WO2022179596A1 - 毫米波天线、装置及电子设备 - Google Patents

毫米波天线、装置及电子设备 Download PDF

Info

Publication number
WO2022179596A1
WO2022179596A1 PCT/CN2022/077857 CN2022077857W WO2022179596A1 WO 2022179596 A1 WO2022179596 A1 WO 2022179596A1 CN 2022077857 W CN2022077857 W CN 2022077857W WO 2022179596 A1 WO2022179596 A1 WO 2022179596A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
millimeter
metal plate
metal
patch
Prior art date
Application number
PCT/CN2022/077857
Other languages
English (en)
French (fr)
Inventor
朱乃达
侯猛
吴有全
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22758960.3A priority Critical patent/EP4277027A4/en
Publication of WO2022179596A1 publication Critical patent/WO2022179596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present application relates to the technical field of communications, and in particular, to a millimeter-wave antenna, a device, and an electronic device.
  • mmWave antennas need to have high gain, beamforming and other characteristics to overcome path loss.
  • millimeter-wave antennas are relatively bulky as a whole and have a low degree of integration.
  • the purpose of the present application is to provide a millimeter-wave antenna, an apparatus and an electronic device to solve at least one of the problems of narrow operating frequency band and low integration level of the existing millimeter-wave antenna.
  • the present application provides a millimeter-wave antenna, comprising: a first metal plate, a second metal plate and a radiation patch arranged in a stack; the first metal plate and the second metal plate form a cavity
  • the first feeder is provided in the cavity to feed the cavity;
  • the second metal plate has a first slot;
  • the radiation patch includes at least two patch units, at least two of the patches
  • a first patch slot is formed between the units; wherein the first slot feeds the radiating patch.
  • the first slot is parallel to the first patch slot, so as to achieve better coupling and feeding of the radiation patch.
  • the first feed line excites the cavity and the first slot to generate a first resonant mode.
  • the first slot excites the radiating patch to generate a second resonant mode and a third resonant mode.
  • the resonance frequencies of the first resonance mode, the second resonance mode and the third resonance mode are different.
  • the millimeter-wave antenna may have a relatively large relative bandwidth, so as to cover the frequency band specified by the 5G technology as much as possible .
  • the millimeter-wave antenna can work in an ultra-wideband; wherein, the ultra-wideband means that the relative bandwidth of the antenna is greater than 50%.
  • the millimeter-wave antenna can also have a smaller size so as to be easily installed in an electronic device.
  • the first metal plate and the second metal plate are electrically connected through metal vias.
  • the cavity is formed by surrounding the first metal plate, the second metal plate and the metal via hole. It should be understood that the cavity can suppress higher-order modes between the first metal plate and the second metal plate, so as to improve the efficiency of the millimeter-wave antenna, and can reduce the effect of these higher-order modes on each mode of the millimeter-wave antenna. influences.
  • the cavity can also improve the anti-interference performance of the signal, so as to improve the signal transmission effect.
  • the shape of the first slit is an arrow shape, a rectangle, an H shape, a dumbbell shape or a butterfly shape. It should be understood that when the shape of the first slit is an arrow shape, the first slit may have a longer current path. That is, while satisfying the requirement of a certain resonant frequency, the second metal plate bearing the first slot can be made to have a smaller size.
  • the cavity is rectangular, and the first slit is disposed along a diagonal line of the cavity. Based on this, the diagonal size of the cavity can be fully utilized, and the first slot with a longer length can be obtained under the limited cavity area, and the second metal plate can have a smaller area, so as to realize the miniaturization of the millimeter-wave antenna. change.
  • the shape of the radiation patch is a rectangle, a circle, a circular ring, a fan shape or a diamond shape.
  • the radiation patch in order to further expand the bandwidth and obtain higher radiation gain, may be connected to the second metal plate through metal vias, wherein the metal vias are respectively located in the width direction of the first slit. sides.
  • the antenna further includes a plurality of parasitic patches, and the plurality of parasitic patches are arranged around the radiation patch to widen the working frequency band of the millimeter-wave antenna and increase the diameter of the antenna.
  • the antenna further includes at least one parasitic patch, wherein the parasitic patch and the radiating patch are stacked and arranged, wherein the shape of the radiating patch may be a "cross" shape, a rectangle, or the like.
  • the application examples are not specifically limited.
  • the stacked arrangement of the parasitic patch and the radiating patch can broaden the working frequency band of the millimeter-wave antenna and increase the antenna aperture.
  • the antenna further includes a parasitic metal column, and the parasitic metal column is disposed on the second metal plate and surrounds the radiation patch.
  • the parasitic metal pillar and the radiation patch generate a fourth resonance mode.
  • millimeter-wave antennas can have four modes to more comprehensively cover the frequency bands specified by 5G technology.
  • the millimeter-wave antenna can work in the frequency band of 23.5GHz-44.2GHz, and its relative bandwidth is 61.1%.
  • the height of the parasitic metal pillar is less than or equal to the shortest distance between the second metal plate and the radiation patch. It should be understood that the parasitic metal column does not affect the overall height of the millimeter-wave antenna. That is, the millimeter wave antenna does not increase its volume while increasing the fourth resonance mode, so as to realize miniaturization of the antenna.
  • the antenna further includes a matching metal post, the matching metal post is disposed on the second metal plate and surrounds the edge of the second metal plate.
  • the matching metal posts can be used for impedance matching.
  • the radiation gain of the millimeter-wave antenna can be improved by adjusting the distance between the matching metal post and the radiation patch.
  • the operating frequencies of the antenna include n257 (26.5GHz ⁇ 29.5GHz), n258 (24.25GHz ⁇ 27.5GHz), n259 (40.5GHz ⁇ 43.5GHz), n260 (37GHz ⁇ 40GHz) and n261 (27.5GHz) ⁇ 28.35GHz) frequency band.
  • the antenna further includes a second feed line (eg, probe, microstrip, stripline, etc.).
  • a second feed line eg, probe, microstrip, stripline, etc.
  • the second feeder line and the first feeder line may intersect (for example, perpendicular to each other).
  • the second feed line is perpendicular to the first feed line to reduce the cross-polarization level of radiation.
  • the second metal plate also has a second slot that intersects the first slot (eg, the second slot may be perpendicular to the first slot to reduce the cross-polarization level of radiation).
  • the number of the patch units is at least four, and the radiation patch further has a second patch slot.
  • the second feed line excites the cavity to generate the first resonance mode; the second slot is used to excite the radiation patch to generate the second resonance mode and the third resonance model.
  • the second slot is also used to excite the parasitic metal pillar and the radiation patch to generate the fourth resonance mode. Based on this, the millimeter-wave antenna can realize the dual-polarization function.
  • the antenna has an axis of rotational symmetry; and/or the antenna has a plane of symmetry. It should be understood that, based on the symmetrical antenna structure, the processing of the millimeter-wave antenna can be facilitated, and the volume of the millimeter-wave antenna can be reduced.
  • the antenna is used in an array antenna and acts as an antenna element of the array antenna.
  • the number of the antenna units may be one, two or more.
  • the array antenna includes at least one antenna unit, and the antenna unit includes the millimeter wave antenna described in the above embodiment
  • the shape of the cavity is at least one or a combination of a rectangle, a triangle, a circle, and an ellipse.
  • the length direction or the width direction of the cavity is arranged along the diagonal of the second metal plate.
  • the volume of the antenna is greater than or equal to 0.24 ⁇ 0 *0.24 ⁇ 0 *0.07 ⁇ 0 , wherein ⁇ 0 is the wavelength of the electromagnetic wave in the air at the lowest operating frequency.
  • the first feed line and the second feed line are microstrip lines; or, the first feed line and the second feed line are strip lines.
  • the first slot is perpendicular to the first feed line, and the second slot is perpendicular to the second feed line, so that the effect of coupling and feeding of the millimeter-wave antenna can be improved.
  • the second resonance mode is a TM 10 mode
  • the third resonance mode is an anti-phase TM 20 mode.
  • the present application also provides an antenna module, which includes a package and the millimeter-wave antenna described in the above embodiments.
  • the present application also provides a device, characterized in that the device includes: a radio frequency module and the antenna described in the above embodiments, wherein the radio frequency module includes a filter, a switch, a low noise amplifier, and a power amplifier at least one of.
  • the radio frequency module includes a filter, a switch, a low noise amplifier, and a power amplifier at least one of.
  • Integrating the radio frequency module and the antenna in one device can save space through integration, and can also reduce the loss of signals during transmission.
  • the present application also provides an electronic device, the electronic device includes an antenna carrier, and the millimeter-wave antenna, array antenna, antenna module or device described in the above embodiments, the millimeter-wave antenna, array antenna, antenna
  • the module or device is arranged on the antenna carrier.
  • the antenna carrier is a middle frame, a back cover, a display screen or a circuit board of the electronic device.
  • the millimeter wave antenna can have the first resonance mode, the second resonance mode and the third resonance mode, so as to maximize the Covers the frequency bands specified by 5G technology to meet the needs of wireless communication.
  • the miniaturization of the millimeter-wave antenna can also be realized, so as to improve the integration degree of the electronic device to which the millimeter-wave antenna is applied.
  • FIG. 1 is a perspective view of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a perspective view of a millimeter-wave antenna according to an embodiment of the present application.
  • FIG. 3 is an exploded view of a millimeter-wave antenna according to an embodiment of the present application.
  • FIG. 4 is a perspective view of a millimeter-wave antenna according to another embodiment of the present application.
  • FIG. 5 is an exploded view of a millimeter wave antenna according to another embodiment of the present application.
  • FIG. 6 is a side view of a millimeter wave antenna according to another embodiment of the present application.
  • FIG. 7 is a data diagram of the reflection coefficient of the millimeter-wave antenna according to another embodiment of the present application as a function of frequency.
  • FIG. 8 is a perspective view of a millimeter-wave antenna according to still another embodiment of the present application.
  • FIG. 9 is an exploded view of a millimeter wave antenna according to still another embodiment of the present application.
  • FIG. 10 is a data graph of the reflection coefficient of an ultra-wideband millimeter-wave antenna as a function of frequency.
  • Fig. 11 is a data graph of the reflection coefficient of a millimeter-wave antenna with a double wide frequency band as a function of frequency.
  • Figures 12 and 13 are two-dimensional radiation patterns of a millimeter-wave antenna at 28 GHz.
  • Figure 14 is a data plot of the gain of a millimeter-wave antenna as a function of frequency.
  • an electronic device in order to meet various user requirements based on wireless communication technology, it is generally implemented by setting multiple antennas. For example: setting a millimeter-wave antenna in an electronic device to meet the user's 5G (5th Generation, fifth generation) mobile communication needs, which can be used in scenarios such as calls and video calls; or, setting NFC (Near Field Communication) chip to meet the needs of users for near field communication, which can be applied in scenarios such as mobile payment, bus payment, and identification.
  • 5G Fifth Generation, fifth generation
  • NFC Near Field Communication
  • n257 (26.5GHz ⁇ 29.5GHz), n258 (24.25GHz ⁇ 27.5GHz), n259 (40.5GHz ⁇ 43.5GHz), n260 (37GHz ⁇ 40GHz) and n261 (27.5GHz ⁇ 28.35GHz).
  • the operating frequency band of the millimeter wave antenna is narrow and the relative bandwidth is also narrow, wherein the relative bandwidth refers to the ratio between the signal bandwidth (or frequency band) and the center frequency.
  • the relative bandwidths of general millimeter-wave antennas are narrow. That is, a single mmWave antenna does not work well in the multiple frequency bands specified by 5G technology.
  • it is generally through the cooperation of multiple millimeter-wave antennas (or millimeter-wave antenna arrays) with different resonance frequencies, so that the electronic equipment can cover multiple frequency bands specified by 5G technology.
  • three millimeter-wave antennas or millimeter-wave antenna arrays are provided in the electronic device, and the three millimeter-wave antennas (or millimeter-wave antenna arrays) can work in the frequency bands of n257, n258 and n260 respectively.
  • each millimeter-wave antenna or millimeter-wave antenna array
  • the cooperation of the three millimeter-wave antennas can also make general electronic devices as much as possible It covers multiple 5G frequency bands to meet the needs of users based on wireless communication.
  • components such as battery components, circuit board components, camera components and speaker components are also arranged in the internal space of general electronic equipment to realize functions such as power supply, camera and speaker. This leaves less space in the electronic device for installing the mmWave antenna.
  • the millimeter-wave antenna in a general electronic device may need to make trade-offs in terms of performance, etc., which to a certain extent makes the electronic device unable to support 5G wireless communication well.
  • the side-fire pattern of a millimeter-wave antenna in an electronic device may be unstable, prone to split lobes or lead to poor radiation directivity of the antenna.
  • the operating frequency band of the millimeter-wave antenna applied in electronic equipment may be narrower, which may not cover a certain frequency band specified by 5G technology.
  • the millimeter-wave antenna is a microstrip patch antenna with a low profile, and its size can be 0.4 ⁇ 0 *0.4 ⁇ 0 , where ⁇ 0 is the wavelength of the electromagnetic wave in the air at the lowest operating frequency.
  • its millimeter-wave antenna may have problems such as a large number of antennas, a large volume, a small installation space, a narrow operating frequency band, and an unstable side-fire pattern.
  • the problem is that electronic devices do not support 5G wireless communication technology well.
  • an embodiment of the present application provides a schematic electronic device 10
  • the electronic device 10 may include a display module 20 , a middle frame 30 and a back cover (not shown).
  • the middle frame 30 may be located between the display module 20 and the back cover, and the three generally determine the three-dimensional outline of the electronic device 10 as a whole.
  • the shape of the electronic device 10 is substantially a rectangular parallelepiped.
  • the display module 20 may be an active light-emitting display module, such as an OLED (Organic Light-Emitting Diode) display module; or, the display module 20 may be a passive light-emitting display module, such as It is an LCD (Liquid Crystal Display) display module.
  • the display screen of the display module 20 may be a curved screen or a flat screen, which is not limited.
  • the back cover may be a glass back cover, a ceramic back cover, or a metal back cover, or the like.
  • the middle frame 30 may be a metal middle frame or a non-metal middle frame, for example, the middle frame 30 is an aluminum alloy middle frame, a magnesium alloy middle frame, and the like.
  • the electronic device 10 may further include a millimeter-wave antenna 100, and the millimeter-wave antenna 100 may be installed in the electronic device 10 and provided on the antenna carrier.
  • the millimeter-wave antenna 100 may be located between the display module 20 and the back cover, and surrounded by the middle frame 30 . It should be understood that the millimeter-wave antenna 100 may be disposed on the middle frame 30 , and it should be understood that in FIG. 1 , the position of the millimeter-wave antenna 100 on the middle frame 30 is schematic. Alternatively, the millimeter-wave antenna 100 may also be disposed on the back cover. Alternatively, the millimeter-wave antenna 100 may also be arranged on a circuit board.
  • the circuit board may be part of a circuit board assembly of the electronic device 10 .
  • the millimeter-wave antenna 100 may also be disposed on the display module 20 ; for example, the display screen of the display module 20 . By disposing the millimeter-wave antenna 100 on the display module 20, the limited space of the electronic device can be effectively utilized.
  • the type of electronic device 10 may include a mobile phone, a tablet computer, a car antenna, a drone, a home appliance, a laptop, a headset or handset, a keyboard, a mouse, or a wearable device (eg, a smart watch, a smart hand, etc.).
  • An electronic device that can implement a wireless communication function, such as a ring), is not limited in this application.
  • the electronic device 10 may also be a car navigator with a wireless communication function, a head mounted display (HMD, Head Mounted Display) or a head up display (HUD, Head Up Display) or the like.
  • HMD head mounted display
  • HUD Head Up Display
  • the head-mounted display device may include an AR (Augmented Reality, augmented reality) display device, a VR (Virtual Reality, virtual reality) display device, or an MR (Mixed Reality, mixed reality) display device.
  • the electronic device 10 may also be a CPE (Customer Premise Equipment), a wireless access point device (eg, a wireless router) or a base station device.
  • the electronic device 10 may further include the above-mentioned battery components, circuit board components, camera components, and speaker components to achieve corresponding functions, which are not limited in this application.
  • the electronic device 10 may also include a non-millimeter-wave antenna, so as to correspondingly implement functions such as 2G wireless communication, 3G wireless communication, and 4G wireless communication.
  • the non-millimeter wave antenna may include at least one antenna of monopole antenna, dipole antenna, left-hand antenna, inverted-F antenna, loop antenna, Yagi antenna, patch antenna, slot antenna, or a combination of several antennas .
  • the millimeter-wave antenna 100 may have characteristics such as high gain and miniaturization through structural improvement, so as to be easily installed in the electronic device 10 .
  • the millimeter-wave antenna 100 can operate in an ultra-wideband; wherein, the ultra-wideband means that the relative bandwidth of the antenna is greater than 50%.
  • the antenna can be defined as an ultra-wideband antenna.
  • the millimeter-wave antenna 100 may operate in dual frequency bands or multiple frequency bands, which is not limited in this application.
  • millimeter-wave antenna 100 will be exemplarily described below by using millimeter-wave antennas ( 100 a , 100 b , 100 c ).
  • a millimeter-wave antenna 100 a provided by an embodiment of the present application includes a first metal plate 110 , a second metal plate 120 , and a radiation patch 130 that are arranged at intervals in sequence.
  • a medium (not shown in the figure) may be provided between the first metal plate 110, the second metal plate 120 and the radiation patch 130; however, in order to facilitate the description of the relative relationship between the structures, the medium is shown in the corresponding drawings. are not presented.
  • the medium can be LCP (Liquid Crystal Polymer, liquid crystal polymer), Rogers material and the like. It should be understood that when the medium is LCP, since the loss tangent of LCP keeps a relatively small value at high frequencies, the millimeter-wave antenna 100a can have less transmission loss, so as to improve the radiated power and obtain higher antenna gain .
  • the millimeter wave antenna 100a may also not include a medium, and the first metal plate 110 , the second metal plate 120 and the radiation patch 130 may be fixed by means of a bracket or the like.
  • a plurality of metal vias are arranged around, so as to surround and form a cavity 105 between the first metal plate 110 and the second metal plate 120 , and the cavity 105 can be filled with a medium.
  • the metal via, the first metal plate 110 and the second metal plate 120 can constitute a substrate integrated waveguide (SIW, Substrate Integrated Waveguide) as a whole, based on this, the gap between the first metal plate 110 and the second metal plate 120 can be suppressed.
  • SIW substrate integrated waveguide
  • the higher-order modes can improve the efficiency of the millimeter-wave antenna 100a, and can reduce the influence of these higher-order modes on each mode of the millimeter-wave antenna 100a.
  • the SIW can also improve the anti-interference performance of the signal, so as to improve the signal transmission effect.
  • the second metal plate 120 may serve as the ground of the millimeter-wave antenna 100a, and the first metal plate 110 may be short-circuited with the second metal plate 120 through a metal via hole.
  • the corresponding metal vias may be understood as metal pillars.
  • the shape of the cavity 105 in FIG. 3 is schematic. In some embodiments, the shape of the cavity 105 may be at least one or a combination of shapes such as rectangle, triangle, circle, ellipse, and the like.
  • the millimeter-wave antenna 100 a may include a first feeder 142 , and the first feeder 142 is located in the cavity 105 .
  • a first slit 122 is formed on the second metal plate 120 of the cavity 105 .
  • the first feed line 142 in the cavity 105 can excite the cavity 105 and the first slot 122 so that the millimeter-wave antenna 100a operates in the first resonance mode; that is, the millimeter-wave antenna 100a has a first resonance frequency.
  • the first metal plate 110 (or the second metal plate 120) is further provided with a first port 110a, and the first port 110a can be used for the transmission line (not shown) to pass through.
  • the transmission line may be electrically connected (direct contact connection or connected through capacitive coupling) to the first feeder line 142 to feed the first feeder line 142 .
  • the transmission line may include at least one or a combination of coaxial lines, strip lines, microstrip lines, and waveguide structures.
  • the first metal plate 110 (or the second metal plate 120 ) may not have the first port 110a.
  • a first opening is formed between the metal vias, and the cavity 105 can communicate with the outside world through the first opening. Based on this, the transmission line and the first feed line 142 can be electrically connected through the first opening.
  • the first feeder 142 is exemplified as a stripline, but not limited thereto. In some other embodiments, the first feed line 142 may also be a microstrip line.
  • the first feeder 142 may be a probe (or a conductive metal hole, or a conductive metal post), and the first feeder 142 excites the cavity 105 and the first slot 122, so that the millimeter-wave antenna 100a operates at the first resonance mode.
  • the first slit 122 may be disposed along the diagonal of the cavity 105 (eg, set at +45° or -45°). Based on this, the diagonal size of the cavity 105 can be fully utilized, and the first slot 122 with a longer length can be obtained under the limited cavity area, and the second metal plate 120 can have a smaller area, so as to facilitate the realization of millimeter waves Miniaturization of the antenna 100a.
  • the interior of the cavity 105 may include metal vias 107 (or metal pillars) for adjusting impedance matching. For example, in FIG.
  • the surrounding metal walls of the rectangular SIW cavity 105 are composed of metal vias, wherein Part of the metal vias 109 of the surrounding metal walls of the rectangular SIW and the matching metal vias 107 form a triangle. It should be understood that the rectangular SIW includes that each metal wall includes a portion of metal vias 109 and matching metal vias 107 .
  • the SIW cavity 105 may not be provided with part of the metal vias 109 , but includes matching metal vias 107 , and the matching metal vias 107 form an approximately rectangular metal surrounding the SIW cavity 105 while achieving impedance matching. wall, which suppresses the formation of higher-order modes, which is not limited.
  • the length direction or the width direction of the cavity 105 may be disposed along the diagonal of the second metal plate 120 .
  • the length direction or the width direction of the cavity 105 may be disposed along the diagonal of the first metal plate 110 .
  • the first slot 122 is exemplified in the shape of an arrow. It should be understood that the arrow-shaped first slot 122 may have a longer current path than the elongated slot of the same length. While satisfying the requirement of a certain resonant frequency, the second metal plate 120 carrying the first slot 122 can have a smaller size.
  • the shape of the first slit 122 may also be a rectangle, an H shape, a dumbbell shape, a butterfly shape, etc., which is not limited.
  • the millimeter-wave antenna 100a can have a certain working frequency band, for example, can basically cover a certain frequency band specified by the 5G technology.
  • the millimeter-wave antenna 100a can also work in other modes by cooperating with structures such as the radiation patch 130, thereby increasing the relative bandwidth of the millimeter-wave antenna 100a.
  • the first slot 122 in addition to cooperating with the cavity 105 to generate the first resonance mode, can also couple and feed the radiation patch 130 .
  • the radiation patch 130 exemplarily includes two patch units 131 , and the two patch units 131 are loaded through the first patch gap 132 .
  • the radiating patch 130 may generate a second resonant mode; that is, the millimeter-wave antenna 100a has a second resonant frequency.
  • the second resonance mode may be the TM 10 mode of the radiation patch 130, and the second resonance frequency may be greater than the first resonance frequency. Based on this, the working frequency band of the millimeter-wave antenna 100a can be expanded.
  • the radiation patch 130 can be coupled and fed through the first slot 122 .
  • the sheet 130 produces a third resonance mode; that is, the millimeter-wave antenna 100a has a third resonance frequency.
  • the third resonance mode may be the anti-phase TM 20 mode of the radiation patch 130 , and the third resonance frequency is greater than the second resonance frequency.
  • the working frequency band of the millimeter-wave antenna 100 a can be further expanded to improve the wireless communication effect of the millimeter-wave antenna 100 a .
  • the two radiating edges of the radiating patch 130 have the same magnetic current direction, opposite current directions, and the maximum radiation direction is perpendicular to the radiating patch 130 s surface. Based on this, the energies of the radiation patch 130 on the two radiation sides can be superimposed on each other, and have the characteristics of edge-emitting radiation.
  • the radiation patch 130 operating in the third resonance mode can reduce the possibility of split lobes; that is, the radiation pattern of the radiation patch 130 operating in the anti-phase TM 20 mode is relatively symmetrical , so as to overcome the path loss to a certain extent, and can improve the radiation gain of the millimeter-wave antenna 100a.
  • the first slot 122 is parallel to the first patch slot 132 to achieve better coupling and feeding of the radiating patch.
  • the radiation patch 130 may be connected to the second metal plate 120 through metal vias, wherein the metal vias are located at the edges of the first slits 122 respectively. both sides in the width direction.
  • the shape of the radiation patch 130 is a rectangle, but not limited thereto. In some other embodiments, the shape of the radiation patch 130 may also be a symmetrical shape such as a circle, an annular shape, a fan shape, and a diamond shape.
  • the shape of the patch unit 131 is a rectangle, and the shape of the radiation patch 130 is a rectangle or a square.
  • the shape of the patch unit 131 is a fan shape, and the shape of the radiation patch 130 is a fan shape or a circle.
  • the shape of the patch unit 131 is a triangle, and the shape of the radiation patch 130 is a square.
  • the surface of the first metal plate 110 facing the second metal plate 120 is used as the reference surface
  • the first feed line 142 is a strip line or a microstrip line
  • the projection of the first feed line 142 on the reference surface is perpendicular to the first feed line 142 .
  • the projection of the first feed line 142 on the reference surface may also be perpendicular to the projection of the first patch slot 132 on the reference surface.
  • the projection of the first feeder 142 on the reference plane is perpendicular to the part of the corresponding slot of the solid structure.
  • the first slot 122 is carried on the second metal plate 120
  • the projection of the first feed line 142 on the reference plane may be perpendicular to the part of the second metal plate 120 where the first slot 122 is formed.
  • the first patch slot 132 is formed by the patch units 131 arranged at intervals, and the projection of the first feed line 142 on the reference plane may be perpendicular to the edge of the patch unit 131 corresponding to the first patch slot 132 .
  • the millimeter-wave antenna 100 a can selectively operate at the first operating frequency according to the required operating frequency. resonant mode, second resonant mode or third resonant mode.
  • the electronic device 10 applying the millimeter-wave antenna 100a can make the millimeter-wave antenna 100a work in a corresponding mode according to actual communication requirements, so as to be suitable for different wireless communication scenarios.
  • the operating frequency bands of the first resonant mode, the second resonant mode, and the third resonant mode may be discontinuous; that is, the millimeter-wave antenna 100a may operate in relatively independent multiple frequency bands.
  • the working frequency band of the first resonance mode may be 23.5GHz-27GHz
  • the working frequency band of the second resonance mode may be 29GHz-36GHz
  • the working frequency band of the third resonance mode may be 38GHz-41.5GHz.
  • the first resonance mode, the second resonance mode and the third resonance mode may be combined; that is, the operating frequency bands of the three modes are generally continuous frequency bands, and the relative bandwidth of the millimeter wave antenna 100a is wider. Based on this, the millimeter-wave antenna 100a can operate in a wide frequency band.
  • the working frequency band of the first resonance mode may be 23.5GHz-28GHz
  • the working frequency band of the second resonance mode may be 28GHz-37GHz
  • the working frequency band of the third resonance mode may be 37GHz-41.5GHz.
  • the operating frequency bands of the first resonance mode, the second resonance mode and the third resonance mode are continuous frequency bands as a whole; correspondingly, the overall frequency band that the millimeter wave antenna 100a can cover is 23.5GHz-41.5GHz.
  • the operating frequency bands of the first resonant mode and the second resonant mode may be continuous, but the operating frequency band of the third resonant mode is not continuous with the operating frequency band of the second resonant mode;
  • the working frequency band is continuous, but the working frequency band of the first resonance mode is not continuous with the working frequency band of the second resonance mode.
  • the first metal plate 110 , the second metal plate 120 and the radiation patch 130 are all layer structures with smaller thicknesses, and other structures such as the first feed line 142 are located between the layer structures. That is, the volume of the millimeter-wave antenna 100a is mainly determined by the size and relative relationship of the first metal plate 110, the second metal plate 120, and the radiation patch 130. Therefore, the millimeter-wave antenna 100a provided by each embodiment of the present application may have a relatively large size. Small size.
  • the volume of the millimeter-wave antenna 100a may be 0.24 ⁇ 0 *0.24 ⁇ 0 *0.07 ⁇ 0 . Among them, ⁇ 0 is the wavelength of the electromagnetic wave in the air at the lowest operating frequency.
  • the ⁇ 0 may include 6 mm ⁇ 13 mm.
  • ⁇ 0 is 7mm, 8mm, 9mm, 10mm, 11mm or 12mm, etc.
  • the millimeter-wave antenna 100a may have more Small volumes (eg 0.24 ⁇ 0 ⁇ 0.4 ⁇ 0 ). Based on this, the millimeter-wave antenna 100 a can be miniaturized, so as to reduce the volume occupied in the electronic device 10 and facilitate installation in the electronic device 10 .
  • the embodiment of the present application further provides another millimeter-wave antenna 100b.
  • the millimeter-wave antenna 100b may further include a parasitic metal pillar 150 located between the second metal plate 120 and the radiation patch 130 . It should be understood that, based on the coupled feeding of the first slot 122, the parasitic metal pillar 150 can cooperate with the radiation patch 130 to generate a fourth resonance mode, so that the millimeter-wave antenna 100b has a fourth resonance frequency. Wherein, the fourth resonance frequency may be greater than the third resonance frequency. Based on this, the millimeter-wave antenna 100b can have four modes to more comprehensively cover the frequency band specified by the 5G technology.
  • the number of the parasitic metal pillars 150 is multiple, and the multiple parasitic metal pillars 150 are disposed on the second metal plate 120 at intervals and are located around the radiation patch 130 .
  • each parasitic metal pillar 150 may include a pillar 152 and a pad 154 to facilitate processing. It should be understood that, on the premise that the fourth resonance mode is generated and has a corresponding fourth resonance frequency, the embodiments of the present application do not limit the specific structure and parameters of the parasitic metal pillar 150 .
  • the parameter may be, for example, the diameter and height of the pillar 152, the height of the pad 154, and the like.
  • the height H1 of the parasitic metal pillar 150 may be less than or equal to the shortest distance H2 between the second metal plate 120 and the radiation patch 130 . Therefore, the parasitic metal pillar 150 does not affect the overall height of the millimeter-wave antenna 100 b ; that is, the height of the millimeter-wave antenna 100 b is mainly determined by the distance between the first metal plate 110 and the radiation patch 130 . Compared with the millimeter-wave antenna 100a provided in FIG. 2 and FIG. 3 , the millimeter-wave antenna 100b does not increase its volume while increasing the fourth resonance mode, so as to realize the miniaturization of the antenna.
  • the surface of the first metal plate 110 is used as a reference surface, and the projection of the parasitic metal column 150 on the reference surface may be located within the projection of the radiation patch 130 on the reference surface.
  • the projection of the parasitic metal pillar 150 on the reference surface partially overlaps the projection of the radiation patch 130 on the reference surface.
  • the projection of the parasitic metal pillar 150 on the reference plane is separated from the projection of the radiation patch 130 on the reference plane; that is, there is no overlap between the two projections.
  • the number of the parasitic metal pillars 150 is exemplarily four, and the four parasitic metal pillars 150 are spaced apart and surround the radiation patch 130 .
  • the shape of the radiation patch 130 is, for example, a rectangle, and has four corners.
  • Four parasitic metal pillars 150 may be disposed corresponding to four corners of the radiation patch 130 . Taking the surface of the first metal plate 110 as a reference surface, the projection of the corner of the radiation patch 130 on the reference surface is located within the projection of the parasitic metal column 150 on the reference surface.
  • the resonant frequency of the first resonance mode generated by the cavity 105 and the first slot 122 The type and size of a slot 122 etc. can be adjusted.
  • the resonance frequency of the second resonance mode can be adjusted according to the shape and size of the radiation patch 130
  • the resonance frequency of the third resonance mode can be adjusted according to The shape and size of the radiation patch 130, the size of the first slot 122, and the like can be adjusted.
  • the resonance frequency of the fourth resonance mode generated by the parasitic metal pillar 150 and the radiation patch 130 can be adjusted according to the height and position of the parasitic metal pillar 150 .
  • the millimeter-wave antenna 100b is an ultra-wideband antenna, which can basically continuously cover the frequency band of n257 to n261.
  • the millimeter-wave antenna 100b provided in each embodiment may operate in dual-band or multi-band; that is, the millimeter-wave antenna 100b may be a dual-band antenna or a multi-band antenna.
  • the first resonance mode and the second resonance mode may be combined, and the third resonance mode and the fourth resonance mode may also be combined, so that the millimeter-wave antenna 100b operates in dual frequency bands.
  • the millimeter-wave antennas (100a, 100b) provided by various embodiments of the present application may be single-polarized antennas, but not limited thereto. Please refer to FIG. 8 and FIG. 9 simultaneously.
  • An embodiment of the present application further provides a millimeter-wave antenna 100c that can realize dual polarization. Compared with the millimeter-wave antenna 100b provided in FIGS. 4 to 6, the millimeter-wave antenna 100c A second feeder line 144 (eg, a probe, a microstrip line, a stripline, etc.) may also be included.
  • a second feeder line 144 eg, a probe, a microstrip line, a stripline, etc.
  • the second feeder and the first feeder are microstrip or stripline
  • the second feeder The feeder line and the first feeder line may cross (eg, be perpendicular), for example, the second feeder line 144 may be perpendicular to the first feeder line 142 .
  • the first metal plate 110 is further provided with a second port 110b , and the second port 110b can also be used for passing through the transmission line, so as to correspondingly feed the second feeder line 144 .
  • both the first feeder 142 and the second feeder 144 can excite the above-mentioned four modes; wherein, the first feeder 142 can be used to realize +45° of the millimeter-wave antenna 100c polarization, the second feed line 144 may be used to achieve -45° polarization of the millimeter-wave antenna 100c.
  • the first metal plate 110 may not have the second port 110b.
  • a second opening is formed between the metal vias, and the cavity 105 can communicate with the outside through the second opening. Based on this, the transmission line and the second feed line 144 can be electrically connected through the second opening.
  • the first feeder 142 and the second feeder 144 intersect (eg, perpendicular).
  • the first feeder line 142 or the second feeder line 144 may be designed for avoidance by means of jumper wires or mutual spacing.
  • the second feeder 144 can avoid contact with the first feeder 142 by means of jumpers, so as to ensure the normal operation of the first feeder 142 and the second feeder 144 .
  • a second slot 124 is further formed on the second metal plate 120 .
  • the second slit 124 is perpendicular to the first slit 122 . Based on this, the first slot 122 and the second slot 124 can act as a cross slot antenna as a whole to realize dual polarization.
  • the radiation patch 130 includes a plurality of patch units 131 .
  • the plurality of patch units 131 are arranged at intervals, and the plurality of patch units 131 are loaded through the first patch slot 132 and the second patch slot 134 . It should be understood that, based on the coupled feeding of the first slot 122 and the second slot 124, the radiation patch 130 can also realize dual polarization.
  • the millimeter-wave antenna 100 c may further include a parasitic patch 160 .
  • the number of the parasitic patches 160 is multiple, and the multiple parasitic patches 160 are located around the radiation patch 130 to widen the frequency band of the millimeter-wave antenna 100c and increase the diameter of the antenna.
  • the number of patch units 131 is four, and generally takes the shape of a "field".
  • the number of the parasitic patches 160 is eight, and the eight parasitic patches 160 are regularly arranged around the four patch units 131 .
  • the millimeter-wave antenna 100 c may further include a matching metal post 170 , and the matching metal post 170 is disposed on the second metal plate 120 and is away from the first metal plate 110 .
  • the matching metal post 170 may be disposed near the edge of the second metal plate 120 and electrically connected to the second metal plate 120 ; for example, the matching metal post 170 may surround the edge of the second metal plate 120 .
  • the matching metal column 170 can increase the current path of the two metal plates (110, 120), which is equivalent to increasing the size of the two metal plates (110, 120). That is, the matching metal post 170 can be used to tune the impedance of the millimeter-wave antenna 100c to achieve impedance matching; correspondingly, the size of the two metal plates (110, 120) can be reduced to realize the miniaturization of the millimeter-wave antenna 100c.
  • the number of the matching metal pillars 170 is four, and the four matching metal pillars 170 may be disposed corresponding to the ends of the first slit 122 and the second slit 124 .
  • the matching metal pillars 170 may be correspondingly disposed at both ends of the first slit 122
  • the other two matching metal pillars 170 may be correspondingly disposed at both ends of the second slit 124 .
  • the corresponding arrangement can be understood as the matching metal post 170 is located in the direction of the extension line of the slits (122, 124).
  • the millimeter-wave antennas may have at least one of a plane of symmetry and an axis of rotational symmetry.
  • the rotational symmetry axis is located in the symmetry plane.
  • the multiple symmetry planes jointly intersect the rotational symmetry axis.
  • the processing of the millimeter-wave antennas (100a, 100b, 100c) can be facilitated, and the volume of the millimeter-wave antennas (100a, 100b, 100c) can be reduced.
  • the size of the first metal plate 110 and the second metal plate 120 can be reduced, so as to realize the miniaturization of the millimeter-wave antenna (100a, 100b, 100c).
  • the embodiment of the present application provides an antenna array, wherein the antenna unit of the antenna array is the millimeter wave antenna provided by the embodiment of the present application. It should be understood that the number of antenna elements forming the antenna array is not limited. That is, the number of the antenna units may be one, two or more.
  • the present application also provides an apparatus, which includes: a radio frequency module, and the millimeter wave antenna provided in each embodiment.
  • the radio frequency module may include at least one of a filter, a switch, a low noise amplifier, and a power amplifier.
  • the present application also provides an antenna module, wherein the antenna module can be a module based on AiP (AiP, Antenna-in-Package) scheme, AoP (Antenna-on-Package), AiM ( Antenna in Module) solution module, or module based on AoC (Antenna-on-Chip) solution.
  • the antenna module based on the AiP solution includes a package, a chip, and the millimeter-wave antenna (100a, 100b, 100c) in the above embodiments.
  • the millimeter-wave antenna (100a, 100b, 100c) is electrically connected to the chip, and is packaged through a package.
  • the package may be a plastic sealing material.
  • the chip can also be replaced with a radio frequency circuit, which is not limited.
  • FIG. 10 is a data graph of the reflection coefficient of an ultra-wideband millimeter-wave antenna as a function of frequency.
  • the millimeter-wave antenna may combine four modes, so that the millimeter-wave antenna has a continuous operating frequency band.
  • the frequency band where the reflection coefficient of the millimeter wave antenna is less than -10 dB is 23.5 GHz to 44.2 GHz, and the corresponding relative bandwidth is 61.1%. It should be understood that the frequency band where the reflection coefficient is less than -10 dB is the working frequency band of the millimeter-wave antenna.
  • Fig. 11 is a data graph of the reflection coefficient of a millimeter-wave antenna with a double wide frequency band as a function of frequency.
  • the millimeter-wave antenna may combine the first resonant mode and the second resonant mode, and the third resonant mode and the fourth resonant mode, so that the millimeter-wave antenna has two operating modes frequency band.
  • Figures 12 and 13 are two-dimensional radiation patterns of a millimeter-wave antenna at 28 GHz. Please refer to FIG. 12 and FIG. 13 synchronously.
  • the millimeter-wave antenna provided by each embodiment may have a relatively symmetrical radiation pattern, so as to overcome the path loss to a certain extent and improve the radiation gain of the millimeter-wave antenna.
  • Figure 14 is a data plot of the gain of a millimeter-wave antenna as a function of frequency. Please refer to FIG. 12 , FIG. 13 and FIG. 14 synchronously.
  • the millimeter-wave antenna can have relatively stable gain in the working frequency band .
  • the gain of the millimeter-wave antenna is greater than 4.6 dBi.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种毫米波天线、装置及电子设备。毫米波天线包括堆叠设置的第一金属板、第二金属板和辐射贴片;第一金属板和第二金属板形成腔体,第一馈线设于腔体内给所述腔体馈电;第二金属板具有第一缝隙;辐射贴片包括至少两个贴片单元,至少两个贴片单元之间形成第一贴片缝隙;其中所述第一缝隙给所述辐射贴片馈电。

Description

毫米波天线、装置及电子设备
本申请要求于2021年02月26日提交中国专利局、申请号为202110222745.2、申请名称为“毫米波天线、装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信的技术领域,特别涉及一种毫米波天线、装置及电子设备。
背景技术
随着天线技术的发展,手机等终端中的天线也逐渐利用到毫米波的频段。但是毫米波容易受到大气中气体分子、水凝物和悬浮尘埃等小颗粒的吸收和散射作用,路径损耗相对严重。对此,毫米波天线需要具有高增益、可波束赋形等特性,以克服路径损耗。
此外,一般的毫米波天线的工作频段也较窄,需要通过多个毫米波天线的配合来满足使用需求。该些毫米波天线在整体上的体积较大,集成度也较低。
发明内容
本申请的目的在于提供一种毫米波天线、装置及电子设备,以解决现有的毫米波天线的工作频段较窄和集成度较低中至少一个问题。
为了解决上述技术问题,本申请提供了一种毫米波天线,包括:堆叠设置的第一金属板、第二金属板和辐射贴片;所述第一金属板和所述第二金属板形成腔体,第一馈线设于所述腔体内给所述腔体馈电;所述第二金属板具有第一缝隙;所述辐射贴片包括至少两个贴片单元,至少两个所述贴片单元之间形成第一贴片缝隙;其中所述第一缝隙给所述辐射贴片馈电。
在一些实施例中,第一缝隙与所述第一贴片缝隙平行,以实现更好的实现对辐射贴片的耦合馈电。
一些实施例中,所述第一馈线激励所述腔体和所述第一缝隙产生第一谐振模式。所述第一缝隙激励所述辐射贴片,以产生第二谐振模式和第三谐振模式。其中,所述第一谐振模式、所述第二谐振模式和所述第三谐振模式的谐振频率不同。应当理解,基于毫米波天线所激励出的第一谐振模式、第二谐振模式和第三谐振模式,所述毫米波天线可以具有较大的相对带宽,以尽可能地覆盖5G技术所规定的频段。例如:该毫米波天线可以工作在超宽带;其中,该超宽带是指天线的相对带宽大于50%。此外,通过第一金属板、第二金属板和辐射贴片的配合,所述毫米波天线还可以具有较小的尺寸,以便于安装到电子设备中。
一些实施例中,所述第一金属板和第二金属板通过金属过孔电连接。所述第一金属板、所述第二金属板和所述金属过孔之间包围形成所述腔体。应当理解,所述腔体可以抑制第一金属板和第二金属板之间的高次模,以提高毫米波天线的效率,并且可以减小该些高次模对毫米波天线的各模式的影响。此外,相比于微带线,该腔体还可以提高信号的抗干扰性能,以提高信号传输效果。
一些实施例中,所述第一缝隙的形状为箭头形、长方形、H形、哑铃形或者蝶形。应当理解,当第一缝隙的形状为箭头形时,所述第一缝隙可以具有更长的电流路径。即,在满足一定谐振频率的要求的同时,可以使承载第一缝隙的第二金属板具有更小的尺寸。
一些实施例中,所述腔体为矩形,所述第一缝隙沿着所述腔体的对角线设置。基于此,可以充分利用腔体的对角尺寸,在有限的腔体面积下可以获得长度更长的第一缝隙,可以使第二金属板具有更小的面积,以便于实现毫米波天线的小型化。
一些实施例中,所述辐射贴片的形状为矩形、圆形、圆环形、扇形或者菱形。
在一些实施例中,为了进一步扩展带宽,以及获得更高的辐射增益,可以通过金属过孔将辐射贴片与第二金属板连接,其中所述金属过孔分别位于第一缝隙的宽度方向的两侧。
一些实施例中,所述天线还包括多个寄生贴片,多个所述寄生贴片设于所述辐射贴片周围,以展宽毫米波天线的工作频段以及增大天线口径。
一些实施例中,所述天线还包括至少一个寄生贴片,其中所述寄生贴片与辐射贴片堆叠设置,其中所述辐射贴片的形状可以为“十”字型、矩形等形状,本申请实施例不做具体限定。寄生贴片与辐射贴片堆叠设置可以展宽毫米波天线的工作频段以及增大天线口径。
一些实施例中,所述天线还包括寄生金属柱,所述寄生金属柱设于所述第二金属板上,并且环绕所述辐射贴片。其中,所述寄生金属柱和所述辐射贴片产生第四谐振模式。基于此,毫米波天线可以具有四个模式,以更为全面地覆盖5G技术所规定的频段。例如:所述毫米波天线可以工作于23.5GHz~44.2GHz的频段,其相对带宽为61.1%。
一些实施例中,所述寄生金属柱的高度小于或等于所述第二金属板与所述辐射贴片之间的最短距离。应当理解,所述寄生金属柱并不会影响毫米波天线在整体上的高度。即,所述毫米波天线在增加第四谐振模式的同时,并不会增大其体积,以便于实现天线的小型化。
一些实施例中,所述天线还包括匹配金属柱,所述匹配金属柱设于所述第二金属板上,并且环绕所述第二金属板的边缘。所述匹配金属柱可用于阻抗匹配。在一些实施例中,通过调节匹配金属柱与辐射贴片的距离,可以提高毫米波天线的辐射增益。
一些实施例中,所述天线的工作频率包括n257(26.5GHz~29.5GHz)、n258(24.25GHz~27.5GHz)、n259(40.5GHz~43.5GHz)、n260(37GHz~40GHz)和n261(27.5GHz~28.35GHz)的频段。
一些实施例中,所述天线还包括第二馈线(例如,探针、微带线、带状线等)。在一些实施例中,第二馈线与第一馈线为微带线或者带状线时,所述第二馈线与所述第一馈线可以交叉(例如,垂直)。在一些实施例中,所述第二馈线与所述第一馈线垂直,以降低辐射的交叉极化水平。所述第二金属板还具有第二缝隙,所述第二缝隙交叉于所述第一缝隙(例如,第二缝隙可以垂直与第一缝隙,以降低辐射的交叉极化水平)。所述贴片单元的数量为至少四个,所述辐射贴片还具有第二贴片缝隙。其中,所述第二馈线激励所述腔体,以产生所述第一谐振模式;所述第二缝隙用于激励所述辐射贴片,以产生所述第二谐振模式和所述第三谐振模式。所述第二缝隙还用于激励所述寄生金属柱和所述辐射贴片,以产生所述第四谐振模式。基于此,该毫米波天线可以实现双极化功能。
一些实施例中,所述天线具有旋转对称轴;和/或,所述天线具有对称面。应当理解,基于该对称的天线结构,可以便于毫米波天线加工,并且可以减小毫米波天线的体积。
一些实施例中,所述天线应用在阵列天线中,并且作为所述阵列天线的天线单元。其中,所述天线单元的数量可以为一个、两个或者多个。所述阵列天线包括至少一个天线单元,所述天线单元包括上述实施例所述的毫米波天线
一些实施例中,所述腔体的形状为矩形、三角形、圆形、椭圆形的至少一种或者多种的组合。所述腔体的长度方向或者宽度方向沿着第二金属板的对角线设置。
一些实施例中,所述天线的体积大于或等于0.24λ 0*0.24λ 0*0.07λ 0;其中,λ 0为最低工作 频率时电磁波在空气中的波长。
一些实施例中,所述第一馈线和所述第二馈线为微带线;或者,所述第一馈线和所述第二馈线为带状线。所述第一缝隙垂直于所述第一馈线,所述第二缝隙垂直于所述第二馈线,以此可以提高毫米波天线耦合馈电的效果。
一些实施例中,所述第二谐振模式为TM 10模,所述第三谐振模式为反相位TM 20模。
本申请还提供了一种天线模组,所述天线模组包括封装件以及如上各实施例中所述的毫米波天线。
本申请还提供了一种装置,其特征在于,所述装置包括:射频模组以及如上各实施例中所述的天线,其中所述射频模组包括滤波器、开关、低噪声放大器、功率放大器的至少一种。
将射频模组与天线集成在一个装置中,可以通过集成化的方式节省空间,也可以减小信号在传输过程中发生的损耗。
本申请还提供了一种电子设备,所述电子设备包括天线载体、以及如上各实施例中所述的毫米波天线、阵列天线、天线模组或者装置,所述毫米波天线、阵列天线、天线模组或者装置设于所述天线载体上。
一些实施例中,所述天线载体为所述电子设备的中框、后盖、显示屏或者电路板。
本申请通过第一金属板、第二金属板、辐射贴片和第一馈线等结构的配合,可以使毫米波天线具有第一谐振模式、第二谐振模式和第三谐振模式,以尽可能地覆盖5G技术所规定的频段,满足无线通信需求。此外,基于上述结构,还可以实现毫米波天线的小型化,以提高应用该毫米波天线的电子设备的集成度。
附图说明
图1是本申请一实施例的电子设备的立体图。
图2是本申请一实施例的毫米波天线的立体图。
图3是本申请一实施例的毫米波天线的爆炸图。
图4是本申请另一实施例的毫米波天线的立体图。
图5是本申请另一实施例的毫米波天线的爆炸图。
图6是本申请另一实施例的毫米波天线的侧视图。
图7是本申请另一实施例的毫米波天线的反射系数随频率变化的数据图。
图8是本申请再一实施例的毫米波天线的立体图。
图9是本申请再一实施例的毫米波天线的爆炸图。
图10是超宽带的毫米波天线的反射系数随频率变化的数据图。
图11是双宽频段的毫米波天线的反射系数随频率变化的数据图。
图12和图13是毫米波天线在28GHz的二维辐射方向图。
图14是毫米波天线的增益随频率变化的数据图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。
在电子设备中,为了满足用户基于无线通信技术的各种使用需求,一般会通过设置多个天线的方式来实现。例如:在电子设备中设置毫米波天线,以满足用户的5G(5th Generation,第五代)移动通信需求,此可应用在通话、视频通话等场景中;或者,在电子设备中设置NFC(Near Field Communication,近场通信)芯片,以满足用户的近场通信需求,此可应用在 移动支付、公交支付、身份识别等场景中。应理解,毫米波天线是示意性的名称,并不代表对天线正常通信所对应的工作波长的具体限定。
对应到5G移动通信,其频段至少包括了n257(26.5GHz~29.5GHz)、n258(24.25GHz~27.5GHz)、n259(40.5GHz~43.5GHz)、n260(37GHz~40GHz)和n261(27.5GHz~28.35GHz)。但是在一般的电子设备中,其毫米波天线的工作频段较窄、相对带宽也较窄,其中,所述相对带宽是指信号带宽(或者频段)与中心频率之间的比值。
例如:某一毫米波天线可以工作于n257的频段,对应的信号带宽△f=29.5GHz-26.5GHz=3GHz,中心频率f 0=(29.5GHz+26.5GHz)/2=28GHz,则相对带宽ffoc1=△f/f 0=3GHz/28GHz=10.7%。
又例如:某一毫米波天线可以工作于n257和n258的频段,则对应的相对带宽ffoc2=(29.5GHz-24.25GHz)/((29.5GHz+24.25GHz)/2)=19.5%。
如上所述,一般的毫米波天线的相对带宽均较窄。即,单一毫米波天线并不能很好地工作于5G技术所规定的多个频段。当其应用到电子设备中,一般会通过多个谐振频率不同的毫米波天线(或者毫米波天线阵列)的配合,以使电子设备可以覆盖5G技术所规定的多个频段。例如:电子设备内设有三个毫米波天线(或者毫米波天线阵列),三个毫米波天线(或者毫米波天线阵列)分别可以工作于n257、n258和n260的频段。应当理解,即使每个毫米波天线(或者毫米波天线阵列)的工作频段均较窄,但是通过该三个毫米波天线(或者毫米波天线阵列)的配合,也可以使一般的电子设备尽可能地覆盖多个5G频段,以此来满足用户基于无线通信的使用需求。
为了确保电子设备的正常工作,一般的电子设备的内部空间还会设置如电池组件、电路板组件、摄像头组件和扬声器组件等组件,以实现如供电、摄像和扬声等功能。此使得电子设备内仅留有较少的空间,以用于安装毫米波天线。
其中,当摄像头组件包括多个摄像头以满足用户的摄影体验,或者,当电池组件具有较大的电容量(所占据的体积也更大)以提高续航能力,留给毫米波天线的空间则更少。该些空间可能并不能很好地供多个毫米波天线安装。应当理解,一般的电子设备内的毫米波天线可能需要在性能等方面有所取舍,此在一定程度上使得电子设备并不能很好地支持5G无线通信。例如:电子设备内的毫米波天线的边射方向图可能不稳定,容易产生裂瓣或者导致天线的辐射方向性较差等。
此外,考虑到毫米波天线的剖面和尺寸等因素,应用在电子设备中的毫米波天线的工作频段可能更窄,其可能无法覆盖5G技术规定的某一频段。例如:毫米波天线为剖面较低的微带贴片天线,其尺寸可以为0.4λ 0*0.4λ 0,其中,λ 0为最低工作频率时电磁波在空气中的波长。该微带贴片天线对应的工作频段示例为26.5GHz~29GHz。即,该微带贴片天线仅能覆盖n257中的一部分频段,对应的相对带宽ffoc3=9.0%。基于此,一般的电子设备可能需要设置更多数量的毫米波天线,才可以满足用户的使用需求。
应当理解,基于以上内容,在一般的电子设备中,其毫米波天线可能存在天线数量较多、体积较大、安装空间较小、工作频段较窄、边射方向图不稳定等问题,该些问题使得电子设备并不能很好地支持5G无线通信技术。
基于上述的该些问题,请参考图1,本申请实施例提供一种示意性的电子设备10,该电子设备10可以包括显示模组20、中框30和后盖(图未示)。中框30可以位于显示模组20和后盖之间,并且三者在整体上大致决定了电子设备10的立体轮廓。例如:电子设备10的形状大致上为长方体。
一些实施例中,该显示模组20可以是有源发光显示模组,例如为OLED(Organic Light-Emitting Diode)显示模组;或者,该显示模组20可以是无源发光显示模组,例如为LCD(Liquid Crystal Display)显示模组。从呈现形态上,该显示模组20的显示屏则可以是曲面屏或者平面屏,对此不加限制。
一些实施例中,该后盖可以是玻璃后盖、陶瓷后盖或者金属后盖等。该中框30则可以是金属中框或者非金属中框,例如:中框30为铝合金中框、镁合金中框等。
一些实施例中,电子设备10还可以包括毫米波天线100,该毫米波天线100可以安装在电子设备10内,并且设于天线载体上。例如:毫米波天线100可以是位于显示模组20和后盖之间,并且被中框30所包围。应当理解,毫米波天线100可以设置在中框30上,应理解,在图1中,毫米波天线100位于中框30的位置是示意性的。或者,该毫米波天线100还可以设置在后盖上。或者,该毫米波天线100也可以设置在电路板上。其中,该电路板可以是电子设备10的电路板组件的一部分。在一些实施例中,毫米波天线100还可以设置在显示模组20上;例如显示模组20的显示屏。通过将毫米波天线100设置于显示模组20上,可以有效利用电子设备的有限空间。
一些实施例中,该电子设备10的类型可以包括手机、平板电脑、车载天线、无人机、家电设备、笔记本电脑、耳机或听筒设备、键盘、鼠标或者可穿戴设备(例如智能手表、智能手环)等可以实现无线通信功能的电子设备,本申请对此不加限制。在其他的一些实施例中,该电子设备10还可以是具有无线通信功能的车载导航仪、头戴式显示器(HMD,Head Mounted Display)或者抬头显示器(HUD,Head Up Display)等。其中,该头戴式显示设备可以包括AR(Augmented Reality,增强现实)显示设备、VR(Virtual Reality,虚拟现实)显示设备或者MR(Mixed Reality,混合现实)显示设备。电子设备10还可以是CPE(Customer Premise Equipment)、无线访问点设备(例如,无线路由器)或者基站设备。
一些实施例中,该电子设备10还可以包括如上所提及的电池组件、电路板组件、摄像头组件和扬声器组件等组件,以实现对应功能,本申请对此不加限制。
此外,该电子设备10还可以包括非毫米波天线,以对应实现2G无线通信、3G无线通信、4G无线通信等功能。其中所述非毫米波天线可以包括单极子天线、偶极子天线、左手天线、倒F天线、环形天线、八木天线、贴片天线、槽孔天线的至少一种天线或者几种天线的组合。
一些实施例中,通过在结构上的改进,该毫米波天线100可以具有高增益、小型化等特性,以便于设置在电子设备10中。此外,该毫米波天线100可以工作在超宽带;其中,该超宽带是指天线的相对带宽大于50%。例如:天线的工作频段可以为23.5GHz~40GHz,对应的相对带宽ffoc4=52.0%,则可以定义该天线为超宽带天线。或者,该毫米波天线100可以工作在双频段或者多频段,本申请对此不加限制。
如图2至图9,以下将通过毫米波天线(100a,100b,100c)来对上述的毫米波天线100进行示例性说明。
请同步参考图2和图3,本申请实施例提供的一种毫米波天线100a,其包括依次间隔设置的第一金属板110、第二金属板120和辐射贴片130。其中,第一金属板110、第二金属板120和辐射贴片130之间均可以设有介质(图未示);但为便于说明各结构之间的相对关系,该介质在对应的附图中均没有给予呈现。其中,该介质可以为LCP(Liquid Crystal Polymer,液晶聚合物)、罗杰斯材料等。应当理解,当介质为LCP时,由于LCP的损耗正切值在高频时保持相对较小数值,这可以使毫米波天线100a具有较小的传输损耗,以提高辐射功率,获得更高的天线增益。
在其他的一些实施例中,毫米波天线100a也可以不包括介质,第一金属板110、第二金属板120和辐射贴片130之间可以通过支架等方式实现固定。
一些实施例中,第一金属板110和第二金属板120之间具有介质,第一金属板110和第二金属板120形成腔体105,所述腔体105为仅有两个金属面的开放式腔体。
一些实施例中,第一金属板110和第二金属板120之间具有多个金属过孔(未标示)。多个金属过孔环绕设置,以在第一金属板110和第二金属板120之间包围形成腔体105,该腔体105可以被介质填充。金属过孔、第一金属板110和第二金属板120在整体上可以构成基片集成波导(SIW,Substrate Integrated Waveguide),基于此,可以抑制第一金属板110和第二金属板120之间的高次模,以提高毫米波天线100a的效率,并且可以减小该些高次模对毫米波天线100a的各模式的影响。此外,相比于微带线,该SIW还可以提高信号的抗干扰性能,以提高信号传输效果。
应当理解,第二金属板120可以作为毫米波天线100a的地,第一金属板110则可以通过金属过孔来与第二金属板120短路。在其他的一些实施例中,当毫米波天线100a不包括介质时,对应的金属过孔可以理解为金属柱。应理解,图3中腔体105的形状是示意性的。在一些实施例中,腔体105的形状可以为矩形、三角形、圆形、椭圆形等形状的至少一种或者多种的组合。
请参考图3,一些实施例中,毫米波天线100a可以包括第一馈线142,该第一馈线142位于腔体105内。在腔体105的第二金属板120上开设有第一缝隙122。腔体105内的第一馈线142可以激励腔体105和第一缝隙122,以使毫米波天线100a工作于第一谐振模式;即,该毫米波天线100a具有第一谐振频率。而对应该第一馈线142,在一些实施例中,第一金属板110上(或者第二金属板120)还开设有第一端口110a,该第一端口110a可以供传输线(图未示)穿设。应理解,开设第一端口110a的位置可以根据实际需要进行设定,以使得毫米波天线100a具有良好的阻抗匹配性能。基于此,该传输线可以与第一馈线142电连接(直接接触连接或者通过电容耦合连接),以向第一馈线142馈电。应理解,所述传输线可以包括同轴线、带状线、微带线、波导结构的至少一种或者多种的组合。在其他的一些实施例中,第一金属板110(或者第二金属板120)也可以不开设第一端口110a。对应的,金属过孔之间形成有第一开口,腔体105可以通过该第一开口与外界连通。基于此,传输线和第一馈线142可以通过该第一开口实现电连接。
一些实施例中,第一馈线142示例为带状线,但不以此为限。在其他的一些实施例中,该第一馈线142也可以是微带线。
在一些实施例中,所述第一馈线142可以为探针(或者导电金属孔,或者导电金属柱),第一馈线142激励腔体105和第一缝隙122,以使毫米波天线100a工作于第一谐振模式。
请同步参考图2和图3,当腔体105例如为矩形时,该第一缝隙122可以沿着腔体105的对角线设置(如+45°或者-45°设置)。基于此,可以充分利用腔体105的对角尺寸,在有限的腔体面积下可以获得长度更长的第一缝隙122,可以使第二金属板120具有更小的面积,以便于实现毫米波天线100a的小型化。在一些实施例中,腔体105的内部可以包括用于调节阻抗匹配的金属过孔107(或者金属柱),例如图3中,矩形SIW腔体105的四周金属壁由金属过孔构成,其中矩形SIW的四周金属壁的部分金属过孔109与匹配金属过孔107形成三角形。应理解,所述矩形SIW包括每一个金属壁都包括部分金属过孔109和匹配金属过孔107。
在一些实施例中,SIW腔体105可以不设置部分金属过孔109,但包括匹配金属过孔107,匹配金属过孔107在实现阻抗匹配的同时,形成近似矩形的SIW腔体105的四周金属壁,抑 制高次模的形成,对此不加限制。
在其他的一些实施例中,腔体105的长度方向或者宽度方向可以沿着第二金属板120的对角线设置。或者,腔体105的长度方向或者宽度方向可以沿着第一金属板110的对角线设置。
此外,一些实施例中,为了减小毫米波天线100a的尺寸以实现小型化,该第一缝隙122示例为箭头形。应当理解,相比于同长度的长条形缝隙,该箭头形的第一缝隙122可以具有更长的电流路径。在满足一定谐振频率的要求的同时,可以使承载该第一缝隙122的第二金属板120具有更小的尺寸。
在其他的一些实施例中,第一缝隙122的形状还可以为长方形、H形、哑铃形、蝶形等,对此不加限制。
应当理解,基于该第一缝隙122的第一谐振模式,可以使毫米波天线100a具有一定的工作频段,例如可以基本覆盖5G技术规定的某一频段。而通过再配合辐射贴片130等结构,该毫米波天线100a还可以工作于其他模式,以此来提高毫米波天线100a的相对带宽。
一些实施例中,该第一缝隙122除了可以配合腔体105产生第一谐振模式外,还可以向辐射贴片130耦合馈电。请同步参考图2和图3,辐射贴片130示例地包括两个贴片单元131,两个贴片单元131之间通过第一贴片缝隙132加载(Loading)。应当理解,基于第一缝隙122的耦合馈电,该辐射贴片130可以产生第二谐振模式;即,该毫米波天线100a具有第二谐振频率。其中,第二谐振模式可以为辐射贴片130的TM 10模,并且第二谐振频率可以大于第一谐振频率。基于此,可以拓展毫米波天线100a的工作频段。
在本申请各实施例提供的毫米波天线100a中,基于第一贴片缝隙132对辐射贴片130的加载作用,通过第一缝隙122向辐射贴片130耦合馈电的方式还可以使辐射贴片130产生第三谐振模式;即,该毫米波天线100a具有第三谐振频率。其中,第三谐振模式可以为辐射贴片130的反相位TM 20模,第三谐振频率大于第二谐振频率。基于此,通过第一金属板110、第二金属板120和辐射贴片130等结构之间的配合,可以进一步拓展毫米波天线100a的工作频段,以提高毫米波天线100a的无线通信效果。
一些实施例中,不同于TM 20模,基于该反相位TM 20模,辐射贴片130的两个辐射边的磁流方向相同、电流方向相反,并且最大辐射方向垂直于该辐射贴片130的表面。基于此,该辐射贴片130在两个辐射边的能量能够相互叠加,而具有边射辐射的特性。而基于该边射辐射的特性,工作于第三谐振模式的辐射贴片130可以减少裂瓣产生的可能;即,工作于反相位TM 20模下的辐射贴片130的辐射方向图相对对称,以在一定程度上克服路径损耗,并且可以提高毫米波天线100a的辐射增益。
在一些实施例中,第一缝隙122与所述第一贴片缝隙132平行,以实现更好的实现对辐射贴片的耦合馈电。
在一些实施例中,为了进一步扩展带宽,以及获得更高的辐射增益,可以通过金属过孔将辐射贴片130与第二金属板120连接,其中所述金属过孔分别位于第一缝隙122的宽度方向的两侧。
一些实施例中,辐射贴片130的形状示例为矩形,但不以此为限。在其他的一些实施例中,该辐射贴片130的形状还可以是圆形、圆环形、扇形、菱形等对称形状。例如:贴片单元131的形状为矩形,辐射贴片130的形状为长方形或者正方形。或者,贴片单元131的形状为扇形,辐射贴片130的形状为扇形或者圆形。或者,贴片单元131的形状为三角形,辐射贴片130的形状为正方形。
一些实施例中,以第一金属板110之朝向第二金属板120的表面作为参考面,第一馈线142为带状线或者微带线,第一馈线142在参考面上的投影垂直于第一缝隙122在参考面上的投影。基于此,第一馈线可以更好地通过第一缝隙122而给辐射贴片130馈电,阻抗匹配更好。此外,该第一馈线142在参考面上的投影还可以垂直于第一贴片缝隙132在参考面上的投影。由于第一缝隙122和第一贴片缝隙132等缝隙均需要实体结构承载,因此在一些情况下,还可以理解为第一馈线142在参考面上的投影垂直于实体结构之对应缝隙的部分。例如:第一缝隙122是承载在第二金属板120上,第一馈线142在参考面上的投影可以垂直于第二金属板120之形成第一缝隙122的部分。又例如:第一贴片缝隙132是由间隔设置的贴片单元131形成,第一馈线142在参考面上的投影可以垂直于贴片单元131之对应第一贴片缝隙132的边缘。
一些实施例中,基于上述的第一金属板110、第二金属板120和辐射贴片130等结构之间的配合,该毫米波天线100a可以根据所需使用工作频率选择性地工作于第一谐振模式、第二谐振模式或者第三谐振模式。在一些情况下,应用该毫米波天线100a的电子设备10可以根据实际的通信需求,以使毫米波天线100a工作于对应的模式,以适用于不同的无线通信场景。
一些实施例中,第一谐振模式、第二谐振模式和第三谐振模式的工作频段可以不连续;即,毫米波天线100a可以工作于相对独立的多个频段。例如:第一谐振模式的工作频段可以为23.5GHz~27GHz,第二谐振模式的工作频段可以为29GHz~36GHz,第三谐振模式的工作频段可以为38GHz~41.5GHz。
在其他的一些实施例中,第一谐振模式、第二谐振模式和第三谐振模式可以组合;即,三个模式的工作频段在整体上为连续频段,毫米波天线100a的相对带宽较宽。基于此,毫米波天线100a可以工作于宽频段。例如:第一谐振模式的工作频段可以为23.5GHz~28GHz,第二谐振模式的工作频段可以为28GHz~37GHz,第三谐振模式的工作频段可以为37GHz~41.5GHz。其中,第一谐振模式、第二谐振模式和第三谐振模式的工作频段在整体上为连续频段;相应的,该毫米波天线100a在整体上可以覆盖的频段为23.5GHz~41.5GHz。
此外,还可以是第一谐振模式和第二谐振模式的工作频段连续,但第三谐振模式的工作频段不与第二谐振模式的工作频段连续;或者,第二谐振模式和第三谐振模式的工作频段连续,但第一谐振模式的工作频段不与第二谐振模式的工作频段连续。
应当理解,第一金属板110、第二金属板120和辐射贴片130均是属于厚度较小的层结构,而其他如第一馈线142的结构又是位于层结构之间。即,毫米波天线100a的体积主要是由第一金属板110、第二金属板120和辐射贴片130的尺寸、相对关系所决定,因此本申请各实施例提供的毫米波天线100a可以具有较小的尺寸。其中,毫米波天线100a的体积可以为0.24λ 0*0.24λ 0*0.07λ 0。其中,λ 0为最低工作频率时电磁波在空气中的波长。对应到本申请各实施例提供的毫米波天线100a,该λ 0可以包括6mm~13mm。例如:λ 0为7mm、8mm、9mm、10mm、11mm或者12mm等。
应当理解,从上述内容可以得知,即使相较于体积较小的微带贴片天线(例如尺寸为0.4λ 0*0.4λ 0),本申请各实施例提供的毫米波天线100a可以具有更小的体积(例如0.24λ 0<0.4λ 0)。基于此,该毫米波天线100a可以实现小型化,以减小在电子设备10中所占据的体积,便于安装在电子设备10中。
请同步参考图4和图5,为了拓展天线带宽以提高无线通信效果,本申请实施例还提供了另一种毫米波天线100b,相较于图2和图3所提供的毫米波天线100a,该毫米波天线100b 还可以包括寄生金属柱150,该寄生金属柱150位于第二金属板120和辐射贴片130之间。应当理解,基于第一缝隙122的耦合馈电,该寄生金属柱150可以配合辐射贴片130而产生第四谐振模式,以使毫米波天线100b具有第四谐振频率。其中,该第四谐振频率可以大于第三谐振频率。基于此,毫米波天线100b可以具有四个模式,以更为全面地覆盖5G技术所规定的频段。
一些实施例中,寄生金属柱150的数量为多个,多个寄生金属柱150间隔设于第二金属板120上,并且位于辐射贴片130的周围。
请参考图5,一些实施例中,每一寄生金属柱150均可以包括柱体152和焊盘154,以便于加工。应当理解,在满足产生第四谐振模式并且具有对应的第四谐振频率的前提下,本申请各实施例并不对寄生金属柱150的具体结构、参数进行限制。其中,该参数可例如为柱体152的直径、高度,焊盘154的高度等。
请参考图6,一些实施例中,寄生金属柱150的高度H1可以小于或者等于第二金属板120与辐射贴片130之间的最短距离H2。由此,该寄生金属柱150并不会影响毫米波天线100b在整体上的高度;即,毫米波天线100b的高度主要还是由第一金属板110和辐射贴片130之间的距离所决定。相对于图2和图3所提供的毫米波天线100a,该毫米波天线100b在增加第四谐振模式的同时,并不会增大其体积,以便于实现天线的小型化。
一些实施例中,以第一金属板110的表面作为参考面,寄生金属柱150在参考面上的投影可以位于辐射贴片130在参考面上的投影内。或者,寄生金属柱150在参考面上的投影与辐射贴片130在参考面上的投影存在部分重叠。又或者,寄生金属柱150在参考面上的投影与辐射贴片130在参考面上的投影相离;即,两个投影之间不重叠。
如图4和图5所示例的,寄生金属柱150的数量示例为四个,四个寄生金属柱150间隔设置,并且环绕辐射贴片130。其中,辐射贴片130的形状示例为矩形,并且具有四个角。四个寄生金属柱150可以对应辐射贴片130的四个角设置。以第一金属板110的表面作为参考面,辐射贴片130的角在参考面上的投影位于寄生金属柱150在参考面上的投影内。
请再同步参考图4至图7,一些实施例中,以毫米波天线100b为例,腔体105和第一缝隙122产生的第一谐振模式,其谐振频率可以根据腔体105的体积、第一缝隙122的类型和尺寸等来实现调整。辐射贴片130所产生的第二谐振模式和第三谐振模式,其第二谐振模式的谐振频率可以根据辐射贴片130的形状和尺寸等来实现调整,其第三谐振模式的谐振频率可以根据辐射贴片130的形状和尺寸、第一缝隙122的尺寸等来实现调整。寄生金属柱150和辐射贴片130所产生的第四谐振模式,其谐振频率可以根据寄生金属柱150的高度和位置等来实现调整。基于上述的调整,本申请各实施例提供的毫米波天线100b可以工作于23.5GHz~44.2GHz的频段,相对带宽ffoc5=61.1%。该毫米波天线100b为超宽带天线,基本可以连续覆盖n257至n261的频段。
此外,各实施例提供的毫米波天线100b可以工作于双频段或多频段;即,该毫米波天线100b可以为双频段天线或多频段天线。例如:第一谐振模式和第二谐振模式可以组合,第三谐振模式和第四谐振模式也可以组合,以使毫米波天线100b工作于双频段。
如上所示例的,本申请各实施例提供的毫米波天线(100a,100b)可以为单极化天线,但不以此为限。请同步参考图8和图9,本申请实施例还提供了一种可以实现双极化的毫米波天线100c,相较于图4至图6所提供的毫米波天线100b,该毫米波天线100c还可以包括第二馈线144(例如,探针、微带线、带状线等),在一些实施例中,第二馈线与第一馈线为微带线或者带状线时,所述第二馈线与所述第一馈线可以交叉(例如,垂直),例如,该第二 馈线144可以与第一馈线142相互垂直。对应该第二馈线144,第一金属板110还开设有第二端口110b,该第二端口110b同样可以供传输线穿设,以对应实现对第二馈线144的馈电。应当理解,基于第一端口110a和第二端口110b,第一馈线142和第二馈线144均可以激励上述的四个模式;其中,第一馈线142可以用于实现毫米波天线100c的+45°极化,第二馈线144可以用于实现毫米波天线100c的-45°极化。
在其他的一些实施例中,第一金属板110也可以不开设第二端口110b。金属过孔之间形成有第二开口,腔体105可以通过该第二开口与外界连通。基于此,传输线和第二馈线144可以通过该第二开口实现电连接。
一些实施例中,第一馈线142和第二馈线144交叉(例如,垂直)。在第二馈线144与第一馈线142交叉的部分,第一馈线142或者第二馈线144可以通过跳线或者相互间隔等方式来进行避让设计。如图9所示例的,第二馈线144可以通过跳线的方式来避免与第一馈线142接触,以确保第一馈线142和第二馈线144的正常工作。
一些实施例中,第二金属板120上还开设有第二缝隙124。该第二缝隙124与第一缝隙122交叉垂直。基于此,该第一缝隙122和第二缝隙124在整体上可以作为十字缝隙天线,以实现双极化。
一些实施例中,辐射贴片130包括多个贴片单元131。多个贴片单元131间隔设置,并且多个贴片单元131通过第一贴片缝隙132和第二贴片缝隙134加载。应当理解,基于第一缝隙122和第二缝隙124的耦合馈电,该辐射贴片130同样可以实现双极化。
请再同步参考图8和图9,一些实施例中,该毫米波天线100c还可以包括寄生贴片160。该寄生贴片160的数量为多个,多个寄生贴片160位于辐射贴片130的周围,以展宽毫米波天线100c的频段以及增大天线口径。如图9所示例的,贴片单元131的数量为四个,并且大致上呈现为“田”字形。寄生贴片160的数量为八个,八个寄生贴片160规则地环绕四个贴片单元131设置。
请再同步参考图8和图9,一些实施例中,基于小型化的需求,第一金属板110和第二金属板120的尺寸需要尽可能小,但两个金属板(110,120)的尺寸做小却不利于天线的阻抗匹配,从而影响天线的性能。对此,该毫米波天线100c还可以包括匹配金属柱170,该匹配金属柱170设于第二金属板120上,并且远离第一金属板110。应当理解,该匹配金属柱170可以靠近第二金属板120的边缘设置,并且与第二金属板120电连接;例如:匹配金属柱170可以环绕第二金属板120的边缘。基于此,该匹配金属柱170可以增大两个金属板(110,120)的电流路径,等效增大两个金属板(110,120)的尺寸。即,该匹配金属柱170可以用于调谐毫米波天线100c的阻抗,以实现阻抗匹配;相应可以减小两个金属板(110,120)的尺寸,以实现毫米波天线100c的小型化。
一些实施例中,匹配金属柱170的数量示例为四个,该四个匹配金属柱170可以对应第一缝隙122和第二缝隙124的端部设置。例如:两个匹配金属柱170可以对应设置于第一缝隙122的两端,另外两个匹配金属柱170可以对应设置于第二缝隙124的两端。其中,该对应设置可以理解为匹配金属柱170位于缝隙(122,124)的延长线方向上。
一些实施例中,毫米波天线(100a,100b,100c)可以具有对称面和旋转对称轴中至少之一。其中,当毫米波天线同时包括旋转对称轴和对称面时,该旋转对称轴位于对称面内。当毫米波天线(100a,100b,100c)的对称面为多个时,该多个对称面共同相交于该旋转对称轴。
应当理解,基于该对称的天线结构,可以便于毫米波天线(100a,100b,100c)加工, 并且可以减小毫米波天线(100a,100b,100c)的体积。例如在高度不变的情况下,可以减小第一金属板110和第二金属板120的尺寸,以此来实现毫米波天线(100a,100b,100c)的小型化。
本申请实施例提供了一种天线阵列,其中天线阵列的天线单元为本申请实施例提供的毫米波天线。应理解,组成天线阵列的天线单元的个数不限。即,该天线单元的数量可以为一个、两个或者多个。
本申请还提供了一种装置,该装置包括:射频模组、以及各实施例提供的毫米波天线。其中,该射频模组可以包括滤波器、开关、低噪声放大器、功率放大器的至少一种。
此外,本申请还提供了一种天线模组,其中所述天线模组可以是基于AiP(AiP,Antenna-in-Package)方案的模组、基于AoP(Antenna-on-Package)、基于AiM(Antenna in Module)方案的模组、或者基于AoC(Antenna-on-Chip)方案的模组。基于AiP方案的天线模组包括封装件、芯片以及上述各实施例中的毫米波天线(100a,100b,100c)。该毫米波天线(100a,100b,100c)与芯片电连接,并且通过封装件实现封装。其中,该封装件可以是塑封材料。此外,该芯片也可以替换成射频电路,对此不加限制。
图10是超宽带的毫米波天线的反射系数随频率变化的数据图。请参考图10,一些实施例中,毫米波天线可以将四个模式进行组合,以使毫米波天线具有一连续的工作频段。如图10所示例的,该毫米波天线反射系数小于-10dB的频段为23.5GHz~44.2GHz,对应的相对带宽为61.1%。应理解,反射系数小于-10dB的频段为毫米波天线的工作频段。
图11是双宽频段的毫米波天线的反射系数随频率变化的数据图。请参考图11,一些实施例中,毫米波天线可以将第一谐振模式和第二谐振模式进行组合,以及将第三谐振模式和第四谐振模式进行组合,以使毫米波天线具有两个工作频段。
图12和图13是毫米波天线在28GHz的二维辐射方向图。请同步参考图12和图13,各实施例提供的毫米波天线可以具有相对对称的辐射方向图,以在一定程度上克服路径损耗、以及提高毫米波天线的辐射增益。
图14是毫米波天线的增益随频率变化的数据图。请同步参考图12、图13和图14,一些实施例中,由于毫米波天线的四个模式均具有相对稳定、对称的辐射方向图,该毫米波天线在工作频段内可以具有较为稳定的增益。如图14所示例的,毫米波天线在24.25GHz~43.5GHz的频段内,增益大于4.6dBi。
以上所述是本申请具体的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (18)

  1. 一种毫米波天线,其特征在于,包括:堆叠设置的第一金属板(110)、第二金属板(120)和辐射贴片(130);
    所述第一金属板(110)和所述第二金属板(120)形成腔体(105),第一馈线(142)设于所述腔体(105)内给所述腔体(105)馈电;
    所述第二金属板(120)具有第一缝隙(122);
    所述辐射贴片(130)包括至少两个贴片单元(131),至少两个所述贴片单元(131)之间形成第一贴片缝隙(132);
    所述第一缝隙(122)给所述辐射贴片(130)馈电。
  2. 如权利要求1所述的天线,其特征在于,所述第一金属板(110)和第二金属板(120)通过金属过孔电连接;所述第一金属板(110)、所述第二金属板(120)和所述金属过孔之间包围形成所述腔体(105)。
  3. 如权利要求1所述的天线,其特征在于,所述第一缝隙(122)的形状为箭头形、长方形、H形、哑铃形或者蝶形。
  4. 如权利要求3所述的天线,其特征在于,所述腔体(105)为矩形,所述第一缝隙(122)沿着所述腔体(105)的对角线设置。
  5. 如权利要求1所述的天线,其特征在于,所述辐射贴片(130)的形状为矩形、圆形、圆环形、扇形或者菱形。
  6. 如权利要求1所述的天线,其特征在于,所述天线还包括多个寄生贴片(160),多个所述寄生贴片(160)设于所述辐射贴片(130)周围。
  7. 如权利要求1至6任一项所述的天线,其特征在于,所述天线还包括寄生金属柱(150),所述寄生金属柱(150)设于所述第二金属板(120)上,并且环绕所述辐射贴片(130)。
  8. 如权利要求7所述的天线,其特征在于,所述寄生金属柱(150)的高度小于或等于所述第二金属板(120)与所述辐射贴片(130)之间的最短距离。
  9. 如权利要求7所述的天线,其特征在于,所述天线还包括匹配金属柱(170),所述匹配金属柱(170)设于所述第二金属板(120)上,并且环绕所述第二金属板(120)的边缘。
  10. 如权利要求1至9任一项所述的天线,其特征在于,所述天线的工作频率包括n257(26.5GHz~29.5GHz)、n258(24.25GHz~27.5GHz)、n259(40.5GHz~43.5GHz)、n260(37GHz~40GHz)和n261(27.5GHz~28.35GHz)的频段。
  11. 如权利要求7所述的天线,其特征在于,所述第一馈线(142)激励所述腔体(105)和所述第一缝隙(122)产生第一谐振模式;所述第一缝隙(122)激励所述辐射贴片(130),以产生第二谐振模式和第三谐振模式;其中,所述第一谐振模式、所述第二谐振模式和所述第三谐振模式的谐振频率不同,所述寄生金属柱(150)和所述辐射贴片(130)产生第四谐振模式。
  12. 如权利要求11所述的天线,其特征在于,所述天线还包括第二馈线(144);所述第二金属板(120)还具有第二缝隙(124),所述第二缝隙(124)与所述第一缝隙(122)交叉;所述贴片单元(131)的数量为至少四个,所述辐射贴片(130)还具有第二贴片缝隙(134)。
  13. 如权利要求12所述的天线,其特征在于,所述第二馈线(144)激励所述腔体(105)和所述第二缝隙(124)以产生所述第一谐振模式;所述第二缝隙(124)激励所述辐射贴片(130),以产生所述第二谐振模式和所述第三谐振模式;所述寄生金属柱(150)和所述辐射贴片(130)产生所述第四谐振模式。
  14. 一种阵列天线,其特征在于,所述阵列天线包括至少一个天线单元,所述天线单元包括如权利要求1至13任一项所述的天线。
  15. 一种装置,其特征在于,所述装置包括:射频模组以及如权利要求1至14任一项所述的天线,其中所述射频模组包括滤波器、开关、低噪声放大器、功率放大器的至少一种。
  16. 一种电子设备(10),其特征在于,包括天线载体、以及如权利要求1至13任一项所述的天线,所述天线设于所述天线载体上。
  17. 一种电子设备(10),其特征在于,包括天线载体、以及如权利要求15所述的装置,所述装置设与所述天线载体上。
  18. 如权利要求16或17所述的电子设备(10),其特征在于,所述天线载体为所述电子设备(10)的中框(30)、后盖、显示屏或者电路板。
PCT/CN2022/077857 2021-02-26 2022-02-25 毫米波天线、装置及电子设备 WO2022179596A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22758960.3A EP4277027A4 (en) 2021-02-26 2022-02-25 MILLIMETER WAVE ANTENNA, APPARATUS AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110222745.2 2021-02-26
CN202110222745.2A CN114976583B (zh) 2021-02-26 2021-02-26 毫米波天线、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022179596A1 true WO2022179596A1 (zh) 2022-09-01

Family

ID=82973109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077857 WO2022179596A1 (zh) 2021-02-26 2022-02-25 毫米波天线、装置及电子设备

Country Status (3)

Country Link
EP (1) EP4277027A4 (zh)
CN (1) CN114976583B (zh)
WO (1) WO2022179596A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315643A (zh) * 2023-04-20 2023-06-23 深圳市锦鸿无线科技有限公司 多波束天线阵列及其运行控制方法、装置以及存储介质
CN116759816A (zh) * 2023-01-13 2023-09-15 安徽大学 基于基片集成波导的双频双极化天线
CN118117298A (zh) * 2024-03-28 2024-05-31 中国科学院空天信息创新研究院 一种谐振点可扩展的磁电偶极子和超材料相结合的缝隙耦合贴片天线
WO2024124589A1 (zh) * 2022-12-13 2024-06-20 南通大学 一种毫米波宽频段基片集成混合介质谐振器天线

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117766989A (zh) * 2022-09-19 2024-03-26 华为技术有限公司 天线单元、天线阵列和通信设备
CN117832834A (zh) * 2022-09-29 2024-04-05 华为技术有限公司 天线结构及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110309899A1 (en) * 2010-06-20 2011-12-22 Siklu Communication ltd. Accurate millimeter-wave antennas and related structures
CN103545607A (zh) * 2013-10-11 2014-01-29 华侨大学 一种宽频带高增益Fabry-Perot谐振天线
CN107104275A (zh) * 2017-04-10 2017-08-29 南通大学 一种多层结构式滤波天线以及微波通信系统
CN108717996A (zh) * 2018-05-25 2018-10-30 湖南赛博诺格电子科技有限公司 一种用于手持式穿墙雷达的宽带圆极化天线
CN110380213A (zh) * 2019-08-06 2019-10-25 维沃移动通信有限公司 一种天线阵列及终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611581A (zh) * 2017-08-18 2018-01-19 南京理工大学 一种耦合馈电的高增益蝶形缝隙天线
WO2021000187A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 振子装置及低剖面天线
CN110416746B (zh) * 2019-07-19 2021-08-31 深圳大学 一种宽频毫米波天线单元及天线阵列

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110309899A1 (en) * 2010-06-20 2011-12-22 Siklu Communication ltd. Accurate millimeter-wave antennas and related structures
CN103545607A (zh) * 2013-10-11 2014-01-29 华侨大学 一种宽频带高增益Fabry-Perot谐振天线
CN107104275A (zh) * 2017-04-10 2017-08-29 南通大学 一种多层结构式滤波天线以及微波通信系统
CN108717996A (zh) * 2018-05-25 2018-10-30 湖南赛博诺格电子科技有限公司 一种用于手持式穿墙雷达的宽带圆极化天线
CN110380213A (zh) * 2019-08-06 2019-10-25 维沃移动通信有限公司 一种天线阵列及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4277027A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124589A1 (zh) * 2022-12-13 2024-06-20 南通大学 一种毫米波宽频段基片集成混合介质谐振器天线
CN116759816A (zh) * 2023-01-13 2023-09-15 安徽大学 基于基片集成波导的双频双极化天线
CN116759816B (zh) * 2023-01-13 2023-10-27 安徽大学 基于基片集成波导的双频双极化天线
CN116315643A (zh) * 2023-04-20 2023-06-23 深圳市锦鸿无线科技有限公司 多波束天线阵列及其运行控制方法、装置以及存储介质
CN116315643B (zh) * 2023-04-20 2023-12-29 深圳市锦鸿无线科技有限公司 多波束天线阵列及其运行控制方法、装置以及存储介质
CN118117298A (zh) * 2024-03-28 2024-05-31 中国科学院空天信息创新研究院 一种谐振点可扩展的磁电偶极子和超材料相结合的缝隙耦合贴片天线

Also Published As

Publication number Publication date
CN114976583B (zh) 2023-12-15
EP4277027A1 (en) 2023-11-15
EP4277027A4 (en) 2024-06-12
CN114976583A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2022179596A1 (zh) 毫米波天线、装置及电子设备
US20220255238A1 (en) Antenna module and electronic device
CN110534924B (zh) 天线模组和电子设备
EP2996196B1 (en) Multi-antenna system and mobile terminal
WO2021022941A1 (zh) 天线阵列及终端
US11962099B2 (en) Antenna structure and high-frequency multi-band wireless communication terminal
US11437730B2 (en) Patch antennas with excitation radiator feeds
WO2022083276A1 (zh) 天线阵列组件及电子设备
WO2021213182A1 (zh) 一种电子设备及天线装置
WO2021104228A1 (zh) 天线单元和电子设备
WO2023035874A1 (zh) 天线装置、壳体以及电子设备
WO2020135171A1 (zh) 天线结构及终端
TW201306383A (zh) 雙頻圓極化天線
US20230344133A1 (en) Antenna assembly and electronic device
WO2023103945A1 (zh) 一种天线结构和电子设备
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
US11855334B2 (en) Antenna module and electronic device using the same
US20060082504A1 (en) Embedded multiband antennas
TW202143548A (zh) 天線模組及電子設備
WO2023109868A1 (zh) 天线模组及电子设备
TWI769878B (zh) 天線結構及具有該天線結構之電子設備
WO2022017220A1 (zh) 一种电子设备
US20240304999A1 (en) Millimeter Wave Antenna, Apparatus, and Electronic Device
CN117276254A (zh) 天线结构、天线模组、芯片与电子设备
WO2024017164A1 (zh) 天线及通讯设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022758960

Country of ref document: EP

Effective date: 20230808

WWE Wipo information: entry into national phase

Ref document number: 18547779

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE