WO2020145392A1 - アンテナモジュールおよびそれを搭載した通信装置 - Google Patents

アンテナモジュールおよびそれを搭載した通信装置 Download PDF

Info

Publication number
WO2020145392A1
WO2020145392A1 PCT/JP2020/000720 JP2020000720W WO2020145392A1 WO 2020145392 A1 WO2020145392 A1 WO 2020145392A1 JP 2020000720 W JP2020000720 W JP 2020000720W WO 2020145392 A1 WO2020145392 A1 WO 2020145392A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna module
stub
power feeding
feeding element
feeding
Prior art date
Application number
PCT/JP2020/000720
Other languages
English (en)
French (fr)
Inventor
敬生 高山
薫 須藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080008662.7A priority Critical patent/CN113302799B/zh
Publication of WO2020145392A1 publication Critical patent/WO2020145392A1/ja
Priority to US17/364,091 priority patent/US11870164B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Abstract

アンテナモジュール(100)は、多層構造を有する誘電体基板(130)と、誘電体基板(130)に配置された接地電極(GND)と、接地電極(GND)に対向するとともに当該接地電極(GND)と異なる層に配置された平板状の給電素子(121)と、給電素子(121)の給電点(SP1)に高周波信号を伝達する給電配線(140)と、スタブ(150)とを備える。スタブ(150)は、給電配線(140)における分岐点(BP1)において給電配線(140)から分岐するとともに、開放端(OE1)を有する。スタブ(150)は、給電素子(121)と接地電極(GND)との間に配置されている。誘電体基板(130)を平面視した場合に、開放端(OE1)は給電素子(121)と重なっている。

Description

アンテナモジュールおよびそれを搭載した通信装置
 本開示は、アンテナモジュールおよびそれを搭載した通信装置に関し、より特定的には、スタブを有するアンテナモジュールの特性を向上させる技術に関する。
 従来より、放射素子(給電素子)に高周波信号を供給する伝送線路にスタブを設けることにより、当該アンテナの広域化を図る技術が知られている。
 特開2002-271131号公報(特許文献1)には、パッチアンテナの伝送線路の略同じ場所に形状の異なるスタブを設けることによって、パッチアンテナで放射可能な高周波信号の帯域幅を広域化する構成が開示されている。
特開2002-271131号公報
 特開2002-271131号公報(特許文献1)に記載された構成を含むアンテナモジュールにおいては、さらなるアンテナ特性の改善が求められている。
 本開示は、このような課題を解決するためになされたものであって、その目的は、スタブを有するアンテナモジュールにおけるアンテナ特性を向上させることである。
 本開示によるアンテナモジュールは、多層構造を有する誘電体基板と、誘電体基板に配置された接地電極と、接地電極に対向するとともに接地電極と異なる層に配置された平板状の給電素子と、給電素子の第1給電点に高周波信号を伝達する第1給電配線と、第1給電配線における第1分岐点において第1給電配線から分岐する第1スタブとを備える。第1スタブは、第1開放端を有している。第1スタブは、給電素子と接地電極との間に配置されている。誘電体基板を平面視した場合に、第1開放端は給電素子と重なっている。
 本開示の他の局面によるアンテナモジュールは、多層構造を有する誘電体基板と、誘電体基板に配置された接地電極と、接地電極に対向するとともに接地電極と異なる層に配置された平板状の給電素子と、給電素子に対向するとともに接地電極および給電素子と異なる層に配置された無給電素子と、給電素子の第1給電点に高周波信号を伝達する第1給電配線と、第1給電配線における第1分岐点において第1給電配線から分岐する第1スタブとを備える。第1スタブは、第1開放端を有している。第1スタブは、給電素子および無給電素子と、接地電極との間に配置されている。誘電体基板を平面視した場合に、第1開放端は、給電素子および無給電素子の少なくとも一方と重なっている。
 本開示のアンテナモジュールによれば、平板状の給電素子に高周波信号を伝達するための給電配線から分岐されたスタブの開放端が、アンテナモジュールを平面視した場合に給電素子(または無給電素子)と重なるように配置される。これにより、アンテナゲイン等のアンテナ特性を向上させることができる。
実施の形態1に係るアンテナモジュールが適用される通信装置のブロック図である。 実施の形態1のアンテナモジュールの平面図および断面図である。 図2のアンテナモジュールの斜視図である。 比較例のアンテナモジュールの平面図である。 実施の形態1および比較例におけるアンテナゲインを示す図である。 図5の一部を拡大した図である。 実施の形態1に係るアンテナモジュールにおける接地電極の電流分布の一例を示す図である。 比較例のアンテナモジュールにおける接地電極の電流分布の一例を示す図である。 実施の形態1および比較例における電波の放射方向を示す図である。 実施の形態1および比較例におけるリターンロスを示す図である。 変形例1のアンテナモジュールの平面図である。 実施の形態2に係るアンテナモジュールの平面図および断面図である。 実施の形態3に係るアンテナモジュールの平面図および断面図である。 実施の形態4に係るアンテナモジュールの平面図および断面図である。 実施の形態5に係るアンテナモジュールの第1例の平面図である。 実施の形態5に係るアンテナモジュールの第2例の平面図である。 実施の形態6に係るアンテナモジュールの平面図である。 変形例2のアンテナモジュールの平面図である。 変形例3のアンテナモジュールの平面図である。 誘電体基板内の要素の配置の第1例を示す断面図である。 誘電体基板内の要素の配置の第2例を示す断面図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の基本構成)
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。なお、以下の説明においては、当該アンテナモジュール100に適用される電波の中心周波数が28GHzである場合を例として説明する。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナ装置120から放射するとともに、アンテナ装置120で受信した高周波信号をダウンコンバートしてBBIC200にて信号を処理する。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数の給電素子121のうち、4つの給電素子121に対応する構成のみ示され、同様の構成を有する他の給電素子121に対応する構成については省略されている。なお、図1においては、アンテナ装置120が二次元のアレイ状に配置された複数の給電素子121で形成される例を示しているが、給電素子121は必ずしも複数である必要はなく、1つの給電素子121でアンテナ装置120が形成される場合であってもよい。また、複数の給電素子121が一列に配置された一次元アレイであってもよい。本実施の形態においては、給電素子121は、略正方形の平板形状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる給電素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各給電素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各給電素子121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する給電素子121毎に1チップの集積回路部品として形成されてもよい。
 (アンテナモジュールの構成)
 次に、図2および図3を用いて、本実施の形態1におけるアンテナモジュールの構成の詳細を説明する。図2においては、上段にアンテナモジュール100の平面図が示されており、下段に給電点SP1を通る断面図が示されている。なお、図2の上段の平面図および図3においては、内部の構成を見やすくするために、誘電体基板130の一部が省略されている。また、図3は、アンテナモジュール100の斜視図である。
 図2を参照して、アンテナモジュール100は、給電素子121およびRFIC110に加えて、誘電体基板130と、給電配線140と、スタブ150と、接地電極GNDとを含む。なお、以降の説明において、各図におけるZ軸の正方向を上面側、負方向を下面側と称する場合がある。
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。
 誘電体基板130は矩形の平面形状を有しており、誘電体基板130の内部の層あるいは上面側の表面131に、略正方形の給電素子121が配置される。誘電体基板130において、給電素子121よりも下面側の層に接地電極GNDが配置される。また、誘電体基板130の下面側の裏面132には、はんだバンプ160を介してRFIC110が配置される。
 RFIC110から供給される高周波信号は、接地電極GNDを貫通する給電配線140を経由して、給電素子121の給電点SP1に伝達される。給電点SP1は、給電素子121の中心(対角線の交点)から、図2のX軸の正方向にオフセットした位置に配置されている。給電点SP1に高周波信号が供給されることにより、給電素子121からはX軸方向を偏波方向とする電波が放射される。
 図3に示されるように、給電配線140は、RFIC110から、接地電極GNDと給電素子121との間の層までビア141で立ち上がり、当該層において配線パターン142によって給電素子121の下方までオフセットし、そこからビア143によって給電素子121の給電点SP1までさらに立ち上がっている。
 給電配線140には、給電素子121の共振周波数におけるインピーダンスを調整するためのスタブ150が設けられている。スタブ150は、一方端が給電配線140の分岐点BP1に接続され、他方端が開放端OE1とされたオープンスタブである。図2の例においては、スタブ150は、給電配線140の配線パターン142における分岐点BP1からY軸の正方向に延在し、分岐点BP1と開放端OE1との間でX軸の負方向に屈曲した略L字形状となっている。このようなL字形状に屈曲することによって、分岐点BP1から開放端OE1までの間において、給電素子121とスタブ150との距離をできるだけ確保することができるので、スタブ150と給電素子121との不要な結合を抑制できる。アンテナモジュール100の法線方向(すなわち、Z軸方向)から平面視した場合に、スタブ150の開放端OE1は、給電素子121と重なっている。なお、図2の例においては、アンテナモジュール100を平面視した場合に、分岐点BP1は、給電素子121とは重なっていない。分岐点BP1と給電素子121とを重ならないように配置することで、給電素子121と接地電極GNDとの間の電界(電気力線)がスタブによって影響される領域を低減できるため、アンテナ本来の特性を発揮することが可能となる。
 スタブ150の線路長は、給電素子121から放射される電波の波長に応じて定められる。また、給電配線140におけるスタブ150の分岐点BP1の位置は、給電素子121から放射される電波の周波数に応じて定められる。
 図4は、比較例のアンテナモジュール100#の平面図である。アンテナモジュール100#においては、給電配線140の分岐点BP1から分岐するスタブ150#は、Y軸の正方向に延在する直線形状のスタブである。アンテナモジュール100を平面視した場合に、スタブ150#の開放端OE1#は給電素子121とは重なっていない。
 図5は、実施の形態1および比較例におけるアンテナゲインを示す図である。図5においては、横軸に周波数が示されており、縦軸にゲインが示されている。図5中の実線LN10は実施の形態1のアンテナモジュール100のゲインを示しており、破線LN11は比較例のアンテナモジュール100のゲインを示している。図5に示されるように、同一ゲイン(たとえば3dB)を達成できる周波数帯域幅を比較すると、実施の形態1の帯域幅BW1のほうが、比較例の帯域幅BW2よりも広くなっている。
 図6は、図5においてピークゲインが示される領域AR1の部分を拡大した図である。図6に示されるように、27GHz~29GHzにおいては、実施の形態1のピークゲインが、比較例に比べて約0.1dB改善していることがわかる。
 図7および図8は、実施の形態1および比較例に従うアンテナモジュールにおける接地電極GNDに流れる電流分布をそれぞれ示したものである。図7および図8においては、電流分布が等高線として示されている。
 図7と図8とを比較すると、実施の形態1のアンテナモジュール100の方が、比較例のアンテナモジュール100#に比べて、給電点SP1を通ってX軸に沿った線LNAに対する対称性が改善されていることがわかる。これにより、図9に示されるように、比較例においては電波の放射方向がアンテナモジュールの法線方向(Z軸方向)から約2°傾いていたものが(線LN21)、実施の形態1においてはほぼZ軸方向と一致している(線LN20)。スタブの配置を変更することにより、接地電極GNDにおける電流分布の対称性が改善されたことが、アンテナゲイン向上の理由と考えられる。
 アンテナ特性は、図7に示すような接地電極GNDにおける電流分布が、線LNAに対してY軸方向に線対称となっているほど特性が良くなる。したがって、図7のように、給電配線140およびスタブ150が、給電素子121のY軸方向の幅の範囲内に配置されることがより好ましい。
 なお、図10は、実施の形態1および比較例におけるリターンロスを示す図である。図10に示されるように、リターンロスが10dBより小さくなる周波数帯域幅についても、実施の形態1(実線LN30)のほうが比較例(破線LN31)よりも広くなっている。
 以上のように、給電素子としてパッチアンテナを有するアンテナモジュールにおいて、アンテナモジュールを平面視した場合に、給電配線に配置されるオープンスタブの開放端が給電素子と重なるように配置することによって、アンテナゲインおよびリターンロスなどのアンテナ特性を向上させることができる。
 (変形例1)
 実施の形態1のアンテナモジュール100においては、アンテナモジュール100を平面視した場合に、給電配線140における給電素子121と重ならない位置から分岐する構成について説明した。
 図11は、変形例1に係るアンテナモジュール100Aの平面図である。アンテナモジュール100Aにおいて、スタブ150Aは、実施の形態1と同様のL字形状のオープンスタブであり、アンテナモジュール100Aを平面視した場合に、給電配線140における給電素子121と重なる位置から分岐し、さらに開放端OE1が給電素子121と重なっている。言い換えれば、L字形状のスタブ150A全体が給電素子121と重なっている。
 給電配線上のスタブの分岐点の位置(すなわち、給電素子の給電点から分岐点までの距離)は、一般的に給電素子から放射される電波の周波数によって定まる。そのため、使用する周波数によっては、図11のようにスタブ全体が給電素子と重なる状態となり得る。この場合においても、オープンスタブの開放端が、給電素子と重なるように配置されているため、図8に示した比較例のような一直線状のスタブの構成と比べて接地電極GNDにおける電流分布の対称性が改善される。したがって、実施の形態1と同様にアンテナ特性を向上させることができる。
 つまり、使用する電波の周波数帯域によっては、給電素子の近傍にスタブを配置せざるを得ない場合が生じ得るが、この場合においても、スタブを屈曲させ、かつスタブの開放端が給電素子と重なるように配置することによって、接地電極における電流分布の対称性が改善される。このような構成とすることによって、給電素子の近傍にスタブが配置される場合であっても、アンテナ特性を向上させることが可能となる。
 [実施の形態2]
 実施の形態1においては、RFICから高周波信号が供給される1つの給電素子が給電素子として設けられたアンテナモジュールに、本開示のスタブを適用する構成について説明した。以下で説明する実施の形態2~4においては、給電素子として、給電素子に加えて、RFICから高周波信号が供給されない無給電素子をさらに備えるアンテナモジュールに、本開示のスタブを適用する構成について説明する。
 図12は、実施の形態2に従うアンテナモジュール100Bの平面図(図12(a))および断面図(図12(b))である。アンテナモジュール100Bにおいては、誘電体基板130における給電素子121よりも上面側に、給電素子121と対向して無給電素子125が配置されている。なお、図12において、実施の形態1の図2と重複する要素についての説明は繰り返さない。
 無給電素子125は、一般的に、アンテナモジュール100Bから放射される電波の周波数帯域幅を拡大するために設けられるものであり、基本的には、給電素子121とほぼ同じサイズの平面形状を有する。そのため、アンテナモジュール100Bの法線方向からアンテナモジュール100Bを平面視した場合に、スタブ150の開放端OE1は、給電素子121および無給電素子125の双方と重なる。
 なお、給電素子121および無給電素子125のサイズが異なる場合には、スタブ150の開放端OE1は、給電素子121および無給電素子125の少なくとも一方と重なっていればよい。すなわち、給電素子121のサイズのほうが無給電素子125のサイズよりも大きい場合には、スタブ150は給電素子121のみと重なっていてもよい。また、給電素子121のサイズのほうが無給電素子125のサイズよりも小さい場合には、スタブ150は無給電素子125のみと重なっていてもよい。
 実施の形態2のように給電素子の上面側に無給電素子が配置される構成においても、アンテナモジュールを平面視した場合に、給電配線に配置されるオープンスタブの開放端が給電素子および/または放射素子(以下、包括的に「放射素子」とも称する。)と重なるようにスタブを配置することによって、アンテナ特性を向上させることができる。
 [実施の形態3]
 図13は、実施の形態3に係るアンテナモジュール100Cの平面図(図13(a))および断面図(図13(b))である。図13を参照して、アンテナモジュール100Cにおいては、給電素子121と接地電極GNDとの間の層に、給電素子121に対向するように無給電素子125Aが配置されている。なお、図13において、実施の形態1の図2と重複する要素についての説明は繰り返さない。
 給電配線140におけるビア143は、無給電素子125Aを貫通して給電素子121の給電点SP1に接続される。無給電素子125Aは、給電素子121とほぼ同じサイズの平面形状を有する。なお、実施の形態3のような無給電素子125Aも、アンテナモジュール100Cから放射される電波の周波数帯域幅を拡大するために設けられる。
 そして、アンテナモジュール100Cを平面視した場合に、スタブ150の開放端OE1は、給電素子121および無給電素子125の双方と重なる。これによって、アンテナ特性を向上させることができる。
 [実施の形態4]
 実施の形態1~3においては、放射される電波の周波数帯域が1つのシングルバンドタイプのアンテナモジュールについて説明した。実施の形態4においては、放射される電波の周波数帯域が2つであるデュアルバンドタイプのアンテナモジュールに、本開示のスタブを適用した構成について説明する。
 図14は、実施の形態4に係るアンテナモジュール100Dの平面図(図14(a))および断面図(図14(b))である。図14を参照して、アンテナモジュール100Dにおいては、実施の形態3と同様に、給電素子121と接地電極GNDとの間の層に無給電素子125Bが配置されているが、無給電素子125Bは、給電素子121よりも大きいサイズを有している。無給電素子125Bには、給電配線140が接続されていないが、給電配線140が無給電素子125Bを貫通しているために、給電配線140と無給電素子125Bとが結合して、無給電素子125Bからも電波が放射される。ここで、一般的に、放射素子のサイズが大きくなると、放射素子の共振周波数が低くなり、当該放射素子から放射される電波の周波数は低くなる。そのため、無給電素子125Bからは、給電素子121よりも低い周波数の電波が放射されることになる。
 図14のアンテナモジュール100Dにおいては、給電素子121の周囲に配置された寄生素子127を備える。寄生素子127は、給電素子121が配置される層と同じ層に、給電素子121の4つの辺に対向して配置されている。この寄生素子127は、給電素子121から放射される電波の周波数帯域を広帯域化するために設けられる。なお、寄生素子127の配置は必須ではなく、給電素子121単体で所望の周波数帯域を実現できる場合には、寄生素子127は省略されてもよい。
 給電配線140には、給電素子121用のスタブ150、および無給電素子125B用のスタブ155が配置される。スタブ150の線路長は、給電素子121から放射される電波の波長に応じて定められる。また、給電配線140におけるスタブ150の分岐点BP1の位置は、給電素子121から放射される電波の周波数に応じて定められる。
 スタブ155の線路長は、無給電素子125Bから放射される電波の波長に応じて定められる。また、給電配線140におけるスタブ155の分岐点BP2の位置は、無給電素子125Bから放射される電波の周波数に応じて定められる。
 スタブ150の開放端OE1およびスタブ155の開放端OE2は、アンテナモジュール100Dを平面視した場合に、給電素子121および無給電素子125Bの少なくとも一方と重なっている。
 このように、給電素子と、給電素子よりも大きなサイズの無給電素子とを有するデュアルバンドタイプのアンテナモジュールにおいても、給電素子および無給電素子にそれぞれ対応したスタブを設け、アンテナモジュールを平面視したときに、各スタブの開放端が給電素子および無給電素子と重なるようにすることによって、アンテナ特性を向上させることができる。
 なお、図14のアンテナモジュール100Dにおいては、給電素子121に対応するスタブ150、および、無給電素子125Bに対応するスタブ155が配置される例について説明したが、スタブ150およびスタブ155のいずれか一方が配置されない構成であってもよい。あるいは、スタブ150およびスタブ155のいずれか一方を屈曲させずに、その開放端が放射素子(給電素子,無給電素子)と重なっていなくてもよい。たとえば、スタブの長さが短く、屈曲させてもその開放端が放射素子と重ならないような場合には、設計の容易性および製造ばらつきの低減の観点から、スタブを屈曲させないことが好ましい。
 [実施の形態5]
 実施の形態1~4は、1つの給電素子から放射される電波の偏波が1つである構成について説明した。実施の形態5においては、給電素子から互いに異なる偏波を有する2つの電波が放射される構成について説明する。
 図15は、実施の形態5に係るアンテナモジュール100Eの平面図である。アンテナモジュール100Eにおいては、実施の形態1のアンテナモジュール100の構成に加えて、他の給電点SP2にもRFIC110から高周波信号が供給される。
 給電点SP2は、給電素子121の中心(対角線の交点)から、図15のY軸の負方向にオフセットした位置に配置されている。給電点SP2には、RFIC110から給電配線147を介して高周波信号が供給される。これにより、給電素子121からは、Y軸方向を偏波方向とする電波が放射される。
 スタブ157はスタブ150と同様のL字形状を有しており、給電配線147の分岐点BP3にスタブ157の一方端が接続される。そして開放端OE3である他方端は、アンテナモジュール100Eを平面視した場合に、給電素子121と重なっている。
 すなわち、実施の形態5に係るアンテナモジュール100Eにおいては、給電点SP1および給電点SP2への高周波信号の供給により、X軸方向を偏波方向とする電波と、Y軸方向を偏波方向とする電波が放射される。そして、アンテナモジュール100Eを平面視した場合に、各給電点に高周波信号を供給する給電配線から分岐するスタブの開放端が給電素子121と重なっている。
 このような構成とすることによって、接地電極GNDに流れる電流の対称性が改善されるので、アンテナ特性を向上させることができる。
 なお、図16に示されるアンテナモジュール100Fのように、給電点SP2に接続される給電配線147に接続されるスタブ157を、分岐点BP3からX軸の負方向に分岐するように配置すると、給電素子121の対角線(図16の線LNB)に対して2つのスタブ150,157が線対称となる。したがって、このような構成とすることにより、接地電極GNDに流れる電流の対称性がさらに改善されるので、よりいっそうアンテナ特性を向上させることができる。
 [実施の形態6]
 実施の形態6においては、実施の形態4および実施の形態5を組み合わせた、デュアルバンドかつデュアル偏波タイプのアンテナモジュールの例について説明する。
 図17は、実施の形態6に係るアンテナモジュール100Gの平面図である。アンテナモジュール100Gにおいては、図14のアンテナモジュール100Dのように、給電素子121および無給電素子125BがZ軸方向に対向して配置されており、給電素子121の給電点SP1,SP2に給電配線140,147がそれぞれ接続されている。給電配線140,147の各々は、無給電素子125Bを貫通して給電素子121に接続されている。
 そして、給電配線140にはスタブ150およびスタブ155が配置されており、給電配線147にはスタブ157およびスタブ158が配置されている。スタブ150,155,157,158の各々は、給電配線の分岐点から開放端までの間で屈曲したL字形状を有している。アンテナモジュール100Gを平面視した場合に、各スタブの開放端は、給電素子121および無給電素子125Bと重なっている。
 デュアルバンドかつデュアル偏波タイプのアンテナモジュール100Gにおいても、平面視した場合に各スタブの開放端が放射素子(給電素子,無給電素子)と重なるようにスタブを配置することによって、接地電極に流れる電流の対称性が改善されるので、アンテナ特性を向上させることができる。なお、この場合においても、図17のように、放射素子の対角線LNBに対して線対称となるようにスタブを配置することで、アンテナ特性をさらに向上させることができる。
 (変形例2)
 図17のアンテナモジュール100Gにおいては、放射素子として給電素子121および無給電素子125Bを用いる構成であったが、2つの放射素子をともに給電素子としてデュアルバンド化するようにしてもよい。図18に示される変形例2のアンテナモジュール100Hにおいては、サイズの異なる給電素子121,121AがZ軸方向に対向して配置されており、各給電素子に対して、X軸方向およびY軸方向を偏波方向とする電波が放射されるように給電配線が接続されている。
 より具体的には、給電素子121の給電点SP1,SP2には、給電配線140,147がそれぞれ接続される。また、給電素子121Aの給電点SP11,SP12には、給電配線171,172がそれぞれ接続される。給電配線140,147にはスタブ150,157がそれぞれ配置されており、給電配線171,172にはスタブ181,182がそれぞれ配置されている。スタブ150,157,181,182の各々は、給電配線の分岐点から開放端までの間で屈曲したL字形状を有している。そして、アンテナモジュール100Hを平面視した場合に、スタブ150,157の開放端は給電素子121と重なっており、スタブ181,182の開放端は給電素子121Aと重なっている。
 このように、2つの給電素子に対して個別給電されるデュアルバンドかつデュアル偏波タイプのアンテナモジュールについても、平面視した場合に、各給電線に配置されるスタブの開放端が対応する給電素子と重なるように配置することによって、アンテナ特性を向上させることができる。また、この場合にも、給電素子の対角線に対して線対称にスタブを配置することで、さらにアンテナ特性を向上させることができる。
 (変形例3)
 変形例2のアンテナモジュール100Hにおいて、各給電素子に配置されるスタブは、フィルタの少なくとも一部として機能するものであってもよい。たとえば、図19の変形例3に係るアンテナモジュール100Iにおいては、高周波数側(たとえば、39GHz帯)の給電素子121に高周波信号を供給する給電配線140,147には、スタブ150,157に加えて、キャパシタ電極190,197がそれぞれ配置されている。給電配線140,147において、キャパシタ電極と接地電極GNDとの間のキャパシタンスと、スタブとによってフィルタが形成される。
 スタブの長さの調整により共振点を調整することによって、給電素子121Aから放射される低周波数側の電波の周波数帯域(たとえば、28GHz帯)を減衰することができるが、給電素子121から放射すべき高周波数側の電波については、通過特性が必ずしも最適とならない場合が生じ得る。一般的に、共振点よりも高い周波数領域においては、スタブはインダクタンスとして作用する。そのため、給電配線にキャパシタ電極を配置して、当該スタブとキャパシタ電極によってLC並列フィルタを形成することで高周波数側の帯域に反共振点を形成することができる。これにより、放射すべき高周波数側の通過特性を改善することが可能となる。
 一方、低周波数側の給電素子121Aにスタブを配置する場合にも、スタブの長さの調整により高周波数側の周波数帯域を減衰することができる。一般的に、共振点よりも低い帯域においては、スタブはキャパシタとして作用する。そのため、図19の構成に代えてあるいは加えて、低周波数側の給電配線に、高周波数側の電波の周波数帯域を減衰させるスタブを配置し、たとえばショートスタブあるいはパターンで形成されたインダクタンス成分をさらに追加することで、スタブのキャパシタ成分とともにLC並列フィルタを形成することによって低周波数側に反共振点を形成して、低周波数側の通過特性を改善するようにしてもよい。
 上述の各実施の形態においては、同じ誘電体基板内に、放射素子、スタブおよび接地電極が配置される構成であったが、必ずしもすべての要素が同じ基板内に配置されていなくてもよい。たとえば、図20のアンテナモジュール100Jのように、給電素子121が別の誘電体基板135に配置される構成であってもよい。あるいは、図21のアンテナモジュール100Kのように、給電素子121およびスタブ150が別の誘電体基板136に配置される構成であってもよい。
 なお、図20および図21のいずれにおいても、接地電極GNDが配置される誘電体基板130と、給電素子121が配置される誘電体基板135,136とは、はんだ実装あるいは接着により接続される。また、途中で分断される給電配線140については、はんだあるいは別の配線を用いて接続される。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 通信装置、100,100A~100K アンテナモジュール、110 RFIC、111A~111D,113A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A~114D 減衰器、115A~115D 移相器、116 信号合成/分波器、118 ミキサ、119 増幅回路、120 アンテナ装置、121,121A 給電素子、125,125A,125B 無給電素子、127 寄生素子、130,135,136 誘電体基板、140,147,171,172 給電配線、141,143 ビア、142 配線パターン、150,150A,155,157,158,181,182 スタブ、160 はんだバンプ、190,197 キャパシタ電極、200 BBIC、BP1,BP1A,BP2,BP3 分岐点、GND 接地電極、OE1,OE1A,OE1#,OE2,OE3 開放端、SP1,SP2,SP11,SP12 給電点。

Claims (12)

  1.  多層構造を有する誘電体基板と、
     前記誘電体基板に配置された接地電極と、
     前記接地電極に対向するとともに、前記接地電極と異なる層に配置された平板状の給電素子と、
     前記給電素子の第1給電点に高周波信号を伝達する第1給電配線と、
     前記第1給電配線における第1分岐点において前記第1給電配線から分岐するとともに、第1開放端を有する第1スタブとを備え、
     前記第1スタブは、前記給電素子と前記接地電極との間に配置されており、
     前記誘電体基板を平面視した場合に、前記第1開放端は前記給電素子と重なっている、アンテナモジュール。
  2.  前記誘電体基板を平面視した場合に、前記第1分岐点は前記給電素子と重ならない位置に配置される、請求項1に記載のアンテナモジュール。
  3.  前記第1スタブは、前記第1分岐点と前記第1開放端との間で屈曲している、請求項1または2に記載のアンテナモジュール。
  4.  前記給電素子の第2給電点に高周波信号を伝達する第2給電配線と、
     前記第2給電配線における第2分岐点において前記第2給電配線から分岐するとともに、第2開放端を有する第2スタブとをさらに備え、
     前記誘電体基板を平面視した場合に、前記第2開放端は前記給電素子と重なっている、請求項1~3のいずれか1項に記載のアンテナモジュール。
  5.  多層構造を有する誘電体基板と、
     前記誘電体基板に配置された接地電極と、
     前記接地電極に対向するとともに、前記接地電極と異なる層に配置された平板状の給電素子と、
     前記給電素子に対向するとともに、前記接地電極および前記給電素子と異なる層に配置された無給電素子と、
     前記給電素子に高周波信号を伝達する給電配線と、
     前記給電配線における第1分岐点において前記給電配線から分岐するとともに、第1開放端を有する第1スタブとを備え、
     前記第1スタブは、前記給電素子および前記無給電素子と、前記接地電極との間に配置されており、
     前記誘電体基板を平面視した場合に、前記第1開放端は前記給電素子および前記無給電素子の少なくとも一方と重なっている、アンテナモジュール。
  6.  前記給電素子は、前記無給電素子と前記接地電極との間に配置されている、請求項5に記載のアンテナモジュール。
  7.  前記無給電素子は、前記給電素子と前記接地電極との間に配置されており、
     前記給電配線は、前記無給電素子を貫通して前記給電素子に接続されている、請求項5に記載のアンテナモジュール。
  8.  前記給電素子の周囲に配置された寄生素子をさらに備える、請求項7に記載のアンテナモジュール。
  9.  前記給電素子から放射される電波の周波数と、前記無給電素子から放射される電波の周波数とは異なっている、請求項7または8に記載のアンテナモジュール。
  10.  前記給電配線における第2分岐点において前記給電配線から分岐するとともに、第2開放端を有する第2スタブをさらに備え、
     前記誘電体基板を平面視した場合に、前記第2開放端は前記給電素子あるいは前記無給電素子の少なくとも一方と重なっている、請求項9に記載のアンテナモジュール。
  11.  前記給電素子に高周波信号を供給するように構成された給電回路をさらに備える、請求項1~10のいずれか1項に記載のアンテナモジュール。
  12.  請求項1~11のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
PCT/JP2020/000720 2019-01-10 2020-01-10 アンテナモジュールおよびそれを搭載した通信装置 WO2020145392A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080008662.7A CN113302799B (zh) 2019-01-10 2020-01-10 天线模块和搭载该天线模块的通信装置
US17/364,091 US11870164B2 (en) 2019-01-10 2021-06-30 Antenna module and communication device equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019002322 2019-01-10
JP2019-002322 2019-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/364,091 Continuation US11870164B2 (en) 2019-01-10 2021-06-30 Antenna module and communication device equipped with the same

Publications (1)

Publication Number Publication Date
WO2020145392A1 true WO2020145392A1 (ja) 2020-07-16

Family

ID=71521302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000720 WO2020145392A1 (ja) 2019-01-10 2020-01-10 アンテナモジュールおよびそれを搭載した通信装置

Country Status (3)

Country Link
US (1) US11870164B2 (ja)
CN (1) CN113302799B (ja)
WO (1) WO2020145392A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021153278A (ja) * 2020-03-25 2021-09-30 京セラ株式会社 アンテナ素子及びアレイアンテナ
WO2022148130A1 (zh) * 2021-01-07 2022-07-14 Oppo广东移动通信有限公司 天线组件及电子设备
WO2022230371A1 (ja) * 2021-04-28 2022-11-03 株式会社村田製作所 アンテナ装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220068557A (ko) * 2020-11-19 2022-05-26 삼성전기주식회사 안테나 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143474A (ja) * 2016-02-12 2017-08-17 日本無線株式会社 アンテナ素子、アレーアンテナ及び平面アンテナ
JP2019092130A (ja) * 2017-11-17 2019-06-13 Tdk株式会社 デュアルバンドパッチアンテナ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278039A (ja) * 1999-03-19 2000-10-06 Hitachi Cable Ltd 偏波共用アンテナ
KR100748337B1 (ko) * 2000-12-18 2007-08-09 주식회사 케이티 이중편파 다이버시티 능동형 마이크로스트립 배열 안테나
JP2002271131A (ja) * 2001-03-12 2002-09-20 Hitachi Ltd 平面アンテナ
JP3735580B2 (ja) * 2002-01-30 2006-01-18 京セラ株式会社 積層誘電体アンテナ
US6717549B2 (en) * 2002-05-15 2004-04-06 Harris Corporation Dual-polarized, stub-tuned proximity-fed stacked patch antenna
JP2004112397A (ja) * 2002-09-19 2004-04-08 Yokohama Tlo Co Ltd 多周波共用アンテナ、及びマルチバンド送受信機
JP4769664B2 (ja) * 2006-08-25 2011-09-07 古野電気株式会社 円偏波パッチアンテナ
JP2012129599A (ja) * 2010-12-13 2012-07-05 Samsung Yokohama Research Institute Co Ltd アンテナ装置
KR101226545B1 (ko) * 2011-08-29 2013-02-06 이정해 레이더 디텍터용 안테나
CN108550986A (zh) * 2012-09-21 2018-09-18 株式会社村田制作所 双极化天线
CN104871367B (zh) * 2012-12-20 2018-01-09 株式会社村田制作所 多频带用天线
JP2015216577A (ja) * 2014-05-13 2015-12-03 富士通株式会社 アンテナ装置
CN104518282B (zh) * 2014-12-24 2017-05-31 西安电子科技大学 一种双极化宽频带高隔离度的微带天线
CN106299642B (zh) * 2016-08-09 2019-08-30 京信通信系统(中国)有限公司 天线辐射体结构及其贴片天线
JP6597659B2 (ja) * 2017-02-01 2019-10-30 株式会社村田製作所 アンテナ装置及びアンテナ装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143474A (ja) * 2016-02-12 2017-08-17 日本無線株式会社 アンテナ素子、アレーアンテナ及び平面アンテナ
JP2019092130A (ja) * 2017-11-17 2019-06-13 Tdk株式会社 デュアルバンドパッチアンテナ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021153278A (ja) * 2020-03-25 2021-09-30 京セラ株式会社 アンテナ素子及びアレイアンテナ
JP7449137B2 (ja) 2020-03-25 2024-03-13 京セラ株式会社 アンテナ素子及びアレイアンテナ
WO2022148130A1 (zh) * 2021-01-07 2022-07-14 Oppo广东移动通信有限公司 天线组件及电子设备
WO2022230371A1 (ja) * 2021-04-28 2022-11-03 株式会社村田製作所 アンテナ装置

Also Published As

Publication number Publication date
US11870164B2 (en) 2024-01-09
CN113302799A (zh) 2021-08-24
CN113302799B (zh) 2024-04-09
US20210328350A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020145392A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2019026595A1 (ja) アンテナモジュールおよび通信装置
CN112640209B (zh) 天线模块以及搭载有该天线模块的通信装置
US11581635B2 (en) Antenna module
US20230223691A1 (en) Antenna device
JP6741189B1 (ja) アンテナ素子、アンテナモジュールおよび通信装置
WO2020153098A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20220181766A1 (en) Antenna module and communication device equipped with the same
CN114521307A (zh) 天线模块和搭载该天线模块的通信装置以及电路基板
WO2019188471A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20220328978A1 (en) Antenna module and communication device equipped with the same
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020153283A1 (ja) アンテナモジュールおよび通信装置
US20220328971A1 (en) Antenna module and communication device equipped with the same
US11916312B2 (en) Antenna module, communication device mounting the same, and circuit board
US20220094074A1 (en) Antenna module, communication apparatus including the same, and circuit substrate
CN112400255B (zh) 天线模块和搭载有该天线模块的通信装置
WO2023188969A1 (ja) アンテナモジュール
WO2023214473A1 (ja) 伝送線路、ならびに、それを含むアンテナモジュールおよび通信装置
JP7294525B2 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2023210118A1 (ja) アンテナモジュール
US20220085521A1 (en) Antenna module and communication device equipped with the same
WO2023037805A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11929557B2 (en) Antenna module and communication device equipped with the same
WO2023037806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP