621A (ja) * 1997-02-20 1998-09-02 Sharp Corp アンテナ一体化マイクロ波・ミリ波回路
WO2014196144A1 (ja) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 無線モジュール及び無線装置
WO2018074378A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 アンテナ素子、アンテナモジュールおよび通信装置
WO2020031875A1 (ja) * 2018-08-07 2020-02-13 株式会社村田製作所 アンテナモジュール、およびアンテナモジュールの製造方法
EP3621154A1 (en) * 2017-05-16 2020-03-11 Huawei Technologies Co., Ltd. Integrated antenna package structure, and terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233621A (ja) * 1997-02-20 1998-09-02 Sharp Corp アンテナ一体化マイクロ波・ミリ波回路
WO2014196144A1 (ja) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 無線モジュール及び無線装置
WO2018074378A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 アンテナ素子、アンテナモジュールおよび通信装置
EP3621154A1 (en) * 2017-05-16 2020-03-11 Huawei Technologies Co., Ltd. Integrated antenna package structure, and terminal
WO2020031875A1 (ja) * 2018-08-07 2020-02-13 株式会社村田製作所 アンテナモジュール、およびアンテナモジュールの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120467A1 (ja) * 2021-12-22 2023-06-29 株式会社村田製作所 アンテナモジュールおよびそれを搭載する通信装置

Also Published As

Publication number Publication date
US20230188223A1 (en) 2023-06-15
CN219513349U (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
CA2915243C (en) Switchable transmit and receive phased array antenna
WO2018230475A1 (ja) アンテナモジュールおよび通信装置
CN112640209B (zh) 天线模块以及搭载有该天线模块的通信装置
JP6973607B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11631936B2 (en) Antenna device
JP6973663B2 (ja) アンテナモジュールおよび通信装置
CN112074992B (zh) 天线模块和搭载该天线模块的通信装置
US20220181766A1 (en) Antenna module and communication device equipped with the same
US11936125B2 (en) Antenna module and communication device equipped with the same
US11322841B2 (en) Antenna module and communication device equipped with the same
WO2022185917A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
CN114730992A (zh) 天线模块和搭载该天线模块的通信装置
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022038868A1 (ja) 通信装置
WO2020066604A1 (ja) アンテナモジュール、通信装置およびアレイアンテナ
US11916312B2 (en) Antenna module, communication device mounting the same, and circuit board
WO2022138045A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20220094074A1 (en) Antenna module, communication apparatus including the same, and circuit substrate
JP7283585B2 (ja) アンテナモジュール
US20220085521A1 (en) Antenna module and communication device equipped with the same
WO2023188969A1 (ja) アンテナモジュール
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020162437A1 (ja) アンテナモジュールおよび通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202190000641.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP