WO2020240998A1 - アンテナモジュールおよびそれを搭載した通信装置 - Google Patents

アンテナモジュールおよびそれを搭載した通信装置 Download PDF

Info

Publication number
WO2020240998A1
WO2020240998A1 PCT/JP2020/011696 JP2020011696W WO2020240998A1 WO 2020240998 A1 WO2020240998 A1 WO 2020240998A1 JP 2020011696 W JP2020011696 W JP 2020011696W WO 2020240998 A1 WO2020240998 A1 WO 2020240998A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna module
feeding
circuit
feeding element
dielectric
Prior art date
Application number
PCT/JP2020/011696
Other languages
English (en)
French (fr)
Inventor
良 小村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080054183.9A priority Critical patent/CN114175400A/zh
Publication of WO2020240998A1 publication Critical patent/WO2020240998A1/ja
Priority to US17/535,686 priority patent/US20220085521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays

Definitions

  • the present disclosure relates to an antenna module and a communication device equipped with the antenna module, and more specifically, to a technique for improving the characteristics of an antenna module including a circuit such as a filter in the same substrate as the antenna element.
  • Patent Document 1 discloses a patch antenna with a built-in filter in which a radiation conductor (antenna element) and a filter are provided in the same substrate made of a dielectric material.
  • the filter is arranged so that at least a part of the patch antenna overlaps with the radiation electrode when viewed in a plan view.
  • Such an antenna may be applied to a communication terminal such as a mobile phone or a smartphone, for example.
  • a communication terminal such as a mobile phone or a smartphone, for example.
  • Patent Document 1 As in JP-A-2001-09436 (Patent Document 1), by arranging a circuit such as a filter on the same substrate as the antenna element (radiating element), the entire antenna module can be miniaturized. However, when the height of the antenna module is further reduced, the distance between the radiating element and the circuit overlapping the radiating element is further shortened, which may cause deterioration of the antenna characteristics such as narrowing the band.
  • the present disclosure has been made to solve such a problem, and an object of the present invention is to suppress deterioration of antenna characteristics in an antenna module including other circuits in the same substrate as the radiating element and to reduce the height. It is to realize the conversion.
  • the antenna module includes a radiation element, a feeding wiring, a first ground electrode, and a first circuit.
  • the radiating element includes a first feeding element and a second feeding element adjacent to each other.
  • the first ground electrode is arranged so as to face the radiating element.
  • the power feeding wiring transmits a high frequency signal from the power feeding circuit to the radiating element.
  • the first circuit is connected between the power supply circuit and the power supply wiring.
  • the first ground electrode includes a first portion facing the radiating element and a second portion arranged in an upper layer closer to the radiating element than the first portion.
  • the second part is arranged between the first feeding element and the second feeding element, and ii) the first circuit overlaps with the second part and , Arranged in a layer below the second portion.
  • a part of the ground electrode is arranged (raised at the bottom) on the feeding element side between two adjacent feeding elements, and the bottom is raised.
  • a circuit (first circuit) is arranged below the portion. Since the first circuit does not overlap with the two feeding elements when the antenna module is viewed in a plan view, the influence of the first circuit on the antenna characteristics when the height is lowered is reduced. Further, even if the height is lowered, the space for arranging the first circuit can be secured, so that the deterioration of the characteristics of the first circuit can be suppressed.
  • FIG. 1 is a diagram for explaining the relationship between the polarization direction and isolation.
  • FIG. 2 is a diagram for explaining the relationship between the polarization direction and isolation. It is a figure for demonstrating the relationship between the arrangement of the bottom upper part and directivity in the case of a 2 ⁇ 2 array antenna.
  • FIG. 1 is an example of a block diagram of a communication device 10 to which the antenna module 100 according to the first embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, a personal computer having a communication function, or the like.
  • An example of the frequency band of the radio wave used for the antenna module 100 according to the present embodiment is a radio wave in the millimeter wave band having a center frequency of, for example, 28 GHz, 39 GHz, 60 GHz, etc., but radio waves in frequency bands other than the above are also available. Applicable.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, an antenna device 120, and a filter device 105.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal by the RFIC 110, and radiates it from the antenna device 120 via the filter device 105. Further, the communication device 10 transmits the high frequency signal received by the antenna device 120 to the RFIC 110 via the filter device 105, down-converts the signal, and processes the signal by the BBIC 200.
  • FIG. 1 shows an example in which the antenna device 120 is formed by a plurality of feeding elements 121 arranged in a two-dimensional array, but the one-dimensional array in which the plurality of feeding elements 121 are arranged in a row. It may be.
  • the feeding element 121 is a patch antenna having a substantially square flat plate shape.
  • the RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesizer / demultiplexer. It includes 116, a mixer 118, and an amplifier circuit 119.
  • switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT side, and the switch 117 is connected to the transmitting side amplifier of the amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the low noise amplifiers 112AR to 112DR side, and the switch 117 is connected to the receiving side amplifier of the amplifier circuit 119.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116, passes through four signal paths, and is fed to different feeding elements 121.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115D arranged in each signal path.
  • the received signal which is a high-frequency signal received by each feeding element 121, passes through four different signal paths and is combined by the signal synthesizer / demultiplexer 116.
  • the combined received signal is down-converted by the mixer 118, amplified by the amplifier circuit 119, and transmitted to the BBIC 200.
  • the filter device 105 includes filters 105A to 105D.
  • the filters 105A to 105D are connected to switches 111A to 111D in the RFIC 110, respectively.
  • the filters 105A to 105D have a function of attenuating a signal in a specific frequency band.
  • the filters 105A to 105D may be a bandpass filter, a highpass filter, a lowpass filter, or a combination thereof.
  • the high frequency signal from the RFIC 110 passes through the filters 105A to 105D and is supplied to the corresponding power feeding element 121.
  • the filter device 105 and the antenna device 120 are shown separately, but in the present disclosure, the filter device 105 is formed inside the antenna device 120, as will be described later.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the devices switch, power amplifier, low noise amplifier, attenuator, phase shifter
  • corresponding to each power feeding element 121 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding power feeding element 121. ..
  • FIG. 2 a plan view of the antenna module 100 is shown in the upper row (FIG. 2 (a)), and a side perspective view is shown in the lower row (FIG. 2 (b)).
  • the antenna module 100 is an array antenna having two feeding elements 1211 and 1212 as radiation elements
  • the antenna module includes a dielectric substrate 130, feeding wiring 141, 142, circuits 151, 152, connection wirings 161, 162, and ground electrodes GND1, GND2.
  • the normal direction (radio wave radiation direction) of the dielectric substrate 130 is defined as the Z-axis direction
  • the plane perpendicular to the Z-axis direction is defined by the X-axis and the Y-axis.
  • the positive direction of the Z axis in each figure may be referred to as an upper side
  • the negative direction may be referred to as a lower side.
  • the dielectric substrate 130 includes, for example, a low temperature co-fired ceramics (LCC) multilayer substrate, a multilayer resin substrate formed by laminating a plurality of resin layers composed of resins such as epoxy and polyimide.
  • the dielectric substrate 130 does not necessarily have to have a multi-layer structure, and may be a single-layer substrate.
  • the dielectric substrate 130 has a substantially rectangular shape, and the feeding elements 1211, 1212 are arranged in a layer (upper layer) close to the upper surface 131 (the surface in the positive direction of the Z axis).
  • the feeding elements 121 and 1212 may be exposed on the surface of the dielectric substrate 130, or may be arranged inside the dielectric substrate 130 as in the example of FIG.
  • a case where only a feeding element is used as the radiating element will be described as an example for ease of explanation, but in addition to the feeding element, a non-feeding element and / or a parasitic element
  • the configuration may be such that the elements are arranged.
  • the feeding elements 121 and 1212 are patch antennas having a substantially square planar shape.
  • the feeding elements 121 and 1212 are arranged adjacent to each other along the X-axis direction of the dielectric substrate 130.
  • the layer (lower layer) closer to the lower surface 132 (the surface in the negative direction of the Z axis) than the feeding elements 1211, 1212 is a flat plate-shaped ground electrode facing the feeding elements 1211, 1212. GND2 is placed. Further, the ground electrode GND1 is arranged in the layer between the feeding elements 1211 and 1212 and the ground electrode GND2.
  • RFIC 110 is mounted on the lower surface 132 of the dielectric substrate 130 via solder bumps 170.
  • the RFIC 110 may be connected to the dielectric substrate 130 by using a multi-pole connector instead of the solder connection.
  • a part of the ground electrode GND1 between the feeding element 1211 and the feeding element 1212 is located above the radiation element closer to the other part. It is located on the side.
  • the portion of the ground electrode GND1 facing the radiating element is referred to as a first portion 181 and the portion arranged above the first portion 181 is referred to as a second portion.
  • the second portion 182 may also be referred to as "bottom top”.
  • the first portion 181 and the second portion 182 of the ground electrode GND1 are connected by a via 183.
  • an opening is formed in a portion overlapping the second portion 182 in a plan view.
  • the thickness (top height) of the dielectric between the second portion 182 of the ground electrode GND1 and the ground electrode GND2 is increased between the first portion 181 and the ground electrode GND2. It will be thicker than the thickness of the dielectric between.
  • the circuits 151 and 152 are, for example, circuits corresponding to the filter device 105 shown in FIG.
  • the circuits 151 and 152 are arranged between the second portion 182 of the ground electrode GND1 and the ground electrode GND2. In other words, when the antenna module 100 is viewed in a plan view, the circuits 151 and 152 overlap with the second portion 182 of the ground electrode GND1 and are arranged in a layer below the second portion 182.
  • a high frequency signal is supplied from the RFIC 110 to the feeding point SP1 of the feeding element 1211 via the connecting wiring 161 and the circuit 151 and the feeding wiring 141.
  • the power feeding wiring 141 descends downward from the circuit 151 by the via 1411, extends the layer between the ground electrode GND1 and the ground electrode GND2 by the wiring pattern 1412, and rises to the feeding point SP1 by the via 1413.
  • a high frequency signal is supplied from the RFIC 110 to the feeding point SP2 of the feeding element 1212 via the connecting wiring 162, the circuit 152, and the feeding wiring 142.
  • the feeding wiring 142 descends downward from the circuit 152 by the via 1421, extends a layer between the ground electrode GND1 and the ground electrode GND2 by the wiring pattern 1422, and rises to the feeding point SP2 by the via 1423.
  • the feeding point of each feeding element is arranged at a position offset in the positive direction of the Y axis from the center of the feeding element.
  • the conductors constituting the radiating element, the electrode, the via, etc. are made of aluminum (Al), copper (Cu), gold (Au), silver (Ag), and a metal containing an alloy thereof as a main component. It is formed.
  • each filter may be formed as a line arranged between the ground electrodes GND1 and GND2, that is, a strip line.
  • a filter formed by a strip line it is generally known that the thickness of the dielectric material between the ground electrodes affects the Q value, as shown in FIG. More specifically, as shown in line LN10 in FIG. 3, the thicker the dielectric, the higher the Q value. Therefore, when the filter is formed as a strip line, it is desirable to make the thickness of the dielectric between the ground electrodes (H2 in FIG. 2) as thick as possible in the portion where the filter is formed in order to secure a high Q value.
  • FIG. 4 is a side perspective view of the antenna modules 100A and 100B in the comparative example.
  • each ground electrode has a flat plate shape, and the overall dimensions (thickness) of the dielectric substrate 130 are the same as those of the antenna module 100 shown in FIG.
  • the antenna module 100A (FIG. 4A) is an example in which the filter characteristics are prioritized, and the distance between the ground electrodes GND1 and GND2 is H2, which is the same as in FIG. In this case, since the distance between the feeding elements 121 and 1212 and the ground electrode GND1 is H1'( ⁇ H1), the antenna characteristics may not be ensured.
  • the antenna module 100B (FIG. 4B) is an example in which the antenna characteristics are prioritized, and the distance between the feeding elements 1211 and 1212 and the ground electrode GND1 is H1 similar to that in FIG. ..
  • the distance between the ground electrodes GND1 and GND2 is H2'( ⁇ H2), there is a possibility that the Q value of the filter cannot be sufficiently secured.
  • the antenna characteristics and the filter characteristics are different. Although it can be secured, the overall thickness of the dielectric substrate 130 becomes thick. Therefore, it becomes a factor that hinders the thinning of the antenna device, and there may be a case where a desired device size cannot be realized.
  • the portion of the ground electrode GND1 (second portion 182) between the feeding element 1211 and the feeding element 1212 is raised, and the portion of the ground electrode GND1 is raised.
  • the filter circuits 151, 152
  • the distance H1 between the feeding element 1211, 1212 and the ground electrode GND1 is secured, and the distance H2 between the ground electrodes of the portion where the filter is formed is secured. be able to.
  • the bottom upper part (second part 182) of the ground electrode GND1 is arranged equidistant from the two feeding elements 1211 and 1212 in consideration of the symmetry of the antenna characteristics. Further, it is desirable that the dimension of the side facing each feeding element at the bottom and the portion (dimension in the Y-axis direction in FIG. 2) is larger than the dimension of one side of the feeding elements 1211 and 1212. In FIG. 2, the dimension of the bottom top in the Y-axis direction is shorter than the dimension of the dielectric substrate 130 in the Y-axis direction, but the bottom top is formed over the entire area of the dielectric substrate 130 in the Y-axis direction. May be good.
  • the "feeding element 1211" and the “feeding element 1212” correspond to the “first feeding element” and the “second feeding element” in the present disclosure, respectively. Further, the “circuits 151 and 152” correspond to the "first circuit” in the present disclosure.
  • the "first circuit” may be a circuit other than the filter.
  • a matching circuit such as a stub, a connection circuit such as wiring, an integrated circuit in which a large number of circuits are integrated, or the like may be applied.
  • FIG. 5 The relationship between the height above the bottom of the ground electrode GND1 (second portion 182) and the isolation between the two feeding elements 1211 and 1212 will be described with reference to FIG.
  • the horizontal axis shows the frequency
  • the vertical axis shows the isolation between the feeding elements.
  • the broken line LN21 has no bottom raising (bottom height 0 mm)
  • the alternate long and short dash line LN22 has a bottom height of 0.2 mm
  • the two-dot chain line LN23 has a bottom raising height of 0.4 mm
  • the solid line LN20 Shows the isolation when the height above the bottom is 0.8 mm.
  • FIG. 5 in the target frequency band near 28 GHz, it can be seen that the higher the height above the bottom, the better the isolation between the feeding elements.
  • the distance between the top of the bottom and each feeding element 1211, 1212 becomes shorter. Since the bottom upper portion is arranged between the feeding element 1211 and the feeding element 1212, the higher the height above the bottom, the more the electric lines of force leaking from the feeding element 1211 to the feeding element 1212 become the bottom upper portion of the ground electrode GND1. It becomes easy to be caught by. Therefore, the higher the height above the bottom, the better the isolation between the feeding elements.
  • the bottom upper part in the layer on which the feeding element is arranged or the layer on the lower side thereof.
  • FIG. 6 shows that when the two feeding elements are adjacent to each other in a direction (X-axis direction) perpendicular to the polarization direction (Y-axis direction) as in FIG. 2, in other words, the extending direction of the bottom top. It is a figure which shows the isolation when and the polarization direction are the same direction. On the other hand, in FIG.
  • FIGS. 6 and 7 the upper row (FIGS. 6 (a) and 7 (a)) shows a schematic diagram of the antenna module showing the polarization direction, and the lower row (FIGS. 6 (b) and 7 (a)). b)) shows the isolation characteristics.
  • the broken lines (LN31, LN41) show the isolation when the bottom is not raised, and the solid lines (LN30, LN40) show the isolation when the bottom is raised.
  • the improvement effect of isolation is greater when the feeding elements are adjacent to each other in the direction perpendicular to the polarization direction (FIG. 6). .. This is because the upper part of the bottom prevents the current component perpendicular to the polarization direction from flowing through the surface layer of the ground electrode GND1 and flowing into the adjacent feeding element.
  • FIG. 8 is a diagram for explaining the relationship between the arrangement of the bottom and the directivity in the case of an array antenna arranged two-dimensionally in 2 ⁇ 2.
  • FIG. 8A in the upper row shows a schematic diagram of the antenna arrangement when the bottom upper portion is not formed, and the directivity of the antenna.
  • FIG. 8B in the middle row there is a bottom between the feeding elements (between the feeding element 1211 and the feeding element 1212 and between the feeding element 1213 and the feeding element 1214) adjacent to each other in the direction perpendicular to the polarization direction.
  • a schematic diagram and directionality of the antenna arrangement when the upper parts 1821 and 1822 are arranged are shown, and in FIG. 8 (c) at the lower stage, in addition to the case of FIG.
  • a schematic diagram and directionality of the antenna arrangement when the bottom tops 1823 and 1824 are also arranged between the feeding elements (between the feeding element 1211 and the feeding element 1213, and between the feeding element 1212 and the feeding element 1214) are shown. There is.
  • the directivity diagram shows the gain of the radiated radio waves with contour lines.
  • the ground electrode GND1 is located in the X-axis direction and between the feeding elements. Since the symmetry in the Y-axis direction is improved, the symmetry of the directivity of each feeding element is improved. Therefore, as compared with the case of FIG. 8B, the symmetry is improved and the directivity is close to a perfect circle.
  • FIG. 9 is a diagram showing the directivity when radio waves are radiated from one radiating element in a 2 ⁇ 2 array antenna.
  • FIG. 9A in the upper row shows a case where the bottom upper portion of the ground electrode is not provided between the feeding elements
  • FIG. 9B in the lower row shows the polarization direction (Y-axis direction) and the polarization direction.
  • the case where the bottom upper part is provided between the feeding elements adjacent to each other in the direction perpendicular to (X-axis direction) is shown.
  • the bottom upper portion 1825 in FIG. 9B is formed in a cross shape by connecting the bottom upper portion extending in the X-axis direction and the bottom upper portion extending in the Y-axis direction to each other.
  • the directivity in a state where the high frequency signal is supplied only to the feeding element 1211 and the high frequency signal is not supplied to the other feeding elements is shown. Also in FIG. 9, the directivity diagram shows the gain of the radiated radio wave by contour lines.
  • peaks are generated in the gain of the radiated radio wave.
  • the peak AR1 is generated in the vicinity of the feeding element 1213 adjacent in the polarization direction
  • the peak AR2 is generated in the vicinity of the feeding element 1212 adjacent in the direction perpendicular to the polarization direction.
  • the gain of the peak AR2 near the feeding element 1212 is lowered, and the peak AR2 near the feeding element 1213 is also located near the feeding element 1211 (AR3). ) Has changed. That is, the peak position of the gain changes to the vicinity of the feeding element 1211 radiating radio waves depending on the arrangement of the bottom and the top. This is because the bottom top 1825 improves the isolation between the adjacent feeding elements, so that the high frequency signal leaking to the feeding elements 121 and 1213 due to the feeding to the feeding element 1211 is reduced, thereby reducing the feeding element. It is considered that the gain of the radio waves radiated from 1212, 1213 was suppressed.
  • Each of the other three feeding elements also shows the same directivity when radiating radio waves by itself, and when radiating radio waves from four feeding elements at the same time, the directivity as shown in FIG. 8 as a whole. It becomes.
  • the feeding elements 121 and 1212 correspond to the “first feeding element” or the “second feeding element” in the present disclosure.
  • the feeding element 1213 corresponds to the “third feeding element” of the present disclosure
  • the feeding element 1214 is the main.
  • the feeding element 1214 is the main.
  • the filter When arranging the filter in the antenna device, it is necessary to consider the antenna characteristics and the filter characteristics as described above. Here, considering the relationship between these characteristics and the dielectric constant of the dielectric substrate, it is preferable to lower the dielectric constant of the dielectric substrate in order to widen the antenna band, while the Q value is set for the filter characteristics. In order to increase the value, it is preferable to increase the dielectric constant.
  • the antenna characteristics and the filter characteristics can be in a trade-off relationship with respect to the dielectric constant. Therefore, when a dielectric substrate is formed of a single dielectric constant, there are necessarily two characteristics. It may not be a suitable dielectric constant.
  • both the antenna characteristics and the filter characteristics are improved by forming a dielectric substrate by combining a dielectric having a dielectric constant suitable for an antenna and a dielectric having a dielectric constant suitable for a filter.
  • Adopt a configuration that allows.
  • FIG. 10 is a side perspective view of the antenna modules 100D to 100F according to the modified example.
  • the dielectric substrate 130A is formed by combining a dielectric 135 having a dielectric constant suitable for an antenna and a dielectric 136 having a dielectric constant suitable for a filter.
  • the relative permittivity of the dielectric 135 is about 3, and the relative permittivity of the dielectric 136 is about 6.
  • the dielectric substrate 130A has a layer above the second portion 182 (upper bottom) of the ground electrode GND1 formed of the dielectric 135 to form a raised portion.
  • the layer below the layer is formed of the dielectric 136.
  • the portion where the filter is formed (the layer between the second portion 182 and the ground electrode GND2) is formed of the dielectric 136, the configuration of the dielectric substrate gives priority to the filter characteristics. There is.
  • the dielectric substrate 130A has a layer above the first portion 181 of the ground electrode GND1 formed of the dielectric 135 and below the first portion 181.
  • the side layer is made of dielectric 136.
  • the portion where the filter is formed is a mixture of the dielectric 135 and the dielectric 136, but the portion where the antenna is formed (the layer between the feeding element and the first portion 181) is suitable for the antenna. It is made of a dielectric 135. That is, the antenna module 100E has a dielectric substrate configuration that gives priority to antenna characteristics.
  • the layer above the ground electrode GND1 is formed of the dielectric 135, and the layer below the ground electrode GND1 is formed of the dielectric 136.
  • the lower side of the second portion 182 is formed of the dielectric 136, and the other portions are made of the dielectric 135. It is formed.
  • the portion where the antenna is formed is formed of the dielectric 135 suitable for the antenna, and the portion where the filter is formed is formed of the dielectric 136 suitable for the filter. Therefore, it is possible to optimize both the antenna characteristics and the filter characteristics.
  • FIGS. 10A and 10B since the layers having the same level are formed of the same dielectric material, it is necessary to give priority to either the antenna characteristic or the filter characteristic. Since the manufacturing process is relatively easy, the manufacturing cost can be reduced as compared with the case of FIG. 10C. On the other hand, in the case of FIG. 10C, it is necessary to form layers of the same level with different dielectrics, which makes the manufacturing process somewhat complicated. Which of these configurations is to be adopted is appropriately selected in consideration of the desired antenna characteristics, filter characteristics, and manufacturing cost.
  • the antenna characteristics and / or the filter characteristics can be further improved by forming a dielectric substrate by combining a dielectric suitable for an antenna and a dielectric suitable for a filter.
  • an additional circuit such as a branch circuit for distributing the high frequency signal after passing through the filter to a plurality of feeding elements or a detection circuit for monitoring the power supplied to each feeding element is provided.
  • a branch circuit for distributing the high frequency signal after passing through the filter to a plurality of feeding elements or a detection circuit for monitoring the power supplied to each feeding element.
  • FIG. 11 is a side perspective view of the antenna module 100G according to the second embodiment.
  • the antenna module 100G has a configuration in which circuits 191 and 192 are added to the side perspective view of the antenna module 100 shown in FIG. 2 (b).
  • the description of the elements overlapping with the antenna module 100 of FIG. 2 will not be repeated.
  • circuits 191 and 192 are, for example, branch circuits 190 as shown in FIG.
  • the high frequency signal that has passed through the filters 150 (circuits 151 and 152) from the RFIC 110 is branched by the branch circuit 190 (circuits 191 and 192), and a plurality of high frequency signals are branched via the power feeding wiring 140A (feeding wiring 141A and 142A). It is supplied to the power feeding element 121.
  • the high frequency signal is branched by the branch circuit 190 and distributed to the two feeding elements 121, but the high frequency signal may be distributed to three or more feeding elements.
  • the branch circuit 190 (circuits 191, 192) is arranged in a layer between the first portion 181 of the ground electrode GND1 and the ground electrode GND2, as shown in FIG. With such an arrangement, the influence of the additional circuit on the filter characteristics can be reduced.
  • FIG. 13 is a diagram showing an example of a detection circuit 195 for monitoring the power supplied to each power feeding element.
  • the detection circuit (coupler) 195 is a line arranged in parallel with the power feeding wiring 140 connecting the filter 150 and the power feeding element 121.
  • the line is electromagnetically coupled to the power supply wiring 140, a signal corresponding to the current (electric power) flowing through the power supply wiring 140 is detected.
  • the detected signal is fed back to the RFIC 110 or the BBIC 200, and the output power of the radiated radio wave is adjusted by adjusting the amplifier circuit included in the RFIC 110.
  • the detection circuit 195 needs to be arranged in the path from the filter 150 to the feeding element 121, it is arranged in the layer between the first portion 181 of the ground electrode GND1 and the ground electrode GND2. As a result, the influence of the additional circuit on the filter characteristics can be reduced.
  • FIG. 14 is a block diagram of a communication device 10X to which the antenna module 100X according to the third embodiment is applied.
  • the communication device 10X includes an antenna module 100X and a BBIC200.
  • the antenna module 100X includes an RFIC 110X, an antenna device 120X, and a filter device 106.
  • the antenna device 120X includes a feeding element 121 and a non-feeding element 122 as radiation elements.
  • the antenna device 120X is a so-called dual band type antenna device capable of radiating radio waves of two different frequency bands.
  • FIG. 15 is a side perspective view of the antenna module 100X of FIG.
  • the antenna module 100X includes feeding elements 1211, 1212 and non-feeding elements 1221, 1222 as radiation elements.
  • the non-feeding element 1221 is arranged in the layer between the feeding element 1211 and the ground electrode GND1 on the dielectric substrate 130.
  • the feeding wiring 141 penetrates the non-feeding element 1221 and is connected to the feeding point SP1 of the feeding element 1211.
  • the non-feeding element 1222 is arranged in the layer between the feeding element 1212 and the ground electrode GND1 on the dielectric substrate 130.
  • the power feeding wiring 142 penetrates the non-feeding element 1222 and is connected to the feeding point SP2 of the feeding element 1212.
  • the size of the non-feeding element 1221,1222 is larger than the size of the feeding element 1211,1212. Therefore, the resonance frequency of the non-feeding elements 1221, 1222 is lower than the resonance frequency of the feeding elements 1211, 1212.
  • the non-feeding elements 1221 and 1222 can emit radio waves having a frequency lower than that of the feeding elements 1211 and 1212. it can.
  • the RFIC110X is configured to be able to supply high frequency signals in two frequency bands.
  • the RFIC110X includes switches 111A to 111H, 113A to 113H, 117A, 117B, power amplifiers 112AT to 112HT, low noise amplifiers 112AR to 112HR, attenuators 114A to 114H, phase shifters 115A to 115H, and signal synthesis / minute. It includes wave devices 116A and 116B, mixers 118A and 118B, and amplifier circuits 119A and 119B.
  • the amplifier circuit 119B is a circuit for a high frequency signal in a high frequency band.
  • the switches 111A to 111H and 113A to 113H are switched to the power amplifiers 112AT to 112HT side, and the switches 117A and 117B are connected to the transmitting side amplifiers of the amplifier circuits 119A and 119B.
  • the switches 111A to 111H and 113A to 113H are switched to the low noise amplifiers 112AR to 112HR, and the switches 117A and 117B are connected to the receiving side amplifiers of the amplifier circuits 119A and 119B.
  • the filter device 106 includes diplexers 106A to 106D.
  • Each diplexer has a low-pass filter (filters 106A1, 106B1, 106C1, 106D1) that passes high-frequency signals in the low frequency band, and a high-pass filter (filters 106A2, 106B2, 106C2, 106D2) that passes high-frequency signals in the high frequency band.
  • the filters 106A1, 106B1, 106C1, 106D1 are connected to switches 111A to 111D in the RFIC 110X, respectively. Further, the filters 106A2, 106B2, 106C2, 106D2 are connected to the switches 111E to 111H in the RFIC110X, respectively.
  • Each of the diplexers 106A to 106D is connected to the corresponding power feeding element 121.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuits 119A and 119B, and up-converted by the mixers 118A and 118B.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116A and 116B, passes through the corresponding signal path, and is fed to different power feeding elements 121.
  • the transmission signal from the switches 111A to 111D of the RFIC 110X is radiated from the corresponding non-feeding element 122 via the filters 106A1 to 106D1, respectively.
  • the transmission signals from the switches 111E to 111H of the RFIC 110X are radiated from the corresponding power feeding elements 121 via the filters 106A2 to 106D2, respectively.
  • the directivity of the antenna device 120X can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115H arranged in each signal path.
  • the received signal which is a high-frequency signal received by each radiating element (feeding element 121, non-feeding element 122), is transmitted to the RFIC 110X via the filter device 106, and signal synthesis / minute is transmitted via four different signal paths.
  • the waves are combined in the wave devices 116A and 116B.
  • the combined received signal is down-converted by the mixers 118A and 118B, amplified by the amplifier circuits 119A and 119B, and transmitted to the BBIC 200.
  • a diplexer (circuit 151, 152) is arranged between the second portion 182 (bottom top) of the ground electrode GND1 and the ground electrode GND2.
  • FIG. 16 is a block diagram of a communication device 10Y to which the antenna module 100Y according to the fourth embodiment is applied.
  • the communication device 10Y includes an antenna module 100Y and a BBIC 200.
  • the antenna module 100Y includes an RFIC 110Y, an antenna device 120, and a filter device 105Y.
  • the high frequency signal from the RFIC 110 was transmitted to the antenna device 120 via the filter device 105.
  • the RFIC 110Y and the antenna device 120 are directly connected by a power feeding wiring, and the filter device 105Y is connected between the signal synthesizer / demultiplexer 116 and the switch 117 in the RFIC 110Y.
  • the filter device 105Y is arranged outside the RFIC 110Y, and specifically, is formed inside the antenna device 120 as described later in FIG.
  • FIG. 17 shows a detailed configuration of the antenna module 100Y of FIG.
  • a plan view of the antenna module 100Y is shown in FIG. 17A in the upper row.
  • FIG. 17 (b) in the lower row shows a side perspective view seen from the line XVII-XVII in the plan view.
  • the dielectric is omitted for ease of explanation.
  • the antenna module 100Y is an antenna array in which four feeding elements 1211-1214 are arranged in a 2 ⁇ 2 two-dimensional manner, as shown in the plan view of FIG. 17 (a).
  • a bottom upper portion 1826 is provided between feeding elements adjacent to each other in the polarization direction (Y-axis direction) and the direction perpendicular to the polarization direction (X-axis direction).
  • the bottom upper portion 1826 is formed in a cross shape by connecting the bottom upper portion extending in the X-axis direction and the bottom upper portion extending in the Y-axis direction to each other.
  • the ground electrodes GND1 and GND2 are formed so as to face the feeding element.
  • the ground electrode GND1 formed between the power feeding element and the ground electrode GND2 is formed with a second portion 182 corresponding to the upper bottom 1826.
  • a circuit 151Y corresponding to the filter device 105Y shown in FIG. 16 is formed in the portion of the second portion 182.
  • the circuit 151Y is connected to the RFIC 110Y by the connection wirings 161, 162. Further, the power feeding elements 1211 to 1214 are directly connected to the RFIC 110Y by the power feeding wirings 141 to 144, respectively.
  • the filter device By arranging the filter device in a common path for the four feeding elements like the antenna module 100Y, the number of filters formed in the antenna device can be reduced, so that the entire device can be made smaller and thinner. Can be achieved.
  • the filter device 105Y is provided in place of the filter device 105 has been described in the antenna module 100Y shown in FIG. 16, a configuration in which both the filter device 105 and the filter device 105Y are provided may be provided. Further, the "circuit 151Y" in the fourth embodiment corresponds to the "second circuit" in the present disclosure.
  • 10, 10X, 10Y communication device 100, 100A to 100G, 100X, 100Y antenna module, 105, 105Y, 106 filter device, 105A to 105D, 106A1 to 106D1, 106A2 to 106D2,150 filter, 106A to 106D diplexer, 110, 110X, 110Y RFIC, 111A to 111H, 113A to 113H, 117, 117A, 117B switch, 112AR to 112HR low noise amplifier, 112AT to 112HT power amplifier, 114A to 114H attenuater, 115A to 115H phase shifter, 116,116A, 116B Signal synthesizer / demultiplexer, 118, 118A, 118B mixer, 119, 119A, 119B amplifier circuit, 120, 120X antenna device, 121, 1211, 1212, 1213, 1214 feeding element, 122, 1221, 1222 non-feeding element, 130 , 130A dielectric substrate, 120

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

アンテナモジュール(100)は、互いに隣接する給電素子(1211,1212)を含む放射素子と、給電配線(141,142)と、接地電極(GND1)と、フィルタ回路(151,152)とを備える。接地電極は、放射素子に対向して配置される。給電配線は、RFIC(110)から放射素子に対して高周波信号を伝達する。フィルタ回路は、給電回路と給電配線との間に接続される。接地電極は、放射素子に対向する第1部分(181)と、第1部分よりも放射素子に近い上方側の層に配置された第2部分(182)とを含む。アンテナモジュールを法線方向から平面視した場合に、i)第2部分は2つの給電素子間に配置されており、ii)フィルタ回路は、第2部分と重なり、かつ、第2部分よりも下方側の層に配置される。

Description

アンテナモジュールおよびそれを搭載した通信装置
 本開示は、アンテナモジュールおよびそれを搭載した通信装置に関し、より特定的には、アンテナ素子と同じ基板内にフィルタ等の回路を含むアンテナモジュールにおける特性を改善する技術に関する。
 特開2001-094336号公報(特許文献1)には、放射導体(アンテナ素子)とフィルタとが、誘電体材料の同じ基体内に設けられた、フィルタ内蔵型パッチアンテナが開示されている。特開2001-094336号公報(特許文献1)に開示されたフィルタ内蔵型パッチアンテナにおいては、パッチアンテナを平面視した場合に、少なくとも一部が放射電極と重なるようにフィルタが配置されている。
特開2001-094336号公報
 このようなアンテナは、たとえば、携帯電話あるいはスマートフォンなどの通信端末に適用される場合がある。このような通信端末においては、機器の小型化および薄型化が望まれている。
 特開2001-094336号公報(特許文献1)のように、フィルタなどの回路をアンテナ素子(放射素子)と同じ基板内に配置することで、アンテナモジュール全体を小型化することが可能である。しかしながら、アンテナモジュールのさらなる低背化を行なう場合、放射素子と放射素子に重なる回路との距離がさらに短くなってしまい、狭帯域化のようなアンテナ特性の低下を生じる可能性がある。
 また、このような回路がストリップラインとして形成される場合、低背化に伴って回路の接地電極間が狭くなり、回路自体の特性も低下する可能性がある。
 本開示は、このような課題を解決するためになされたものであり、その目的は、放射素子と同じ基板内に他の回路を含むアンテナモジュールにおいて、アンテナの特性の低下を抑制しつつ低背化を実現することである。
 本開示に従うアンテナモジュールは、放射素子と、給電配線と、第1接地電極と、第1回路とを備える。放射素子は、互いに隣接する第1給電素子および第2給電素子を含む。第1接地電極は、放射素子に対向して配置される。給電配線は、給電回路から放射素子に対して高周波信号を伝達する。第1回路は、給電回路と給電配線との間に接続される。第1接地電極は、放射素子に対向する第1部分と、第1部分よりも放射素子に近い上方側の層に配置された第2部分とを含む。アンテナモジュールを法線方向から平面視した場合に、i)第2部分は第1給電素子と第2給電素子との間に配置されており、ii)第1回路は第2部分と重なり、かつ、第2部分よりも下方側の層に配置される。
 本開示に係るアンテナモジュールによれば、隣接する2つの給電素子間において、接地電極の一部が給電素子側に配置(底上げ)された構成(第2部分)となっており、当該底上げされた部分の下方に回路(第1回路)が配置される。第1回路は、アンテナモジュールを平面視した場合に2つの給電素子とは重なっていないため、低背化した場合の第1回路によるアンテナ特性への影響が低減される。また、低背化を行なっても、第1回路を配置するスペースが確保できるので、第1回路の特性の低下を抑制することができる。
実施の形態1に従うアンテナモジュールが適用される通信装置のブロック図である。 図1のアンテナモジュールの平面図および側面透視図である。 誘電体の厚みとQ値との関係を説明するための図である。 比較例におけるアンテナモジュールの側面透視図である。 接地電極の底上高さとアイソレーションとの関係を説明するための図である。 偏波方向とアイソレーションとの関係を説明するための第1図である。 偏波方向とアイソレーションとの関係を説明するための第2図である。 2×2のアレイアンテナの場合における、底上部の配置と指向性との関係を説明するための図である。 2×2のアレイアンテナの場合において、1つの放射素子から電波を放射した場合の指向性を説明するための図である。 誘電率の異なる誘電体を組み合わせた誘電体基板を用いる場合の変形例のアンテナモジュールの側面透視図である。 実施の形態2に従うアンテナモジュールの側面透視図である。 給電素子とフィルタとの間に分岐回路の模式図である。 給電素子に供給される電力をモニタするための検出回路の模式図である。 実施の形態3に従うアンテナモジュールが適用される通信装置のブロック図である。 図14のアンテナモジュールの側面透視図である。 実施の形態4に従うアンテナモジュールが適用される通信装置のブロック図である。 図16のアンテナモジュールの平面図および側面透視図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の基本構成)
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120と、フィルタ装置105とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を、RFIC110にて高周波信号にアップコンバートし、フィルタ装置105を介してアンテナ装置120から放射する。また、通信装置10は、アンテナ装置120で受信した高周波信号をフィルタ装置105を介してRFIC110へ送信し、ダウンコンバートしてBBIC200にて信号を処理する。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数の給電素子(放射素子)121のうち、4つの給電素子121に対応する構成のみ示され、同様の構成を有する他の給電素子121に対応する構成については省略されている。なお、図1においては、アンテナ装置120が二次元のアレイ状に配置された複数の給電素子121で形成される例を示しているが、複数の給電素子121が一列に配置された一次元アレイであってもよい。本実施の形態においては、給電素子121は、略正方形の平板状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる給電素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各給電素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 フィルタ装置105は、フィルタ105A~105Dを含む。フィルタ105A~105Dは、RFIC110におけるスイッチ111A~111Dにそれぞれ接続される。フィルタ105A~105Dは、特定の周波数帯域の信号を減衰させる機能を有する。フィルタ105A~105Dは、バンドパスフィルタ、ハイパスフィルタ、ローパスフィルタ、あるいは、これらの組み合わせであってもよい。RFIC110からの高周波信号は、フィルタ105A~105Dを通過して、対応する給電素子121に供給される。
 ミリ波帯の高周波信号の場合、伝送線路が長くなると、ノイズ成分が混入しやすくなる傾向にある。そのため、フィルタ装置105と給電素子121との距離をできるだけ短くすることが好ましい。すなわち、給電素子121から高周波信号を放射する直前にフィルタ装置105を通過させることによって、給電素子から不要波が放射されることを抑制することができる。また、給電素子121における受信直後にフィルタ装置105を通過させることによって、受信信号に含まれる不要波を除去することができる。
 なお、図1においては、フィルタ装置105とアンテナ装置120が個別に記されているが、本開示においては、後述するように、フィルタ装置105はアンテナ装置120の内部に形成される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各給電素子121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する給電素子121毎に1チップの集積回路部品として形成されてもよい。
 (アンテナモジュールの構成)
 次に、図2を用いて、本実施の形態1におけるアンテナモジュール100の構成の詳細を説明する。図2においては、上段にアンテナモジュール100の平面図が示されており(図2(a))、下段に側面透視図が示されている(図2(b))。
 図2においては、アンテナモジュール100が、放射素子として2つの給電素子1211,1212を有するアレイアンテナの場合を例として説明する。アンテナモジュールは、給電素子1211,1212およびRFIC110に加えて、誘電体基板130と、給電配線141,142と、回路151,152と、接続配線161,162と、接地電極GND1,GND2とを含む。なお、以降の説明において、誘電体基板130の法線方向(電波の放射方向)をZ軸方向とし、Z軸方向に垂直な面をX軸およびY軸で規定する。また、各図におけるZ軸の正方向を上方側、負方向を下方側と称する場合がある。
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130は必ずしも多層構造でなくてもよく、単層の基板であってもよい。
 誘電体基板130は、略矩形状を有しており、その上面131(Z軸の正方向の面)に近い層(上方側の層)に給電素子1211,1212が配置されている。給電素子1211,1212は、誘電体基板130表面に露出する態様であってもよいし、図2の例のように誘電体基板130の内部に配置されてもよい。なお、本開示の各実施の形態においては、説明を容易にするために、放射素子として給電素子のみが用いられる場合を例として説明するが、給電素子に加えて、無給電素子および/または寄生素子が配置される構成であってもよい。
 給電素子1211,1212は、略正方形の平面形状を有するパッチアンテナである。給電素子1211,1212は、誘電体基板130のX軸方向に沿って隣接して配置される。
 誘電体基板130において給電素子1211,1212よりも下面132(Z軸の負方向の面)に近い層(下方側の層)には、給電素子1211,1212に対向して、平板形状の接地電極GND2が配置される。また、給電素子1211,1212と接地電極GND2との間の層には、接地電極GND1が配置される。
 誘電体基板130の下面132には、はんだバンプ170を介してRFIC110が実装されている。なお、RFIC110は、はんだ接続に代えて、多極コネクタを用いて誘電体基板130に接続されてもよい。
 アンテナモジュール100においては、誘電体基板130の法線方向から平面視した場合に、接地電極GND1における給電素子1211と給電素子1212との間の一部が、他の部分よりも放射素子に近い上方側に配置されている。以降の説明において、接地電極GND1の放射素子に対向する部分を第1部分181と称し、第1部分181よりも上方側に配置された部分を第2部分と称する。なお、第2部分182を「底上部」とも称する場合がある。接地電極GND1の第1部分181と第2部分182とは、ビア183で接続されている。接地電極GND1の第1部分181においては、平面視して第2部分182と重なる部分に開口部が形成されている。
 接地電極GND1をこのような構成とすることにより、接地電極GND1の第2部分182と接地電極GND2との間の誘電体の厚み(底上高さ)は、第1部分181と接地電極GND2との間の誘電体の厚みよりも厚くなる。
 回路151,152は、たとえば、図1で示したフィルタ装置105に対応する回路である。回路151,152は、接地電極GND1の第2部分182と接地電極GND2との間に配置される。言い換えれば、アンテナモジュール100を平面視した場合に、回路151,152は接地電極GND1の第2部分182と重なっており、かつ、第2部分182よりも下方側の層に配置されている。
 RFIC110から、接続配線161、回路151および給電配線141を介して、給電素子1211の給電点SP1に高周波信号が供給される。給電配線141は、ビア1411により回路151から下方側に立ち下がり、配線パターン1412によって接地電極GND1と接地電極GND2との間の層を延伸し、ビア1413によって給電点SP1まで立上がっている。
 また、RFIC110から、接続配線162、回路152および給電配線142を介して、給電素子1212の給電点SP2に高周波信号が供給される。給電配線142は、ビア1421により回路152から下方側に立ち下がり、配線パターン1422によって接地電極GND1と接地電極GND2との間の層を延伸し、ビア1423によって給電点SP2まで立上がっている。
 図2の例においては、各給電素子の給電点は、給電素子の中心からY軸の正方向にオフセットした位置に配置されている。給電点をこのような位置とすることで、各給電素子からはY軸方向を偏波方向とする電波が放射される。
 図2において、放射素子、電極、およびビア等を構成する導体は、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、および、これらの合金を主成分とする金属で形成されている。
 上述のように、回路151,152としてフィルタが形成される場合、各フィルタは、接地電極GND1,GND2の間に配置された線路、すなわちストリップラインとして形成される場合がある。ストリップラインにより形成されたフィルタにおいては、一般的に、図3に示されるように、接地電極間の誘電体厚みがQ値に影響することが知られている。より具体的には、図3の線LN10のように、誘電体の厚みが厚くなるほどQ値が高くなる。したがって、フィルタをストリップラインとして形成する場合、高いQ値を確保するためにはフィルタを形成する部分における接地電極間の誘電体の厚み(図2におけるH2)をできるだけ厚くすることが望ましい。
 一方で、アンテナの損失低減および周波数帯域幅の広域化などのアンテナ特性を向上させるためには、放射素子と接地電極との間の誘電体の厚み(図2におけるH1)をある程度確保する必要がある。したがって、アンテナ装置内にフィルタを形成する場合に、接地電極をどのように配置するかによって、アンテナ特性およびフィルタ特性への影響が異なる。
 図4は、比較例におけるアンテナモジュール100A、100Bの側面透視図である。アンテナモジュール100A、100Bにおいては、各接地電極は平板形状とし、誘電体基板130の全体の寸法(厚み)は図2で示したアンテナモジュール100と同じである。
 アンテナモジュール100A(図4(a))は、フィルタ特性を優先した場合の例であり、接地電極GND1,GND2間の距離は図2と同様のH2とされている。この場合、給電素子1211,1212と接地電極GND1との間の距離がH1’(<H1)となるため、アンテナ特性が確保できないおそれがある。
 一方、アンテナモジュール100B(図4(b))は、アンテナ特性を優先した場合の例であり、給電素子1211,1212と接地電極GND1との間の距離が図2と同様のH1とされている。この場合、接地電極GND1,GND2間の距離がH2’(<H2)となるため、フィルタのQ値を十分に確保できないおそれがある。
 また、図示していないが、単純に給電素子1211,1212と接地電極GND1との間の距離をH1とし、接地電極GND1,GND2間の距離をH2とした場合には、アンテナ特性およびフィルタ特性は確保できるものの、誘電体基板130の全体の厚みが厚くなってしまう。そのため、アンテナ装置の薄型化を妨げる要因となり、所望の機器寸法を実現ができない場合が生じ得る。
 本実施の形態1に係るアンテナモジュール100においては、図2で説明したように、給電素子1211と給電素子1212との間の接地電極GND1の部分(第2部分182)を底上げし、当該部分の下方側にフィルタ(回路151,152)を配置することによって、給電素子1211,1212と接地電極GND1との距離H1を確保するとともに、フィルタが形成される部分の接地電極間の距離H2を確保することができる。これによって、装置全体の小型化・薄型化を維持しつつ、アンテナ特性およびフィルタ特性の両方の低下を抑制することができる。
 なお、接地電極GND1の底上部(第2部分182)は、アンテナ特性の対称性を考慮して、2つの給電素子1211,1212から等距離の位置に配置することが望ましい。また、底上部における各給電素子と対向する辺の寸法(図2におけるY軸方向の寸法)は、給電素子1211,1212の一辺の寸法よりも大きいことが望ましい。図2においては、底上部におけるY軸方向の寸法は、誘電体基板130のY軸方向の寸法よりも短いが、誘電体基板130のY軸方向の全域に亘って底上部が形成されていてもよい。
 実施の形態1において、「給電素子1211」および「給電素子1212」は、それぞれ本開示における「第1給電素子」および「第2給電素子」に対応する。また、「回路151,152」は、本開示における「第1回路」に対応する。
 なお、実施の形態1においては、「第1回路」が「フィルタ」である場合を例として説明したが、「第1回路」はフィルタ以外の回路であってもよい。たとえば、スタブなどの整合回路、配線のような接続回路、多数の回路が集積された集積回路などを適用してもよい。
 (アンテナ特性について)
 図5~図10を用いて、本実施の形態1の構成における各種アンテナ特性への影響について説明する。なお、以下の説明においては、28GHzを中心周波数とする電波を用いる場合を例として説明する。
 <アイソレーション特性>
 図5を用いて、接地電極GND1の底上部(第2部分182)の底上高さと、2つの給電素子1211,1212との間のアイソレーションとの関係について説明する。図5においては、横軸に周波数が示されており、縦軸に給電素子間のアイソレーションが示されている。図5において、破線LN21は底上げがない場合(底上高さ0mm)、一点鎖線LN22は底上高さ0.2mmの場合、二点鎖線LN23は底上げ高さ0.4mmの場合、そして実線LN20は底上高さ0.8mmの場合のアイソレーションを示している。図5に示されているように、対象となる28GHz付近の周波数帯域においては、底上高さを高くするほど、給電素子間のアイソレーションが改善していることがわかる。
 底上高さが高くなると、底上部と各給電素子1211,1212との間の距離が短くなる。底上部は、給電素子1211と給電素子1212との間に配置されているため、底上高さが高くなるほど、給電素子1211から給電素子1212へと漏洩する電気力線が接地電極GND1の底上部に捕捉されやすくなる。そのため、底上高さが高くなるほど、給電素子間のアイソレーションが改善される。
 なお、底上部の位置が給電素子よりも上方側になると、給電素子から放射された電波に対する影響が生じるおそれがある。そのため、底上部は給電素子が配置される層あるいはそれよりも下方側の層に配置することが望ましい。
 次に、図6および図7を用いて、各給電素子から放射される電波の偏波方向とアイソレーションとの関係について説明する。図6は、図2と同様に2つの給電素子が、偏波方向(Y軸方向)に対して垂直な方向(X軸方向)に隣接している場合、言い換えれば、底上部の延在方向と偏波方向とが同じ方向である場合のアイソレーションを示す図である。一方、図7は、2つの給電素子が、偏波方向(X軸方向)と同じ方向(X軸方向)に隣接している場合、言い換えれば、底上部の延在方向と偏波方向とが直交している場合のアイソレーションを示す図である。
 図6および図7において、上段(図6(a),図7(a))には偏波方向を示すアンテナモジュールの模式図が示されており、下段(図6(b),図7(b))にはアイソレーション特性が示されている。図6および図7において、破線(LN31,LN41)は底上げされていない場合のアイソレーションを示しており、実線(LN30,LN40)は底上げされている場合のアイソレーションを示している。
 図6(b)と図7(b)とを比較すると、偏波方向に対して垂直な方向に給電素子が隣接する場合(図6)の方が、アイソレーションの改善効果が大きくなっている。これは、底上部によって、偏波方向と垂直となる電流成分が接地電極GND1の表層を伝わって隣接する給電素子に流入することが阻害されているためである。
 <指向性>
 図8は、2×2に二次元配置されたアレイアンテナの場合における、底上部の配置と指向性との関係を説明するための図である。上段の図8(a)には、底上部が形成されない場合のアンテナ配置の模式図、および、アンテナの指向性が示されている。中段の図8(b)には、偏波方向に対して垂直な方向に隣接する給電素子間(給電素子1211と給電素子1212との間、給電素子1213と給電素子1214との間)に底上部1821,1822を配置した場合のアンテナ配置の模式図および指向性が示されており、下段の図8(c)には、図8(b)の場合に加えて、偏波方向に隣接する給電素子間(給電素子1211と給電素子1213との間、給電素子1212と給電素子1214との間)にも底上部1823,1824を配置した場合のアンテナ配置の模式図および指向性が示されている。なお、指向性の図は、放射される電波のゲインを等高線で表わしたものである。
 図8を参照して、底上部が形成されない場合(図8(a))の場合、ほぼ真円の指向性となっている。これに対して、アイソレーションの改善効果が大きい側の給電素子間にのみ底上部1821,1822を形成した図8(b)の場合には、底上部1821,1822の延在するY軸方向に長い楕円型の指向性となっている。底上部によってX軸方向の接地電極GND1の対称性が崩れ、それにより個々の給電素子の指向性の対称性も崩れてしまい、結果としてアレイ全体の対称性が若干崩れた状態になっている。
 X軸方向に隣接する給電素子間に加えて、Y軸方向に隣接する給電素子間にも底上部1823,1824を形成した図8(c)の場合には、接地電極GND1のX軸方向およびY軸方向の対称性が改善されるため、個々の給電素子の指向性の対称性が改善される。そのため、図8(b)の場合に比べると、対称性が改善されて真円に近い指向性となっている。
 このように、二次元配置されたアンテナアレイの場合には、偏波方向および偏波方向に垂直な方向の双方に底上部を配置することによって、対称性が向上した指向性とアンテナ効率の向上を実現することができる。
 図9は、2×2のアレイアンテナにおいて、1つの放射素子から電波を放射したときの指向性を示した図である。上段の図9(a)は、給電素子間に接地電極の底上部が設けられていない場合を示しており、下段の図9(b)は、偏波方向(Y軸方向)および偏波方向に垂直な方向(X軸方向)に隣接する給電素子間に底上部が設けられた場合を示している。なお、図9(b)における底上部1825は、X軸方向に延在する底上部とY軸方向に延在する底上部とが互いに接続され、十字形状に形成されている。
 図9においては、給電素子1211のみに高周波信号が供給され、他の給電素子に対しては高周波信号が供給されていない状態の指向性が示されている。図9においても、指向性の図は、放射される電波のゲインを等高線で表わしている。
 図9を参照して、底上部が設けられていない図9(a)においては、放射される電波のゲインに2つピーク(AR1,AR2)が生じている。ピークAR1は、偏波方向に隣接する給電素子1213付近に生じており、ピークAR2は偏波方向に垂直な方向に隣接する給電素子1212付近に生じている。
 一方、底上部が設けられている図9(b)においては、給電素子1212付近のピークAR2のゲインが低下しており、給電素子1213付近にあったピークAR2も給電素子1211寄りの位置(AR3)へと変化している。すなわち、底上部の配置によって、電波を放射している給電素子1211付近へゲインのピーク位置が変化している。これは、底上部1825によって、隣接する給電素子間のアイソレーションが改善されたことにより、給電素子1211への給電に伴って給電素子1212,1213へ漏洩する高周波信号が低減し、それによって給電素子1212,1213から放射される電波のゲインが抑制されたものと考えられる。
 他の3つの給電素子の各々についても単体で電波を放射した場合は同様の指向性を示し、4つの給電素子から同時に電波を放射した場合には、全体として図8で示したような指向性となる。
 なお、図8および図9において、給電素子1211,1212は本開示における「第1給電素子」あるいは「第2給電素子」に対応する。給電素子1211が「第1給電素子」の場合には給電素子1213が本開示の「第3給電素子」に対応し、給電素子1212が「第1給電素子」の場合には給電素子1214が本開示における「第3給電素子」に対応する。
 (変形例)
 実施の形態1のアンテナモジュールにおいては、誘電体基板が単一の誘電率の誘電体で形成される構成の場合について説明した。変形例においては、異なる誘電率を有する複数の誘電体を用いて誘電体基板を形成する場合の例について説明する。
 アンテナ装置内にフィルタを配置する場合、上述のように、アンテナ特性およびフィルタ特性を考慮することが必要となる。ここで、これらの特性と誘電体基板の誘電率との関係を考えると、アンテナの広帯域化のためには誘電体基板の誘電率を低くすることが好ましく、一方でフィルタ特性に関してはQ値を大きくするためには誘電率を高くすることが好ましい。
 このように、誘電率に対して、アンテナ特性とフィルタ特性とがトレードオフの関係になり得るため、単一の誘電率の誘電体で誘電体基板を形成する場合には、必ずしも2つの特性に適した誘電率とはならない場合がある。
 そこで、変形例においては、アンテナに適した誘電率を有する誘電体と、フィルタに適した誘電率を有する誘電体とを組み合わせて誘電体基板を形成することによって、アンテナ特性およびフィルタ特性をともに改善させる構成を採用する。
 図10は、変形例に従うアンテナモジュール100D~100Fの側面透視図である。図10のアンテナモジュール100D~100Fにおいては、誘電体基板130Aは、アンテナに適した誘電率を有する誘電体135と、フィルタに適した誘電率を有する誘電体136とを組み合わせて形成されている。たとえば、誘電体135の比誘電率は3程度であり、誘電体136の比誘電率は6程度である。
 図10(a)のアンテナモジュール100Dにおいては、誘電体基板130Aは、接地電極GND1の第2部分182(底上部)よりも上方側の層が誘電体135で形成され、底上げ部が形成される層よりも下方側の層が誘電体136で形成されている。この場合には、フィルタが形成される部分(第2部分182と接地電極GND2との間の層)が誘電体136で形成されているため、フィルタ特性を優先した誘電体基板の構成となっている。
 一方で、図10(b)のアンテナモジュール100Eにおいては、誘電体基板130Aは、接地電極GND1の第1部分181よりも上方側の層が誘電体135で形成され、第1部分181よりも下方側の層が誘電体136で形成されている。この場合、フィルタが形成される部分は誘電体135と誘電体136とが混在しているが、アンテナが形成される部分(給電素子と第1部分181との間の層)についてはアンテナに適した誘電体135で形成されている。すなわち、アンテナモジュール100Eは、アンテナ特性を優先した誘電体基板の構成となっている。
 図10(c)のアンテナモジュール100Fにおいては、誘電体基板130Aは、接地電極GND1よりも上方側の層が誘電体135で形成され、接地電極GND1よりも下方側の層が誘電体136で形成されている。すなわち、給電素子1211,1212と接地電極GND1の第1部分181との間の層において、第2部分182の下方側については誘電体136で形成されており、その他の部分については誘電体135で形成されている。
 図10(c)における誘電体基板130Aの構成では、アンテナが形成される部分にはアンテナに適した誘電体135で形成され、フィルタが形成される部分についてはフィルタに適した誘電体136で形成されているため、アンテナ特性およびフィルタ特性の双方を最適化することが可能になる。
 なお、図10(a)および図10(b)においては、同じレベルの層を同じ誘電体で形成しているので、アンテナ特性およびフィルタ特性のいずれか一方を優先することが必要になるが、製造プロセスは比較的容易であるため、図10(c)の場合に比べて製造コストを低減することができる。一方で、図10(c)の場合には、同じレベルの層を異なる誘電体で形成することが必要となるため、製造プロセスがやや複雑になる。これらの構成のうち、どの構成を採用するかは、所望のアンテナ特性およびフィルタ特性と製造コストとを勘案して適宜選択される。
 上記の比較例のように、アンテナに適した誘電体およびフィルタに適した誘電体を組み合わせて誘電体基板を形成することによって、アンテナ特性および/またはフィルタ特性をさらに改善することができる。
 [実施の形態2]
 実施の形態2においては、フィルタ通過後の高周波信号を複数の給電素子に分配するための分岐回路、あるいは、各給電素子に供給される電力をモニタするための検出回路などの付加的な回路が、フィルタと給電素子との間の経路に設けられる構成について説明する。
 図11は、実施の形態2に従うアンテナモジュール100Gの側面透視図である。アンテナモジュール100Gにおいては、図2(b)に示されたアンテナモジュール100の側面透視図に、回路191,192が追加された構成となっている。アンテナモジュール100Gにおいて、図2のアンテナモジュール100と重複する要素の説明は繰り返さない。
 図11を参照して、回路191,192は、たとえば、図12に示されるような分岐回路190である。この場合、RFIC110からフィルタ150(回路151,152)を通過した高周波信号は、分岐回路190(回路191,192)で分岐されて、給電配線140A(給電配線141A,142A)を介して、複数の給電素子121へ供給される。図12の例においては、分岐回路190によって分岐されて2つの給電素子121に高周波信号が分配されているが、3つ以上の給電素子に高周波信号が分配される場合であってもよい。
 分岐回路190(回路191,192)は、図11に示されるように、接地電極GND1の第1部分181と接地電極GND2との間の層に配置される。このような配置とすることによって、追加的な回路によるフィルタ特性への影響を低減することができる。
 図13は、各給電素子に供給される電力をモニタするための検出回路195の一例を示す図である。検出回路(カプラ)195は、フィルタ150と給電素子121とを結ぶ給電配線140に平行に配置された線路である。当該線路が給電配線140と電磁結合することにより、給電配線140に流れる電流(電力)に対応した信号が検出される。検出された信号はRFIC110あるいはBBIC200にフィードバックされ、RFIC110に含まれる増幅回路が調整されることによって、放射される電波の出力電力が調整される。
 検出回路195は、フィルタ150から給電素子121に至る経路に配置することが必要であるため、接地電極GND1の第1部分181と接地電極GND2との間の層に配置される。これによって、追加的な回路によるフィルタ特性への影響を低減することができる。
 [実施の形態3]
 実施の形態3においては、放射素子がデュアルバンド対応の放射素子であり、アンテナ装置に配置されるフィルタがダイプレクサである場合について説明する。
 図14は、実施の形態3に従うアンテナモジュール100Xが適用される通信装置10Xのブロック図である。
 図14を参照して、通信装置10Xは、アンテナモジュール100Xと、BBIC200とを備える。アンテナモジュール100Xは、RFIC110Xと、アンテナ装置120Xと、フィルタ装置106とを含む。
 アンテナ装置120Xは、放射素子として給電素子121および無給電素子122を含む。アンテナ装置120Xは、2つの異なる周波数帯域の電波を放射することが可能な、いわゆるデュアルバンドタイプのアンテナ装置である。
 図15は、図14のアンテナモジュール100Xの側面透視図である。アンテナモジュール100Xは、放射素子として給電素子1211,1212および無給電素子1221,1222を含む。無給電素子1221は、誘電体基板130において、給電素子1211と接地電極GND1との間の層に配置されている。給電配線141は、無給電素子1221を貫通して給電素子1211の給電点SP1に接続されている。同様に、無給電素子1222は、誘電体基板130において、給電素子1212と接地電極GND1との間の層に配置されている。給電配線142は、無給電素子1222を貫通して給電素子1212の給電点SP2に接続されている。
 無給電素子1221,1222のサイズは、給電素子1211,1212のサイズよりも大きい。そのため、無給電素子1221,1222の共振周波数は、給電素子1211,1212の共振周波数よりも低い。無給電素子1221,1222の共振周波数に対応した高周波信号を給電配線141,142にそれぞれ供給することにより、無給電素子1221,1222から給電素子1211,1212よりも低い周波数の電波を放射することができる。
 RFIC110Xは、2つの周波数帯域の高周波信号を供給することが可能に構成されている。RFIC110Xは、スイッチ111A~111H,113A~113H,117A,117Bと、パワーアンプ112AT~112HTと、ローノイズアンプ112AR~112HRと、減衰器114A~114Hと、移相器115A~115Hと、信号合成/分波器116A,116Bと、ミキサ118A,118Bと、増幅回路119A、119Bとを備える。このうち、スイッチ111A~111D,113A~113D,117A、パワーアンプ112AT~112DT、ローノイズアンプ112AR~112DR、減衰器114A~114D、移相器115A~115D、信号合成/分波器116A、ミキサ118A、および増幅回路119Aの構成が、低い周波数帯域の高周波信号のための回路である。また、スイッチ111E~111H,113E~113H,117B、パワーアンプ112ET~112HT、ローノイズアンプ112ER~112HR、減衰器114E~114H、移相器115E~115H、信号合成/分波器116B、ミキサ118B、および増幅回路119Bの構成が高い周波数帯域の高周波信号のための回路である。
 高周波信号を送信する場合には、スイッチ111A~111H,113A~113Hがパワーアンプ112AT~112HT側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111H,113A~113Hがローノイズアンプ112AR~112HR側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの受信側アンプに接続される。
 フィルタ装置106は、ダイプレクサ106A~106Dを含む。各ダイプレクサは、低い周波数帯域の高周波信号を通過させるローパスフィルタ(フィルタ106A1,106B1,106C1,106D1)、および、高い周波数帯域の高周波信号を通過させるハイパスフィルタ(フィルタ106A2,106B2,106C2,106D2)を含む。フィルタ106A1,106B1,106C1,106D1は、RFIC110Xにおけるスイッチ111A~111Dにそれぞれ接続される。また、フィルタ106A2,106B2,106C2,106D2は、RFIC110Xにおけるスイッチ111E~111Hにそれぞれ接続される。ダイプレクサ106A~106Dの各々は、対応する給電素子121に接続される。
 BBIC200から伝達された信号は、増幅回路119A,119Bで増幅され、ミキサ118A,118Bでアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116A,116Bで4分波され、対応する信号経路を通過して、それぞれ異なる給電素子121に給電される。
 RFIC110Xのスイッチ111A~111Dからの送信信号は、フィルタ106A1~106D1をそれぞれ経由して対応する無給電素子122から放射される。RFIC110Xのスイッチ111E~111Hからの送信信号は、フィルタ106A2~106D2をそれぞれ経由して対応する給電素子121から放射される。
 各信号経路に配置された移相器115A~115Hの移相度が個別に調整されることにより、アンテナ装置120Xの指向性を調整することができる。
 各放射素子(給電素子121,無給電素子122)で受信された高周波信号である受信信号は、フィルタ装置106を介してRFIC110Xに伝達され、それぞれ異なる4つの信号経路を経由して信号合成/分波器116A,116Bにおいて合波される。合波された受信信号は、ミキサ118A,118Bでダウンコンバートされ、増幅回路119A,119Bで増幅されてBBIC200へ伝達される。
 このようなデュアルバンドタイプのアンテナモジュールにおいても、図15に示されるように、ダイプレクサ(回路151,152)を、接地電極GND1の第2部分182(底上部)と接地電極GND2との間に配置することよって、放射素子と接地電極GND1との距離を確保するとともに、ダイプレクサが形成される部分の接地電極間の距離を確保することができる。これによって、装置全体の小型化および薄型化を維持しつつ、アンテナ特性およびフィルタ特性の両方を改善することができる。
 [実施の形態4]
 上述の実施の形態においては、アンテナ装置において、RFICから放射素子に至る給電配線にフィルタが形成される構成について説明した。
 実施の形態4においては、RFICにおける信号分岐前の経路にフィルタが形成される構成について説明する。
 図16は、実施の形態4に従うアンテナモジュール100Yが適用される通信装置10Yのブロック図である。図16を参照して、通信装置10Yは、アンテナモジュール100Yと、BBIC200とを備える。アンテナモジュール100Yは、RFIC110Yと、アンテナ装置120と、フィルタ装置105Yとを含む。
 図1に示した実施の形態1のアンテナモジュール100においては、RFIC110からの高周波信号は、フィルタ装置105を介してアンテナ装置120に伝達されていた。アンテナモジュール100Yにおいては、RFIC110Yとアンテナ装置120は給電配線により直接接続されており、フィルタ装置105Yは、RFIC110Yにおける信号合成/分波器116とスイッチ117との間に接続されている。なお、フィルタ装置105Yは、RFIC110Yの外部に配置されており、具体的には、図17で後述するようにアンテナ装置120の内部に形成される。
 図17は、図16のアンテナモジュール100Yの詳細構成を示すである。図17において、上段の図17(a)には、アンテナモジュール100Yの平面図が示されている。また、下段の図17(b)には、平面図における線XVII-XVIIから見た側面透視図が示されている。なお、図17(a)の平面図においては、説明を容易にするために、誘電体が省略されている。
 図17を参照して、アンテナモジュール100Yは、図17(a)の平面図に示されるように、4つの給電素子1211~1214が2×2の二次元配列されたアンテナアレイである。アンテナモジュール100Yにおいては、偏波方向(Y軸方向)および偏波方向に垂直な方向(X軸方向)に隣接する給電素子間に底上部1826が設けられている。底上部1826は、X軸方向に延在する底上部とY軸方向に延在する底上部とが互いに接続され、十字形状に形成されている。
 図17(b)に示されるように、アンテナモジュール100Yにおいては、給電素子に対向して接地電極GND1,GND2が形成されている。給電素子と接地電極GND2との間に形成された接地電極GND1には、上記の底上部1826に対応する第2部分182が形成されている。そして、接地電極GND1と接地電極GND2との間の層における、当該第2部分182の部分に、図16で示したフィルタ装置105Yに対応する回路151Yが形成されている。
 回路151Yは、接続配線161,162によってRFIC110Yと接続されている。また、給電素子1211~1214は、給電配線141~144によってそれぞれRFIC110Yに直接接続されている。
 アンテナモジュール100Yのように、4つの給電素子について共通の経路にフィルタ装置を配置することによって、アンテナ装置内に形成するフィルタの個数を低減することができるので、装置全体のあらなる小型化および薄型化を図ることができる。
 なお、図16に示したアンテナモジュール100Yにおいては、フィルタ装置105に代えてフィルタ装置105Yが設けられる構成について説明したが、フィルタ装置105とフィルタ装置105Yの双方が設けられる構成であってもよい。また、実施の形態4における「回路151Y」は、本開示における「第2回路」に対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,10X,10Y 通信装置、100,100A~100G,100X,100Y アンテナモジュール、105,105Y,106 フィルタ装置、105A~105D,106A1~106D1,106A2~106D2,150 フィルタ、106A~106D ダイプレクサ、110,110X,110Y RFIC、111A~111H,113A~113H,117,117A,117B スイッチ、112AR~112HR ローノイズアンプ、112AT~112HT パワーアンプ、114A~114H 減衰器、115A~115H 移相器、116,116A,116B 信号合成/分波器、118,118A,118B ミキサ、119,119A,119B 増幅回路、120,120X アンテナ装置、121,1211,1212,1213,1214 給電素子、122,1221,1222 無給電素子、130,130A 誘電体基板、131 上面、132 下面、135,136 誘電体、140,140A,141,141A,142,142A,143,144 給電配線、1411,1413,1421,1423,183 ビア、1412,1422 配線パターン、151,152,191,192 回路、161,162 接続配線、170 はんだバンプ、181 第1部分、182,1821~1826 第2部分(底上部)、190 分岐回路、195 検出回路、200 BBIC、GND1,GND2 接地電極、SP1,SP2 給電点。

Claims (16)

  1.  アンテナモジュールであって、
     互いに隣接する第1給電素子および第2給電素子を含む放射素子と、
     前記放射素子に対向して配置される第1接地電極と、
     給電回路から前記放射素子に対して高周波信号を伝達する給電配線と、
     前記給電回路と前記給電配線との間に接続される第1回路とを備え、
     前記第1接地電極は、前記放射素子に対向する第1部分と、前記第1部分よりも前記放射素子に近い上方側の層に配置された第2部分とを含み、
     前記アンテナモジュールを法線方向から平面視した場合に、
      前記第2部分は、前記第1給電素子と前記第2給電素子との間に配置されており、
      前記第1回路は、前記第2部分と重なり、かつ、前記第2部分よりも下方側の層に配置される、アンテナモジュール。
  2.  前記第1部分において、前記アンテナモジュールを平面視したときに前記第2部分と重なる部分に、開口部が形成されている、請求項1に記載のアンテナモジュール。
  3.  前記第1接地電極よりも下方側に配置された第2接地電極をさらに備え、
     前記第1回路は、前記第2部分と前記第2接地電極との間に配置される、請求項1に記載のアンテナモジュール。
  4.  前記第1給電素子および前記第2給電素子は、前記放射素子から放射される電波の偏波方向に対して垂直な方向に隣接している、請求項1~3のいずれか1項に記載のアンテナモジュール。
  5.  前記放射素子は、前記第1給電素子に対して、前記放射素子から放射される電波の偏波方向に隣接する第3給電素子をさらに含み、
     前記第1給電素子と前記第3給電素子との間にも、前記第2部分が形成される、請求項4に記載のアンテナモジュール。
  6.  前記第1給電素子と前記第2給電素子との間に形成される第2部分と、前記第1給電素子と前記第3給電素子との間に形成される第2部分とが接続されている、請求項5に記載のアンテナモジュール。
  7.  前記第2部分は、前記放射素子と同じ層、あるいは、前記放射素子と前記第1部分との間の層に配置される、請求項1~6のいずれか1項に記載のアンテナモジュール。
  8.  前記第1回路は、フィルタ回路、整合回路、接続回路、集積回路の少なくとも1つを含む、請求項1~7のいずれか1項に記載のアンテナモジュール。
  9.  前記第1回路を通過した高周波信号を複数の給電素子に分配するための分岐回路をさらに備え、
     前記分岐回路は、前記第1部分において、前記第1部分よりも下方側の層に配置される、請求項1~8のいずれか1項に記載のアンテナモジュール。
  10.  前記放射素子の各給電素子に供給される高周波電力をモニタするための検出回路をさらに備え、
     前記検出回路は、前記第1部分において、前記第1部分よりも下方側の層に配置される、請求項1~9のいずれか1項に記載のアンテナモジュール。
  11.  前記アンテナモジュールは、誘電体基板に形成されており、
     前記誘電体基板において、前記第1接地電極よりも上方側の層は第1誘電体で形成されており、前記第1接地電極よりも下方側の層は前記第1誘電体とは誘電率が異なる第2誘電体で形成されている、請求項1~10のいずれか1項に記載のアンテナモジュール。
  12.  前記アンテナモジュールは、誘電体基板に形成されており、
     前記誘電体基板において、前記第1部分よりも上方側の層は第1誘電体で形成されており、前記第1部分よりも下方側の層は前記第1誘電体とは誘電率が異なる第2誘電体で形成されている、請求項1~10のいずれか1項に記載のアンテナモジュール。
  13.  前記アンテナモジュールは、誘電体基板に形成されており、
     前記誘電体基板において、前記第2部分よりも上方側の層は第1誘電体で形成されており、前記第2部分よりも下方側の層は前記第1誘電体とは誘電率が異なる第2誘電体で形成されている、請求項1~10のいずれか1項に記載のアンテナモジュール。
  14.  アンテナモジュールであって、
     互いに隣接する第1給電素子および第2給電素子を含む放射素子と、
     前記放射素子に対向して配置される接地電極と、
     前記放射素子に対して高周波信号を供給する給電回路に接続される第2回路とを備え、
     前記接地電極は、前記放射素子に対向する第1部分と、前記第1部分よりも前記放射素子に近い上方側の層に配置された第2部分とを含み、
     前記アンテナモジュールを法線方向から平面視した場合に、
      前記第2部分は、前記第1給電素子と前記第2給電素子との間に配置されており、
      前記第2回路は、前記第2部分と重なり、かつ、前記第2部分よりも下方側の層に配置される、アンテナモジュール。
  15.  前記給電回路をさらに備える、請求項1~14のいずれか1項に記載のアンテナモジュール。
  16.  請求項1~15のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
PCT/JP2020/011696 2019-05-27 2020-03-17 アンテナモジュールおよびそれを搭載した通信装置 WO2020240998A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080054183.9A CN114175400A (zh) 2019-05-27 2020-03-17 天线模块以及搭载有该天线模块的通信装置
US17/535,686 US20220085521A1 (en) 2019-05-27 2021-11-26 Antenna module and communication device equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019098317 2019-05-27
JP2019-098317 2019-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/535,686 Continuation US20220085521A1 (en) 2019-05-27 2021-11-26 Antenna module and communication device equipped with the same

Publications (1)

Publication Number Publication Date
WO2020240998A1 true WO2020240998A1 (ja) 2020-12-03

Family

ID=73552314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011696 WO2020240998A1 (ja) 2019-05-27 2020-03-17 アンテナモジュールおよびそれを搭載した通信装置

Country Status (3)

Country Link
US (1) US20220085521A1 (ja)
CN (1) CN114175400A (ja)
WO (1) WO2020240998A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347834A (ja) * 2002-05-24 2003-12-05 Murata Mfg Co Ltd アンテナ一体型高周波回路モジュール
JP2004221964A (ja) * 2003-01-15 2004-08-05 Fdk Corp アンテナモジュール
JP2013046291A (ja) * 2011-08-25 2013-03-04 Kyocera Corp アンテナ基板およびアンテナモジュール
WO2019054094A1 (ja) * 2017-09-12 2019-03-21 株式会社村田製作所 アンテナモジュール
JP2019057775A (ja) * 2017-09-20 2019-04-11 Tdk株式会社 アンテナモジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998974B (zh) * 2017-07-31 2022-03-15 株式会社村田制作所 天线模块和通信装置
CN113169450B (zh) * 2018-11-15 2024-03-29 株式会社村田制作所 天线模块、通信模块以及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347834A (ja) * 2002-05-24 2003-12-05 Murata Mfg Co Ltd アンテナ一体型高周波回路モジュール
JP2004221964A (ja) * 2003-01-15 2004-08-05 Fdk Corp アンテナモジュール
JP2013046291A (ja) * 2011-08-25 2013-03-04 Kyocera Corp アンテナ基板およびアンテナモジュール
WO2019054094A1 (ja) * 2017-09-12 2019-03-21 株式会社村田製作所 アンテナモジュール
JP2019057775A (ja) * 2017-09-20 2019-04-11 Tdk株式会社 アンテナモジュール

Also Published As

Publication number Publication date
US20220085521A1 (en) 2022-03-17
CN114175400A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN112640209B (zh) 天线模块以及搭载有该天线模块的通信装置
US20220181766A1 (en) Antenna module and communication device equipped with the same
KR102533885B1 (ko) 서브 어레이 안테나, 어레이 안테나, 안테나 모듈 및 통신 장치
US20210126341A1 (en) Antenna module and communication device
WO2020217689A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022185917A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
KR20230019489A (ko) 안테나 모듈, 접속 부재 및 그것을 탑재한 통신 장치
WO2022004080A1 (ja) アンテナモジュール、接続部材、およびそれを搭載した通信装置
US11063340B2 (en) Antenna module and communication device
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11916312B2 (en) Antenna module, communication device mounting the same, and circuit board
US20220094074A1 (en) Antenna module, communication apparatus including the same, and circuit substrate
JP7059385B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020240998A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023214473A1 (ja) 伝送線路、ならびに、それを含むアンテナモジュールおよび通信装置
WO2020184205A1 (ja) フィルタ装置、ならびに、それを備えたアンテナモジュールおよび通信装置
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021166443A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2024004283A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021019899A1 (ja) アンテナ装置、アンテナモジュールおよび通信装置
WO2023095643A1 (ja) アンテナモジュール、およびそれを搭載した通信装置
WO2023100621A1 (ja) アンテナモジュール、およびそれを搭載した通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP