WO2022148130A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2022148130A1
WO2022148130A1 PCT/CN2021/130363 CN2021130363W WO2022148130A1 WO 2022148130 A1 WO2022148130 A1 WO 2022148130A1 CN 2021130363 W CN2021130363 W CN 2021130363W WO 2022148130 A1 WO2022148130 A1 WO 2022148130A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna assembly
radiation patch
resonance mode
coupling sheet
coupling
Prior art date
Application number
PCT/CN2021/130363
Other languages
English (en)
French (fr)
Inventor
王泽东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21917171.7A priority Critical patent/EP4266495A4/en
Publication of WO2022148130A1 publication Critical patent/WO2022148130A1/zh
Priority to US18/346,432 priority patent/US20230344133A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna assembly and an electronic device.
  • the present application provides an antenna assembly and an electronic device for improving communication quality.
  • an antenna assembly including:
  • a matching network one end of the matching network is used to electrically connect the radio frequency signal module, the other end of the matching network is provided with a first coupling sheet, the first coupling sheet and the radiation patch form capacitive coupling, the first coupling sheet A coupling sheet is used to feed the radio frequency signal generated by the radio frequency signal module into the radiation patch, so as to excite the radiation patch to generate a plurality of resonance modes, at least one resonance mode of the plurality of resonance modes is generated by the The capacitive coupling effect of the first coupling sheet and the radiation patch is generated.
  • an embodiment of the present application provides an electronic device, including the antenna assembly.
  • capacitive coupling is formed between a first coupling sheet of a matching network and a radiation patch, and then the radiation patch is excited to generate multiple resonance modes, wherein at least one of the multiple resonance modes
  • the resonance mode is generated by the coupling between the first coupling sheet and the radiation patch.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is a schematic exploded view of the structure of the electronic device provided in Fig. 1;
  • FIG. 3 is a schematic structural diagram of the first antenna assembly in FIG. 2;
  • FIG. 4 is a schematic structural diagram of the second type of antenna assembly in FIG. 2;
  • FIG. 5 is a schematic structural diagram of the third antenna assembly in FIG. 2;
  • FIG. 6 is a schematic structural diagram of the fourth antenna assembly in FIG. 2;
  • FIG. 7 is a reflection coefficient curve diagram of the antenna assembly provided by the first embodiment of the present application.
  • FIG. 8 is a reflection coefficient curve diagram of the antenna assembly provided by the second embodiment of the present application.
  • FIG. 9 is a reflection coefficient curve diagram of the antenna assembly provided by the third embodiment of the present application.
  • FIG. 10 is a reflection coefficient curve diagram of the antenna assembly provided by the fourth embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a feeding position on a radiation patch in the antenna assembly provided in FIG. 6;
  • FIG. 12 is an equivalent circuit diagram of the antenna assembly provided in FIG. 6;
  • FIG. 13 is a schematic partial structure diagram of the antenna assembly provided in FIG. 6 from a first viewing angle
  • FIG. 14 is a schematic partial structure diagram of the antenna assembly provided in FIG. 6 from a second viewing angle
  • FIG. 15 is a schematic partial structure diagram of the antenna assembly provided in FIG. 6 from a third viewing angle
  • FIG. 16 is a schematic partial structure diagram of the antenna assembly provided in FIG. 6 from a fourth viewing angle
  • FIG. 17 is a schematic perspective view of the antenna assembly in FIG. 6;
  • FIG. 18 is a Smith chart of the antenna assembly corresponding to FIG. 8;
  • FIG. 19 is a system efficiency diagram of the antenna assembly corresponding to FIG. 8;
  • Fig. 20 is the far-field pattern of the antenna assembly corresponding to Fig. 8 at the resonance frequency point 6.38Ghz of the first sub-resonant mode;
  • Fig. 21 is the far-field pattern of the antenna assembly corresponding to Fig. 8 at the resonant frequency point 6.54Ghz of the second sub-resonant mode;
  • FIG. 22 is a far-field pattern of the antenna assembly corresponding to FIG. 8 at the resonance frequency point of 6.72Ghz in the second resonance mode.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 according to an embodiment of the present application.
  • the electronic device 1000 can be a phone, a TV, a tablet computer, a mobile phone, a camera, a personal computer, a notebook computer, a vehicle-mounted device, a headset, a watch, a wearable device, a base station, a vehicle-mounted radar, a customer premise equipment (CPE), etc.
  • the electronic device 1000 is defined with reference to the first viewing angle, the width direction of the electronic device 1000 is defined as the X direction, the length direction of the electronic device 1000 is defined as the Y direction, and the electronic device The thickness direction of 1000 is defined as the Z direction.
  • the direction indicated by the arrow is positive.
  • the electronic device 1000 includes a display screen 300 and a casing 500 covering the display screen 300 .
  • the casing 500 includes a middle frame 501 and a rear cover 502 which are covered with each other.
  • the back cover 502 is located on the side of the middle frame 501 away from the display screen 300 .
  • the middle frame 501 includes a middle plate 506 and a frame 505 surrounding the middle plate 506 .
  • the middle board 506 is used to install electronic components such as the main board 200 and the battery 400 .
  • the edge of the display screen 300 , the frame 505 and the back cover 502 are connected in sequence.
  • the frame 505 and the back cover 502 can be integrally formed.
  • the electronic device 1000 may also not include the display screen 300 .
  • the electronic device 1000 further includes an antenna assembly 100 .
  • the antenna assembly 100 is used for sending and receiving electromagnetic wave signals, so as to realize the communication function of the electronic device 1000 .
  • the antenna assembly 100 includes a substrate 10 , a radiation patch 20 , and a matching network 30 .
  • the substrate 10 is also referred to as a dielectric substrate.
  • the substrate 10 can be a rigid substrate to have better supporting strength; of course, the substrate 10 can also be a flexible substrate, which is convenient for any bending and adapts to irregular and curved spaces.
  • the utilization rate of the antenna assembly for the special-shaped space in the electronic device 1000 can be improved, and the internal structure of the electronic device 1000 can be further improved and the miniaturization of the electronic device 1000 can be promoted.
  • the substrate 10 may be formed of a single layer or multiple layers of dielectric layers.
  • the present application does not specifically limit the material of the multi-layer dielectric layer.
  • the material of the substrate 10 includes, but is not limited to, at least one of liquid crystal polymer, polyimide, polytetrafluoroethylene, ceramic, etc., and may also be a polymer material with a small loss tangent, A mixture of ceramics and polymers.
  • the substrate 10 includes a top surface 101 and a bottom surface 102 disposed opposite to each other.
  • the top surface 101 faces the outside of the electronic device 1000 relative to the bottom surface 102 .
  • the radiation patch 20 is disposed on the top surface 101 of the substrate 10 .
  • the antenna assembly 100 further includes a reference ground layer 40 , and the reference ground layer 40 is disposed on the bottom surface 102 of the substrate 10 .
  • the radiation patch 20 is made of conductive material.
  • the radiation patch 20 is a port for the antenna assembly 100 to send and receive electromagnetic wave signals.
  • the present application does not specifically limit the material of the radiation patch 20.
  • the material of the radiation patch 20 includes, but is not limited to, metals, transparent conductive oxides (such as indium tin oxide ITO), carbon nanotubes, graphene, Conductive polymers, etc.
  • the material of the radiation patch 20 is metal.
  • the radiation patch 20 can be formed on the top surface 101 of the substrate 10 by processes such as coating, electroplating, atomic deposition, screen printing, laser forming, chemical vapor deposition, physical vapor deposition, and the like.
  • the radiation patch 20 can be formed by forming metal paste on the top surface 101 of the substrate 10 and shaped by processes such as baking and sintering, and can also be pasted or pressed on the top surface 101 of the substrate 10 in a patch form.
  • the shape of the radiation patch 20 includes, but is not limited to, a rectangle, an ellipse, a cross, a diamond, and the like.
  • the radiation patch 20 may be a solid patch, a patch with a hollow inside, or a patch with a hollow at the edge.
  • the material of the reference ground layer 40 is a conductive material, and further, the material of the reference ground layer 40 is a metal material.
  • the process of forming the ground layer 40 on the bottom surface 102 of the substrate 10 reference may be made to the forming process of the radiation patch 20 on the top surface 101 of the substrate 10 .
  • the matching network 30 is embedded inside the substrate 10 .
  • the matching network 30 may also be located on the outer surface of the substrate 10 or a region outside the substrate 10 .
  • the antenna assembly 100 further includes a radio frequency signal module 50 .
  • the radio frequency signal module 50 is located on the side of the reference ground layer 40 away from the radiation patch 20 .
  • the radio frequency signal module 50 is used for generating radio frequency signals.
  • the radio frequency signal module 50 can be disposed on the mainboard 200 or in the casing 500 and electrically connected to the mainboard 200 (please refer to FIG. 2 ).
  • the substrate 10 is provided in the casing 500 .
  • the present application does not limit the specific position of the substrate 10 in the casing 500 , including but not limited to positions such as being attached to the inner surface of the casing 500 , being supported by a support plate, and being disposed on the main board 200 .
  • the substrate 10 can be attached to the curved surface to be disposed in the curved surface space, thereby making full use of the curved surface space in the electronic device 1000 .
  • one end of the matching network 30 is electrically connected to the RF signal module 50 , and the other end of the matching network 30 is close to the radiation patch 20 and forms capacitive coupling with the radiation patch 20 .
  • the other end of the matching network 30 is provided with a first coupling sheet 31 , and the first coupling sheet 31 is opposite to the radiation patch 20 and forms a first capacitor 61 .
  • the first coupling sheet 31 and the radiation patch 20 respectively form electrode sheets at both ends of the first capacitor 61 .
  • the first coupling sheet 31 is parallel or approximately parallel to the radiation patch 20 in the thickness direction of the substrate 10 and has a relatively small distance.
  • a first coupling capacitor is formed between the first coupling sheet 31 and the radiation patch 20 , and the first coupling sheet 31 couples and feeds the radiation patch 20 to realize signal transmission between the first coupling sheet 31 and the radiation patch 20 .
  • the first coupling sheet 31 is used to feed the radio frequency signal generated by the radio frequency signal module 50 into the radiation patch 20 to excite the radiation patch 20 to generate a plurality of resonance modes. At least one resonance mode among the plurality of resonance modes is generated by capacitive coupling between the first coupling sheet 31 and the radiation patch 20 .
  • the first coupling plate 31 of the matching network 30 is used as a feeding terminal, and also forms a capacitive coupling to generate a resonance mode with the radiation patch 20 .
  • the present application does not specifically limit the number of resonance modes generated by the radiation patch 20 .
  • the number of resonance modes generated by the capacitive coupling between the first coupling sheet 31 and the radiation patch 20 is not specifically limited. Of course, this application only enumerates the capacitive coupling formed between one coupling sheet (ie, the first coupling sheet 31 ) and the radiation patch 20 . Capacitive coupling is formed between the radiation patches 20 .
  • the antenna assembly 100 has relatively small return loss in the frequency band corresponding to the resonance mode, thereby increasing the transmission and reception efficiency of the antenna assembly 100 .
  • the frequency band in which the antenna assembly 100 has higher transmission and reception efficiency increases.
  • capacitive coupling is formed between the first coupling sheet 31 of the matching network 30 and the radiation patch 20, and the radiation patch 20 is excited to generate multiple resonance modes, wherein multiple resonance modes are formed. At least one resonance mode in the resonant modes is generated by coupling the first coupling sheet 31 and the radiation patch 20 .
  • the resonant mode further expands the frequency band of the antenna assembly 100 , so that the antenna assembly 100 has a wider operating frequency band, realizes an ultra-wideband of the antenna assembly 100 , and further improves the communication quality of the electronic device 1000 .
  • the antenna assembly 100 may be a 4G mobile communication antenna, a 5G mobile communication antenna, a WiFi antenna, a GPS antenna, a UWB (Ultra Wideband, ultra-wideband) antenna, etc.
  • the antenna assembly 100 is a UWB antenna for illustration, and other antennas can be reasonably combined with reference to this embodiment.
  • UWB positioning technology In the short-range positioning technology, UWB positioning technology, as an emerging technology, has better performance and better positioning accuracy, and is suitable for indoor positioning. It is a very good choice to integrate the UWB positioning technology in the most commonly used mobile terminal indoors (the portable electronic device 1000 ).
  • the portable electronic device 1000 due to the relatively cramped internal space of mobile terminals (for example, the miniaturization of mobile phones has strict requirements for the internal space of mobile phones), there are strict requirements for the thickness of UWB antennas (that is, extremely thin), under strict antenna thickness requirements , it is difficult for UWB antennas to maintain broadband characteristics.
  • the antenna assembly 100 provided by the present application forms capacitive coupling with the radiation patch 20 by setting the first coupling sheet 31 of the matching network 30 to increase the resonance mode, which can effectively solve the problem that the UWB antenna can maintain an ultra-wideband even in an extremely thin condition.
  • the application reliability and communication performance of the UWB antenna in the electronic device 1000 are improved.
  • the antenna assembly 100 is a 4G mobile communication antenna, a 5G mobile communication antenna, a WiFi antenna, a GPS antenna and other antenna performances, the application reliability and communication performance of these antennas in the electronic device 1000 can be improved.
  • the radio frequency signal module 50 includes a UWB radio frequency front-end module.
  • the UWB radio frequency front-end module is used to make the radiation patch 20 transmit and receive extremely narrow pulses with nanoseconds or less to transmit data.
  • the multiple resonance modes generated by the radiation patch 20 include the adjacent first resonance mode a and the second resonance mode b, wherein the second resonance mode b is formed by the first coupling sheet 31 and the radiation
  • the capacitive coupling effect of the patch 20 is generated, and the frequency band of the first resonant mode a is continuous with the frequency band of the second resonant mode b.
  • the frequency band corresponding to the first resonant mode a and the frequency band corresponding to the second resonant mode b at least partially overlap.
  • the frequency band corresponding to the first resonance mode a is a frequency band with a reflection coefficient less than or equal to -10 dB.
  • the frequency band corresponding to the second resonance mode b is a frequency band with a reflection coefficient less than or equal to -10 dB.
  • the reflection coefficient S11 may be -8dB, -9dB, etc. as the reference point.
  • the reflection coefficient curves of the first resonance mode a and the second resonance mode b are both concave curves.
  • the intersection of the curve of the first resonance mode a and the curve of the second resonance mode b is a peak point, and the reflection coefficient of the peak point is less than -10dB.
  • the frequency band corresponding to the first resonant mode a is 6.25-6.63GHz
  • the frequency band corresponding to the second resonant mode b is 6.63GHz-6.75GHz
  • the reflection coefficient of the antenna assembly 100 in the range of 6.25-6.75GHz is less than or equal to -10dB, that is
  • the antenna assembly 100 can support the frequency band of 6.25-6.75 GHz.
  • the first resonance mode a may be one resonance mode, or may be a combination of multiple resonance modes.
  • the curve n1 in FIG. 8 is a graph of the reflection coefficient of the radiation patch 20 without the matching network 30
  • the curve n2 in FIG. 8 is the radiation patch 20 provided with the matching network 30 .
  • the first resonance mode a includes a first sub-resonance mode a1 and a second sub-resonance mode a2.
  • the resonance frequency of the second sub-resonance mode a2 is greater than the resonance frequency of the first sub-resonance mode a1.
  • the second sub-resonance mode a2 and the first sub-resonance mode a1 may or may not be adjacent.
  • the frequency band of the second sub-resonance mode a2 and the frequency band of the first sub-resonance mode a1 may be continuous or discontinuous.
  • the first resonance mode a may also include a combination of three, four, etc. multiple sub-resonance modes.
  • the distribution forms of the first sub-resonance mode a1, the second sub-resonance mode a2, and the second resonance mode b provided in this application include but are not limited to the following embodiments.
  • the frequency band of the first sub-resonance mode a1 is continuous with the frequency band of the second sub-resonance mode a2, and the resonant frequency point of the second resonant mode b is greater than that of the second sub-resonance mode
  • the resonant frequency point of the mode a2 and the frequency band of the second resonant mode b is continuous with the frequency band of the second sub-resonance mode a2.
  • the resonance frequency of the second resonance mode b is close to the resonance frequency of the second sub-resonance mode a2.
  • the frequency band of the first sub-resonance mode a1 , the frequency band of the second sub-resonance mode a2 and the frequency band of the second resonant mode b are successively continuous to form a wider operating frequency band, thus realizing the ultra-wideband of the antenna assembly 100 .
  • the antenna assembly 100 can support the frequency band of 6.25-6.75GHz.
  • the resonant frequency of the second resonant mode b is smaller than the resonant frequency of the first sub-resonance mode a1, and the frequency band of the second resonant mode b is the same as that of the first sub-resonance mode b.
  • the frequency band of the resonance mode a1 is continuous.
  • the resonance frequency of the second resonance mode b is close to the resonance frequency of the first sub-resonance mode a1.
  • the frequency band of the second resonant mode b, the frequency band of the first sub-resonance mode a1 and the frequency band of the second sub-resonance mode a2 are successively continuous to form a wider operating frequency band, thus realizing the ultra-wideband of the antenna assembly 100 .
  • the resonant frequency of the second resonant mode b is greater than the resonant frequency of the first sub-resonance mode a1 and smaller than the resonant frequency of the second sub-resonance mode a2,
  • the frequency band of the second resonance mode b is continuous with the frequency band of the first sub-resonance mode a1 and the frequency band of the second sub-resonance mode a2.
  • the frequency band of the first sub-resonance mode a1, the frequency band of the second resonant mode b, and the frequency band of the second sub-resonance mode a2 are successively continuous to form a wider operating frequency band, thus realizing the ultra-wideband of the antenna assembly 100 .
  • the bandwidth supported by the first resonance mode a and the second resonance mode b is greater than or equal to 500M.
  • the frequency bands supported by the first resonance mode a and the second resonance mode b cover 6.25 GHz to 6.75 GHz.
  • the orthographic projection area of the first coupling sheet 31 on the radiation patch 20 is the feeding position A.
  • the first coupling sheet 31 feeds the radio frequency signal into the radiation patch 20 via the feeding position A.
  • the present application does not specifically limit the positional relationship between the first coupling sheet 31 and the radiation patch 20 .
  • the positional relationship between the first coupling sheet 31 and the radiation patch 20 provided in the present application includes but is not limited to the following embodiments.
  • the length of the feeding position A to the edge of the radiation patch 20 along the first axis direction is greater or less than the length of the feeding position A to the edge of the radiation patch 20 along the second axis direction.
  • the first axis direction intersects or is perpendicular to the second axis direction.
  • the plane where the radiation patch 20 is located is the XOY plane, and the thickness direction of the substrate 10 is the Z-axis direction.
  • the first axis direction is the positive direction of the X axis
  • the second axis direction is the positive direction of the Y axis.
  • the radiation patch 20 is an axisymmetric figure that is symmetrical along the direction of the first axis and the direction of the second axis. In other words, both the first axis and the second axis are the axes of symmetry of the present application.
  • the first axis direction is perpendicular to the second axis direction.
  • the shape of the radiation patch 20 is a rectangle, an ellipse, or the like.
  • the length h1 of the feeding position A to the edge of the radiation patch 20 along the first axis direction is greater than or smaller than the length h2 of the feeding position A to the edge of the radiation patch 20 along the second axis direction, so that the feeding
  • the effective electrical length of the position A along the first axis is different from the effective electrical length of the feeding position A along the second axis, so that the radiating patch 20 forms different resonances along the first axis and the second axis , so that the radiation patch 20 generates the first sub-resonance mode a1 and the second sub-resonance mode a2.
  • the difference between the length h1 of the feeding position A to the edge of the radiation patch 20 along the first axis direction and the length h2 of the feeding position A to the edge of the radiation patch 20 along the second axis direction is less than or equal to 1 mm,
  • the resonance frequency of the first sub-resonance mode a1 and the resonance frequency of the second sub-resonance mode a2 close to each other, so that the frequency band of the first sub-resonance mode a1 and the frequency band of the second sub-resonance mode a2 are continuous;
  • the frequency band of a sub-resonance mode a1, the frequency band of the second resonant mode b, and the frequency band of the second sub-resonance mode a2 are continuous to form a wider bandwidth.
  • the length of the radiation patch 20 may be 12.2mm, but not limited to this size; the width may be 11.85mm, but not limited to this size.
  • the resonance frequency of the first sub-resonance mode a1 and the resonance frequency of the second sub-resonance mode a2 can be adjusted, so that the resonance frequency of the first sub-resonance mode a1 and the second sub-resonance mode a1 can be adjusted.
  • the resonant frequency of the resonant mode a2 is adjusted to the frequency band that needs to be supported.
  • the length and width of the radiation patch 20 so that the frequency band of the first sub-resonance mode a1 and the frequency band of the second sub-resonance mode a2 are continuous or the interval is reduced so that the frequency band of the first resonant mode a, the frequency band of the second sub-resonance mode a, the frequency band of the second sub-resonance mode The frequency band of the resonance mode b and the frequency band of the second sub-resonance mode a2 are continuous.
  • the radiation patch 20 is rectangular.
  • the radiation patch 20 has a diagonal line m, and the direction of the diagonal line m intersects both the first axis direction and the second axis direction.
  • the feeding position A is located on the diagonal m, and the distance between the feeding position A and the center position of the radiation patch 20 along the diagonal m direction is greater than the distance between the feeding position A and the edge of the radiating patch 20 along the diagonal m direction the distance.
  • the effective electrical length from the feeding position A along the first axis direction and the distance from the feeding position A can be as long as possible to realize the transmission and reception of the required frequency band, and the size of the radiation patch 20 can be reduced when the frequency band required for transmission and reception is achieved and a certain electrical length is satisfied;
  • the feeding position A close to the edge of the radiation patch 20 better matching of the impedance of the radiation patch 20 by the matching network 30 can be achieved.
  • the number of the radiation patches 20 and the matching network 30 may be multiple, and the multiple radiation patches 20 are all disposed on the top surface 101 of the substrate 10 .
  • Each matching network 30 is arranged corresponding to one radiation patch 20 .
  • the multiple matching networks 30 may be electrically connected to the same RF signal module 50 or electrically connected to different RF signal modules 50 .
  • the plurality of radiation patches 20 can be arranged linearly along the X-axis direction or the Y-axis direction or arrayed in the X-Y-axis direction, so that the antenna assembly 100 has better communication along the X-axis direction or the Y-axis direction. performance.
  • the arrangement direction of the plurality of radiation patches 20 may also be deviated from 0° to 90° with respect to the X axis.
  • the arrangement direction of the plurality of radiation patches 20 may also be deviated from the X-axis by 45°, so that the antenna assembly 100 has better communication performance along the X-axis direction or the Y-axis direction.
  • the length from the feeding position A to the edge of the radiation patch 20 along the first axis direction is equal to the length from the feeding position A to the edge of the radiation patch 20 along the second axis direction, so that the first A resonance mode a is a resonance mode, and the antenna assembly 100 has higher gain and better directivity in this resonance mode, so as to improve the communication performance of the antenna assembly 100 .
  • the equivalent circuit of the matching network 30 includes but is not limited to the following embodiments.
  • the first coupling sheet 31 and the radiation patch 20 form a first capacitor 61
  • the first capacitor 61 has a first coupling capacitance C1 .
  • the first capacitor 61 is used to excite the radiation patch 20 to generate the second resonance mode b.
  • the matching network 30 also includes at least one of capacitors, inductors, and the like.
  • components such as capacitors and inductors of the matching network 30 may be arranged in parallel or in series to form the matching network 30 .
  • the matching network 30 is used to perform impedance matching on the radiation patch 20, and the resonance frequency of the second resonance mode b can be adjusted by adjusting the connection mode of the capacitors, inductors and other components in the matching network 30.
  • the matching network 30 Setting the capacitor in the middle can make the resonant frequency point of the second resonant mode b shift toward the low frequency band; setting the inductor in the matching network 30 can make the resonant frequency point of the second resonant mode b shift toward the high frequency band, so that the second resonant mode b can be shifted toward the high frequency band.
  • the resonant frequency point of the resonant mode b is adjusted to realize that the frequency band of the first sub-resonance mode a1, the frequency band of the second sub-resonance mode a2 and the frequency band of the second resonant mode b are successively continuous, or the frequency band of the second resonant mode b, the frequency band of the second sub-resonance mode b,
  • the frequency band of a sub-resonance mode a1 and the frequency band of the second sub-resonance mode a2 are consecutive in sequence, or the frequency band of the first sub-resonance mode a1, the frequency band of the second resonant mode b, and the frequency band of the second sub-resonance mode a2 are consecutive in sequence, and then achieve ultra-wideband.
  • the matching network 30 further includes a first inductor 62 .
  • the first inductor 62 has a first inductance L1. One end of the first inductor 62 is electrically connected to the first coupling plate 31 of the first capacitor 61 , and the other end of the first inductor 62 is grounded. In this way, the first capacitor 61 is connected in parallel with the first inductor 62 .
  • the matching network 30 further includes a second capacitor 63 .
  • the second capacitor 63 has a second coupling capacitance C2. One end of the second capacitor 63 is electrically connected to the first coupling plate 31 of the first capacitor 61 , and the other end of the second capacitor 63 is electrically connected to the radio frequency signal module 50 . In this way, the first capacitor 61 and the second capacitor 63 are connected in series. The radio frequency signal of the radio frequency signal module 50 is fed into the radiation patch 20 through the second capacitor 63 and the first capacitor 61 .
  • the matching network 30 further includes a second inductor 64 .
  • the second inductor 64 has a second inductance L2. One end of the second inductor 64 is electrically connected to one end of the second capacitor 63 away from the first capacitor 61 , and the other end of the second inductor 64 is grounded. In this way, the second inductor 64 is provided in parallel with the second capacitor 63 .
  • the present application includes, but is not limited to, the equivalent circuit of the matching network 30 described above.
  • the present application can also set the first inductor 62 in series with the first capacitor 61, the first inductor 62 in series with the second inductor 64, the first capacitor 61 in parallel with the second capacitor 63, and so on.
  • the present application does not specifically limit the formation structure of the capacitor and the formation structure of the inductor.
  • the first capacitor 61 includes but is not limited to being formed by two parallel or approximately parallel conductive layers/conductive sheets/conductive plates, and the two conductive plates are the first coupling sheet 31 and the radiation patch 20 respectively.
  • the second capacitor 63 includes, but is not limited to, being formed by two parallel or approximately parallel conductive layers/conductive sheets/conductive plates.
  • the first inductor 62 includes, but is not limited to, being formed of at least one of conductive posts, conductive lines, conductive sheets, and the like.
  • the second inductor 64 includes, but is not limited to, being formed of at least one of conductive posts, conductive lines, conductive sheets, and the like.
  • the first capacitor 61 is formed by the first coupling sheet 31 and the radiation patch 20 .
  • the present application does not limit the shape and size of the first coupling sheet 31 and the distance between the first coupling sheet 31 and the radiation patch 20 .
  • the shape of the first coupling sheet 31 includes, but is not limited to, a circle, a rectangle, a square, a triangle, and the like.
  • the second capacitor 63 includes a second coupling plate 32 and a third coupling plate 33 disposed opposite to each other.
  • the second coupling sheet 32 is located between the third coupling sheet 33 and the radiation patch 20 .
  • the distance between the second coupling sheet 32 and the radiation patch 20 is greater than the distance between the first coupling sheet 31 and the radiation patch 20 , so as to reduce the influence of the second coupling sheet 32 on the radiation patch 20 .
  • the orthographic projection of the second coupling sheet 32 on the radiation patch 20 is spaced apart from the orthographic projection of the first coupling sheet 31 on the radiation patch 20 .
  • the second coupling sheet 32 and the first coupling sheet 31 are staggered in the XOY plane, so as to reduce the influence of the second coupling sheet 32 on the coupling effect between the first coupling sheet 31 and the radiation patch 20 .
  • the present application does not specifically limit the area and shape of the second coupling sheet 32 and the area and shape of the third coupling sheet 33 .
  • the present application does not specifically limit the distance between the second coupling sheet 32 and the third coupling sheet 33 .
  • the matching network 30 further includes a transmission line 34 .
  • the transmission line 34 is a conductive line.
  • the transmission line 34 is electrically connected between the first coupling sheet 31 and the second coupling sheet 32 to realize electrical signal transmission between the first coupling sheet 31 and the second coupling sheet 32 .
  • the first inductor 62 includes a first conductive line 35 and a first conductive column 36 .
  • One end of the first conductive wire 35 is electrically connected to the transmission wire 34 .
  • the other end of the first conductive wire 35 is electrically connected to one end of the first conductive column 36 .
  • the other end of the first conductive pillar 36 is grounded.
  • the second inductor 64 includes a second conductive line 37 and a second conductive column 38 .
  • One end of the second conductive wire 37 is electrically connected to the third coupling sheet 33 .
  • the other end of the second conductive wire 37 is electrically connected to one end of the second conductive column 38 .
  • the other end of the second conductive pillar 38 is grounded.
  • the matching network 30 includes a first coupling sheet 31, wherein the first coupling sheet 31 and the radiation patch 20 form a first capacitor 61 with a coupling capacitance, so that the radiation patch 20 generates a second resonance mode b, which matches the
  • the network 30 further includes a second capacitor 63 formed by the second coupling sheet 32 and the third coupling sheet 33 , a first inductor 62 formed by the first conductive line 35 and the first conductive column 36 , the second conductive line 37 and the second conductive
  • the first capacitor 61 and the second capacitor 63 are arranged to be staggered from each other, so that the first capacitor 61 and the second capacitor 63 do not affect each other, and the first capacitor 61 and the second capacitor 63 can be adjusted individually to adjust the parameters of the matching network 30; by adjusting the first coupling capacitance C1 of the first capacitor 61, the second coupling capacitance C2 of the second capacitor 63, and the first inductance L1 of the
  • the substrate 10 includes multiple dielectric layers.
  • the reference formation 40 is disposed opposite to the radiation patch 20 .
  • the matching network 30 is embedded in the substrate 10 and disposed between the radiation patch 20 and the reference ground layer 40 .
  • the substrate 10 includes a first dielectric layer 11 , a second dielectric layer 12 , a third dielectric layer 13 and a fourth dielectric layer 14 which are stacked in sequence.
  • the top surface 101 is the surface of the first dielectric layer 11 facing away from the second dielectric layer 12 .
  • the bottom surface 102 is the surface of the fourth dielectric layer 14 facing away from the third dielectric layer 13 .
  • Embodiments in which the matching network 30 is embedded in the substrate 10 include but are not limited to the following embodiments.
  • the radiation patch 20 is disposed on the surface of the first dielectric layer 11 away from the first dielectric layer 11 .
  • the first coupling sheet 31 is disposed on the surface of the second dielectric layer 12 away from the third dielectric layer 13 .
  • the radiation patch 20 and the first coupling sheet 31 are separated by the first dielectric layer 11 , and the first dielectric layer 11 is an insulating material.
  • the second coupling sheet 32 , the transmission line 34 and the first conductive line 35 are disposed on the surface of the third dielectric layer 13 facing the second dielectric layer 12 .
  • the antenna assembly 100 further includes a first conductive portion 41 and a second conductive portion 42 .
  • the first conductive portion 41 penetrates through the second dielectric layer 12 and is electrically connected between the first coupling sheet 31 and the transmission line 34 .
  • the third coupling sheet 33 and the second conductive wire 37 are disposed on the surface of the fourth dielectric layer 14 facing the third dielectric layer 13 .
  • One end of the first conductive column 36 is electrically connected to the first conductive wire 35 .
  • the other end penetrates through the third dielectric layer 13 and the fourth dielectric layer 14 and is electrically connected to the reference ground layer 40 .
  • One end of the second conductive column 38 is electrically connected to the second conductive wire 37 .
  • the other end penetrates through the fourth dielectric layer 14 and is electrically connected to the reference ground layer 40 .
  • the reference formation 40 includes through holes 43 .
  • One end of the second conductive portion 42 is electrically connected to the third coupling sheet 33 .
  • the other end of the second conductive portion 42 penetrates through the through hole 43 and is electrically connected to the radio frequency signal module 50 (refer to FIG. 5 in conjunction).
  • a reference ground layer 40 is formed on a surface of the fourth dielectric layer 14 , wherein the reference ground layer 40 has through holes 43 ; the second conductive pillars 38 and the second conductive pillars 38 are arranged to penetrate the fourth dielectric layer 14 .
  • the second conductive post 38 and the second conductive part 42 both include But not limited to metallized vias or metallized sidewalls; a third coupling sheet 33 and a second conductive line 37 are formed on the other surface of the fourth dielectric layer 14 , and the third coupling sheet 33 covers the second conductive portion 42 One end is electrically connected to the second conductive portion 42 , and the second conductive wire 37 is electrically connected to one end of the third coupling sheet 33 and the second conductive column 38 ; the third dielectric layer 13 is formed on the second coupling sheet 32 and the second conductive wire 37 , forming a first conductive pillar 36 penetrating the third dielectric layer 13 and the fourth dielectric layer 14 , and one end of the first conductive pillar 36 is electrically connected to the reference ground layer 40 ; a second conductive post 38 and the second conductive part 42 both include But not limited to metallized vias or metallized sidewalls; a third coupling sheet 33 and a second conductive line 37 are formed on the other surface of the fourth
  • the positions of the second coupling sheet 32 and the third coupling sheet 33 are opposite; the second dielectric layer 12 is formed on the second coupling sheet 32, the transmission line 34 and the first conductive wire 35, and the through
  • the first conductive portion 41 of the second dielectric layer 12 has one end electrically connected to one end of the transmission line 34 , and a first coupling sheet 31 is provided on the second dielectric layer 12 , and the first coupling sheet 31 covers the first conductive portion 41 .
  • the first dielectric layer 11 is formed, and the radiation patch 20 is formed on the first dielectric layer 11 .
  • the second coupling sheet 32 , the third coupling sheet 33 , and the radiation patch 20 are all metal conductive layers, such as metal copper, etc., and their formation methods include but are not limited to printing.
  • the first dielectric layer 11 , the second dielectric layer 12 , the third dielectric layer 13 and the fourth dielectric layer 14 are all made of insulating materials.
  • the matching network 30 is fused into the substrate 10 having the multi-layer dielectric layers to form multiple matching structures, which realizes the effective fusion of the matching network 30 and the multi-layer dielectric layers, and the matching network 30 has sufficient settings in the XOY plane. In this way, the thickness of the matching network 30 in the Z-axis direction is reduced, so that the antenna assembly 100 can be made lighter and thinner.
  • the sum of the thicknesses of the radiation patch 20 , the substrate 10 and the reference ground layer 40 along the Z-axis direction is less than or equal to 0.3-0.5 mm.
  • the sum of the thicknesses of the radiation patch 20 , the substrate 10 and the reference ground layer 40 along the Z-axis direction is 0.38 mm.
  • the coupling capacitance of the first capacitor 61 can be adjusted by adjusting the area of the first coupling sheet 31 , and the alignment of the second coupling sheet 32 with the third coupling sheet 33 can be adjusted area to adjust the coupling capacitance of the second capacitor 63 , the inductance of the first inductor 62 can be adjusted by adjusting the length and width of the first conductive line 35 , the second inductance can be adjusted by adjusting the length and width of the second conductive line 37
  • the inductance of the device 64 can be adjusted in the XOY plane, so as not to increase the thickness of the radiation patch 20, the substrate 10 and the reference ground layer 40 along the Z-axis direction.
  • Embedded in the multilayer substrate 10 can realize the adjustment of the resonant frequency of the second resonant mode b, so that the second resonant mode b is continuous with the first sub-resonance mode a1 and the second sub-resonance mode a2, so as to achieve super-high performance.
  • Broadband it is also possible to increase the area of the coupling sheet, the length and width of the first conductive wire 35, and the length and width of the second conductive wire 37 without increasing the thickness of the substrate 10, so that the antenna assembly 100 is ultra-thin. Therefore, the ultra-broadband can be realized, effectively solving the problem that the UWB antenna has strict requirements on the thickness of the UWB antenna due to the cramped internal space of the electronic device 1000. Under the strict antenna thickness requirements, it is difficult for the UWB antenna to maintain broadband characteristics.
  • the present application proposes to achieve the full bandwidth of 6.25GHz-6.75GHz that meets the UWB positioning requirements in the case of low thickness.
  • the bandwidth of the conventional UWB antenna is greatly broadened by using the multilayer matching structure.
  • the present application utilizes the first coupling sheet 31 to couple with the radiation patch 20 for feeding.
  • the first coupling capacitor C1 between the first coupling sheet 31 and the radiation patch 20 and the multi-layer matching structure can form an additional second resonance mode b.
  • the resonant frequency point as shown by the curve n2 in Figure 8.
  • FIG. 18 is a Smith chart of the antenna assembly corresponding to FIG. 8 .
  • the specific process of realizing broadband is shown in the Smith chart of 18: the S parameter of the antenna fed only by the first coupling capacitor C1 is located at the lower right (O1 position) of the Smith chart;
  • the equivalent inductance L1 formed by the first conductive column 36, the parallel equivalent inductance L1 can move the S-parameter curve to the upper right corner (O2 position) of the Smith chart; using the second coupling piece 32 and the third coupling piece
  • the second capacitive coupling C2 between 33 and the second capacitive coupling C2 in series can move the S-parameter curve to the lower left of the Smith chart (O3 position); at this time, the second conductive line 37 and the second conductive column 38 are used.
  • the formed equivalent inductance L2 can be moved in parallel with L2 to move the S-parameter curve to the vicinity of the center point of the Smith chart (O4 position) to form a good match, such as the reflection coefficient curve of the antenna assembly 100 in FIG. 8 .
  • Fig. 8 shows the reflection coefficient curve of the antenna assembly 100 of the multi-layer matching structure. It can be seen that the reflection coefficient is less than -6.5dB in 6.25-6.85 GHz, which can fully meet the needs of the antenna assembly 100 for broadband positioning.
  • FIG. 19 is a system efficiency curve of the antenna assembly corresponding to FIG. 8 .
  • the efficiency is about -10.1 to -2.9 dB
  • the average efficiency is about -10.1 to -2.9 dB.
  • -5.2dB the system efficiency in this application.
  • the resonance frequencies of the first sub-resonance mode a1 , the second sub-resonance mode a2 , and the second resonance mode a3 are 6.38 GHz, 6.54 GHz, and 6.72 GHz, respectively.
  • FIG. 20 is a far-field pattern of the antenna assembly corresponding to FIG. 8 at the resonance frequency of the first sub-resonance mode a1.
  • FIG. 21 is a far-field pattern of the antenna assembly corresponding to FIG. 8 at the resonance frequency point of the second sub-resonance mode a2.
  • FIG. 22 is a far-field pattern of the antenna assembly corresponding to FIG. 8 at the resonance frequency point of the second resonance mode b.
  • the far-field pattern results of the antenna assembly 100 at the resonance frequency point of the first sub-resonance mode a1, the resonance frequency point of the second sub-resonance mode a2, and the resonance frequency point of the second resonance mode a3 show that the antenna assembly 100 is in the first sub-resonance mode.
  • the directivity value of the resonant frequency point of the resonant mode a1 is 7.76dBi
  • the directivity value of the antenna assembly 100 at the resonant frequency point of the second sub-resonance mode a2 is 7.77dBi
  • the resonant frequency point of the antenna assembly 100 in the second resonant mode b The directivity value of 7.78dBi.
  • the above shows that the directivity of the antenna assembly 100 is very stable and the value is about 7.77dBi.
  • the radiation intensity of the antenna assembly 100 along the x-axis and the y-axis in the directional diagram is similar, and it also has a certain radiation intensity in the large-angle direction to meet the requirements of the antenna assembly. 100 requirements.
  • This solution utilizes the substrate 10 of the multi-layer dielectric layer as the matching structure of the antenna assembly 100 , which satisfies the broadband requirement of the antenna assembly 100 and avoids the use of an additional matching structure between the radio frequency signal module 50 and the radiation patch 20 .
  • some lumped elements, etc. can simplify the structure of the antenna assembly 100, promote the miniaturization and thinning of the antenna assembly 100, and reduce the power consumption by reducing the number of components.
  • the use of the multi-layer matching structure does not increase the thickness of the antenna assembly 100, which satisfies the stringent requirements for the thickness of the antenna assembly 100 of current mobile devices such as mobile phones.
  • the present application utilizes the current multi-layer dielectric substrate 10 process to form equivalent inductance and capacitance on the multi-layer dielectric substrate 10 by using conductive lines, conductive columns and coupling sheets to excite the resonant frequency of the second resonant mode b of the antenna assembly 100 Therefore, the bandwidth of the original antenna assembly 100 is expanded, and the problem that the antenna bandwidth is too narrow is effectively solved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请公开了一种天线组件及电子设备,天线组件包括基板、辐射贴片及匹配网络。辐射贴片设于基板。匹配网络的一端用于电连接射频信号模块。匹配网络的另一端设有第一耦合片。第一耦合片与辐射贴片形成电容耦合。第一耦合片用于将射频信号模块产生的射频信号馈入辐射贴片,以激励辐射贴片产生多个谐振模式。多个谐振模式中至少一个谐振模式由第一耦合片与辐射贴片的电容耦合作用产生。本申请提供的天线组件及电子设备能够提高通信质量。

Description

天线组件及电子设备 技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件及电子设备。
背景技术
随着通信技术的发展,具有通信功能的电子设备的普及度越来越高,且功能越来越强大。电子设备中通常包括天线以实现电子设备的通信功能。如何提高电子设备的通信质量,成为需要解决的技术问题。
发明内容
本申请提供了一种提高通信质量的天线组件及电子设备。
第一方面,本申请实施例提供了一种天线组件,包括:
基板;
辐射贴片,设于所述基板;及
匹配网络,所述匹配网络的一端用于电连接射频信号模块,所述匹配网络的另一端设有第一耦合片,所述第一耦合片与所述辐射贴片形成电容耦合,所述第一耦合片用于将所述射频信号模块产生的射频信号馈入所述辐射贴片,以激励所述辐射贴片产生多个谐振模式,所述多个谐振模式中至少一个谐振模式由所述第一耦合片与所述辐射贴片的电容耦合作用产生。
第二方面,本申请实施例提供了一种电子设备,包括所述的天线组件。
本申请实施例提供的一种天线组件,通过设置匹配网络的第一耦合片与辐射贴片之间形成电容耦合,进而激发辐射贴片产生多个谐振模式,其中,多个谐振模式中至少一个谐振模式由第一耦合片与辐射贴片耦合生成,如此,通过设置第一耦合片与辐射贴片之间形成电容耦合,可增加辐射贴片所产生的谐振模式,进而扩展天线组件的频段,实现天线组件的超宽带,进而提高电子设备的通信质量。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1提供的电子设备的结构分解示意图;
图3是图2中的第一种天线组件的结构示意图;
图4是图2中的第二种天线组件的结构示意图;
图5是图2中的第三种天线组件的结构示意图;
图6是图2中的第四种天线组件的结构示意图;
图7是本申请第一种实施方式提供的天线组件的反射系数曲线图;
图8是本申请第二种实施方式提供的天线组件的反射系数曲线图;
图9是本申请第三种实施方式提供的天线组件的反射系数曲线图;
图10是本申请第四种实施方式提供的天线组件的反射系数曲线图;
图11是图6提供的天线组件中的辐射贴片上的馈电位置的结构示意图;
图12是图6提供的天线组件的等效电路图;
图13是图6提供的天线组件在第一视角的局部结构示意图;
图14是图6提供的天线组件在第二视角的局部结构示意图;
图15是图6提供的天线组件在第三视角的局部结构示意图;
图16是图6提供的天线组件在第四视角的局部结构示意图;
图17是图6中的天线组件的立体示意图;
图18是图8对应的天线组件的史密斯圆图;
图19是图8对应的天线组件的系统效率图;
图20是图8对应的天线组件在第一子谐振模式的谐振频点6.38Ghz的远场方向图;
图21是图8对应的天线组件在第二子谐振模式的谐振频点6.54Ghz的远场方向图;
图22是图8对应的天线组件在第二谐振模式的谐振频点6.72Ghz的远场方向图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请所列举的实施例之间可以适当的相互结合。
请参照图1,图1为本申请实施例提供的一种电子设备1000的结构示意图。电子设备1000可以为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。以电子设备1000为手机为例,为了便于描述,以电子设备1000处于第一视角为参照进行定义,电子设备1000的宽度方向定义为X向,电子设备1000的长度方向定义为Y向,电子设备1000的厚度方向定义为Z向。箭头所指示的方向为正向。
请参照图2,电子设备1000包括显示屏300及与显示屏300相盖合的壳体500。壳体500包括相互盖合的中框501和后盖502。后盖502位于中框501背离显示屏300的一侧。中框501包括中板506及围接于中板506周侧的边框505。中板506上用于安装主板200、电池400等电子元件。显示屏300的边缘、边框505及后盖502依次连接。其中,边框505与后盖502可一体成型。当然,在其他实施方式中,电子设备1000还可以不包括显示屏300。
请参照图2,电子设备1000还包括天线组件100。天线组件100用于收发电磁波信号,以实现电子设备1000的通讯功能。
请参照图3及图4,天线组件100包括基板10、辐射贴片20、匹配网络30。
基板10也称为介质基板。可选的,该基板10可以为硬质基板,以具有较好的支撑强度;当然,该基板10也可以为柔性基板,以便于任意的弯折,适应异形的不规则空间及曲面空间,当基板10设于异形空间内时,可提高天线组件对于电子设备1000内的异形空间的利用率,进而促进电子设备1000内部的结构紧凑性,促进电子设备1000的小型化。
可选的,基板10可为单层或多层介质层形成。本申请对于多层介质层的材质不做具体的限定。可选的,基板10的材质包括但不限于为液晶高分子聚合物或聚酰亚胺或聚四氟乙烯或陶瓷等中的至少一者,还可以为损耗角正切较小的高分子材料、陶瓷和高分子的混合物。
请参阅图5,基板10包括相背设置的顶面101和底面102。当天线组件100设于电子设备1000内时,顶面101相对于底面102朝向电子设备1000外部。辐射贴片20设于基板10的顶面101。
进一步地,请参阅图5,天线组件100还包括参考地层40,参考地层40设于基板10的底面102。其中,辐射贴片20为导电材质。辐射贴片20为天线组件100收发电磁波信号的端口。本申请对于辐射贴片20的材质不做具体的限定,举例而言,辐射贴片20的材质包括但不限于金属、透明导电氧化物(例如氧化铟锡ITO)、碳纳米管、石墨烯、导电聚合物等等。本实施例中,辐射贴片20的材质为金属。
辐射贴片20可通过涂覆、电镀、原子沉积、丝网印刷、激光成型、化学气相沉积、物理气相沉积等工艺成型于基板10的顶面101。具体的,辐射贴片20可以为在基板10的顶 面101形成金属浆料并通过烘烤、烧结等工艺成型,还可以通过贴片形式粘贴或压合于基板10的顶面101。具体的,辐射贴片20的形状包括但不限于长方形、椭圆形、十字形、菱形等。辐射贴片20可以为实心贴片,也可以是内部具有空心的贴片,还可以为边缘具有空心的贴片。
参考地层40的材质为导电材质,进一步地,参考地层40的材质为金属材质。参考地层40形成于基板10的底面102的工艺可参考辐射贴片20在基板10顶面101的成型工艺。
可选的,匹配网络30嵌设于基板10内部。当然,在其他实施方式中,匹配网络30还可以位于基板10的外表面或基板10之外的区域。
在一实施方式中,请参阅图5,天线组件100还包括射频信号模块50。射频信号模块50位于参考地层40背离辐射贴片20的一侧。射频信号模块50用于产生射频信号。具体的,射频信号模块50可设于主板200上或设于壳体500内并电连接主板200(请参阅图2)。基板10设于壳体500内。本申请对于基板10在壳体500内的具体位置不做限定,包括但不限于贴合于壳体500的内表面、被支撑板支撑、设于主板200上等位置。当壳体500为曲面壳体时,壳体500的内表面具有曲面时,基板10可贴设于曲面以设于曲面空间内,进而充分利用电子设备1000内的曲面空间。
请参阅图6,匹配网络30的一端电连接射频信号模块50,匹配网络30的另一端靠近所辐射贴片20并与辐射贴片20形成电容耦合。具体的,匹配网络30的另一端设有第一耦合片31,第一耦合片31与辐射贴片20相对且形成第一电容器61。第一耦合片31和辐射贴片20分别形成第一电容器61的两端的电极片。第一耦合片31在基板10的厚度方向上与辐射贴片20平行或近似平行,且具有较小的间距。第一耦合片31与辐射贴片20之间形成第一耦合电容,第一耦合片31对辐射贴片20进行耦合馈电,以实现第一耦合片31与辐射贴片20之间的信号传输。
第一耦合片31用于将射频信号模块50产生的射频信号馈入辐射贴片20,以激励辐射贴片20产生多个谐振模式。多个谐振模式中至少一个谐振模式由第一耦合片31与辐射贴片20的电容耦合作用产生。换言之,匹配网络30的第一耦合片31即作为馈电端,还与辐射贴片20之间形成产生谐振模式的电容耦合。
本申请对于辐射贴片20产生的谐振模式的数量不做具体的限定。对于第一耦合片31与辐射贴片20的电容耦合所产生的谐振模式的数量不做具体的限定。当然,本申请仅仅是列举了一个耦合片(即第一耦合片31)与辐射贴片20之间形成电容耦合,在其他实施方式中,本申请可以为两个或多个耦合片与同一个辐射贴片20之间形成电容耦合。
可以理解的,天线组件100在谐振模式对应的频段具有较小的回波损耗,进而增加天线组件100的收发效率。当天线组件100的谐振模式增加时,天线组件100具有较高的收发效率的频段增加,换言之,天线组件100的工作频段或覆盖频段或支持频段增加,天线组件100的带宽也增加。
本申请实施例提供的一种天线组件100,通过设置匹配网络30的第一耦合片31与辐射贴片20之间形成电容耦合,进而激发辐射贴片20产生多个谐振模式,其中,多个谐振模式中至少一个谐振模式由第一耦合片31与辐射贴片20耦合生成,如此,通过设置第一耦合片31与辐射贴片20之间形成电容耦合,可增加辐射贴片20所产生的谐振模式,进而扩展天线组件100的频段,使天线组件100具有较宽的工作频带,实现天线组件100的超宽带,进而提高电子设备1000的通信质量。
本申请对于天线组件100的具体天线类型不做限定,换言之,天线组件100可以为4G移动通信天线、5G移动通信天线、WiFi天线、GPS天线、UWB(Ultra Wideband,超宽带)天线等。本申请以天线组件100为UWB天线为例进行说明,其他的天线可参考本实施例进行合理的结合。
在短距离定位技术中,UWB定位技术作为一项新兴的技术,具有较好的性能和较好的定位精度,适用于室内定位。在室内最常用的移动终端(即可随身携带的电子设备1000) 中集成UWB定位技术,这是非常好的一种选择。但是由于移动终端的内部空间比较局促(例如手机的小型化发展,对于手机的内部空间要求严格),对于UWB天线的厚度有着严格的要求(即要求极薄),在严苛的天线厚度要求下,UWB天线很难保持宽带特性。
本申请提供的天线组件100通过设置匹配网络30的第一耦合片31与辐射贴片20形成电容耦合,以增加谐振模式,可有效地解决UWB天线在极薄的情况下还能够保持超宽带,提高UWB天线在电子设备1000内的应用可靠性及通信性能。当然,当天线组件100为4G移动通信天线、5G移动通信天线、WiFi天线、GPS天线等其他天线性能时,可提高这些天线在电子设备1000内的应用可靠性及通信性能。
当天线组件100为UWB天线时,射频信号模块50包括UWB射频前端模块。UWB射频前端模块用于使辐射贴片20收发具有纳秒或纳秒级以下的极窄脉冲来传输数据。
本申请中,请参阅图7,辐射贴片20产生的多个谐振模式包括相邻的第一谐振模式a及第二谐振模式b,其中,第二谐振模式b由第一耦合片31与辐射贴片20的电容耦合作用产生,第一谐振模式a的频段与第二谐振模式b的频段连续。以反射系数S11为-10dB为参考点,第一谐振模式a对应的频段与第二谐振模式b对应的频段至少部分重合。其中,第一谐振模式a对应的频段为反射系数小于或等于-10dB的频段。第二谐振模式b对应的频段为反射系数小于或等于-10dB的频段。当然,在其他实施方式中还可以反射系数S11为-8dB、-9dB等为参考点。可选的,第一谐振模式a、第二谐振模式b的反射系数曲线皆为下凹的曲线。第一谐振模式a曲线和第二谐振模式b曲线的交接处为峰值点,该峰值点的反射系数小于-10dB。
举例而言,以反射系数为-10dB为参考点。第一谐振模式a对应的频段为6.25~6.63GHz,第二谐振模式b对应的频段为6.63GHz~6.75GHz,如此天线组件100在6.25~6.75GHz范围内的反射系数小于或等于-10dB,即天线组件100可支持6.25~6.75GHz频段。
可选的,第一谐振模式a可以为一个谐振模式,也可以为多个谐振模式的组合。
在一实施方式中,请参阅图8,图8中曲线n1为在辐射贴片20未设置匹配网络30的反射系数的曲线图,图8中的曲线n2为辐射贴片20设有匹配网络30的反射系数的曲线图。第一谐振模式a包括第一子谐振模式a1和第二子谐振模式a2。第二子谐振模式a2的谐振频点大于第一子谐振模式a1的谐振频点。第二子谐振模式a2与第一子谐振模式a1可以相邻或不相邻。当第一子谐振模式a1与第二子谐振模式a2相邻时,第二子谐振模式a2的频段与第一子谐振模式a1的频段可以连续或不连续。
经过曲线n1和曲线n2对比可知,本申请通过在辐射贴片20上设置匹配网络30,匹配网络30的第一耦合片与辐射贴片20耦合,不仅生产新的谐振模式,即第二谐振模式b,还使得原本的第一子谐振模式a1和第二子谐振模式a2的谐振频段的反射系数减小,进而实现原本的第一子谐振模式a1和第二子谐振模式a2的工作频段变宽,新增第二谐振模式b之后,使得第一子谐振模式a1、第二子谐振模式a2及第二谐振模式b形成的连续频段极大的扩宽。
当然,在其他实施方式中,第一谐振模式a还可以包括三个、四个等多个子谐振模式的组合。
本申请提供的第一子谐振模式a1、第二子谐振模式a2、第二谐振模式b的分布形式包括但不限于以下的几种实施方式。
在第一种谐振模式分布的实施方式中,请参阅图8,第一子谐振模式a1的频段与第二子谐振模式a2的频段连续,第二谐振模式b的谐振频点大于第二子谐振模式a2的谐振频点,且第二谐振模式b的频段与第二子谐振模式a2的频段连续。第二谐振模式b的谐振频点靠近第二子谐振模式a2的谐振频点。
本实施方式中,第一子谐振模式a1的频段、第二子谐振模式a2的频段及第二谐振模式b的频段依次连续,以形成较宽的工作频段,如此实现天线组件100的超宽带。
举例而言,以反射系数为-10dB为参考点。第一子谐振模式a1对应的频段为 6.25~6.44GHz,第二子谐振模式a2对应的频段为6.44GHz~6.63GHz,第二谐振模式b对应的频段为6.63GHz~6.75GHz,如此天线组件100在6.25~6.75GHz范围内的反射系数小于或等于-10dB,即天线组件100可支持6.25~6.75GHz频段。
在第二种谐振模式分布的实施方式中,请参阅图9,第二谐振模式b的谐振频点小于第一子谐振模式a1的谐振频点,且第二谐振模式b的频段与第一子谐振模式a1的频段连续。第二谐振模式b的谐振频点靠近第一子谐振模式a1的谐振频点。
本实施方式中,第二谐振模式b的频段、第一子谐振模式a1的频段及第二子谐振模式a2的频段依次连续,以形成较宽的工作频段,如此实现天线组件100的超宽带。
在第三种谐振模式分布的实施方式中,请参阅图10,第二谐振模式b的谐振频点大于第一子谐振模式a1的谐振频点且小于第二子谐振模式a2的谐振频点,第二谐振模式b的频段与第一子谐振模式a1的频段、第二子谐振模式a2的频段皆连续。
本实施方式中,第一子谐振模式a1的频段、第二谐振模式b的频段及第二子谐振模式a2的频段依次连续,以形成较宽的工作频段,如此实现天线组件100的超宽带。
可选的,第一谐振模式a及第二谐振模式b所支持的带宽大于或等于500M。
本实施例中,第一谐振模式a及第二谐振模式b所支持的频段覆盖6.25GHz~6.75GHz。
请参阅图11,第一耦合片31在辐射贴片20的正投影区域为馈电位置A。第一耦合片31经馈电位置A将射频信号馈入辐射贴片20。本申请对于第一耦合片31与辐射贴片20之间的位置关系不做具体的限定。本申请提供的第一耦合片31与辐射贴片20之间的位置关系包括但不限于以下的实施方式。
在一实施方式中,馈电位置A沿第一轴线方向至辐射贴片20的边缘的长度大于或小于馈电位置A沿第二轴线方向至辐射贴片20的边缘的长度。第一轴线方向与第二轴线方向相交或垂直。
本实施例中,辐射贴片20所在的平面为XOY平面,基板10的厚度方向为Z轴方向。第一轴线方向为X轴正方向,第二轴线方向为Y轴正方向。可选的,辐射贴片20为沿第一轴线方向对称和第二轴线方向对称的轴对称图形。换言之,第一轴线和第二轴线皆为本申请的对称轴。本实施例中,第一轴线方向与第二轴线方向垂直。具体的,辐射贴片20的形状为长方形、椭圆形等。
本申请通过设置馈电位置A沿第一轴线方向至辐射贴片20的边缘的长度h1大于或小于馈电位置A沿第二轴线方向至辐射贴片20的边缘的长度h2,以使馈电位置A沿第一轴线方向的有效电长度与馈电位置A沿第二轴线方向的有效电长度不同,如此以使辐射贴片20在沿第一轴线方向和第二轴线方向上形成不同的谐振,如此,以使辐射贴片20产生第一子谐振模式a1和第二子谐振模式a2。
可以理解的,馈电位置A沿第一轴线方向至辐射贴片20的边缘的长度h1与馈电位置A沿第二轴线方向至辐射贴片20的边缘的长度h2之差小于或等于1mm,以使第一子谐振模式a1的谐振频点和第二子谐振模式a2的谐振频点相互靠近,进而实现第一子谐振模式a1的频段与第二子谐振模式a2的频段连续;或者使第一子谐振模式a1的频段、第二谐振模式b的频段及第二子谐振模式a2的频段连续,以形成较宽的带宽。
举例而言,辐射贴片20的长度可以为12.2mm,但不限于此尺寸;宽度可以为11.85mm,但不限于此尺寸。通过调节辐射贴片20的长度和宽度可以调节第一子谐振模式a1的谐振频点和第二子谐振模式a2的谐振频点,以使第一子谐振模式a1的谐振频点和第二子谐振模式a2的谐振频点调节至所需要支持的频段内。还可以通过调节辐射贴片20的长度和宽度,以使第一子谐振模式a1的频段和第二子谐振模式a2的频段连续或间隔减小的间距使第一谐振模式a的频段、第二谐振模式b的频段和第二子谐振模式a2的频段连续。
可选的,请参阅图11,辐射贴片20呈矩形。辐射贴片20具有对角线m,对角线m方向与第一轴线方向、第二轴线方向皆相交。馈电位置A位于对角线m上,且馈电位置A沿对角线m方向与辐射贴片20的中心位置的距离大于馈电位置A沿对角线m方向与辐射 贴片20的边缘的距离。通过设置馈电位置A靠近于辐射贴片20的边缘,一方面,在辐射贴片20的尺寸一定的情况下,从馈电位置A沿第一轴线方向的有效电长度和从馈电位置A沿第而轴线方向的有效电长度能够尽可能的长,以实现所需频段的收发,在实现收发所需的频段、满足一定的电长度的情况下可以减小辐射贴片20的尺寸;另一方面,通过设置馈电位置A靠近于辐射贴片20的边缘,可以实现匹配网络30对辐射贴片20的阻抗的更好的匹配。
本实施例中,辐射贴片20、匹配网络30的数量可以为多个,多个辐射贴片20皆设于基板10的顶面101。每个匹配网络30与一个辐射贴片20对应设置。多个匹配网络30可电连接同一个射频信号模块50或电连接不同的射频信号模块50。可选的,多个辐射贴片20可沿X轴方向线性排列或Y轴方向线性排列或X-Y轴方向阵列排布,以使天线组件100在沿X轴方向或Y轴方向具有较好的通信性能。多个辐射贴片20的排列方向还可以相对于X轴偏离0~90°之间。例如,多个辐射贴片20的排列方向还可以相对于X轴偏离45°,以使天线组件100在沿X轴方向或Y轴方向具有较好的通信性能。
在另一实施方式中,馈电位置A沿第一轴线方向至辐射贴片20的边缘的长度等于馈电位置A沿第二轴线方向至辐射贴片20的边缘的长度,如此,以使第一谐振模式a为一个谐振模式,天线组件100在该谐振模式下具有较高的增益和较好的方向性,以提高天线组件100的通信性能。
本申请对于匹配网络30的等效电路不做具体的限定。本申请提供的匹配网络30的等效电路包括但不限于以下的实施方式。
本实施例中,请参阅图12,第一耦合片31与辐射贴片20形成第一电容器61,第一电容器61具有第一耦合电容C1。该第一电容器61用于激发辐射贴片20产生第二谐振模式b。匹配网络30还包括电容、电感等器件中的至少一者。可选的,匹配网络30的电容、电感等器件可并联或串联设置,以形成匹配网络30。该匹配网络30用于对辐射贴片20进行阻抗匹配,通过调节匹配网络30中电容、电感等器件的连接方式可对第二谐振模式b的谐振频点进行调节,举例而言,匹配网络30中设置电容器可使第二谐振模式b的谐振频点朝向低频段偏移;匹配网络30中设置电感器可使第二谐振模式b的谐振频点朝向高频段偏移,如此,实现对于第二谐振模式b的谐振频点调节,以实现第一子谐振模式a1的频段、第二子谐振模式a2的频段及第二谐振模式b的频段依次连续,或者,第二谐振模式b的频段、第一子谐振模式a1的频段及第二子谐振模式a2的频段依次连续,或者,第一子谐振模式a1的频段、第二谐振模式b的频段及第二子谐振模式a2的频段依次连续,进而实现超宽带。
本实施例中,请参阅图12,匹配网络30还包括第一电感器62。第一电感器62具有第一电感L1。第一电感器62的一端电连接第一电容器61的第一耦合片31,第一电感器62的另一端接地。如此,以使第一电容器61与第一电感器62并联。
进一步地,请参阅图12,匹配网络30还包括第二电容器63。第二电容器63具有第二耦合电容C2。第二电容器63的一端电连接第一电容器61的第一耦合片31,第二电容器63的另一端电连接射频信号模块50。如此,以使第一电容器61与第二电容器63串联。射频信号模块50的射频信号经第二电容器63、第一电容器61馈入辐射贴片20。
请参阅图12,匹配网络30还包括第二电感器64。第二电感器64具有第二电感L2。第二电感器64的一端电连接第二电容器63远离第一电容器61的一端,第二电感器64的另一端接地。如此,在第二电容器63上并联设置第二电感器64。
当然,本申请包括但不限于上述的匹配网络30的等效电路。本申请还可以设置第一电感器62与第一电容器61的串联、第一电感器62与第二电感器64的串联、第一电容器61与第二电容器63并联等等。
本申请对于电容器的形成结构、电感器的形成结构不做具体的限定。
可以理解的,第一电容器61包括但不限于由两个平行或近似平行的导电层/导电片/导电板形成,这两个导电板分别为第一耦合片31及辐射贴片20。第二电容器63包括但不限 于由两个平行或近似平行的导电层/导电片/导电板形成。第一电感器62包括但不限于由导电柱、导电线、导电片中的至少一者等形成。第二电感器64包括但不限于由导电柱、导电线、导电片中的至少一者等形成。
本申请第一电容器61、第二电容器63、第一电感器62及第二电感器64的具体结构包括但不限于以下的实施方式。
在一实施方式中,第一电容器61由第一耦合片31及辐射贴片20形成。本申请对于第一耦合片31的形状、尺寸及第一耦合片31与辐射贴片20之间的间距不做限定。换言之,第一耦合片31的形状包括但不限于为圆形、长方形、正方形、三角形等。通过调节第一耦合片31的面积、第一耦合片31与辐射贴片20之间的间距可以调节第一电容器61的第一耦合电容量C1,以调节第二谐振模式b的谐振频点的位置。
请参阅图13及图14,第二电容器63包括相对设置的第二耦合片32和第三耦合片33。第二耦合片32位于第三耦合片33和辐射贴片20之间。第二耦合片32与辐射贴片20之间的距离大于第一耦合片31与辐射贴片20之间的距离,以减少第二耦合片32对于辐射贴片20的影响。
请参阅图15,第二耦合片32在辐射贴片20上的正投影与第一耦合片31在辐射贴片20上的正投影相间隔。换言之,第二耦合片32与第一耦合片31在XOY平面内错开设置,如此,以减小第二耦合片32对第一耦合片31与辐射贴片20之间的耦合作用的影响。
相应地,本申请对于第二耦合片32的面积、形状及第三耦合片33的面积、形状皆不做具体的限定。本申请对于第二耦合片32与第三耦合片33之间的距离不做具体的限定。通过调节第二耦合片32与第三耦合片33的正对面积、第二耦合片32与第三耦合片33之间的距离可以调节第二电容器63的电容量,进而调节匹配网络30对于辐射贴片20的阻抗匹配,调节第二谐振模式b的谐振频点的位置。
请参阅图13及图16,匹配网络30还包括传输线34。传输线34为导电线。传输线34电连接于第一耦合片31和第二耦合片32之间,以实现第一耦合片31与第二耦合片32之间的电信号传输。
请参阅图13及图16,第一电感器62包括第一导电线35及第一导电柱36。第一导电线35的一端电连接传输线34。第一导电线35的另一端电连接第一导电柱36的一端。第一导电柱36的另一端接地。通过调节第一导电线35的长度和宽度,可以调节第一电感器62的电感值,以实现匹配网络30对辐射贴片20的阻抗匹配。
请参阅图13及图16,第二电感器64包括第二导电线37及第二导电柱38。第二导电线37的一端电连接第三耦合片33。第二导电线37的另一端电连接第二导电柱38的一端。第二导电柱38的另一端接地。通过调节第二导电线37的长度和宽度,可以调节第二电感器64的电感值,以实现匹配网络30对辐射贴片20的阻抗匹配。
本申请提供的匹配网络30包括第一耦合片31,其中,第一耦合片31与辐射贴片20形成具有耦合电容的第一电容器61,以使辐射贴片20产生第二谐振模式b,匹配网络30还包括第二耦合片32及第三耦合片33形成的第二电容器63、第一导电线35和第一导电柱36形成的第一电感器62、第二导电线37与第二导电柱38形成的第二电感器64,通过设置第一电容器61与第二电容器63相互错开,以使第一电容器61与第二电容器63之间互不影响,且第一电容器61与第二电容器63可单独调节,以调节匹配网络30的参数;通过调节第一电容器61的第一耦合电容量C1、第二电容器63的第二耦合电容量C2、第一电感器62的第一电感量L1、第二电感器64的第二电感量L2可以有效地调节匹配网络30的参数,以调节第二谐振模式b的谐振频点,以使第二谐振模式b与第一子谐振模式a1、第二子谐振模式a2连续,并形成超宽带。
本申请中,基板10包括多层介质层。参考地层40与辐射贴片20相对设置。匹配网络30嵌设于基板10中,并设于辐射贴片20与参考地层40之间。
在一实施方式中,请参阅图17,基板10包括依次层叠设置的第一介质层11、第二介 质层12、第三介质层13及第四介质层14。其中,顶面101为第一介质层11背离第二介质层12的表面。底面102为第四介质层14背离第三介质层13的表面。匹配网络30嵌设于基板10中的实施方式包括但不限于以下的实施方式。
可选的,一并参阅图14及图17,辐射贴片20设于第一介质层11背离第一介质层11的表面。第一耦合片31设于第二介质层12背离第三介质层13的表面。换言之,辐射贴片20与第一耦合片31之间由第一介质层11间隔,第一介质层11为绝缘材质。
第二耦合片32、传输线34及第一导电线35设于第三介质层13朝向第二介质层12的表面。天线组件100还包括第一导电部41和第二导电部42。第一导电部41贯穿第二介质层12并电连接于第一耦合片31与传输线34之间。
第三耦合片33、第二导电线37设于第四介质层14朝向第三介质层13的表面。
第一导电柱36的一端电连接第一导电线35。另一端贯穿第三介质层13及第四介质层14并电连接参考地层40。
第二导电柱38的一端电连接第二导电线37。另一端贯穿第四介质层14并电连接参考地层40。
参考地层40包括通孔43。第二导电部42的一端电连接第三耦合片33。第二导电部42的另一端贯穿通孔43并电连接射频信号模块50(结合参考图5)。
在制作天线组件100的过程中,在第四介质层14的一表面形成参考地层40,其中,参考地层40具有通孔43;设置贯穿第四介质层14的第二导电柱38及第二导电部42,其中,第一导电柱36的一端电连接参考地层40,第二导电部42的一端贯穿通孔43并电连接射频信号模块50;第二导电柱38、第二导电部42皆包括但不限于为金属化过孔或金属化侧壁;在第四介质层14的另一表面上形成第三耦合片33及第二导电线37,第三耦合片33覆盖第二导电部42的一端并电连接第二导电部42,第二导电线37电连接第三耦合片33和第二导电柱38的一端;在第二耦合片32及第二导电线37上形成第三介质层13,形成贯穿第三介质层13及第四介质层14的第一导电柱36,第一导电柱36的一端电连接参考地层40;在第三介质层13上形成第二耦合片32、传输线34及第一导电线35,第一导电线35的一端电连接第一导电柱36的另一端,第二导电线37的另一端电连接传输线34的中部,传输线34的一端电连接第二耦合片32,第二耦合片32与第三耦合片33的位置相对;在第二耦合片32、传输线34及第一导电线35上形成第二介质层12,在第二介质层12上形成贯穿第二介质层12的第一导电部41,第一导电部41的一端电连接传输线34的一端,在第二介质层12上设置第一耦合片31,第一耦合片31覆盖第一导电部41的另一端;在第一耦合片31上形成第一介质层11,在第一介质层11上形成辐射贴片20。
可选的,参考地层40、第一导电部41、第二导电部42、第一导电柱36、第一导电线35、第二导电柱38、第二导电线37、第一耦合片31、第二耦合片32、第三耦合片33、辐射贴片20皆为金属导电层,例如金属铜等,其形成方式包括但不限于印刷等。第一介质层11、第二介质层12、第三介质层13及第四介质层14皆为绝缘材质。
本申请将匹配网络30融合于具有多层介质层的基板10中,以形成多个匹配结构,实现了匹配网络30与多层介质层的有效融合,匹配网络30在XOY平面内具有足够的设置空间,如此减小了匹配网络30在Z轴方向上的厚度,实现天线组件100的轻薄化。
可选的,辐射贴片20、基板10及参考地层40沿Z轴方向上的厚度之和小于或等于0.3~0.5mm。例如,辐射贴片20、基板10及参考地层40沿Z轴方向上的厚度之和为0.38mm。通过将匹配网络30设于多层介质中,以使天线组件100的厚度较小,同时还能够支撑较宽的带宽。
通过将匹配网络30嵌设于多层基板10内,通过调节第一耦合片31的面积可调节第一电容器61的耦合电容量,通过调节第二耦合片32与第三耦合片33的正对面积以调节第二电容器63的耦合电容量,通过调节第一导电线35的长度和宽度可以调节第一电感器62的电感量,通过调节第二导电线37的长度和宽度可以调节第二电感器64的电感量,上述的 调节可皆在XOY平面内进行调节,从而不会增加辐射贴片20、基板10及参考地层40沿Z轴方向上的厚度,换言之,本申请通过将匹配网络30嵌设于多层基板10内,既可以实现对于第二谐振模式b的谐振频点的调节,以使第二谐振模式b与第一子谐振模式a1、第二子谐振模式a2连续,实现超宽带,还可以实现在需要增加耦合片的面积、第一导电线35的长宽、第二导电线37的长宽的同时还不会增加基板10的厚度,如此在天线组件100超薄的情况下,实现超宽带,有效地解决由于电子设备1000的内部空间比较局促,对于UWB天线的厚度有着严格的要求,在严苛的天线厚度要求下,UWB天线很难保持宽带特性的问题。
在目前的电子设备1000应用UWB定位系统中,对于UWB天线的厚度有极高要求,本申请提出在低厚度情况下,实现满足UWB定位的完整带宽6.25GHz~6.75GHz需求。本申请在多层介质基板10上,利用多层匹配结构将传统的UWB天线带宽进行极大地展宽。
本申请利用第一耦合片31与辐射贴片20耦合馈电,第一耦合片31与辐射贴片20之间的第一耦合电容C1与多层匹配结构可以形成额外的第二谐振模式b的谐振频点,如图8中的曲线n2所示。
请参阅图18,图18是图8对应的天线组件的史密斯(smith)圆图。具体实现宽带的过程见图18的史密斯(smith)圆图:仅利用第一耦合电容C1馈电的天线S参数位于史密斯(smith)圆图右下方(O1位置);利用第一导电线35和第一导电柱36形成的等效电感L1,并联等效电感L1可以将该S参数曲线移动至史密斯(smith)圆图的右上角(O2位置);利用第二耦合片32和第三耦合片33之间的第二电容耦合C2,串联第二电容耦合C2可以将S参数曲线移动至史密斯(smith)圆图左下方(O3位置);此时利用第二导电线37和第二导电柱38形成的等效电感L2,并联L2即可将S参数曲线移动到史密斯(smith)圆图中心点附近(O4位置)从而形成良好的匹配,例如图8中天线组件100的反射系数曲线。图8中给出了该多层匹配结构的天线组件100的反射系数曲线,可见在6.25~6.85GHz内反射系数小于-6.5dB,完全能满足天线组件100在宽带定位的需求。
请参阅图19,图19是图8对应的天线组件的系统效率曲线。在UWB定位系统中,对于天线组件100效率也有较高的要求,图19中给出了该天线组件100的系统效率,在6.25~6.75GHz内,效率约为-10.1~-2.9dB,平均效率约-5.2dB。一般而言,当系统效率为-7dB左右时,该天线组件100有较好的辐射性能,而且系统效率的绝对值小于7时,辐射性能更佳。故本申请中的系统效率为-5.2dB,说明该系统效率说明该天线组件100有较好的辐射性能。
请参阅图8,第一子谐振模式a1、第二子谐振模式a2、第二谐振模式a3的谐振频点分别为6.38GHz、6.54GHz、6.72GHz。
请参阅图20,图20是图8对应的天线组件在第一子谐振模式a1的谐振频点的远场方向图。请参阅图21,图21是图8对应的天线组件在第二子谐振模式a2的谐振频点的远场方向图。请参阅图22,图22是图8对应的天线组件在第二谐振模式b的谐振频点的远场方向图。
天线组件100在第一子谐振模式a1的谐振频点、第二子谐振模式a2的谐振频点、第二谐振模式a3的谐振频点的远场方向图结果表明,天线组件100在第一子谐振模式a1的谐振频点的方向性数值为7.76dBi,天线组件100在第二子谐振模式a2的谐振频点的方向性数值为7.77dBi,天线组件100在第二谐振模式b的谐振频点的方向性数值为7.78dBi。上述表明天线组件100的方向性非常稳定数值都在7.77dBi左右,天线组件100沿方向图中的x轴和y轴辐射强度相近,且在大角度方向上也有一定的辐射强度,以满足天线组件100的要求。
本方案利用多层介质层的基板10,用以作为天线组件100的匹配结构,满足了该天线组件100的宽带需求,避免在射频信号模块50和辐射贴片20之间使用额外的匹配结构,例如一些集总元件等,可精简天线组件100的结构,促进天线组件100的小型化及轻薄化, 通过减少器件数量可以减少功耗。与此同时,多层匹配结构使用并没有增加天线组件100的厚度,满足了目前手机等移动设备对天线组件100厚度的苛刻需求。
本申请利用目前多层介质基板10工艺,在多层介质基板10上利用导电线、导电柱和耦合片形成等效的电感和电容,激发了该天线组件100的第二谐振模式b的谐振频点,从而扩展了原始天线组件100带宽,有效解决了天线带宽过窄的问题。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,其特征在于,包括:
    基板;
    辐射贴片,设于所述基板;及
    匹配网络,所述匹配网络的一端用于电连接射频信号模块,所述匹配网络的另一端设有第一耦合片,所述第一耦合片与所述辐射贴片形成电容耦合,所述第一耦合片用于将所述射频信号模块产生的射频信号馈入所述辐射贴片,以激励所述辐射贴片产生多个谐振模式,所述多个谐振模式中至少一个谐振模式由所述第一耦合片与所述辐射贴片的电容耦合作用产生。
  2. 如权利要求1所述的天线组件,其特征在于,所述多个谐振模式包括相邻的第一谐振模式及第二谐振模式,所述第二谐振模式由所述第一耦合片与所述辐射贴片的电容耦合作用产生,所述第一谐振模式的频段与所述第二谐振模式的频段连续。
  3. 如权利要求2所述的天线组件,其特征在于,所述第一谐振模式包括第一子谐振模式和第二子谐振模式,所述第二子谐振模式的谐振频点大于所述第一子谐振模式的谐振频点;
    所述第一子谐振模式的频段、所述第二子谐振模式的频段与所述第二谐振模式的频段依次连续;或者,所述第二谐振模式的频段、所述第一子谐振模式的频段与所述第二子谐振模式的频段依次连续;或者,所述第一子谐振模式的频段、所述第二谐振模式的频段与所述第二子谐振模式的频段与依次连续。
  4. 如权利要求2所述的天线组件,其特征在于,所述第一谐振模式及所述第二谐振模式所支持的带宽大于或等于500M。
  5. 如权利要求2所述的天线组件,其特征在于,所述第一谐振模式及所述第二谐振模式所支持的频段覆盖6.25GHz~6.75GHz。
  6. 如权利要求1~5任意一项所述的天线组件,其特征在于,所述第一耦合片在所述辐射贴片的正投影区域为馈电位置,所述馈电位置沿第一轴线方向至所述辐射贴片的边缘的长度大于或小于所述馈电位置沿第二轴线方向至所述辐射贴片的边缘的长度,所述第一轴线方向与所述第二轴线方向相交或垂直。
  7. 如权利要求6所述的天线组件,其特征在于,所述馈电位置沿所述第一轴线方向至所述辐射贴片的边缘的长度与所述馈电位置沿所述第二轴线方向至所述辐射贴片的边缘的长度之差小于或等于1mm。
  8. 如权利要求6所述的天线组件,其特征在于,所述辐射贴片具有对角线,所述对角线方向与所述第一轴线方向、所述第二轴线方向皆相交;所述馈电位置位于所述对角线上,且所述馈电位置沿所述对角线方向与所述辐射贴片的中心位置的距离大于所述馈电位置沿所述对角线方向与所述辐射贴片的边缘的距离。
  9. 如权利要求1~5任意一项所述的天线组件,其特征在于,所述第一耦合片与所述辐射贴片之间电容耦合以形成第一电容器,所述匹配网络还包括第一电感器,所述第一电感器的一端电连接所述第一电容器的第一耦合片,所述第一电感器的另一端接地。
  10. 如权利要求9所述的天线组件,其特征在于,所述匹配网络还包括第二电容器,所述第二电容器的一端电连接所述第一耦合片,所述第二电容器的另一端电连接所述射频信号模块。
  11. 如权利要求9所述的天线组件,其特征在于,所述匹配网络还包括第二电感器,所述第二电感器的一端电连接所述第二电容器的另一端,所述第二电感器的另一端接地。
  12. 如权利要求11所述的天线组件,其特征在于,所述第二电容器包括相对设置的第二耦合片和第三耦合片,所述第二耦合片位于所述第三耦合片和所述辐射贴片之间,所述第二耦合片在所述辐射贴片上的正投影与所述第一耦合片在所述辐射贴片上的正投影相间隔;所述匹配网络还包括传输线,所述传输线电连接于所述第一耦合片和所述第二耦合片 之间。
  13. 如权利要求12所述的天线组件,其特征在于,所述第二耦合片与所述辐射贴片之间的距离大于所述第一耦合片与所述辐射贴片之间的距离。
  14. 如权利要求12所述的天线组件,其特征在于,所述第一电感器包括第一导电线及第一导电柱,所述第一导电线的一端电连接所述传输线,所述第一导电线的另一端电连接所述第一导电柱的一端,所述第一导电柱的另一端接地。
  15. 如权利要求14所述的天线组件,其特征在于,所述第二电感器包括第二导电线及第二导电柱,所述第二导电线的一端电连接所述第三耦合片,所述第二导电线的另一端电连接所述第二导电柱的一端,所述第二导电柱的另一端接地。
  16. 如权利要求15所述的天线组件,其特征在于,所述天线组件还包括参考地层;所述基板包括相背设置的顶面和底面,所述辐射贴片设于所述顶面,所述参考地层设于所述底面,所述参考地层与所述辐射贴片相对设置,所述匹配网络嵌设于所述基板中,并设于所述辐射贴片与所述参考地层之间。
  17. 如权利要求16所述的天线组件,其特征在于,所述基板包括依次层叠设置的第一介质层、第二介质层、第三介质层及第四介质层,所述顶面为所述第一介质层背离所述第二介质层的表面,所述底面为所述第四介质层背离所述第三介质层的表面;
    所述第一耦合片设于所述第二介质层;
    所述第二耦合片、所述传输线及所述第一导电线设于所述第三介质层;所述天线组件还包括第一导电部和第二导电部,所述第一导电部贯穿所述第二介质层并电连接于所述第一耦合片与所述传输线之间;
    所述第三耦合片、所述第二导电线设于所述第四介质层;
    所述第一导电柱的一端电连接所述第一导电线,另一端贯穿所述第三介质层及所述第四介质层并电连接所述参考地层;
    所述第二导电柱的一端电连接所述第二导电线,另一端贯穿所述第四介质层并电连接所述参考地层;
    所述参考地层包括通孔,第二导电部的一端电连接所述第三耦合片,所述第二导电部的另一端贯穿所述通孔并电连接所述射频信号模块。
  18. 如权利要求16所述的天线组件,其特征在于,所述辐射贴片、所述基板及所述参考地层的厚度之和小于或等于0.3~0.5mm。
  19. 如权利要求1~5任意一项所述的天线组件,其特征在于,所述天线组件还包括射频信号模块,所述射频信号模块设于所述基板远离所述辐射贴片的一侧,所述射频信号模块包括UWB射频前端模块。
  20. 一种电子设备,其特征在于,包括如权利要求1~19任意一项所述的天线组件。
PCT/CN2021/130363 2021-01-07 2021-11-12 天线组件及电子设备 WO2022148130A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21917171.7A EP4266495A4 (en) 2021-01-07 2021-11-12 ANTENNA AND ELECTRONIC DEVICE ASSEMBLY
US18/346,432 US20230344133A1 (en) 2021-01-07 2023-07-03 Antenna assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110021880.0 2021-01-07
CN202110021880.0A CN112821050B (zh) 2021-01-07 2021-01-07 天线组件及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/346,432 Continuation US20230344133A1 (en) 2021-01-07 2023-07-03 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022148130A1 true WO2022148130A1 (zh) 2022-07-14

Family

ID=75868630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130363 WO2022148130A1 (zh) 2021-01-07 2021-11-12 天线组件及电子设备

Country Status (4)

Country Link
US (1) US20230344133A1 (zh)
EP (1) EP4266495A4 (zh)
CN (1) CN112821050B (zh)
WO (1) WO2022148130A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821050B (zh) * 2021-01-07 2023-04-25 Oppo广东移动通信有限公司 天线组件及电子设备
CN116093592A (zh) * 2021-11-05 2023-05-09 华为终端有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203225342U (zh) * 2013-01-21 2013-10-02 咏业科技股份有限公司 耦合馈入式微带天线
CN105305046A (zh) * 2015-10-23 2016-02-03 福州大学 电磁耦合馈电北斗一代卫星导航收发天线
CN110247175A (zh) * 2019-06-06 2019-09-17 华南理工大学 一种基于发卡型谐振器的滤波双工天线
WO2020145392A1 (ja) * 2019-01-10 2020-07-16 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
CN112821050A (zh) * 2021-01-07 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825517A1 (fr) * 2001-06-01 2002-12-06 Socapex Amphenol Antenne a plaque
WO2012093541A1 (ja) * 2011-01-05 2012-07-12 株式会社村田製作所 無線通信デバイス
WO2019189050A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
US11095017B2 (en) * 2018-07-13 2021-08-17 Apple Inc. Electronic device having angle of arrival detection capabilities
CN114824836A (zh) * 2019-02-27 2022-07-29 华为技术有限公司 共体天线及电子设备
CN111799545B (zh) * 2019-04-08 2022-01-14 Oppo广东移动通信有限公司 天线模组及电子设备
TWI714410B (zh) * 2019-12-27 2020-12-21 和碩聯合科技股份有限公司 天線結構及單一雙極化天線陣列
CN111276800B (zh) * 2020-02-04 2021-10-22 Oppo广东移动通信有限公司 双频毫米波天线模组和电子设备
CN111403901B (zh) * 2020-03-16 2021-06-15 Oppo广东移动通信有限公司 天线模组及电子设备
CN111769362B (zh) * 2020-07-08 2021-07-23 Oppo广东移动通信有限公司 天线模组以及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203225342U (zh) * 2013-01-21 2013-10-02 咏业科技股份有限公司 耦合馈入式微带天线
CN105305046A (zh) * 2015-10-23 2016-02-03 福州大学 电磁耦合馈电北斗一代卫星导航收发天线
WO2020145392A1 (ja) * 2019-01-10 2020-07-16 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
CN110247175A (zh) * 2019-06-06 2019-09-17 华南理工大学 一种基于发卡型谐振器的滤波双工天线
CN112821050A (zh) * 2021-01-07 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAIVERDHAN; SHARMA M. M; LODHI DEEPSHIKHA; YADAV R. P: "Analysis of dual band double slot loaded microstrip patch antenna", 2017 INTERNATIONAL CONFERENCE ON COMPUTER, 1 July 2017 (2017-07-01), pages 286 - 288, XP033139226, DOI: 10.1109/COMPTELIX.2017.8003980 *
See also references of EP4266495A4 *

Also Published As

Publication number Publication date
EP4266495A4 (en) 2024-07-03
CN112821050A (zh) 2021-05-18
US20230344133A1 (en) 2023-10-26
CN112821050B (zh) 2023-04-25
EP4266495A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
US20220255238A1 (en) Antenna module and electronic device
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US7642970B2 (en) Antenna device and wireless communication apparatus using same
US8711039B2 (en) Antenna module and wireless communication apparatus
WO2022148130A1 (zh) 天线组件及电子设备
WO2022179324A1 (zh) 天线装置、壳体及电子设备
US7969371B2 (en) Small monopole antenna having loop element included feeder
CN111146583B (zh) 天线组件及电子设备
JP2000278028A (ja) チップアンテナ、アンテナ装置及び無線機器
WO2022179596A1 (zh) 毫米波天线、装置及电子设备
WO2022083276A1 (zh) 天线阵列组件及电子设备
WO2023035874A1 (zh) 天线装置、壳体以及电子设备
US20230011271A1 (en) Antenna module and electronic device
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
CN209896263U (zh) 一种基于复合左右手传输线的多频段天线
CN111146582B (zh) 天线组件及电子设备
JP2005229161A (ja) アンテナ及び当該アンテナを有する無線通信機器
WO2023109868A1 (zh) 天线模组及电子设备
CN117954849A (zh) 天线、天线阵列和电子设备
CN111403901B (zh) 天线模组及电子设备
CN108400436B (zh) 天线模块
CN112838357B (zh) 一种多层双频宽带天线及通信设备
WO2024001072A1 (zh) 天线模组、天线阵列及电子设备
WO2024017164A1 (zh) 天线及通讯设备
WO2024037129A1 (zh) 天线模组、天线阵列及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021917171

Country of ref document: EP

Effective date: 20230719

NENP Non-entry into the national phase

Ref country code: DE