WO2023047801A1 - アンテナモジュールおよびそれを搭載する通信装置 - Google Patents

アンテナモジュールおよびそれを搭載する通信装置 Download PDF

Info

Publication number
WO2023047801A1
WO2023047801A1 PCT/JP2022/029278 JP2022029278W WO2023047801A1 WO 2023047801 A1 WO2023047801 A1 WO 2023047801A1 JP 2022029278 W JP2022029278 W JP 2022029278W WO 2023047801 A1 WO2023047801 A1 WO 2023047801A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
dielectric
radiating
antenna module
dielectric layer
Prior art date
Application number
PCT/JP2022/029278
Other languages
English (en)
French (fr)
Inventor
薫 須藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023047801A1 publication Critical patent/WO2023047801A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present disclosure relates to an antenna module and a communication device equipped with the same, and more specifically to a technology for broadening antenna characteristics.
  • Patent Document 1 in an antenna in which a plurality of antenna portions corresponding to mutually different frequency bands are arranged on the same substrate, each antenna portion has a different thickness depending on the frequency.
  • a configuration is disclosed in which the antenna characteristics are improved by using a dielectric.
  • Patent Document 2 discloses an antenna device having a flat plate-shaped patch antenna, in which an upper portion of a dielectric member disposed on the patch antenna is sealed with a sealing resin. disclosed.
  • Patent Document 3 describes a dual-band patch antenna in which two dielectric layers are arranged on the patch antenna on the low frequency side, and two dielectric layers are arranged on the patch antenna on the high frequency side. discloses a structure in which one dielectric layer is arranged.
  • parameters suitable for antenna characteristics differ for each target frequency band.
  • antennas for three or more different frequency bands are arranged on the same substrate as described above, it may not always be possible to optimize parameters for all antennas.
  • the present disclosure has been made to solve the problems described above, and an object of the present disclosure is to provide an antenna module in which radiation elements corresponding to three or more different frequency bands are arranged, and to provide an antenna characteristic of each radiation element. is broadband.
  • An antenna module includes a dielectric substrate having a first surface and a second surface, flat plate-shaped first to third radiation elements, a first dielectric layer and a second dielectric. and a body layer.
  • the first to third radiation elements are arranged on the dielectric substrate and can radiate radio waves in different frequency bands.
  • the first dielectric layer is arranged on the first surface of the dielectric substrate so as to cover the first region where the first radiation element is arranged.
  • a second dielectric layer is disposed on the first surface of the dielectric substrate to cover a second region in which the third radiating element is disposed.
  • the dielectric constant of the first dielectric layer and the dielectric constant of the second dielectric layer are higher than the dielectric constant of the dielectric substrate.
  • the first area and the second area are adjacent.
  • the first radiating element can radiate radio waves in a first frequency band.
  • the second radiating element can radiate radio waves in a second frequency band higher than the first frequency band.
  • the third radiating element can radiate radio waves in a third frequency band higher than the second frequency band.
  • the second radiating element overlaps the first radiating element or the third radiating element when viewed from the normal direction of the dielectric substrate.
  • An antenna module includes a dielectric substrate having a first surface and a second surface, first to third radiation elements arranged on the dielectric substrate, and a first dielectric layer and a second dielectric layer.
  • Each of the first to third radiation elements includes a plurality of plate-shaped electrodes.
  • the first dielectric layer is arranged on the first surface of the dielectric substrate so as to cover the first region where the electrode of the first radiation element is arranged.
  • a second dielectric layer is arranged on the first surface of the dielectric substrate to cover a second region where the electrode of the third radiating element is arranged.
  • the first to third radiation elements can radiate radio waves in different frequency bands.
  • the dielectric constant of the first dielectric layer and the dielectric constant of the second dielectric layer are higher than the dielectric constant of the dielectric substrate.
  • the first area and the second area are adjacent.
  • the first radiating element can radiate radio waves in a first frequency band.
  • the second radiating element can radiate radio waves in a second frequency band higher than the first frequency band.
  • the third radiating element can radiate radio waves in a third frequency band higher than the second frequency band. When viewed from the normal direction of the dielectric substrate, the electrode of the second radiation element overlaps the electrode of the third radiation element.
  • the antenna module In the antenna module according to the present disclosure, three types of radiating elements capable of radiating radio waves in different frequency bands are provided on the same dielectric substrate, and two of them are provided in adjacent first and second regions. placed respectively. A remaining radiating element is then stacked with one of the other radiating elements, and different dielectric layers are disposed over the first and second regions. In such a configuration, by individually setting dielectric layers suitable for the radiating elements arranged in the first region and the radiating elements arranged in the second region, the antenna characteristics of each radiating element are widened. can be made
  • FIG. 1 is a block diagram of a communication device to which an antenna module according to Embodiment 1 is applied;
  • FIG. 2A and 2B are a plan view and a perspective side view of the antenna module of FIG. 1;
  • FIG. FIG. 2 is a diagram for explaining the effect of a dielectric layer on the antenna characteristics of a radiating element with a stack structure in the antenna module of FIG. 1;
  • FIG. 11 is a side perspective view of the antenna module of Modification 1;
  • FIG. 11 is a side perspective view of an antenna module of modification 2;
  • FIG. 8 is a plan view of an antenna module according to Embodiment 2;
  • FIG. 11 is a side perspective view of an antenna module of modification 3;
  • FIG. 11 is a side perspective view of an antenna module of modification 4;
  • FIG. 11 is a side perspective view of an antenna module of modification 5;
  • FIG. 11 is a side perspective view of an antenna module of modification 6;
  • FIG. 21 is a plan view of an antenna module of Modified Example 7;
  • FIG. 11 is a plan view of an antenna module according to Embodiment 3;
  • FIG. 1 is an example of a block diagram of a communication device 10 to which an antenna module 100 according to the first embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smart phone, or a tablet, or a personal computer having a communication function.
  • An example of the frequency band of the radio waves used in the antenna module 100 according to the present embodiment is, for example, millimeter-wave radio waves with center frequencies of 28 GHz, 39 GHz, and 60 GHz. Applicable.
  • communication device 10 includes antenna module 100 and BBIC 200 that configures a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110 that is an example of a power supply device, and an antenna device 120 .
  • the communication device 10 up-converts a signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal at the RFIC 110 and radiates it from the antenna device 120 . Further, the communication device 10 transmits a high-frequency signal received by the antenna device 120 to the RFIC 110 , down-converts the signal, and processes the signal in the BBIC 200 .
  • the antenna module 100 is a so-called multi-band type antenna module capable of emitting radio waves in three different frequency bands.
  • Antenna device 120 includes a plurality of radiation elements 121 that radiate radio waves of a first frequency band f1, a plurality of radiation elements 122 that radiate radio waves of a second frequency band f2, and a plurality of radiation elements that radiate radio waves of a third frequency band f3. of radiating elements 123 .
  • the first frequency band f1 of the radiating element 121 is relatively lowest frequency
  • the third frequency band f3 of radiating element 123 is relatively highest frequency. That is, the magnitude relationship between the frequencies of the radio waves radiated from the three radiation elements is f1 ⁇ f2 ⁇ f3.
  • the radiating element 121 and the radiating element 122 are arranged in layers within the dielectric substrate, and the radiating element 123 is arranged on the substrate with the dielectric substrate. Stacked sets of radiating elements 121 and 122 and radiating elements 123 are alternately arranged in one direction.
  • FIG. 1 shows an example in which antenna device 120 has a configuration in which radiating elements are arranged in a two-dimensional array, but antenna device 120 is a one-dimensional array in which radiating elements are arranged in a row. may Alternatively, antenna device 120 may have a configuration in which each of radiating elements 121, 122, and 123 is provided one by one. In this embodiment, radiating elements 121, 122, and 123 are all patch antennas having a flat plate shape.
  • the RFIC 110 has a feeding circuit corresponding to each frequency band, in other words, a feeding circuit corresponding to each radiating element.
  • RFIC 110 includes a feeding circuit 110A corresponding to radiating element 121, a feeding circuit 110B corresponding to radiating element 122, and a feeding circuit 110C corresponding to radiating element 123.
  • FIG. 1 shows only the configuration corresponding to four radiating elements of the feeding circuit 110A corresponding to the radiating element 121, and other radiating elements having the same configuration. Corresponding structures are omitted. That is, the configurations of the power supply circuits 110B and 110C are the same as the configuration of the power supply circuit 110A.
  • the feeding circuit 110A includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesis/dividing.
  • a wave generator 116 , a mixer 118 and an amplifier circuit 119 are provided.
  • switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT, and the switch 117 is connected to the amplifier circuit 119 on the transmission side.
  • switches 111A to 111D and 113A to 113D are switched to low noise amplifiers 112AR to 112DR, and switch 117 is connected to the receiving amplifier of amplifier circuit 119.
  • a signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118 .
  • a transmission signal which is an up-converted high-frequency signal, is divided into four waves by the signal combiner/demultiplexer 116, passes through four signal paths, and is fed to different radiating elements 121, respectively.
  • the directivity of antenna device 120 can be adjusted by individually adjusting the degree of phase shift of phase shifters 115A to 115D arranged in each signal path. Attenuators 114A-114D also adjust the strength of the transmitted signal.
  • the received signals which are high-frequency signals received by each radiating element 121 , pass through four different signal paths and are multiplexed by the signal combiner/demultiplexer 116 .
  • the multiplexed received signal is down-converted by mixer 118 , amplified by amplifier circuit 119 , and transmitted to BBIC 200 .
  • the RFIC 110 is formed, for example, as a one-chip integrated circuit component including the above circuit configuration.
  • each feed circuit may be formed as a separate integrated circuit component.
  • equipment switch, power amplifier, low noise amplifier, attenuator, phase shifter
  • corresponding to each radiating element may be formed as a one-chip integrated circuit component for each corresponding radiating element.
  • FIG. 2 shows the antenna module 100 according to the first embodiment.
  • a plan view (FIG. 2(A)) of the antenna module 100 is shown in the upper stage, and a side see-through view (FIG. 2(B)) is shown in the lower stage.
  • FIG. 2 for ease of explanation, the case where each of the radiation elements 121, 122, and 123 is composed of one electrode will be explained as an example.
  • the antenna module 100 includes, in addition to the radiating elements 121, 122, 123 and the RFIC 110, a dielectric substrate 130, feeder wirings 141, 142, 143, dielectric layers 151, 152, and a ground electrode GND.
  • the normal direction of the dielectric substrate 130 is the Z-axis direction.
  • the direction in which the radiating elements are arranged is defined as the X-axis
  • the direction orthogonal to the X-axis is defined as the Y-axis.
  • the positive direction of the Z-axis in each drawing is sometimes referred to as the upper side, and the negative direction as the lower side.
  • Dielectric substrate 130 is, for example, a low temperature co-fired ceramics (LTCC) multilayer substrate, a multilayer resin substrate formed by laminating a plurality of resin layers made of resin such as epoxy or polyimide, or more.
  • LCP liquid crystal polymer
  • the dielectric substrate 130 does not necessarily have a multi-layer structure, and may be a single-layer substrate.
  • the dielectric substrate 130 has a rectangular shape when viewed from the normal direction (Z-axis direction).
  • a ground electrode GND is arranged over the entire surface of dielectric substrate 130 at a position near lower surface 132 of dielectric substrate 130 .
  • Radiating elements 122 and 123 are arranged adjacent to each other in the X-axis direction at a position close to the upper surface 131 (surface in the positive direction of the Z-axis) of the dielectric substrate 130 . Radiating elements 122 and 123 may be arranged so as to be exposed on the surface of dielectric substrate 130 or may be arranged inside dielectric substrate 130 .
  • the radiating element 121 is arranged between the radiating element 122 and the ground electrode GND.
  • the radiating element 122 overlaps with the radiating element 121 .
  • Each of the radiating elements 121, 122, and 123 is a plate-shaped electrode having a rectangular shape.
  • the size of radiating element 122 is smaller than the size of radiating element 121 , and the size of radiating element 123 is even smaller than the size of radiating element 122 . That is, the resonant frequency of radiating element 122 is higher than the resonant frequency of radiating element 121 , and the resonant frequency of radiating element 123 is higher than the resonant frequency of radiating element 122 . Therefore, the frequency band (second frequency band) f2 of radio waves radiated from radiating element 122 is higher than the frequency band (first frequency band) f1 of radio waves radiated from radiation element 121 .
  • the frequency band (third frequency band) f3 of the radio waves radiated from the radiation element 123 is higher than the frequency band f2 of the radio waves radiated from the radiation element 122 .
  • the center frequencies of the frequency bands of radiating elements 121, 122 and 123 are 28 GHz, 39 GHz and 60 GHz, respectively.
  • a high-frequency signal is supplied from the RFIC 110 to the radiating elements 121, 122, and 123 via power supply wirings 141, 142, and 143, respectively.
  • the feed wiring 141 is connected to the feed point SP1 of the radiating element 121 through the ground electrode GND from the RFIC 110 .
  • the feeder wiring 142 is connected from the RFIC 110 through the ground electrode GND and the radiating element 121 to the feeding point SP2 of the radiating element 122 .
  • a feed wire 143 is connected to the feed point SP3 of the radiating element 123 from the RFIC 110 through the ground electrode GND. Feed point SP1 is offset from the center of radiating element 121 in the positive direction of the X-axis.
  • Feed point SP2 is offset from the center of radiating element 122 in the positive direction of the X-axis.
  • Feed point SP3 is offset from the center of radiating element 123 in the positive direction of the X-axis.
  • the RFIC 110 is mounted on the bottom surface 132 of the dielectric substrate 130 via solder bumps 160 . Note that the RFIC 110 may be connected to the dielectric substrate 130 using a multipolar connector instead of solder connection.
  • a dielectric layer 151 is arranged in a region (first region) RG1 covering the radiating elements 121 and 122, and a dielectric layer 151 is arranged in a region (second region) RG2 covering the radiating element 122.
  • a body layer 152 is disposed.
  • the dielectric layers 151 and 152 have a dielectric constant greater than that of the dielectric substrate 130, and the dielectric constant ⁇ 1 of the dielectric layer 151 is greater than the dielectric constant ⁇ 2 of the dielectric layer 152 ( ⁇ 1> ⁇ 2 ).
  • the thickness of dielectric layer 151 and the thickness of dielectric layer 152 are substantially equal.
  • the frequency bandwidth tends to expand as the Q value, which is determined by the ratio of the radiated power and the stored power from the radiating element and the ground electrode, decreases. For example, increasing the distance between the radiating element and the ground electrode or decreasing the dielectric constant between the radiating element and the ground electrode lowers the Q value and expands the frequency bandwidth.
  • the surface wave generated in the radiating element tends to be stronger, and the radiation is more effective than when there is no dielectric layer with a high dielectric constant.
  • the electric lines of force generated in the direction along the electrode surface from the end of the element fly farther. Then, the path length of the electric line of force from the radiating element to the ground electrode becomes longer, resulting in a state equivalent to the distance between the radiating element and the ground electrode becoming longer. Therefore, by covering the upper part of the radiation electrode with a dielectric layer having a high dielectric constant, the Q value of the patch antenna is lowered, resulting in an increase in the frequency bandwidth.
  • the influence of the dielectric layer on the surface wave tends to become more sensitive as the frequency of the radio wave emitted from the radiating element increases. Therefore, when the thickness of the dielectric layer is the same, it is necessary to lower the dielectric constant as the frequency of the radiated radio wave increases.
  • the antenna module of the first embodiment When arranging three types of radiating elements of different frequency bands on a common dielectric substrate, as in the antenna module of the first embodiment, there are restrictions on the area where the radiating elements can be arranged on the dielectric substrate, or manufacturing problems. Due to constraints, the material and dimensions of the dielectric substrate may not be compatible with all radiating elements.
  • the dielectric substrate has a dielectric constant suitable for a low-frequency radiating element
  • the dielectric constant may be too high for a high-frequency radiating element.
  • the dielectric constant of the dielectric substrate is set to a dielectric constant suitable for the radiating element on the high frequency side
  • the dielectric constant of the radiating element on the low frequency side is lower than that suitable for the thickness of the dielectric substrate. Therefore, it is necessary to increase the thickness of the dielectric substrate, which may hinder the miniaturization of the antenna module.
  • each radiating element when arranging three types of radiating elements as in Embodiment 1, it may not be possible to dispose each radiating element individually due to the dimensional restrictions of the dielectric substrate.
  • the spacing between the radiating elements on the high frequency side becomes too wide, causing problems such as a decrease in antenna gain and generation of grating lobes. there is a possibility.
  • the antenna module 100 of Embodiment 1 two radiating elements 121 and 122 having close frequency bands among the three types of radiating elements are arranged in a stacked structure, and the radiating elements 121 and 122 of the stacked structure are arranged. 122 and radiating element 123 are disposed adjacently on dielectric substrate 130 . As a result, the layout area of the radiating elements on the dielectric substrate 130 can be reduced compared to the case where each radiating element is individually disposed.
  • dielectric layers having a dielectric constant suitable for each radiating element are applied to the region RG1 where the radiating elements 121 and 122 of the stacked structure are arranged and the region RG2 where the radiating element 123 is arranged. are respectively arranged on the body substrate 130 .
  • the intensity of the surface wave can be individually adjusted for the low-frequency side radiation elements (radiation elements 121 and 122) and the high-frequency side radiation element 123, so that all the radiation elements are arranged on the common dielectric substrate 130.
  • the frequency bandwidth for each radiating element can be appropriately extended.
  • the dielectric constant ⁇ 1 of the dielectric layer 151 on the low frequency side larger than the dielectric constant ⁇ 2 of the dielectric layer 152 on the high frequency side, the deterioration of the beam pattern due to the surface wave of the radiation element 123 can be alleviated. can.
  • FIG. 3 shows the results of a simulation performed on the effect of expanding the frequency bandwidth of the radiating elements 121 and 122 in such a case.
  • the reflection loss is It is shown in the region RG1 where the radiating elements 121 and 122 are arranged.
  • Solid lines LN10 and LN15 in FIG. 3 evaluates the bandwidth at which a return loss of 6 dB is achieved.
  • the bandwidth BW1L in the radiation element 121 of Embodiment 1 is wider than the bandwidth BW2L in the comparative example (BW1L>BW2L).
  • the relative bandwidth which is the ratio of the bandwidth to the center frequency, is 27.1% in the comparative example, and is improved to 39.2% in the first embodiment.
  • the bandwidth BW1H in the first embodiment is wider than the bandwidth BW2H in the comparative example (BW1H>BW2H), and the relative bandwidth is 12.2% to 17.6%. is improving to
  • both the radiating elements 121 and 122 can be The frequency band can be expanded.
  • the frequency band can be expanded compared to the case where the dielectric layer 152 is not provided. can.
  • each radiating element can be provided while suppressing an increase in the arrangement area of the dielectric substrate.
  • antenna characteristics can be widened.
  • the “radiating elements 121, 122, 123" in Embodiment 1 respectively correspond to the "first radiating element", the “second radiating element” and the “third radiating element” in the present disclosure.
  • “Top surface 131" and “bottom surface 132" of dielectric substrate 130 in Embodiment 1 respectively correspond to “first surface” and “second surface” in the present disclosure.
  • Modification 1 In Embodiment 1, the configuration in which two of the three radiating elements on the relatively low frequency side have a stacked structure has been described. Modification 1 will describe a configuration in which two of the three radiation elements on the relatively high frequency side have a stacked structure.
  • FIG. 4 is a perspective side view of the antenna module 100A of Modification 1.
  • radiating element 121 which has the lowest frequency band among the three radiating elements, is arranged alone on dielectric substrate 130, and has a relatively high frequency band.
  • Two frequency-side radiating elements 122, 123 are arranged on a dielectric substrate 130 as a stacked structure. Specifically, the radiation element 122 is arranged between the radiation element 123 and the ground electrode GND in the normal direction (Z-axis direction) of the dielectric substrate 130 .
  • the radiating element 123 overlaps the radiating element 122 when the dielectric substrate 130 is viewed from the normal direction.
  • a feeding line 143 for transmitting a high-frequency signal to the radiating element 123 passes from the RFIC 110 through the ground electrode GND and the radiating element 122 and is connected to the feeding point SP3 of the radiating element 123 .
  • a dielectric layer 151 is arranged in a region RG1 covering the radiating element 121, and a dielectric layer 152 is arranged in a region RG2 covering the radiating elements 122,123.
  • the dielectric constants of the dielectric layers 151 and 152 are not necessarily the same as the dielectric constants of the first embodiment, and are appropriately selected according to the characteristics required for each radiation element.
  • the configuration of the antenna module 100A of Modification 1 is suitable when the frequency band of the radiating element 122 is closer to the frequency band of the radiating element 123 than the frequency band of the radiating element 121.
  • the antenna module 100A of Modification 1 As described above, in the antenna module 100A of Modification 1 as well, two radiating elements whose frequency bands are close to each other are arranged in a stacked structure, and for each area where the radiating elements are arranged on the dielectric substrate, By arranging a dielectric layer having a dielectric constant corresponding to the radiating elements, it is possible to widen the band of the antenna characteristics of each radiating element while suppressing an increase in the layout area of the dielectric substrate.
  • Modification 2 In modification 2, an antenna module having four types of radiation elements with different frequency bands will be described.
  • FIG. 5 is a perspective side view of the antenna module 100B of Modification 2.
  • antenna device 120B of antenna module 100B includes radiating element 124 in addition to radiating elements 121, 122, and 123.
  • the frequency band (fourth frequency band) f4 of radio waves radiated from the radiation element 124 is lower than the frequency band of radio waves radiated from the radiation elements 121, 122, and 123 (f4 ⁇ f1 ⁇ f2 ⁇ f3).
  • the radiating elements 121 and 124 are arranged in a stack structure, and the radiating elements 122 and 123 are arranged in a stack structure.
  • Radiating element 124 is arranged between radiating element 121 and ground electrode GND.
  • a high-frequency signal is supplied from the RFIC 110 to the radiating element 124 through a power feed line 144 .
  • a feed wire 144 extends from the RFIC 110 through the ground electrode GND and is connected to the feed point SP4 of the radiating element 124 .
  • a feeding line 141 for supplying a high-frequency signal to the radiating element 121 is connected from the RFIC 110 through the ground electrode GND and the radiating element 124 to the feeding point SP1 of the radiating element 121 .
  • the dielectric layer 151 is arranged in the region RG1 covering the radiating elements 121 and 124, and the dielectric layer 152 is arranged in the region RG2 covering the radiating elements 122 and 123.
  • the dielectric constants of the dielectric layers 151 and 152 are determined according to the characteristics required for each radiating element.
  • the frequency band of radio waves radiated from radiating element 124 is lower than that of other radiating elements 121, 122, and 123 has been described, but the frequency band of radiating element 124 is not limited to this.
  • a combination of radiating elements forming a stack structure is appropriately determined according to the frequency band of the radiating elements 124 .
  • the "radiation element 124" in Modification 2 corresponds to the "fourth radiation element" in the present disclosure.
  • Embodiment 2 In Embodiment 2, the case where the antenna module is an array antenna in which a plurality of electrodes included in each radiation element are arranged in an array will be described.
  • FIG. 6 is a plan view of the antenna module 100C according to Embodiment 2.
  • the electrodes included in each radiating element are alternately arranged in the X-axis direction and the Y-axis direction to form an array. More specifically, as in Modification 1 above, the electrodes of the radiation elements 122 and 123 on the high frequency side have a stacked structure, and the electrode of the radiation element 121 is arranged alone on the dielectric substrate 130 . ing.
  • the radiating element 121 and the stack structure of the radiating elements 122 and 123 are alternately arranged in the X-axis direction and the Y direction.
  • a dielectric layer 151 is arranged in a region RG1 covering the electrodes of the radiating element 121, and a dielectric layer 152 is arranged in a region RG2 covering the electrodes of the radiating elements 122 and 123.
  • the hatching of the dielectric layers 151 and 152 overlapping the radiating elements is omitted in FIG. 6 and plan views of FIGS. 11 and 12 described later.
  • the radiating elements are arranged in a stacked structure, and the radiating elements are arranged on the dielectric substrate.
  • a dielectric layer having a dielectric constant corresponding to the radiating element it is possible to widen the antenna characteristics of each radiating element while suppressing an increase in the arrangement area of the dielectric substrate.
  • Modification 3 In Modified Example 3, an example of a configuration in which the thickness of the dielectric layer arranged in each region is different will be described.
  • FIG. 7 is a perspective side view of the antenna module 100D of Modification 3.
  • FIG. Antenna device 120D of antenna module 100D has an array in which the electrodes of radiation elements 122 and 123 on the high frequency side have a stacked structure and the electrodes of radiation element 121 on the low frequency side are arranged singly, as in the second embodiment. Antenna. Note that FIG. 7 shows an example in which each radiation element 121, 122, 123 includes two electrodes.
  • a dielectric layer 151 is arranged in the region RG1 covering the electrodes of the radiating element 121, and a dielectric layer 152 is arranged in the region RG2 covering the electrodes of the radiating elements 122 and 123 of the stacked structure.
  • the thickness (dimension in the Z-axis direction) D1 of the dielectric layer 151 is made thicker than the thickness D2 of the dielectric layer 152 (D1>D2). Increasing the thickness of the dielectric layer increases the effective dielectric constant as seen by the radiating element.
  • the dielectric constant of the dielectric layer 151 is made higher than that of the dielectric layer 152 compared to the case where the dielectric layers have the same thickness as in the first embodiment. It can be even bigger. Further, even if the dielectric layer 151 and the dielectric layer 152 are made of the same material, by making the thickness of the dielectric layer 151 larger than the thickness of the dielectric layer 152, the dielectric thickness when viewed from the radiating element is reduced. The effective dielectric constant of layer 151 can be greater than that of dielectric layer 152 .
  • Modification 4 In Modified Example 4, a configuration in which the position of the ground electrode in the dielectric substrate is different for each region where the dielectric layer is arranged will be described.
  • FIG. 8 is a perspective side view of the antenna module 100E of Modification 4.
  • the antenna device 120E of the antenna module 100E is an array antenna in which the electrodes of the radiation elements 122 and 123 on the high frequency side have a stacked structure and the electrode of the radiation element 121 on the low frequency side is arranged alone, as in the third modification. is.
  • the thickness of dielectric layer 151 and the thickness of dielectric layer 152 are set to be the same.
  • the ground electrode GND in the region RG1 where the dielectric layer 151 is arranged is arranged closer to the upper surface 131 than the ground electrode GND in the region RG2 where the dielectric layer 152 is arranged. .
  • the distance H1 between the radiating element 121 and the ground electrode GND is shorter than the distance H2 between the radiating element 123 and the ground electrode GND.
  • the frequency bandwidth of a radiating element in a patch antenna is affected by the distance between the radiating element and the ground electrode, and the longer the distance, the wider the frequency bandwidth.
  • radiating element 123 operates as an antenna by coupling with radiating element 122, and radiating element 122 substantially functions as a ground electrode.
  • radiating element 122 operates as an antenna by being coupled to ground electrode GND. Therefore, in order to ensure a desired frequency bandwidth for radiating elements 122 and 123, the thickness of dielectric substrate 130 (that is, distance H2 between radiating element 123 and ground electrode GND) may increase as a whole. be. In this case, for the radiating element 121 arranged alone on the dielectric substrate 130 , the distance to the ground electrode GND may become longer than the distance suitable for the characteristics of the radiating element 121 .
  • the position of the ground electrode GND in the region RG2 in which the radiating element 121 on the low frequency side is arranged is arranged closer to the upper surface 131 than the position of the ground electrode GND in the region RG1.
  • the distance from the ground electrode GND can be set to a distance suitable for the characteristics of the radiating element 121 . Therefore, deterioration of antenna characteristics in each radiating element can be suppressed.
  • Modification 5 In Modification 4, the configuration in which the distance between the radiating element 121 and the ground electrode GND is adjusted by the position of the ground electrode GND has been described. In modification 5, a configuration will be described in which the ground electrodes GND of the region RG1 and the region RG2 are arranged at the same position, and the distance from the ground electrode GND is adjusted according to the position of the radiation element 121. FIG.
  • FIG. 9 is a perspective side view of the antenna module 100F of Modification 5.
  • the radiating element 121 arranged alone on the dielectric substrate 130 is arranged at a position closer to the ground electrode GND than the radiating element 123 is. By doing so, the distance H2 between the radiating element 121 and the ground electrode GND can be made suitable for the antenna characteristics of the radiating element 121 .
  • the total amount of dielectric in the radiation direction is larger than that of the antenna module 100E of the fourth modification. Therefore, it is desirable to adjust the dielectric constant of dielectric layer 151 disposed in region RG1 according to the amount of dielectric substrate 130 between radiating element 121 and upper surface 131 .
  • Modification 6 a configuration in which the ground electrode GND is arranged at the same position and the thickness of the dielectric layer on the radiating element is made different in the same manner as in Modification 5 will be described for region RG1 and region RG2.
  • FIG. 10 is a perspective side view of the antenna module 100G of Modification 6.
  • ground electrode GND is arranged at the same position in the Z-axis direction over dielectric substrate 130 as in modification 5, and accordingly, is arranged in region RG1.
  • the position of the radiating element 121 is also arranged closer to the ground electrode GND than the radiating element 123 is.
  • the dielectric layer 151 in the region RG1 is arranged up to a position where it contacts the radiating element 121. As shown in FIG.
  • the top surface 131 of the dielectric substrate 130 of the antenna module 100G has a step between the regions RG1 and RG2, and the thickness (dimension in the Z-axis direction) of the dielectric substrate 130 in the region RG1 is It is thinner than the thickness of dielectric substrate 130 in region RG1.
  • dielectric layer 151 is formed thicker than dielectric layer 152 so as to fill the reduced thickness.
  • Modification 7 In Embodiment 2 and Modifications 3 to 6, the configurations in which the radiating elements arranged singly and the radiating elements having the stack structure are alternately arranged on the dielectric substrate have been described. In Modified Example 7, a configuration will be described in which a single radiating element and a stacked radiating element are collectively arranged in separate regions on a dielectric substrate.
  • FIG. 11 is a plan view of the antenna module 100H of Modification 7.
  • antenna device 120H of antenna module 100H six radiating elements 121 are two-dimensionally arranged in region RG1 of dielectric substrate 130 in the negative direction of the X axis, and in region RG2 of dielectric substrate 130 in the positive direction of the X axis.
  • a stack structure of six sets of radiating elements 122 and 123 are two-dimensionally arranged.
  • Radiating element 121 is covered with dielectric layer 151 in region RG1, and radiating elements 122 and 123 are covered with dielectric layer 152 in region RG2.
  • the pitch between the radiating elements corresponding to the same frequency is set to the pitch corresponding to the radiating element 121 on the low frequency side.
  • the pitch of the radiating elements 122 and 123 on the high frequency side may become excessively longer than the pitch suitable for these radiating elements.
  • the antenna characteristics will deteriorate due to a decrease in antenna gain or generation of grating lobes.
  • the pitch between the elements becomes relatively Since the shorter pitch of the radiation elements on the high frequency side can be set shorter than the pitch of the radiation elements on the low frequency side, it is possible to suppress deterioration in antenna characteristics due to restrictions on the pitch between elements.
  • Embodiment 3 In the above-described embodiment and modifications, the configuration in which each radiating element radiates radio waves in one polarization direction has been described. In Embodiment 3, a configuration will be described in which features of the present disclosure are applied to a so-called dual-polarization type antenna module capable of emitting radio waves in two different polarization directions.
  • FIG. 12 is a plan view of antenna module 100I according to the third embodiment.
  • antenna device 120I of antenna module 100I is an array in which radiating elements 121 and stacked structures of radiating elements 122 and 123 are alternately arranged adjacent to each other, similar to antenna module 100C of FIG. Antenna.
  • each of radiating elements 121, 122, and 123 is provided with two feeding points.
  • a feeding point SP11 is arranged at a position offset from the center of the electrode in the positive direction of the X axis, and power is fed at a position offset from the center of the electrode in the negative direction of the Y axis.
  • a point SP12 is placed.
  • radio waves are radiated from the radiating element 121 with the X-axis direction as the polarization direction.
  • radio waves are radiated from the radiating element 121 with the Y-axis direction as the polarization direction.
  • a feeding point SP21 is arranged at a position offset in the positive direction of the X-axis from the center of the electrode, and a feeding point SP22 is arranged at a position offset in the negative direction of the Y-axis from the center of the electrode. are placed.
  • a high-frequency signal is supplied to the feeding point SP21, radio waves are radiated from the radiation element 122 with the X-axis direction as the polarization direction.
  • a high-frequency signal is supplied to the feeding point SP22
  • radio waves are radiated from the radiation element 122 with the Y-axis direction as the polarization direction.
  • a feeding point SP31 is arranged at a position offset from the center of the electrode in the negative direction of the X-axis
  • a feeding point SP32 is arranged at a position offset from the center of the electrode in the positive direction of the Y-axis.
  • the radiating element 122 and the radiating element 123 overlap each other. If they are oriented in the same direction, the power supply lines are closely coupled to each other, which may cause a decrease in isolation.
  • the position of the feeding point on the radiating element 122 in the direction opposite to the position of the feeding point on the radiating element 123, the radio waves radiated from the radiating element 122 and the radio waves radiated from the radiating element 123 are isolated. A decrease in characteristics can be suppressed.
  • the dielectric layer 151 is arranged in the region RG1 where the radiating element 121 is arranged, and the dielectric layer 152 is arranged in the region RG2 where the radiating elements 122 and 123 are arranged. By doing so, the antenna characteristics of each radiating element can be widened.
  • the "X-axis direction” and “Y-axis direction” in Embodiment 3 respectively correspond to the "first direction” and "second direction” in the present disclosure.
  • a plate-shaped patch antenna was described as an example of a radiating element, but the above features can also be applied when each radiating element is a loop antenna.
  • the configuration in which the dielectric layers 151 and 152 are arranged so as to be in contact with the dielectric substrate 130 has been described. It may be arranged such that an air layer is provided between the dielectric layers 151 and 152 and the dielectric substrate 130 .
  • the dielectric layers 151 and 152 are arranged on the housing of the communication device 10, and each radiating element of the dielectric substrate 130 arranged on the mounting substrate is arranged so as to face the dielectric layers 151 and 152. It may be a configuration.
  • each antenna module described above the configuration in which each radiating element and the ground electrode GND are arranged on the same dielectric substrate 130 has been described. may have been In this case, the feed lines are connected by solder bumps or other connecting members between the two substrates.
  • the top surfaces of the dielectric layers 151 and 152 are flat, but the top surfaces of the dielectric layers 151 and 152 may be uneven.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

アンテナモジュール(100)は、上面(131)および下面(132)を有する誘電体(130)と、平板形状の放射素子(121,122,123)と、誘電体層(151,152)とを備える。放射素子(121,122,123)は、誘電体基板(130)に配置され、互いに異なる周波数帯域の電波を放射可能である。誘電体層(151)は、放射素子(121)が配置される第1領域を覆うように配置される。誘電体層(152)は、放射素子(123)が配置される第2領域を覆うように配置される。誘電体層(151,152)の誘電率は、誘電体基板(130)の誘電率よりも高い。第1領域と第2領域とは隣接している。誘電体(130)の法線方向から平面視した場合に、放射素子(122)は、放射素子(121)または放射素子(123)と重なっている。

Description

アンテナモジュールおよびそれを搭載する通信装置
 本開示は、アンテナモジュールおよびそれを搭載した通信装置に関し、より特定的には、アンテナ特性を広帯域化するための技術に関する。
 特開2003-198230号公報(特許文献1)には、同一基板上に、互いに異なる周波数帯域に対応した複数のアンテナ部分が配列されたアンテナにおいて、各アンテナ部分について、周波数に応じて異なる厚みの誘電体を用いることで、アンテナ特性を向上させる構成が開示されている。
 国際公開第2020/066453号明細書(特許文献2)には、平板形状のパッチアンテナ有するアンテナ装置において、パッチアンテナ上に配置された誘電体部材の上部が封止樹脂で封止された構成が開示されている。
 米国特許第10784593号明細書(特許文献3)には、デュアルバンドタイプのパッチアンテナにおいて、低周波数側のパッチアンテナ上には2層の誘電体層が配置され、高周波数側のパッチアンテナ上には1層の誘電体層が配置された構成が開示されている。
特開2003-198230号公報 国際公開第2020/066453号明細書 米国特許第10784593号明細書
 近年では、複数の通信規格に対応した通信装置の開発が進められている。このような通信装置においては、通信規格ごとに定められた異なる周波数帯域の電波を送受信することが必要であり、3種類以上の周波数帯域に対応したアンテナが同一の誘電体基板上に配置される場合がある。そして、各周波数帯域について広い周波数帯域幅を有することが望まれている。
 一般的に、アンテナ特性に適したパラメータ(誘電率等)は、対象とする周波数帯域ごとに異なっている。上記のように異なる3種類以上の周波数帯域のアンテナが同一基板上に配置される構成の場合には、必ずしも全てのアンテナについてのパラメータを最適化できない場合がある。
 本開示は、上記のような課題を解決するためになされたものであり、その目的は、異なる3種類以上の周波数帯域に対応した放射素子が配置されたアンテナモジュールにおいて、各放射素子のアンテナ特性を広帯域化させることである。
 本開示の第1の局面に係るアンテナモジュールは、第1面および第2面を有する誘電体基板と、平板形状の第1放射素子~第3放射素子と、第1誘電体層および第2誘電体層とを備える。第1放射素子~第3放射素子は、誘電体基板に配置され、互いに異なる周波数帯域の電波を放射可能である。第1誘電体層は、誘電体基板の第1面上において、第1放射素子が配置される第1領域を覆うように配置される。第2誘電体層は、誘電体基板の第1面上において、第3放射素子が配置される第2領域を覆う配置される。第1誘電体層の誘電率および第2誘電体層の誘電率は、誘電体基板の誘電率よりも高い。第1領域と第2領域とは隣接している。第1放射素子は、第1周波数帯域の電波を放射可能である。第2放射素子は、第1周波数帯域よりも高い第2周波数帯域の電波を放射可能である。第3放射素子は、第2周波数帯域よりも高い第3周波数帯域の電波を放射可能である。誘電体基板の法線方向から平面視した場合に、第2放射素子は、第1放射素子または第3放射素子と重なっている。
 本開示の第2の局面に係るアンテナモジュールは、第1面および第2面を有する誘電体基板と、誘電体基板に配置された第1放射素子~第3放射素子と、第1誘電体層および第2誘電体層とを備える。第1放射素子~第3放射素子の各々は、平板形状の複数の電極を含む。第1誘電体層は、誘電体基板の第1面上において、第1放射素子の電極が配置される第1領域を覆うように配置される。第2誘電体層は、誘電体基板の第1面上において、第3放射素子の電極が配置される第2領域を覆う配置される。第1放射素子~第3放射素子は、互いに異なる周波数帯域の電波を放射可能である。第1誘電体層の誘電率および第2誘電体層の誘電率は、誘電体基板の誘電率よりも高い。第1領域と第2領域とは隣接している。第1放射素子は、第1周波数帯域の電波を放射可能である。第2放射素子は、第1周波数帯域よりも高い第2周波数帯域の電波を放射可能である。第3放射素子は、第2周波数帯域よりも高い第3周波数帯域の電波を放射可能である。誘電体基板の法線方向から平面視した場合に、第2放射素子の電極は、第3放射素子の電極と重なっている。
 本開示に係るアンテナモジュールにおいては、互いに異なる周波数帯域の電波を放射可能な3種類の放射素子が同一誘電体基板に設けられ、そのうちの2つの放射素子が隣接した第1領域および第2領域にそれぞれ配置されている。そして、残りの放射素子が他の放射素子の一方とスタック構造とされており、第1領域および第2領域を覆うように、異なる誘電体層が配置されている。このような構成において、第1領域に配置された放射素子、および、第2領域に配置された放射素子に適した誘電体層を個別に設定することによって、各放射素子のアンテナ特性を広帯域化させることができる。
実施の形態1に係るアンテナモジュールが適用される通信装置のブロック図である。 図1のアンテナモジュールの平面図および側面透視図である。 図1のアンテナモジュールにおいて、スタック構造の放射素子のアンテナ特性における誘電体層の効果を説明するための図である。 変形例1のアンテナモジュールの側面透視図である。 変形例2のアンテナモジュールの側面透視図である。 実施の形態2に係るアンテナモジュールの平面図である。 変形例3のアンテナモジュールの側面透視図である。 変形例4のアンテナモジュールの側面透視図である。 変形例5のアンテナモジュールの側面透視図である。 変形例6のアンテナモジュールの側面透視図である。 変形例7アンテナモジュールの平面図である。 実施の形態3に係るアンテナモジュールの平面図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の基本構成)
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電装置の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を、RFIC110にて高周波信号にアップコンバートし、アンテナ装置120から放射する。また、通信装置10は、アンテナ装置120で受信した高周波信号をRFIC110へ送信し、ダウンコンバートしてBBIC200にて信号を処理する。
 アンテナモジュール100は、互いに異なる3種類の周波数帯域の電波が放射可能な、いわゆるマルチバンドタイプのアンテナモジュールである。アンテナ装置120は、第1周波数帯域f1の電波を放射する複数の放射素子121、第2周波数帯域f2の電波を放射する複数の放射素子122、および、第3周波数帯域f3の電波を放射する複数の放射素子123を含む。アンテナモジュール100において、放射素子121の第1周波数帯域f1が相対的に最も低い周波数であり、放射素子123の第3周波数帯域f3が相対的に最も高い周波数である。すなわち、3つの放射素子から放射される電波の周波数の大小関係は、f1<f2<f3となる。
 なお、図1に示す例においては、放射素子121および放射素子122は誘電体基板内に積層して配置され、放射素子123は基板に誘電体基板で配置されている。積層された放射素子121と放射素子122との組、および、放射素子123は、一方向に交互に配置されている。図1においては、アンテナ装置120が、放射素子が二次元のアレイ状に配置された構成の例が示されているが、アンテナ装置120は、放射素子が一列に配置された一次元アレイであってもよい。あるいは、アンテナ装置120は、放射素子121,122,123の各々が1つずつ設けられる構成であってもよい。本実施の形態においては、放射素子121,122,123はいずれも、平板形状を有するパッチアンテナである。
 RFIC110は、各周波数帯域に対応した給電回路、言い換えれば、各放射素子に対応した給電回路を有している。具体的には、RFIC110は、放射素子121に対応した給電回路110A、放射素子122に対応した給電回路110B、および放射素子123に対応した給電回路110Cを含む。なお、説明を容易にするために、図1においては、放射素子121に対応した給電回路110Aについて4つの放射素子に対応する構成のみが示されており、同様の構成を有する他の放射素子に対応する構成については省略されている。すなわち、給電回路110B,110Cの構成は、給電回路110Aの構成と同様である。
 給電回路110Aは、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる放射素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。また、減衰器114A~114Dは送信信号の強度を調整する。
 各放射素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、各給電回路ごとに個別の集積回路部品として形成されてもよい。さらに、各放射素子に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)について、対応する放射素子毎に1チップの集積回路部品として形成されてもよい。
 (アンテナモジュールの構造)
 次に、図2を用いて、実施の形態1におけるアンテナモジュール100の構成の詳細を説明する。図2は、実施の形態1の係るアンテナモジュール100を示す図である。図2においては、上段にアンテナモジュール100の平面図(図2(A))が示されており、下段に側面透視図(図2(B))が示されている。なお、図2においては、説明を容易にするために、放射素子121,122,123の各々が、1つの電極で構成される場合を例として説明する。
 アンテナモジュール100は、放射素子121,122,123およびRFIC110に加えて、誘電体基板130と、給電配線141,142,143と、誘電体層151,152と、接地電極GNDとを含む。なお、以降の説明において、誘電体基板130の法線方向(電波の放射方向)をZ軸方向とする。また、Z軸方向に垂直な面において、放射素子の配列方向をX軸とし、X軸に直交する方向をY軸として規定する。また、各図におけるZ軸の正方向を上方側、負方向を下方側と称する場合がある。
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、PET(Polyethylene Terephthalate)材から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130は必ずしも多層構造でなくてもよく、単層の基板であってもよい。
 誘電体基板130は、法線方向(Z軸方向)から平面視すると矩形形状を有している。誘電体基板130の下面132に近い位置において、誘電体基板130の全面にわたって接地電極GNDが配置される。誘電体基板130の上面131(Z軸の正方向の面)に近い位置に、放射素子122,123がX軸方向に隣接して配置されている。放射素子122,123は、誘電体基板130の表面に露出する態様で配置されてもよいし、誘電体基板130の内部に配置されてもよい。
 放射素子121は、放射素子122と接地電極GNDとの間に配置されている。誘電体基板130を法線方向(Z軸方向)から平面視した場合、放射素子122は放射素子121と重なっている。
 放射素子121,122,123の各々は、矩形形状を有する平板状の電極である。放射素子122のサイズは放射素子121のサイズよりも小さく、放射素子123のサイズは放射素子122のサイズよりもさらに小さい。すなわち、放射素子122の共振周波数は放射素子121の共振周波数よりも高く、放射素子123の共振周波数は放射素子122の共振周波数よりも高い。そのため、放射素子122から放射される電波の周波数帯域(第2周波数帯域)f2は、放射素子121から放射される電波の周波数帯域(第1周波数帯域)f1よりも高い。また、放射素子123から放射される電波の周波数帯域(第3周波数帯域)f3は、放射素子122から放射される電波の周波数帯域f2よりも高い。実施の形態1の例においては、放射素子121,122,123の周波数帯域の中心周波数は、それぞれ28GHz、39GHzおよび60GHzである。
 放射素子121,122,123には、それぞれ給電配線141,142,143を介して、RFIC110から高周波信号が供給される。給電配線141は、RFIC110から接地電極GNDを貫通して、放射素子121の給電点SP1に接続される。また、給電配線142は、RFIC110から接地電極GNDおよび放射素子121を貫通して、放射素子122の給電点SP2に接続される。給電配線143は、RFIC110から接地電極GNDを貫通して、放射素子123の給電点SP3に接続される。給電点SP1は、放射素子121の中心からX軸の正方向にオフセットしている。給電点SP2は、放射素子122の中心からX軸の正方向にオフセットしている。給電点SP3は、放射素子123の中心からX軸の正方向にオフセットしている。これにより、放射素子121,122,123の各々からは、X軸方向を偏波方向とする電波が放射される。
 誘電体基板130の下面132には、はんだバンプ160を介してRFIC110が実装されている。なお、RFIC110は、はんだ接続に代えて、多極コネクタを用いて誘電体基板130に接続されてもよい。
 誘電体基板130の上面131において、放射素子121,122を覆う領域(第1領域)RG1には誘電体層151が配置されており、放射素子122を覆う領域(第2領域)RG2には誘電体層152が配置されている。誘電体層151,152の誘電率は、いずれも誘電体基板130の誘電率よりも大きく、さらに、誘電体層151の誘電率ε1は誘電体層152の誘電率ε2よりも大きい(ε1>ε2)。なお、実施の形態1においては、誘電体層151の厚みと誘電体層152の厚みはほぼ等しい。
 平板形状のパッチアンテナにおいては、一般的に、放射素子と接地電極とによる放射電力および蓄積電力の割合で決まるQ値が低下すると周波数帯域幅が拡大する傾向にある。たとえば、放射素子と接地電極との間の距離を長くしたり、放射素子と接地電極との間の誘電率を低くしたりすると、Q値が低下して周波数帯域幅が拡大する。
 誘電体基板よりも高い誘電率の誘電体層で放射素子の上部を覆った場合、放射素子に生じる表面波が強くなる傾向にあり、高誘電率の誘電体層がない場合に比べて、放射素子の端部から電極面に沿った方向に発生する電気力線がより遠くまで飛ぶようになる。そうすると、放射素子から接地電極に至るまでの電気力線の経路長が長くなるため、結果的に放射素子と接地電極との間の距離が長くなったことと等価な状態となる。そのため、高誘電率の誘電体層で放射電極の上部を覆うことによって、パッチアンテナのQ値が低下し、結果として周波数帯域幅が拡大する。
 誘電体層による表面波への影響は誘電体層の誘電率が高いほど大きくなるため、誘電率を高くするほど周波数帯域幅の拡大効果は大きくなる。しかしながら、電気力線の経路長が長くなるため、逆に不要モードの共振が発生しやすくなる。すなわち、周波数帯域幅の拡大と不要モードの共振の発生は、互いにトレードオフの関係となる。
 ここで、誘電体層による表面波への影響は、放射素子から放射される電波の周波数が高いほどセンシティブになる傾向にある。そのため、誘電体層の厚みが同じ場合には、放射する電波の周波数が高くなるにつれて誘電率を低くすることが必要となる。
 本実施の形態1のアンテナモジュールのように、共通の誘電体基板上に異なる周波数帯域の3種類の放射素子を配置する場合、誘電体基板上における放射素子の配置可能面積の制約あるいは製造上の制約から、誘電体基板の材質および寸法を、すべての放射素子に適合した状態とすることができない場合がある。
 たとえば、誘電体基板の誘電率を低周波数側の放射素子に適合した誘電率とした場合には、高周波数側の放射素子に対しては誘電率が高すぎる値となり得る。そうすると、周波数帯域幅が十分に確保できなかったり、波長減少効果のために不要モードの共振が生じやすくなったりする可能性がある。逆に、誘電体基板の誘電率を高周波数側の放射素子に適合した誘電率とした場合には、低周波数側の放射素子については、誘電体基板の厚みに適した誘電率よりも低くなってしまうため、誘電体基板の厚みを厚くすることが必要となり、アンテナモジュールの小型化を阻害する要因になる可能性がある。
 また、実施の形態1のように3種類の放射素子を配置する場合、誘電体基板の寸法上の制約から、各放射素子を個別に配置することができない場合がある。特に、各放射素子を複数個配列したアレイアンテナの場合、高周波数側の放射素子については、放射素子間の間隔が広くなり過ぎてしまい、アンテナゲインの低下あるいはグレーティングローブの発生などの問題が生じる可能性がある。
 そこで、実施の形態1のアンテナモジュール100においては、3種類の放射素子のうち、周波数帯域が近接した2つの放射素子121,122がスタック構造として配置されるとともに、当該スタック構造の放射素子121,122および放射素子123が誘電体基板130上に隣接して配置される。これによって、各放射素子を個別に配置する場合に比べて、誘電体基板130における放射素子の配置面積を低減することができる。
 さらに、アンテナモジュール100においては、スタック構造の放射素子121,122が配置される領域RG1、および、放射素子123が配置される領域RG2に、各放射素子に適した誘電率の誘電体層が誘電体基板130上にそれぞれ配置される。これによって、低周波数側の放射素子(放射素子121,122)および高周波数側の放射素子123について表面波の強さを個別に調整できるので、すべての放射素子が共通の誘電体基板130に配置されていても、各放射素子についての周波数帯域幅を適切に拡大することができる。なお、低周波数側の誘電体層151の誘電率ε1を高周波数側の誘電体層152の誘電率ε2よりも大きくすることによって、放射素子123の表面波によるビームパターンの劣化を緩和することができる。
 ここで、スタック構造の放射素子121,122については、異なる周波数帯域に対して共通の誘電体層151が設けられている。図3は、このような場合における、放射素子121,122についての周波数帯域幅の拡大効果についてシミュレーションを行なった結果である。図3においては、放射素子121,122が配置される領域RG1において、誘電体層151が配置された場合(実施の形態1)および誘電体層151が配置されない場合(比較例)の反射損失が示されている。図3における実線LN10,LN15は放射素子121の反射損失を示しており、破線LN11,LN16は放射素子122の反射損失を示している。なお、図3においては、6dBの反射損失が達成される帯域幅について評価している。
 図3に示されるように、実施の形態1の放射素子121における帯域幅BW1Lは、比較例における帯域幅BW2Lよりも広くなっている(BW1L>BW2L)。中心周波数に対する帯域幅の比率である比帯域幅についても、比較例においては27.1%であり、実施の形態1においては39.2%と改善している。
 また、放射素子122についても、実施の形態1における帯域幅BW1Hは、比較例における帯域幅BW2Hよりも広くなっており(BW1H>BW2H)、比帯域幅についても12.2%から17.6%へと改善している。
 このように、放射素子がスタック構造として配置された場合においても、誘電体基板の上面に誘電体基板よりも誘電率の高い誘電体層を配置することによって、放射素子121,122の双方についての周波数帯域を拡大することができる。
 また、個別に配置された放射素子123については、放射素子123に適した誘電率の誘電体層152を配置することによって、当該誘電体層152がない場合に比べて周波数帯域を拡大することができる。
 以上のように、互いに異なる3種類の周波数帯域に対応した放射素子が配置されたアンテナモジュールにおいて、周波数帯域が近接する2つの放射素子をスタック構造として残余の放射素子に隣接して配置するとともに、誘電体基板上の放射素子が配置される各領域について配置される放射素子に対応した誘電率の誘電体層を配置することよって、誘電体基板の配置面積の増大を抑制しつつ、各放射素子のアンテナ特性を広帯域化させることができる。
 なお、実施の形態1における「放射素子121,122,123」は、本開示における「第1放射素子」、「第2放射素子」および「第3放射素子」にそれぞれ対応する。実施の形態1における誘電体基板130の「上面131」お「下面132」は、本開示における「第1面」および「第2面」にそれぞれ対応する。
 (変形例1)
 実施の形態1においては、3つの放射素子のうち、相対的に低周波数側の2つの放射素子がスタック構造にされた構成について説明した。変形例1においては、3つの放射素子のうち、相対的に高い周波数側の2つの放射素子がスタック構造にされた構成について説明する。
 図4は、変形例1のアンテナモジュール100Aの側面透視図である。図4を参照して、アンテナモジュール100Aのアンテナ装置120Aにおいては、3つの放射素子のうち、周波数帯域が最も低い放射素子121が誘電体基板130上に単独で配置されており、相対的に高周波数側の2つの放射素子122,123が、スタック構造として誘電体基板130に配置されている。具体的には、放射素子122は、誘電体基板130の法線方向(Z軸方向)において、放射素子123と接地電極GNDとの間に配置されている。なお、図4には示されていないが、誘電体基板130を法線方向から平面視した場合に、放射素子123は、放射素子122と重なっている。放射素子123に高周波信号を伝達する給電配線143は、RFIC110から接地電極GNDおよび放射素子122を貫通して、放射素子123の給電点SP3に接続される。
 そして、誘電体基板130において放射素子121を覆う領域RG1には誘電体層151が配置され、放射素子122,123を覆う領域RG2には誘電体層152が配置されている。なお、誘電体層151,152の誘電率は、実施の形態1の場合の誘電率とは必ずしも同じでなくてもよく、各放射素子に要求される特性に応じて適宜選択される。
 なお、変形例1のアンテナモジュール100Aの構成は、放射素子122の周波数帯域が、放射素子121の周波数帯域よりも放射素子123の周波数帯域に近い場合に好適である。
 以上のように、変形例1のアンテナモジュール100Aにおいても、周波数帯域が近接する2つの放射素子をスタック構造として配置するとともに、誘電体基板上の放射素子が配置される各領域について、配置される放射素子に対応した誘電率の誘電体層を配置することよって、誘電体基板の配置面積の増大を抑制しつつ、各放射素子のアンテナ特性を広帯域化させることができる。
 (変形例2)
 変形例2においては、互いに周波数帯域が異なる4種類の放射素子を有するアンテナモジュールの場合について説明する。
 図5は、変形例2のアンテナモジュール100Bの側面透視図である。図5を参照して、アンテナモジュール100Bのアンテナ装置120Bは、放射素子121,122,123に加えて、放射素子124を含む。アンテナモジュール100Bの例においては、放射素子124から放射される電波の周波数帯域(第4周波数帯域)f4は、放射素子121,122,123から放射される電波の周波数帯域よりも低い(f4<f1<f2<f3)。
 アンテナモジュール100Bにおいては、放射素子121,124がスタック構造に配置され、放射素子122,123がスタック構造として配置される。放射素子124は、放射素子121と接地電極GNDとの間に配置されている。放射素子124には、給電配線144によってRFIC110から高周波信号が供給される。給電配線144は、RFIC110から接地電極GNDを貫通し、放射素子124の給電点SP4に接続される。放射素子121に高周波信号を供給する給電配線141は、RFIC110から接地電極GNDおよび放射素子124を貫通して、放射素子121の給電点SP1に接続される。
 そして、誘電体基板130において放射素子121,124を覆う領域RG1には誘電体層151が配置され、放射素子122,123を覆う領域RG2には誘電体層152が配置される。誘電体層151,152の誘電率については、各放射素子に要求される特性に応じて決定される。
 なお、上記の例においては、放射素子124から放射される電波の周波数帯域が他の放射素子121,122,123よりも低い場合について説明したが、放射素子124の周波数帯域はこれに限らない。スタック構造を形成する放射素子の組み合わせは、放射素子124の周波数帯域に応じて適宜決定される。
 以上のように、互いに周波数帯域が異なる4種類の放射素子を有するアンテナモジュールの場合においても、周波数帯域が近接する2つの放射素子をスタック構造として配置するとともに、誘電体基板上の放射素子が配置される各領域について、配置される放射素子に対応した誘電率の誘電体層を配置することよって、誘電体基板の配置面積の増大を抑制しつつ、各放射素子のアンテナ特性を広帯域化させることができる。
 なお、変形例2における「放射素子124」は、本開示における「第4放射素子」に対応する。
 [実施の形態2]
 実施の形態2においては、アンテナモジュールが、各放射素子に含まれる複数の電極がアレイ状に配置されたアレイアンテナの場合について説明する。
 図6は、実施の形態2に係るアンテナモジュール100Cの平面図である。図6のアンテナモジュール100Cのアンテナ装置120Cにおいては、各放射素子に含まれる電極が、X軸方向およびY軸方向に交互に配置されてアレイ化されている。より具体的には、上記の変形例1のように、高周波数側の放射素子122,123の電極はスタック構造となっており、放射素子121の電極は単独で誘電体基板130上に配置されている。そして、放射素子121と、放射素子122,123のスタック構造とが、X軸方向およびY方向に交互に配置されている。
 そして、誘電体基板130上において、放射素子121の電極を覆う領域RG1には誘電体層151が配置され、放射素子122,123の電極を覆う領域RG2には誘電体層152が配置されている。なお、説明を容易にするために、図6および後述する図11,図12の平面図において、各放射素子と重なる部分の誘電体層151,152のハッチングは省略されている。
 以上のように、アレイアンテナにおいても、互いに周波数帯域が異なる3種類の放射素子について、周波数帯域が近接する2つの放射素子をスタック構造として配置するとともに、誘電体基板上の放射素子が配置される各領域について、配置される放射素子に対応した誘電率の誘電体層を配置することよって、誘電体基板の配置面積の増大を抑制しつつ、各放射素子のアンテナ特性を広帯域化させることができる。
 (変形例3)
 変形例3においては、各領域に配置される誘電体層の厚みが異なる構成の例について説明する。
 図7は、変形例3のアンテナモジュール100Dの側面透視図である。アンテナモジュール100Dのアンテナ装置120Dは、実施の形態2と同様に、高周波数側の放射素子122,123の電極がスタック構造とされ、低周波数側の放射素子121の電極が単独で配置されたアレイアンテナである。なお、図7においては、各放射素子121,122,123が2つの電極を含む場合の例が示されている。
 放射素子121の電極を覆う領域RG1には誘電体層151が配置されており、スタック構造の放射素子122,123の電極を覆う領域RG2には誘電体層152が配置されている。ここで、アンテナモジュール100Dにおいては、誘電体層151の厚み(Z軸方向の寸法)D1は、誘電体層152の厚みD2よりも厚くされている(D1>D2)。誘電体層の厚みを厚くすると、放射素子から見たときの実質的な誘電率が大きくなる。そのため、アンテナモジュール100Dのような構成とすることによって、実施の形態1のように誘電体層の厚みが同じ場合に比べて、誘電体層151の誘電率を誘電体層152の誘電率よりもさらに大きくすることができる。また、誘電体層151および誘電体層152が同じ材料の場合であっても、誘電体層151の厚みを誘電体層152の厚みよりも大きくすることによって、放射素子から見たときの誘電体層151における実質的な誘電率を、誘電体層152よりも大きくすることができる。
 (変形例4)
 変形例4においては、誘電体層が配置される領域ごとに、誘電体基板内における接地電極の位置が異なる構成について説明する。
 図8は、変形例4のアンテナモジュール100Eの側面透視図である。アンテナモジュール100Eのアンテナ装置120Eは、変形例3と同様に、高周波数側の放射素子122,123の電極がスタック構造とされ、低周波数側の放射素子121の電極が単独で配置されたアレイアンテナである。なお、アンテナモジュール100Eにおいては、誘電体層151の厚みと誘電体層152の厚みは同じ厚みに設定されている。そして、アンテナモジュール100Eにおいては、誘電体層151が配置される領域RG1における接地電極GNDは、誘電体層152が配置される領域RG2の接地電極GNDよりも上面131に近い位置に配置されている。言い換えれば、放射素子121と接地電極GNDとの間の距離H1は、放射素子123と接地電極GNDとの間の距離H2よりも短い。
 一般的に、パッチアンテナにおける放射素子の周波数帯域幅は、放射素子と接地電極との間の距離に影響され、当該距離が長い方が周波数帯域幅は広くなる。領域RG2における放射素子のスタック構造の場合、放射素子123については、放射素子122と結合することによってアンテナとして動作し、放射素子122が実質的に接地電極として機能する。一方、放射素子122については、接地電極GNDと結合することによってアンテナとして動作する。そのため、放射素子122,123について所望の周波数帯域幅を確保するためには、誘電体基板130の厚み(すなわち、放射素子123と接地電極GNDとの間の距離H2)が全体として厚くなる場合がある。この場合、誘電体基板130に単独で配置される放射素子121に対しては、接地電極GNDまでの距離が、放射素子121の特性に適した距離よりも長くなってしまう可能性がある。
 アンテナモジュール100Eにおいては、低周波数側の放射素子121が配置される領域RG2の接地電極GNDの位置を、領域RG1の接地電極GNDの位置よりも上面131側に配置することによって、放射素子121と接地電極GNDとの間の距離を、放射素子121の特性に適した距離に設定することができる。したがって、各放射素子におけるアンテナ特性の低下を抑制することができる。
 (変形例5)
 変形例4においては、放射素子121と接地電極GNDとの間の距離を、接地電極GNDの位置によって調整する構成について説明した。変形例5においては、領域RG1および領域RG2の接地電極GNDを同じ位置に配置し、放射素子121の位置によって接地電極GNDとの距離を調整する構成について説明する。
 図9は、変形例5のアンテナモジュール100Fの側面透視図である。アンテナモジュール100Fのアンテナ装置120Fにおいては、誘電体基板130に単独で配置される放射素子121が、放射素子123よりも接地電極GNDに近い位置に配置されている。このようにすることによって、放射素子121と接地電極GNDとの間の距離H2を、放射素子121のアンテナ特性に適した距離とすることができる。
 なお、アンテナモジュール100Fの場合、放射素子121よりも上面131側に誘電体基板130の一部が存在するため、変形例4のアンテナモジュール100Eに比べると放射方向における誘電体の総量が多くなる。そのため、領域RG1に配置される誘電体層151の誘電率については、放射素子121と上面131との間の誘電体基板130の量に応じて調整することが望ましい。
 (変形例6)
 変形例6においては、領域RG1および領域RG2について、変形例5と同様に接地電極GNDを同じ位置に配置するとともに、放射素子上の誘電体層の厚みを異ならせた構成について説明する。
 図10は、変形例6のアンテナモジュール100Gの側面透視図である。アンテナモジュール100Gのアンテナ装置120Gにおいては、変形例5と同様に、接地電極GNDは、誘電体基板130の全域にわたってZ軸方向の同じ位置に配置されており、それに伴って、領域RG1に配置される放射素子121の位置も、放射素子123よりも接地電極GNDに近い位置に配置されている。さらに、アンテナモジュール100Gにおいては、領域RG1の誘電体層151は、放射素子121に接する位置まで配置されている。言い換えれば、アンテナモジュール100Gの誘電体基板130における上面131は、領域RG1と領域RG2との間で段差を有しており、領域RG1における誘電体基板130の厚み(Z軸方向の寸法)は、領域RG1における誘電体基板130の厚みよりも薄くなっている。そして、領域RG1においては、誘電体層151は、当該薄くなった厚みを埋めるように、誘電体層152よりも厚く形成されている。
 このような構成とすることによって、放射素子121の放射方向において誘電体層の境界をなくすことができるので、誘電体層の境界に起因する反射損失を低減するとことができる。さらに、放射素子121上の誘電体層の誘電率をより高くできるので、放射素子121についてのアンテナ特性を広帯域化することができる。
 (変形例7)
 実施の形態2および変形例3~変形例6においては、単独配置される放射素子とスタック構造の放射素子とが、誘電体基板上において交互に配置される構成について説明した。変形例7においては、単独配置される放射素子、および、スタック構造の放射素子が、それぞれ誘電体基板上の個別の領域にまとめて配置される構成について説明する。
 図11は、変形例7のアンテナモジュール100Hの平面図である。アンテナモジュール100Hのアンテナ装置120Hにおいては、誘電体基板130におけるX軸の負方向の領域RG1に6つの放射素子121が二次元配列されており、誘電体基板130におけるX軸の正方向の領域RG2に6組の放射素子122,123のスタック構造が二次元配列されている。そして、領域RG1においては放射素子121が誘電体層151に覆われており、領域RG2においては放射素子122,123が誘電体層152に覆われている。
 実施の形態2のように放射素子が交互配置された構成においては、同じ周波数に対応した放射素子同士の素子間ピッチが、低周波数側の放射素子121に対応したピッチに設定される。この場合、高周波数側の放射素子122,123のピッチが、これらの放射素子に適したピッチよりも過度に長くなる場合が生じ得る。そうすると、アンテナゲインの低下あるいはグレーティングローブの発生により、アンテナ特性が低下する可能性がある。
 変形例7のように、低周波数側の放射素子121を領域RG1にまとめて配置し、高周波数側の放射素子122,123を領域RG2にまとめて配置することによって、素子間ピッチが相対的に短くなる高周波数側の放射素子のピッチを、低周波数側の放射素子のピッチよりも短く設定することができるので、素子間ピッチの制約によるアンテナ特性の低下を抑制することができる。
 [実施の形態3]
 上述の実施の形態および変形例においては、各放射素子が1つの偏波方向の電波を放射する構成について説明した。実施の形態3においては、異なる2つの偏波方向の電波を放射可能な、いわゆるデュアル偏波タイプのアンテナモジュールに本開示の特徴を適用した構成について説明する。
 図12は、実施の形態3に従うアンテナモジュール100Iの平面図である。図12を参照して、アンテナモジュール100Iのアンテナ装置120Iは、図6のアンテナモジュール100Cと同様に、放射素子121と、放射素子122,123のスタック構造とが交互に隣接して配置されたアレイアンテナである。アンテナモジュール100Iにおいては、放射素子121,122,123の各々には、2つの給電点が設けられている。
 より具体的には、放射素子121においては、電極の中心からX軸の正方向にオフセットした位置に給電点SP11が配置されるとともに、電極の中心からY軸の負方向にオフセットした位置に給電点SP12が配置されている。給電点SP11に高周波信号が供給されることにより、放射素子121からX軸方向を偏波方向とする電波が放射される。一方で、給電点SP12に高周波信号が供給されることにより、放射素子121からY軸方向を偏波方向とする電波が放射される。
 同様に、放射素子122においては、電極の中心からX軸の正方向にオフセットした位置に給電点SP21が配置されるとともに、電極の中心からY軸の負方向にオフセットした位置に給電点SP22が配置されている。給電点SP21に高周波信号が供給されることにより、放射素子122からX軸方向を偏波方向とする電波が放射される。一方で、給電点SP22に高周波信号が供給されることにより、放射素子122からY軸方向を偏波方向とする電波が放射される。
 放射素子123においては、電極の中心からX軸の負方向にオフセットした位置に給電点SP31が配置されるとともに、電極の中心からY軸の正方向にオフセットした位置に給電点SP32が配置されている。給電点SP31に高周波信号が供給されることにより、放射素子123からX軸方向を偏波方向とする電波が放射される。一方で、給電点SP32に高周波信号が供給されることにより、放射素子123からY軸方向を偏波方向とする電波が放射される。
 なお、誘電体基板130を法線方向から平面視した場合に、放射素子122と放射素子123とが重なっているため、同じ偏波に対応する給電点の位置を放射素子122および放射素子123で同じ方向とすると、給電配線が近接して結合してしまい、アイソレーションの低下の要因となるおそれがある。放射素子122における給電点の位置を、放射素子123における給電点の位置と反対の方向に配置することによって、放射素子122から放射される電波と、放射素子123から放射される電波とのアイソレーション特性の低下を抑制することができる。
 このようなデュアル偏波タイプのアンテナモジュール100Iにおいても、放射素子121が配置される領域RG1に誘電体層151を配置し、放射素子122,123が配置される領域RG2に誘電体層152を配置することによって、各放射素子のアンテナ特性を広帯域化させることができる。
 なお、実施の形態3における「X軸方向」および「Y軸方向」は、本開示における「第1方向」および「第2方向」にそれぞれ対応する。
 上述の実施の形態および変形例においては、放射素子として平板形状のパッチアンテナを例として説明したが、各放射素子がループアンテナの場合にも上記の特徴を適用することができる。
 また、上記の各アンテナモジュールにおいては、誘電体層151,152が誘電体基板130に接するように配置される構成について説明したが、誘電体層151,152と誘電体基板130とが離間して配置され、誘電体層151,152と誘電体基板130との間に空気層が設けられる構成であってもよい。たとえば、誘電体層151,152が通信装置10の筐体に配置されており、実装基板に配置された誘電体基板130の各放射素子が、誘電体層151,152に面するように配置した構成であってもよい。
 さらに、上記の各アンテナモジュールにおいては、各放射素子と接地電極GNDが同じ誘電体基板130に配置される構成について説明したが、接地電極GNDが配置される基板とは異なる基板に放射素子が配置されていてもよい。この場合、2つの基板間において、給電配線は、はんだバンプあるいは他の接続部材によって接続される。
 また、領域RG1,RG2においては、誘電体層151,152の上面は平坦となっているが、誘電体層151,152の上面に凹凸が設けられていてもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 通信装置、100,100A~100I アンテナモジュール、110 RFIC、110A~110C 給電回路、111A~111D,113A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A~114D 減衰器、115A~115D 移相器、116 信号合成/分波器、118 ミキサ、119 増幅回路、120,120A~120I アンテナ装置、121~124 放射素子、130 誘電体基板、141~144 給電配線、151,152 誘電体層、160 はんだバンプ、200 BBIC、GND 接地電極、RG1,RG2 領域、SP1~SP4,SP11,SP12,SP21,SP22,SP31,SP32 給電点。

Claims (14)

  1.  第1面および第2面を有する誘電体基板と、
     前記誘電体基板に配置され、互いに異なる周波数帯域の電波を放射可能な平板形状の第1放射素子、第2放射素子および第3放射素子と、
     前記第1放射素子が配置される第1領域を覆うように、前記第1面上に配置された第1誘電体層と、
     前記第3放射素子が配置される第2領域を覆うように、前記第1面上に配置された第2誘電体層とを備え、
     前記第1領域と前記第2領域とは隣接しており、
     前記第1誘電体層の誘電率および前記第2誘電体層の誘電率は、前記誘電体基板の誘電率よりも高く、
     前記第1放射素子は、第1周波数帯域の電波を放射可能であり、
     前記第2放射素子は、前記第1周波数帯域よりも高い第2周波数帯域の電波を放射可能であり、
     前記第3放射素子は、前記第2周波数帯域よりも高い第3周波数帯域の電波を放射可能であり、
     前記誘電体基板の法線方向から平面視した場合に、前記第2放射素子は、前記第1放射素子または前記第3放射素子と重なっている、アンテナモジュール。
  2.  前記第1放射素子、前記第2放射素子および前記第3放射素子に対向して配置された接地電極をさらに備え、
     前記第2放射素子は、前記第1放射素子と重なっており、
     前記第1放射素子は、前記第2放射素子と前記接地電極との間に配置されている、請求項1に記載のアンテナモジュール。
  3.  前記第1放射素子、前記第2放射素子および前記第3放射素子に対向して配置された接地電極をさらに備え、
     前記第2放射素子は、前記第3放射素子と重なっており、
     前記第2放射素子は、前記第3放射素子と前記接地電極との間に配置されている、請求項1に記載のアンテナモジュール。
  4.  前記第1放射素子と前記接地電極との間の距離は、前記第3放射素子と前記接地電極との間の距離よりも短い、請求項3に記載のアンテナモジュール。
  5.  前記第1領域における前記接地電極は、前記第2領域における前記接地電極よりも、前記第1面に近い位置に配置されている、請求項4に記載のアンテナモジュール。
  6.  前記第1放射素子は、前記第3放射素子よりも、前記接地電極に近い位置に配置されている、請求項4に記載のアンテナモジュール。
  7.  前記第2周波数帯域よりも低い第4周波数帯域の電波を放射可能な第4放射素子をさらに備え、
     前記誘電体基板の法線方向から平面視した場合に、前記第4放射素子は、前記第1放射素子と重なっている、請求項3~6のいずれか1項に記載のアンテナモジュール。
  8.  前記第1誘電体層の誘電率は、前記第2誘電体層の誘電率よりも高い、請求項1~7のいずれか1項に記載のアンテナモジュール。
  9.  前記第1誘電体層は、前記第2誘電体層よりも厚い、請求項1~8のいずれか1項に記載のアンテナモジュール。
  10.  前記第1放射素子、前記第2放射素子および前記第3放射素子の各々は、異なる2つの偏波方向の電波を放射可能に構成される、請求項1~9のいずれか1項に記載のアンテナモジュール。
  11.  前記第1放射素子、前記第2放射素子および前記第3放射素子の各々において、第1給電点および第2給電点に高周波信号が供給されており、
     前記第1給電点は、対応する放射素子の中心から第1方向にオフセットした位置に配置されており、
     前記第2給電点は、対応する放射素子の中心から、前記第1方向とは異なる第2方向にオフセットした位置に配置されている、請求項1~10のいずれか1項に記載のアンテナモジュール。
  12.  第1面および第2面を有する誘電体基板と、
     前記誘電体基板に配置され、各々が平板形状の複数の電極を含む第1放射素子、第2放射素子および第3放射素子と、
     前記第1放射素子の電極が配置される第1領域を覆うように、前記第1面上に配置された第1誘電体層と、
     前記第3放射素子の電極が配置される第2領域を覆うように、前記第1面上に配置された第2誘電体層とを備え、
     前記第1放射素子、前記第2放射素子および前記第3放射素子は、互いに異なる周波数帯域の電波を放射可能であり、
     前記第1領域と前記第2領域とは隣接しており、
     前記第1誘電体層の誘電率および前記第2誘電体層の誘電率は、前記誘電体基板の誘電率よりも高く、
     前記第1放射素子は、第1周波数帯域の電波を放射可能であり、
     前記第2放射素子は、前記第1周波数帯域よりも高い第2周波数帯域の電波を放射可能であり、
     前記第3放射素子は、前記第2周波数帯域よりも高い第3周波数帯域の電波を放射可能であり、
     前記誘電体基板の法線方向から平面視した場合に、前記第2放射素子の電極は、前記第3放射素子の電極と重なっている、アンテナモジュール。
  13.  各放射素子に高周波信号を供給する給電装置をさらに備える、請求項1~12のいずれか1項に記載のアンテナモジュール。
  14.  請求項1~13のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
PCT/JP2022/029278 2021-09-22 2022-07-29 アンテナモジュールおよびそれを搭載する通信装置 WO2023047801A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-154353 2021-09-22
JP2021154353 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023047801A1 true WO2023047801A1 (ja) 2023-03-30

Family

ID=85719409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029278 WO2023047801A1 (ja) 2021-09-22 2022-07-29 アンテナモジュールおよびそれを搭載する通信装置

Country Status (1)

Country Link
WO (1) WO2023047801A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198335A (ja) * 2005-02-08 2005-07-21 Matsushita Electric Ind Co Ltd 複共振型誘電体アンテナ及び車載無線装置
US20190207323A1 (en) * 2017-12-28 2019-07-04 Samsung Electro-Mechanics Co., Ltd. Antenna module
WO2020149138A1 (ja) * 2019-01-17 2020-07-23 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置、ならびにアンテナモジュールの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198335A (ja) * 2005-02-08 2005-07-21 Matsushita Electric Ind Co Ltd 複共振型誘電体アンテナ及び車載無線装置
US20190207323A1 (en) * 2017-12-28 2019-07-04 Samsung Electro-Mechanics Co., Ltd. Antenna module
WO2020149138A1 (ja) * 2019-01-17 2020-07-23 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置、ならびにアンテナモジュールの製造方法

Similar Documents

Publication Publication Date Title
JP6973607B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020261806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021059661A1 (ja) アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
WO2022185917A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP7156518B2 (ja) サブアレイアンテナ、アレイアンテナ、アンテナモジュール、および通信装置
JP6760541B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020217689A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11322841B2 (en) Antenna module and communication device equipped with the same
WO2021059738A1 (ja) アンテナモジュールおよびその製造方法、ならびに、集合基板
WO2022224650A1 (ja) アンテナモジュール
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021039102A1 (ja) アンテナ装置、アンテナモジュールおよび通信装置
WO2020066604A1 (ja) アンテナモジュール、通信装置およびアレイアンテナ
US11916312B2 (en) Antenna module, communication device mounting the same, and circuit board
WO2022176646A1 (ja) アンテナモジュールおよびアレイアンテナ
WO2022130877A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023047801A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
JP7059385B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022230383A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2024034188A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023090139A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023214473A1 (ja) 伝送線路、ならびに、それを含むアンテナモジュールおよび通信装置
JP7294525B2 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2023120467A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE