WO2021166443A1 - アンテナモジュールおよびそれを搭載した通信装置 - Google Patents

アンテナモジュールおよびそれを搭載した通信装置 Download PDF

Info

Publication number
WO2021166443A1
WO2021166443A1 PCT/JP2020/048453 JP2020048453W WO2021166443A1 WO 2021166443 A1 WO2021166443 A1 WO 2021166443A1 JP 2020048453 W JP2020048453 W JP 2020048453W WO 2021166443 A1 WO2021166443 A1 WO 2021166443A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
antenna module
feeding
wiring
feeding element
Prior art date
Application number
PCT/JP2020/048453
Other languages
English (en)
French (fr)
Inventor
俊 坂井田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080097067.5A priority Critical patent/CN115136413A/zh
Priority to JP2022501668A priority patent/JP7283623B2/ja
Publication of WO2021166443A1 publication Critical patent/WO2021166443A1/ja
Priority to US17/884,598 priority patent/US20220384945A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points

Definitions

  • the present disclosure relates to an antenna module and a communication device equipped with the antenna module, and more specifically, to a technique for improving a gain characteristic in a stack type dual band type antenna module.
  • Patent Document 1 a second patch is arranged between the first patch (flat plate-shaped radiating element) and the main plate, and radio waves having different frequencies are emitted from the two patches.
  • a so-called stack-type dual-band antenna module capable of radiating is disclosed.
  • the power feeding wiring connected to the first patch is the first patch and the second patch. It is arranged so as to penetrate the second patch after extending from the patch in the direction away from the center of the patch.
  • Patent Document 1 In an antenna module having the above-mentioned feeding wiring disclosed in Japanese Patent Application Laid-Open No. 2015-216577 (Patent Document 1), capacitive coupling occurs at a portion where the feeding wiring and the second patch face each other, thereby radiating. Unnecessary resonance may occur that does not contribute to. When such an unnecessary resonance occurs, energy is consumed by the resonance, and as a result, the gain characteristic of the entire antenna module may deteriorate.
  • the present disclosure has been made to solve such a problem, and an object thereof is to suppress unnecessary resonance and suppress a decrease in gain characteristics in a stack type dual band type antenna module. be.
  • An antenna module includes a flat plate-shaped first radiating element and a second radiating element, and a first feeding wiring for transmitting a high frequency signal to the first radiating element.
  • the second radiating element is arranged at a position different from that of the first radiating element in the normal direction of the first radiating element, and has a resonance frequency different from that of the first radiating element.
  • the first feeding wiring penetrates the second radiating element from the feeding circuit and transmits a high frequency signal to the first radiating element.
  • the first feeding wiring includes a shift region extending in a direction orthogonal to the normal direction of the first radiating element at a position different from that of the second radiating element in the path from the feeding circuit to the first radiating element. When viewed in a plan view from the normal direction of the first radiating element, an opening is formed in a portion of the second radiating element that overlaps with the shift region.
  • the feeding wiring for supplying a high frequency signal to the first radiating element is the first radiating element. It includes a shift region extending in a direction orthogonal to the normal direction of the element. Then, when viewed in a plan view, an opening is formed in a portion of the second radiating element that overlaps with the shift region.
  • FIG. 5 is a block diagram of a communication device to which the antenna module according to the first embodiment is applied. It is a top view of the antenna module which concerns on Embodiment 1.
  • FIG. FIG. 3 is a cross-sectional perspective view taken along the line III-III of FIG. It is a top view of the antenna module of the comparative example 1.
  • FIG. It is sectional drawing with respect to line VV of FIG. It is a figure for demonstrating the reflection loss of the antenna module of Comparative Example 1 and Embodiment 1.
  • FIG. It is a figure for demonstrating the gain characteristic of the radiating element on the high frequency side in the antenna module of Comparative Example 1 and Embodiment 1.
  • FIG. It is a top view of the antenna module which concerns on Embodiment 2.
  • FIG. 2 is a block diagram of a communication device to which the antenna module according to the first embodiment is applied. It is a top view of the antenna module which concerns on Embodiment 1.
  • FIG. FIG. 3 is a cross-sectional perspective view
  • FIG. It is a top view of the antenna module of the comparative example 2.
  • FIG. It is a figure for demonstrating the reflection loss of the antenna module of the comparative example 2 and the second embodiment. It is a figure for demonstrating the gain characteristic of the radiating element on the high frequency side in the antenna module of the comparative example 2 and the second embodiment.
  • FIG. It is sectional drawing of the antenna module of the modification 2.
  • FIG. It is sectional drawing of the antenna module of the modification 3.
  • FIG. It is sectional drawing of the antenna module of the modification 4.
  • FIG. It is sectional drawing of the antenna module of the 1st example of the modification 5. It is sectional drawing of the antenna module of the 2nd example of the modification 5.
  • FIG. 1 is a block diagram of an example of a communication device 10 to which the antenna module 100 according to the first embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, a personal computer having a communication function, or the like.
  • An example of the frequency band of the radio wave used for the antenna module 100 according to the present embodiment is a radio wave in the millimeter wave band having a center frequency of, for example, 28 GHz, 39 GHz, 60 GHz, etc., but radio waves in frequency bands other than the above are also available. Applicable.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, and an antenna device 120.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal and radiates it from the antenna device 120, and down-converts the high-frequency signal received by the antenna device 120 to process the signal at the BBIC 200. do.
  • the antenna device 120 of FIG. 1 has a configuration in which the radiating elements 125 are arranged in a two-dimensional array. Each of the radiating elements 125 includes two feeding elements 121, 122.
  • the antenna device 120 is a so-called dual band type antenna device configured to be capable of radiating radio waves in different frequency bands from the feeding element 121 and the feeding element 122 of the radiating element 125. Different high frequency signals are supplied from the RFIC 110 to the feeding elements 121 and 122.
  • the frequency band of the radio wave radiated from the power feeding element 121 is 39 GHz
  • the frequency band of the radio wave radiated from the power feeding element 122 is 28 GHz.
  • the antenna device 120 does not necessarily have to be a two-dimensional array, and may be a case where the antenna device 120 is formed by one radiating element 125. Further, it may be a one-dimensional array in which a plurality of radiating elements 125 are arranged in a row.
  • the feeding elements 121 and 122 included in the radiating element 125 are patch antennas having a substantially square flat plate shape.
  • the RFIC 110 includes switches 111A to 111H, 113A to 113H, 117A, 117B, power amplifiers 112AT to 112HT, low noise amplifiers 112AR to 112HR, attenuators 114A to 114H, phase shifters 115A to 115H, and signal synthesis / minute. It includes a wave device 116A, 116B, a mixer 118A, 118B, and an amplifier circuit 119A, 119B.
  • the configuration of the amplifier circuit 119A is a circuit for a high frequency signal of the first frequency band radiated from the feeding element 121.
  • the configuration of the amplifier circuit 119B is a circuit for a high frequency signal in the second frequency band radiated from the feeding element 122.
  • the switches 111A to 111H and 113A to 113H are switched to the power amplifiers 112AT to 112HT side, and the switches 117A and 117B are connected to the transmitting side amplifiers of the amplifier circuits 119A and 119B.
  • the switches 111A to 111H and 113A to 113H are switched to the low noise amplifiers 112AR to 112HR, and the switches 117A and 117B are connected to the receiving side amplifiers of the amplifier circuits 119A and 119B.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuits 119A and 119B, and up-converted by the mixers 118A and 118B.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexers 116A and 116B, passes through the corresponding signal paths, and is fed to different feeding elements 121 and 122, respectively.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115H arranged in each signal path.
  • the received signal which is a high-frequency signal received by each of the feeding elements 121 and 122, is transmitted to the RFIC 110 and combined in the signal synthesizer / demultiplexer 116A and 116B via four different signal paths.
  • the combined received signal is down-converted by the mixers 118A and 118B, amplified by the amplifier circuits 119A and 119B, and transmitted to the BBIC 200.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the equipment (switch, power amplifier, low noise amplifier, attenuator, phase shifter) corresponding to each radiation element 125 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding radiation element 125. ..
  • each feeding element can radiate radio waves in two polarization directions
  • two feeding wires are connected from the RFIC 110 to each feeding element.
  • one feeding wire may be branched by a branch circuit (not shown) to supply a high frequency signal to each feeding point of the feeding element.
  • FIG. 2 is a plan view of the antenna module 100
  • FIG. 3 is a cross-sectional perspective view taken along line III-III of FIG.
  • the thickness direction of the antenna module 100 is defined as the Z-axis direction
  • the plane perpendicular to the Z-axis direction is defined by the X-axis and the Y-axis.
  • the positive direction of the Z axis may be referred to as the upper surface side
  • the negative direction may be referred to as the lower surface side.
  • the antenna module 100 includes a dielectric substrate 130, a ground electrode GND, and feeding wiring 141A, 141B, 142A, It is equipped with 142B.
  • the RFIC 110, the ground electrode GND, and the dielectric substrate 130 are omitted.
  • the dielectric substrate 130 includes, for example, a low temperature co-fired ceramics (LCC) multilayer substrate, a multilayer resin substrate formed by laminating a plurality of resin layers composed of resins such as epoxy and polyimide.
  • LCP liquid crystal polymer
  • the dielectric substrate 130 does not necessarily have to have a multi-layer structure, and may be a single-layer substrate. Further, the dielectric substrate 130 may be a housing of the communication device 10.
  • the dielectric substrate 130 has a substantially rectangular shape when viewed in a plane from the normal direction (Z-axis direction), and the feeding element 121 faces the ground electrode GND on the upper surface 131 (the surface in the positive direction of the Z-axis). Is placed.
  • the power feeding element 121 may be exposed on the surface of the dielectric substrate 130, or may be arranged on the inner layer of the dielectric substrate 130 as in the example of FIG.
  • the power feeding element 122 is arranged in a layer on the ground electrode GND side of the power feeding element 121 so as to face the ground electrode GND. In other words, the feeding element 122 is arranged in a layer between the feeding element 121 and the ground electrode GND.
  • the feeding element 122 overlaps with the feeding element 121 when the dielectric substrate 130 is viewed in a plan view.
  • the size of the feeding element 121 is smaller than the size of the feeding element 122, and the resonance frequency of the feeding element 121 is higher than the resonance frequency of the feeding element 122. That is, the frequency of the radio wave radiated from the feeding element 121 is higher than the frequency of the radio wave radiated from the feeding element 122.
  • the center frequency of the radio wave radiated from the feeding element 121 is 39 GHz
  • the center frequency of the radio wave radiated from the feeding element 122 is 28 GHz.
  • RFIC 110 is mounted on the lower surface 132 of the dielectric substrate 130 via solder bumps (not shown).
  • the RFIC 110 may be connected to the dielectric substrate 130 by using a multi-pole connector instead of the solder connection.
  • a high frequency signal is transmitted from the RFIC 110 to the power feeding element 121 via the power feeding wirings 141A and 141B.
  • the power feeding wiring 141A is connected from the RFIC 110 to the power feeding point SP1A from the lower surface side of the power feeding element 121 through the ground electrode GND and the power feeding element 122.
  • the feeding wiring 141B is connected from the RFIC 110 to the feeding point SP1B from the lower surface side of the feeding element 121 through the ground electrode GND and the feeding element 122. That is, the power supply wirings 141A and 141B transmit high frequency signals to the power supply points SP1A and SP1B of the power supply element 121, respectively.
  • the feeding point SP1A is arranged at a position offset in the positive direction of the Y axis from the center of the feeding element 121. Further, the feeding point SP1B is arranged at a position offset in the negative direction of the X-axis from the center of the feeding element 121.
  • a radio wave having the Y-axis direction as the polarization direction is radiated from the feeding element 121.
  • a radio wave having the polarization direction in the X-axis direction is radiated from the feeding element 121.
  • a high frequency signal is transmitted from the RFIC 110 to the power feeding element 122 via the power feeding wirings 142A and 142B.
  • the power supply wiring 142A is connected to the power supply point SP2A of the power supply element 122 from the RFIC 110 through the ground electrode GND.
  • the feeding wiring 142B is connected from the RFIC 110 to the feeding point SP2B of the feeding element 122 through the ground electrode GND. That is, the feeding wires 142A and 142B transmit high frequency signals to the feeding points SP2A and SP2B of the feeding element 122, respectively.
  • the feeding point SP2A is arranged at a position offset in the negative direction of the Y axis from the center of the feeding element 122. Further, the feeding point SP2B is arranged at a position offset in the positive direction of the X axis from the center of the feeding element 122.
  • a radio wave having the Y-axis direction as the polarization direction is radiated from the feeding element 122.
  • a radio wave having the polarization direction in the X-axis direction is radiated from the feeding element 121.
  • the antenna module 100 is a so-called dual band type capable of radiating radio waves of two different frequency bands and radiating radio waves of each frequency band in two different polarization directions. It is a dual polarization type antenna module.
  • Each of the power supply wirings 141A, 141B, 142A, and 142B has an electrode pad 146 formed at the boundary of each dielectric layer and a via 145 that penetrates the dielectric layer and connects the upper and lower electrode pads 146 of the dielectric layer. It is composed including and. Further, when each power feeding wiring extends in the same layer, the electrode pads 146 are connected to each other by a wiring pattern (not shown). In the present disclosure, the portion where the feeding wiring extends in the direction orthogonal to the normal direction of the feeding element 121 is referred to as a “shift region 170”.
  • Each feeding wire penetrates the ground electrode GND from the RFIC 110, and extends below the feeding point corresponding to the central direction of the radiating element in the layer between the feeding element 122 and the ground electrode GND (first wiring).
  • the portion from below the feeding point to the feeding point (second wiring) is included.
  • the shift region 170 is formed in the second wiring. Therefore, the second wiring is connected to the feeding point while shifting in a meander shape in the X-axis direction or the Y-axis direction.
  • two shift regions are formed in the power supply wirings 141A and 141B.
  • the shift region 170 is formed in a direction orthogonal to the direction extending from the RFIC 110 to the lower part of the feeding point (polarization direction).
  • the shift region of the power supply wiring 141A is shifted in the X-axis direction
  • the shift region of the power supply wiring 142B is shifted in the Y-axis direction.
  • the power feeding wires 141A and 141B connected to the power feeding element 121 penetrate the power feeding element 122.
  • an opening 150 is formed in a portion of the feeding element 122 that overlaps with the shift regions 170 of the feeding wirings 141A and 141B.
  • FIG. 4 is a plan view of the antenna module 100 # 1 of Comparative Example 1.
  • FIG. 5 is a cross-sectional perspective view taken along the line VV of FIG.
  • the point that the opening 150 # is formed only in the portion of the feeding element 122 through which the feeding wirings 141A and 141B penetrate. Except for this, it basically has the same configuration as the antenna module 100 of the first embodiment.
  • the shift region 170 is above or below the feeding element 122 in the feeding wirings 141A and 141B penetrating the opening 150 # of the feeding element 122. Is formed in.
  • This shift region 170 overlaps with the feeding element 122 when the antenna module 100 # 1 is viewed in a plan view from the normal direction (Z direction). Therefore, when the distance between the feeding element 122 and the shift region 170 is short, a capacitive coupling may occur between the electrode pad 146 included in the shift region 170 and the feeding element 122. When capacitive coupling occurs, unnecessary resonance that does not contribute to radiation from the feeding element may occur. When such an unnecessary resonance occurs, energy is consumed by the resonance, and as a result, the gain characteristic of the entire antenna module may deteriorate.
  • the feeding element 121 when the feeding element 121 is viewed in a plan view, an opening 150 is formed in a portion of the feeding element 122 that overlaps with the shift region 170. That is, the shift region 170 of the power feeding wires 141A and 141B and the power feeding element 122 do not face each other. As a result, the capacitive coupling between the shift region 170 and the feeding element 122 is suppressed, so that the occurrence of unnecessary resonance as in Comparative Example 1 can be suppressed. Therefore, it is possible to suppress a decrease in gain characteristics caused by unnecessary resonance.
  • FIG. 6 and 7 are diagrams for explaining the antenna characteristics in the antenna module of Comparative Example 1 and the first embodiment.
  • FIG. 6 is a diagram for comparing the reflection loss of the antenna modules of Comparative Example 1 and the first embodiment
  • FIG. 7 shows the gain characteristics of the feeding element 121 in the antenna module 100 of Comparative Example 1 and the first embodiment. It is a figure for comparison.
  • the upper part of FIG. 6 (FIG. 6A) shows the reflection loss in the antenna module 100 # 1 of Comparative Example 1
  • FIG. 6B shows the reflection loss in the antenna module 100 of the first embodiment. Reflection loss is shown.
  • the solid lines LN10 and LN20 show the reflection loss of the feeding element 121
  • the broken lines LN11 and LN21 show the reflection loss of the feeding element 122
  • the solid line LN30 shows the gain characteristic in the case of the first embodiment
  • the broken line LN31 shows the gain characteristic in the case of the comparative example 1.
  • each dielectric sheet constituting the dielectric substrate 130 is 50 ⁇ m. Further, in each power feeding wiring, the diameter of the via 145 is 100 ⁇ m, the diameter of the electrode pad 146 is 240 ⁇ m, and the shift amount (via pitch) of the via is 240 ⁇ m.
  • the reflection loss of the feeding element 122 on the low frequency side is not much different from that of Comparative Example 1 and the first embodiment, but the reflection loss of the feeding element 121 on the high frequency side is not so different.
  • the number of Comparative Example 1 is reduced as compared with the first embodiment. Therefore, at first glance, it seems that the antenna module 100 # 1 of Comparative Example 1 exhibits better characteristics than the antenna module 100 of the first embodiment.
  • the gain in the desired frequency band is higher in the antenna module 100 of the first embodiment than in the antenna module 100 # 1 of the comparative example 1. That is, in the antenna module 100 # 1 of Comparative Example 1, resonance occurs between the feeding wires 141A and 142A and the feeding element 121, so that the loss of the feeding element 121 is reduced from the reflection loss. Although it can be seen, it can be seen that the resonance does not contribute to the gain, and conversely causes a decrease in the gain.
  • the meander-shaped feeding wiring that penetrates the feeding element on the lower surface side and reaches the feeding element on the upper surface side, and the lower surface.
  • the opening 150 formed in the feeding element 122 is larger than 1/2 of the distance HT between the feeding element 122 and the ground electrode GND when the antenna module 100 is viewed in a plan view. It may be formed in a region overlapping the shift region 170 on the power feeding element 122 side.
  • the size of the opening 150 is preferably 300% or less with respect to the size of the electrode pad and the wiring pattern when the antenna module 100 is viewed in a plan view.
  • the diameter of the opening 150 is 340 ⁇ m with respect to the diameter of the electrode pad of 240 ⁇ m, so that the opening 150 is approximately 142% of the size of the electrode pad.
  • FIG. 8 is a plan view of the antenna module 100A according to the second embodiment.
  • the shift region 170X in the feeding wires 161A and 161B for supplying the high frequency signal to each feeding element is in the direction from the corresponding feeding point toward the center of the radiating element when the antenna module 100A is viewed in a plan view. It is stretched to.
  • an opening 155 is formed in a portion overlapping the shift region 170X in the feeding wirings 161A and 161B. Since other configurations are the same as those of the antenna module 100 of the first embodiment, detailed description will not be repeated.
  • FIG. 10 and 11 show a comparison of the antenna characteristics of such an antenna module 100A with the antenna module 100 # 2 of Comparative Example 2 shown in FIG.
  • the opening 155 # is formed only in the portion where the feeding wires 161A and 161B penetrate the feeding element 122.
  • FIG. 10 is a diagram for comparing the reflection loss of the antenna modules of Comparative Example 2 and the second embodiment
  • FIG. 11 is a diagram comparing the gain characteristics of the feeding element 121 in the antenna modules of Comparative Example 2 and the second embodiment. It is a figure for doing.
  • the upper row (FIG. 10 (a)) shows the reflection loss in the antenna module 100 # 2 of Comparative Example 2
  • the lower row shows the return loss.
  • the reflection loss in the antenna module 100A of the second embodiment is shown.
  • the solid lines LN40 and LN50 indicate the feeding element 121
  • the broken lines LN41 and LN51 indicate the feeding element 122.
  • the solid line LN60 shows the case of the second embodiment
  • the broken line LN61 shows the case of the comparative example 2.
  • each dielectric sheet constituting the dielectric substrate 130 is 50 ⁇ m. Further, in each feeding wiring, the diameter of the via 145 is 100 ⁇ m, the diameter of the electrode pad 146 is 240 ⁇ m, and the via pitch is 240 ⁇ m.
  • the reflection loss of the feeding element 122 on the low frequency side is lower than that in the case of the second embodiment, but the feeding element 121 on the high frequency side There is almost no change in reflection loss.
  • the resonance peak near 38 GHz in Comparative Example 2 of FIG. 10A has an asymmetrical shape as compared with the resonance peak of the second embodiment due to the influence of unnecessary resonance.
  • the gain in the desired frequency band is higher in the antenna module 100A of the second embodiment than in the antenna module 100 # 2 of the comparative example 2. That is, as in the discussion between the first embodiment and the first comparative example, the radiation generated in the second comparative example 2 is formed by forming the opening 155 in the portion of the feeding element 122 facing the feeding wires 161A and 161B. Energy consumption due to unnecessary resonance that does not contribute to is suppressed, and as a result, a decrease in gain is suppressed.
  • the meander-shaped feeding wiring that penetrates the feeding element on the lower surface side and reaches the feeding element on the upper surface side.
  • FIG. 12 is a cross-sectional perspective view of the antenna module 100B of the first modification.
  • the shift region 170A in the feeding wiring 141A1 for supplying the high frequency signal to the feeding element 121 is formed in a layer between the feeding element 121 and the feeding element 122.
  • the opening 150 is formed in the portion of the feeding element 122 that overlaps with the shift region 170A.
  • FIG. 13 is a cross-sectional perspective view of the antenna module 100C of the second modification.
  • the shift region 170B of the feeding wiring 141A2 for supplying the high frequency signal to the feeding element 121 is formed in a layer between the feeding element 122 and the ground electrode GND.
  • an opening 150 is formed in a portion of the feeding element 122 that overlaps with the shift region 170B of the feeding wiring 141A2.
  • FIG. 14 is a cross-sectional perspective view of the antenna module 100D of the modified example 3.
  • the shift region 170C of the feeding wiring 141A3 for supplying the high frequency signal to the feeding element 121 is formed in a stepped shape.
  • an opening 150A is formed in a portion of the feeding element 122 that overlaps with the shift region 170C of the feeding wiring 141A3.
  • FIG. 15 is a cross-sectional perspective view of the antenna module 100E of the modified example 4.
  • the power feeding wiring 141A for supplying the high frequency signal to the power feeding element 121 has the same shape as that shown in the antenna module 100 of FIG. 3 of the first embodiment.
  • the feeding wiring is not connected to the radiating element on the low frequency side arranged in the layer between the feeding element 121 and the ground electrode GND, that is, it is the non-feeding element 123.
  • the opening 150 is formed in the portion of the non-feeding element 123 that overlaps with the shift region 170 of the feeding wiring 141A.
  • the feeding wiring 141A is a portion where the feeding wiring 141A penetrates the non-feeding element 123.
  • the non-feeding element 123 are electromagnetically coupled, and a high frequency signal is supplied to the non-feeding element 123 in a non-contact manner. As a result, radio waves are radiated from the non-feeding element 123.
  • the opening 150 is formed in the portion of the non-feeding element 123 that overlaps with the shift region 170 of the feeding wiring 141A. Therefore, when a high frequency signal corresponding to the resonance frequency of the feeding element 121 is supplied to the feeding wiring 141A, the capacitive coupling between the shift region 170 of the feeding wiring 141A and the non-feeding element 123 is suppressed. Therefore, unnecessary resonance caused by capacitive coupling is suppressed, and deterioration of the gain characteristic of the antenna module can be suppressed.
  • the thickness of the dielectric sheet constituting the antenna module and the dimensions of the power feeding wiring are not limited to those shown in the first and second embodiments.
  • the thickness of the dielectric sheet may be 75 ⁇ m
  • the diameter of the via 145 may be 150 ⁇ m
  • the diameter of the electrode pad 146 may be 290 ⁇ m
  • the via pitch may be 290 ⁇ m.
  • the thickness of the dielectric sheet may be 100 ⁇ m
  • the diameter of the via 145 may be 200 ⁇ m
  • the diameter of the electrode pad 146 may be 340 ⁇ m
  • the via pitch may be 340 ⁇ m.
  • the thickness of the dielectric sheet is increased, the number of dielectric sheets for forming the dielectric substrate 130 is reduced, and the number of sheet laminating steps in the manufacturing process is reduced, so that the manufacturing cost can be reduced.
  • the thickness of the dielectric sheet is increased, it is necessary to increase the energy of the laser irradiating the dielectric sheet when forming the through hole, so that the via diameter is increased, and the electrode pad diameter and the via pitch are also increased accordingly. growing. Then, since the opening to be formed in the radiating element on the low frequency side becomes large, the characteristics of the radiating element on the low frequency side or the isolation of the two polarized waves may be affected. Therefore, the thickness of the dielectric sheet is appropriately determined according to the manufacturing cost and the desired antenna characteristics.
  • each radiation element and the ground electrode GND are formed on the same dielectric substrate 130.
  • each radiation element and the ground electrode GND may be arranged on different dielectric substrates as in the examples of FIGS. 16 and 17 below.
  • FIG. 16 is a cross-sectional perspective view of the antenna module 100F of the first example in the modified example 5.
  • the feeding element 121 in the antenna module 100 shown in FIG. 3 is formed on a dielectric substrate 130A different from the dielectric substrate 130 on which the feeding element 122 and the ground electrode GND are formed.
  • the power feeding wirings 141A and 141B that transmit high frequency signals to the power feeding element 121 are electrically connected by solder bumps 180 between the dielectric substrate 130 and the dielectric substrate 130A.
  • the power feeding wiring may be electrically connected by crimping or an adhesive layer.
  • FIG. 17 is a cross-sectional perspective view of the antenna module 100G of the second example in the modified example 5.
  • the feeding elements 121 and 122 in the antenna module 100 shown in FIG. 3 are formed on a dielectric substrate 130B different from the dielectric substrate 130 on which the ground electrode GND is formed.
  • the power supply wirings 141A and 141B that transmit high frequency signals to the power supply element 121 and the power supply wirings 142A and 142B that transmit high frequency signals to the power supply element 122 are solder bumps 180 between the dielectric substrate 130 and the dielectric substrate 130B. Is electrically connected by. Instead of the solder bump 180, the power feeding wiring may be electrically connected by crimping or an adhesive layer.
  • FIGS. 16 and 17 can be applied to the configurations of other embodiments and modifications.
  • the “feeding element 121" in each of the above-described embodiments and modifications corresponds to the "first radiating element” in the present disclosure. Further, the “feeding element 122" or the “non-feeding element 123” corresponds to the “second radiating element” in the present disclosure.
  • the “feeding wiring 141, 161” in each embodiment and modification corresponds to the “first feeding wiring” in the present disclosure. Further, the “power feeding wirings 142 and 162" correspond to the "second power feeding wiring” in the present disclosure.
  • the configuration in which the radiation element and the ground electrode are arranged on the same dielectric substrate has been described, but the substrate on which the radiation element is arranged and the ground electrode are arranged.
  • the configuration may be such that the substrate is formed of a substrate separate from the substrate.
  • the configuration in which the feeding element 121 and the feeding element 122 or the feeding element 121 and the non-feeding element 123 face each other has been described.
  • the feeding element 121 and the feeding element 122 or the non-feeding element 123 do not have to overlap each other.
  • the non-feeding element 123 may function as a capacitor that is capacitively coupled to the feeding element 121.
  • the non-feeding element 123 functions as a parasitic element, whereby the frequency band of the feeding element 121 can be expanded.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

アンテナモジュール(100)は、平板状の放射素子(121,122)と、放射素子(121)に高周波信号を伝達する給電配線(141A)とを備える。放射素子(122)は、放射素子(121)の法線方向において放射素子(121)と異なる位置に配置され、放射素子(121)と異なる共振周波数を有する。給電配線(141A)は、RFIC(110)から放射素子(122)を貫通して放射素子(122)に高周波信号を伝達する。給電配線(141A)は、RFIC(110)から放射素子(121)に至るまでの経路における放射素子(122)とは異なる位置において、放射素子(121)の法線方向に直交する方向に延伸するシフト領域を含んでいる。放射素子(121)の法線方向から平面視した場合に、放射素子(122)において、シフト領域と重なる部分に開口部(150)が形成されている。

Description

アンテナモジュールおよびそれを搭載した通信装置
 本開示は、アンテナモジュールおよびそれを搭載した通信装置に関し、より特定的には、スタック型のデュアルバンド型アンテナモジュールにおけるゲイン特性を向上するための技術に関する。
 特開2015-216577号公報(特許文献1)には、第1のパッチ(平板状の放射素子)と地板との間に第2のパッチが配置され、当該2つのパッチから異なる周波数の電波を放射することが可能な、いわゆるスタック型のデュアルバンド型アンテナモジュールが開示されている。特開2015-216577号公報(特許文献1)に開示されたアンテナモジュールの一例(特許文献1の図15)においては、第1のパッチに接続された給電配線は、第1のパッチと第2のパッチとの間でパッチの中心から遠ざかる方向に延びた後に、第2のパッチを貫通するように配置されている。
特開2015-216577号公報
 特開2015-216577号公報(特許文献1)に開示された上記のような給電配線を有するアンテナモジュールにおいては、給電配線と第2のパッチとが対向する部分で容量結合が生じ、これによって放射に寄与しない不要な共振が生じる場合がある。このような不要共振が発生すると、当該共振によってエネルギが消費されてしまい、結果としてアンテナモジュール全体のゲイン特性が低下する可能性がある。
 本開示は、このような課題を解決するためになされたものであって、その目的は、スタック型のデュアルバンドタイプのアンテナモジュールにおいて、不要共振を抑制してゲイン特性の低下を抑制することである。
 本開示のある局面に従うアンテナモジュールは、平板状の第1放射素子および第2放射素子と、第1放射素子に高周波信号を伝達する第1給電配線とを備える。第2放射素子は、第1放射素子の法線方向において第1放射素子と異なる位置に配置され、第1放射素子と異なる共振周波数を有する。第1給電配線は、給電回路から第2放射素子を貫通して第1放射素子に高周波信号を伝達する。第1給電配線は、給電回路から第1放射素子に至るまでの経路における第2放射素子とは異なる位置において、第1放射素子の法線方向に直交する方向に延伸するシフト領域を含む。第1放射素子の法線方向から平面視した場合に、第2放射素子において、上記シフト領域と重なる部分に開口部が形成されている。
 本開示によるアンテナモジュールにおいては、対向配置された2つの放射素子(第1放射素子および第2放射素子)が配置されており、第1放射素子に高周波信号を供給する給電配線は、第1放射素子の法線方向に直交する方向に延伸するシフト領域を含んでいる。そして、平面視した場合に、第2放射素子において当該シフト領域と重なる部分に開口部が形成されている。このような構成とすることにより、給電配線のシフト領域と第2放射素子との間で生じる容量結合を抑制することができるので、当該容量結合に起因して生じる不要共振が抑制される。したがって、アンテナモジュールのゲイン特性の低下を抑制することができる。
実施の形態1に係るアンテナモジュールが適用される通信装置のブロック図である。 実施の形態1に係るアンテナモジュールの平面図である。 図2の線III-IIIにおける断面透視図である。 比較例1のアンテナモジュールの平面図である。 図4の線V-Vにおける断面透視図である。 比較例1および実施の形態1のアンテナモジュールの反射損失を説明するための図である。 比較例1および実施の形態1のアンテナモジュールにおける、高周波数側の放射素子のゲイン特性を説明するための図である。 実施の形態2に係るアンテナモジュールの平面図である。 比較例2のアンテナモジュールの平面図である。 比較例2および実施の形態2のアンテナモジュールの反射損失を説明するための図である。 比較例2および実施の形態2のアンテナモジュールにおける、高周波数側の放射素子のゲイン特性を説明するための図である。 変形例1のアンテナモジュールの断面透視図である。 変形例2のアンテナモジュールの断面透視図である。 変形例3のアンテナモジュールの断面透視図である。 変形例4のアンテナモジュールの断面透視図である。 変形例5の第1例のアンテナモジュールの断面透視図である。 変形例5の第2例のアンテナモジュールの断面透視図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の基本構成)
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10の一例のブロック図である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナ装置120から放射するとともに、アンテナ装置120で受信した高周波信号をダウンコンバートしてBBIC200にて信号を処理する。
 図1のアンテナ装置120においては、放射素子125が二次元のアレイ状に配置された構成を有している。放射素子125の各々は、2つの給電素子121,122を含んでいる。アンテナ装置120は、放射素子125の給電素子121および給電素子122から、それぞれ異なる周波数帯域の電波を放射することが可能に構成された、いわゆるデュアルバンドタイプのアンテナ装置である。各給電素子121,122には、RFIC110から異なる高周波信号が供給される。一例としては、給電素子121から放射される電波の周波数帯域は39GHzであり、給電素子122から放射される電波の周波数帯域は28GHzである。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数の放射素子125のうち、4つの放射素子125に対応する構成のみ示され、同様の構成を有する他の放射素子125に対応する構成については省略されている。なお、アンテナ装置120は必ずしも二次元アレイでなくてもよく、1つの放射素子125でアンテナ装置120が形成される場合であってもよい。また、複数の放射素子125が一列に配置された一次元アレイであってもよい。本実施の形態においては、放射素子125に含まれる給電素子121,122は、略正方形の平板形状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111H,113A~113H,117A,117Bと、パワーアンプ112AT~112HTと、ローノイズアンプ112AR~112HRと、減衰器114A~114Hと、移相器115A~115Hと、信号合成/分波器116A,116Bと、ミキサ118A,118Bと、増幅回路119A、119Bとを備える。このうち、スイッチ111A~111D,113A~113D,117A、パワーアンプ112AT~112DT、ローノイズアンプ112AR~112DR、減衰器114A~114D、移相器115A~115D、信号合成/分波器116A、ミキサ118A、および増幅回路119Aの構成が、給電素子121から放射される第1周波数帯域の高周波信号のための回路である。また、スイッチ111E~111H,113E~113H,117B、パワーアンプ112ET~112HT、ローノイズアンプ112ER~112HR、減衰器114E~114H、移相器115E~115H、信号合成/分波器116B、ミキサ118B、および増幅回路119Bの構成が、給電素子122から放射される第2周波数帯域の高周波信号のための回路である。
 高周波信号を送信する場合には、スイッチ111A~111H,113A~113Hがパワーアンプ112AT~112HT側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111H,113A~113Hがローノイズアンプ112AR~112HR側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119A,119Bで増幅され、ミキサ118A,118Bでアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116A,116Bで4分波され、対応する信号経路を通過して、それぞれ異なる給電素子121,122に給電される。各信号経路に配置された移相器115A~115Hの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各給電素子121,122で受信された高周波信号である受信信号はRFIC110に伝達され、それぞれ異なる4つの信号経路を経由して信号合成/分波器116A,116Bにおいて合波される。合波された受信信号は、ミキサ118A,118Bでダウンコンバートされ、増幅回路119A,119Bで増幅されてBBIC200へ伝達される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各放射素子125に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する放射素子125毎に1チップの集積回路部品として形成されてもよい。
 なお、各給電素子が2つの偏波方向に電波を放射することが可能なデュアル偏波タイプのアンテナモジュールの場合には、RFIC110から各給電素子に対して2つの給電配線が接続される。あるいは、1つの給電配線を分岐回路(図示せず)で分岐して、給電素子の各給電点に高周波信号を供給するようにしてもよい。
 (アンテナモジュールの構成)
 次に、図2および図3を用いて、実施の形態1におけるアンテナモジュール100の構成の詳細について説明する。図2はアンテナモジュール100の平面図であり、図3は図2の線III-IIIにおける断面透視図である。以降の説明においては、説明を容易にするために、1つの放射素子125が形成されたアンテナモジュールを例として説明する。なお、図2および図3に示すように、アンテナモジュール100の厚さ方向をZ軸方向とし、Z軸方向に垂直な面をX軸およびY軸で規定する。また、各図におけるZ軸の正方向を上面側、負方向を下面側と称する場合がある。
 図2および図3を参照して、アンテナモジュール100は、RFIC110および放射素子125(給電素子121,122)に加えて、誘電体基板130と、接地電極GNDと、給電配線141A,141B,142A,142Bとを備える。なお、図2においては、RFIC110,接地電極GNDおよび誘電体基板130は省略されている。
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、PET(Polyethylene Terephthalate)材から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130は必ずしも多層構造でなくてもよく、単層の基板であってもよい。また、誘電体基板130は、通信装置10の筐体であってもよい。
 誘電体基板130は、法線方向(Z軸方向)から平面視すると略矩形状を有しており、その上面131(Z軸の正方向の面)側に給電素子121が接地電極GNDに対向して配置される。給電素子121は、誘電体基板130表面に露出する態様であってもよいし、図3の例のように誘電体基板130の内層に配置されてもよい。
 給電素子122は、給電素子121よりも接地電極GND側の層に、接地電極GNDに対向して配置される。言い換えると、給電素子122は、給電素子121と接地電極GNDとの間の層に配置されている。給電素子122は、誘電体基板130を平面視した場合に、給電素子121と重なっている。給電素子121のサイズは給電素子122のサイズよりも小さく、給電素子121の共振周波数は給電素子122の共振周波数よりも高い。すなわち、給電素子121から放射される電波の周波数は、給電素子122から放射される電波の周波数よりも高い。たとえば、給電素子121から放射される電波の中心周波数は39GHzであり、給電素子122から放射される電波の中心周波数は28GHzである。
 誘電体基板130の下面132には、はんだバンプ(図示せず)を介してRFIC110が実装されている。なお、RFIC110は、はんだ接続に代えて、多極コネクタを用いて誘電体基板130に接続されてもよい。
 給電素子121には、給電配線141A,141Bを介してRFIC110から高周波信号が伝達される。給電配線141Aは、RFIC110から、接地電極GNDおよび給電素子122を貫通して、給電素子121の下面側から給電点SP1Aに接続される。同様に、給電配線141Bは、RFIC110から、接地電極GNDおよび給電素子122を貫通して、給電素子121の下面側から給電点SP1Bに接続される。すなわち、給電配線141A,141Bは、給電素子121の給電点SP1A,SP1Bに高周波信号をそれぞれ伝達する。
 給電点SP1Aは、給電素子121の中心からY軸の正方向にオフセットした位置に配置されている。また、給電点SP1Bは、給電素子121の中心からX軸の負方向にオフセットした位置に配置されている。給電点SP1Aに高周波信号が供給されると、給電素子121からは、Y軸方向を偏波方向とする電波が放射される。また、給電点SP1Bに高周波信号が供給されると、給電素子121からは、X軸方向を偏波方向とする電波が放射される。
 また、給電素子122には、給電配線142A,142Bを介してRFIC110から高周波信号が伝達される。給電配線142Aは、RFIC110から、接地電極GNDを貫通して、給電素子122の給電点SP2Aに接続される。同様に、給電配線142Bは、RFIC110から、接地電極GNDを貫通して、給電素子122の給電点SP2Bに接続される。すなわち、給電配線142A,142Bは、給電素子122の給電点SP2A,SP2Bに高周波信号をそれぞれ伝達する。
 給電点SP2Aは、給電素子122の中心からY軸の負方向にオフセットした位置に配置されている。また、給電点SP2Bは、給電素子122の中心からX軸の正方向にオフセットした位置に配置されている。給電点SP2Aに高周波信号が供給されると、給電素子122からは、Y軸方向を偏波方向とする電波が放射される。また、給電点SP2Bに高周波信号が供給されると、給電素子121からは、X軸方向を偏波方向とする電波が放射される。
 すなわち、アンテナモジュール100は、異なる2つの周波数帯域の電波を放射することが可能であり、かつ、各周波数帯域の電波を異なる2つの偏波方向に放射することが可能な、いわゆるデュアルバンドタイプかつデュアル偏波タイプのアンテナモジュールである。
 給電配線141A,141B,142A,142Bの各々は、各誘電体層の境界に形成された電極パッド146と、誘電体層を貫通し、当該誘電体層の上下の電極パッド146を接続するビア145とを含んで構成される。また、各給電配線が同一層内を延伸するときには、配線パターン(図示せず)により電極パッド146同士が接続される。本開示において、給電素子121の法線方向に直交する方向に給電配線が延伸する部分を「シフト領域170」と称する。
 各給電配線は、RFIC110から接地電極GNDを貫通し、給電素子122と接地電極GNDとの間の層において、放射素子の中心方向に対応する給電点の下方まで延伸する部分(第1配線)と、給電点の下方から給電点に至る部分(第2配線)とを含む。シフト領域170は、第2配線に形成されている。したがって、第2配線は、X軸方向あるはY軸方向にメアンダ状にシフトしながら給電点に接続される。実施の形態1のアンテナモジュール100の例においては、給電配線141A,141Bには、2つのシフト領域が形成されている。
 アンテナモジュール100においては、シフト領域170は、RFIC110から給電点の下方まで延伸する方向(偏波方向)と直交する方向に形成されている。たとえば、給電配線141Aのシフト領域はX軸方向にシフトしており、給電配線142Bのシフト領域はY軸方向にシフトしている。このように、給電配線にシフト領域を形成することによって、誘電体層間の接続部で生じるインピーダンスの不整合を適宜調整することができる。
 上述のように、給電素子121に接続される給電配線141A,141Bは給電素子122を貫通している。実施の形態1のアンテナモジュール100においては、給電素子121を平面視した場合に、給電素子122において給電配線141A,141Bのシフト領域170と重なる部分に開口部150が形成されている。
 以下、図4および図5に示す比較例1を用いて、給電素子122に形成される開口部150による効果について説明する。図4は、比較例1のアンテナモジュール100#1の平面図である。また、図5は、図4の線V-Vにおける断面透視図である。
 図4および図5を参照して、比較例1のアンテナモジュール100#1は、給電素子122において、給電配線141A,141Bが貫通している部分にのみ開口部150#が形成されている点を除けば、基本的に実施の形態1のアンテナモジュール100と同様の構成を有している。
 比較例1のアンテナモジュール100#1の場合、図5に示されるように、シフト領域170は、給電素子122の開口部150#を貫通した給電配線141A,141Bにおける、給電素子122の上方あるいは下方に形成されている。このシフト領域170は、アンテナモジュール100#1を法線方向(Z方向)から平面視した場合、給電素子122と重なっている。そのため、給電素子122とシフト領域170との距離が近い場合、シフト領域170に含まれる電極パッド146と給電素子122との間で容量結合が生じ得る。容量結合が生じると、給電素子からの放射に寄与しない不要な共振が発生する場合がある。このような不要共振が生じると、当該共振によってエネルギが消費されてしまい、結果としてアンテナモジュール全体のゲイン特性が低下する場合がある。
 一方で、実施の形態1のアンテナモジュール100においては、給電素子121を平面視した場合に、給電素子122においてシフト領域170と重なる部分に開口部150が形成されている。すなわち、給電配線141A,141Bのシフト領域170と給電素子122とは対向していない。これにより、当該シフト領域170と給電素子122との間における容量結合が抑制されるので、比較例1のような不要共振の発生を抑制することができる。したがって、不要共振に起因して生じるゲイン特性の低下を抑制することができる。
 図6および図7は、比較例1および実施の形態1のアンテナモジュールにおけるアンテナ特性を説明するための図である。図6は、比較例1および実施の形態1のアンテナモジュールの反射損失を比較するための図であり、図7は比較例1および実施の形態1のアンテナモジュール100における給電素子121のゲイン特性を比較するための図である。図6の上段(図6(a))には比較例1のアンテナモジュール100#1における反射損失が示されており、下段(図6(b))には実施の形態1のアンテナモジュール100における反射損失が示されている。
 なお、図6において、実線LN10,LN20は給電素子121の反射損失を示しており、破線LN11,LN21は給電素子122の反射損失を示している。また、図7において、実線LN30は実施の形態1の場合のゲイン特性を示しており、破線LN31は比較例1の場合のゲイン特性を示している。
 なお、実施の形態1のアンテナモジュール100においては、誘電体基板130を構成する各誘電体シートの厚みは50μmである。また、各給電配線において、ビア145の直径は100μmであり、電極パッド146の直径は240μmであり、ビアのシフト量(ビアピッチ)は240μmである。
 図6および図7を参照して、低周波数側の給電素子122の反射損失については、比較例1および実施の形態1とも大差はないが、高周波数側の給電素子121の反射損失については、実施の形態1に比べて比較例1の方が低減している。そのため、一見すると、比較例1のアンテナモジュール100#1の方が、実施の形態1のアンテナモジュール100よりも良好な特性を示しているようにも見える。
 しかしながら、図7のゲイン特性においては、所望の周波数帯域におけるゲインは、実施の形態1のアンテナモジュール100の方が比較例1のアンテナモジュール100#1よりも高くなっている。すなわち、比較例1のアンテナモジュール100#1においては、給電配線141A,142Aと給電素子121との間に共振が生じることによって、反射損失からはあたかも給電素子121の損失が低減されているように見えるが、当該共振によるゲインへの寄与はなく、逆にゲインの低下を招いていることがわかる。
 一方で、実施の形態1のアンテナモジュール100においては、給電素子122において、給電配線141A,141Bと対向する部分に開口部150を形成することによって、不要共振が抑制され、結果としてゲインの低下が抑制されていることがわかる。
 以上のように、スタック型のデュアルバンドタイプのアンテナモジュールにおいて、当該アンテナモジュールを平面視した場合に、下面側の給電素子を貫通して上面側の給電素子に至るメアンダ状の給電配線と、下面側の給電素子とが重なる部分に開口部を形成することによって、給電配線と下面側の給電素子との間の不要共振の発生が抑制され、上面側の給電素子のゲイン特性の低下を抑制することができる。
 なお、給電配線141A,141Bにおいて、給電素子122と接地電極GNDとの間の領域にシフト領域170がある場合、当該シフト領域170が給電素子122よりも接地電極GNDに近いと、シフト領域170は給電素子122よりも接地電極GNDと結合しやすくなる。そうすると、上述のような不要共振が発生しにくくなる。したがって、図3に示すように、給電素子122に形成される開口部150は、アンテナモジュール100を平面視した場合に、給電素子122と接地電極GNDとの間の距離HTの1/2よりも給電素子122側にあるシフト領域170と重なる領域に形成されていればよい。
 また、開口部150の大きさが大きくなると、給電素子122の電極部分が減少するため、給電素子122の放射特性に影響を及ぼすおそれがある。また、開口部150が他の開口部と近接した場合には、互いの電波のアイソレーションが悪化する可能性がある。そのため、開口部150の大きさは、アンテナモジュール100を平面視した場合に、電極パッドおよび配線パターンのサイズに対して300%以下となるようにすることが好ましい。実施の形態1の例においては、電極パッドの直径240μmに対して、開口部150の直径が340μmであるため、開口部150は電極パッドのサイズに対して訳142%となる。
 [実施の形態2]
 実施の形態1においては、シフト領域の延伸方向が、給電点から給電素子の中心に向かう方向(偏波方向)に対して直交する方向である場合について説明した。実施の形態2においては、シフト領域の延伸方向が、偏波方向に対して平行な場合について説明する。
 図8は、実施の形態2に係るアンテナモジュール100Aの平面図である。アンテナモジュール100Aにおいては、各給電素子に高周波信号を供給するための給電配線161A,161Bにおけるシフト領域170Xは、アンテナモジュール100Aを平面視した場合に、対応する給電点から放射素子の中心に向かう方向に延伸している。そして、給電素子122においては、アンテナモジュール100Aを平面視した場合に、給電配線161A,161Bにおけるシフト領域170Xと重なる部分に開口部155が形成されている。その他の構成については、実施の形態1のアンテナモジュール100と同様であるため、詳細な説明は繰り返さない。
 このようなアンテナモジュール100Aについて、図9で示した比較例2のアンテナモジュール100#2とのアンテナ特性の比較を図10および図11に示す。なお、比較例2のアンテナモジュール100#2においては、給電配線161A,161Bが給電素子122を貫通する部分のみに開口部155#が形成されている。
 図10は、比較例2および実施の形態2のアンテナモジュールの反射損失を比較するための図であり、図11は比較例2および実施の形態2のアンテナモジュールにおける給電素子121のゲイン特性を比較するための図である。図10においては、図6と同様に、上段(図10(a))には比較例2のアンテナモジュール100#2における反射損失が示されており、下段(図10(b))には実施の形態2のアンテナモジュール100Aにおける反射損失が示されている。図10において、実線LN40,LN50は給電素子121を示しており、破線LN41,LN51は給電素子122を示している。また、図11において、実線LN60は実施の形態2の場合を示しており、破線LN61は比較例2の場合を示している。
 なお、アンテナモジュール100Aにおいては、誘電体基板130を構成する各誘電体シートの厚みは50μmである。また、各給電配線において、ビア145の直径は100μmであり、電極パッド146の直径は240μmであり、ビアピッチは240μmである。
 図10および図11を参照して、比較例2においては、実施の形態2の場合と比べて低周波数側の給電素子122の反射損失が低下しているが、高周波数側の給電素子121の反射損失についてはほぼ変化していない。しかしながら、図10(a)の比較例2における38GHz付近の共振ピークは、不要共振による影響によって、実施の形態2の共振ピークと比べて非対称の形状となっている。
 一方、図11のゲイン特性においては、所望の周波数帯域におけるゲインは、実施の形態2のアンテナモジュール100Aの方が比較例2のアンテナモジュール100#2よりも高くなっている。すなわち、実施の形態1と比較例1との間の議論と同様に、給電素子122において、給電配線161A,161Bと対向する部分に開口部155を形成することによって、比較例2で発生した放射に寄与しない不要共振によるエネルギの消費が抑制され、結果としてゲインの低下が抑制されている。
 以上のように、給電配線のシフト領域の延伸方向が異なる場合においても、アンテナモジュールを平面視した場合に、下面側の給電素子を貫通して上面側の給電素子に至るメアンダ状の給電配線におけるシフト領域と、下面側の給電素子とが重なる部分に開口部を形成することによって、給電配線と下面側の給電素子との間の不要共振の発生が抑制され、上面側の給電素子のゲイン特性の低下を抑制することができる。
 [変形例]
 以下の変形例1~3においては、給電素子121に接続される給電配線の他の構成例について説明する。また、変形例4においては、低周波数側の放射素子が無給電素子である場合の例について説明する。なお、変形例1~変形例4においては、給電素子121について偏波方向がY軸方向である電波を放射する給電配線のみが示されているが、偏波方向がX軸方向である電波を放射する給電配線についても同様の構成とすることができる。
 (変形例1)
 図12は、変形例1のアンテナモジュール100Bの断面透視図である。アンテナモジュール100Bにおいて、給電素子121に高周波信号を供給するための給電配線141A1におけるシフト領域170Aは、給電素子121と給電素子122との間の層に形成されている。そして、アンテナモジュール100Bを平面視した場合に、給電素子122において、シフト領域170Aと重なる部分に開口部150が形成されている。このような構成とすることによって、給電配線141A1のシフト領域170Aと給電素子122との間の容量結合が抑制され、当該容量結合に起因して生じる不要共振が抑制される。したがって、アンテナモジュールのゲイン特性の低下を抑制することができる。
 (変形例2)
 図13は、変形例2のアンテナモジュール100Cの断面透視図である。アンテナモジュール100Cにおいて、給電素子121に高周波信号を供給するための給電配線141A2のシフト領域170Bは、給電素子122と接地電極GNDとの間の層に形成されている。そして、アンテナモジュール100Cを平面視した場合に、給電素子122において、給電配線141A2のシフト領域170Bと重なる部分に開口部150が形成されている。このような構成とすることによって、給電配線141A2のシフト領域170Bと給電素子122との間の容量結合が抑制され、当該容量結合に起因して生じる不要共振が抑制される。したがって、アンテナモジュールのゲイン特性の低下を抑制することができる。
 (変形例3)
 図14は、変形例3のアンテナモジュール100Dの断面透視図である。アンテナモジュール100Dにおいて、給電素子121に高周波信号を供給するための給電配線141A3のシフト領域170Cは階段状に形成されている。そして、アンテナモジュール100Dを平面視した場合に、給電素子122において、給電配線141A3のシフト領域170Cと重なる部分に開口部150Aが形成されている。このような構成とすることによって、給電配線141A3のシフト領域170Cと給電素子122との間の容量結合が抑制され、当該容量結合に起因して生じる不要共振が抑制される。したがって、アンテナモジュールのゲイン特性の低下を抑制することができる。
 (変形例4)
 図15は、変形例4のアンテナモジュール100Eの断面透視図である。アンテナモジュール100Eにおいては、給電素子121に高周波信号を供給するための給電配線141Aは、実施の形態1の図3のアンテナモジュール100で示したものと同じ形状とされている。しかしながら、給電素子121と接地電極GNDとの間の層に配置された低周波数側の放射素子には給電配線が接続されておらず、すなわち無給電素子123となっている。そして、アンテナモジュール100Eを平面視した場合に、無給電素子123において、給電配線141Aのシフト領域170と重なる部分に開口部150が形成されている。
 アンテナモジュール100Eの場合、給電配線141Aに対して、無給電素子123の共振周波数に対応した高周波信号を供給することによって、給電配線141Aが無給電素子123を貫通している部分で、給電配線141Aと無給電素子123とが電磁界結合し、無給電素子123に高周波信号が非接触で供給される。これによって、無給電素子123から電波が放射される。
 変形例4のアンテナモジュール100Eの構成においても、アンテナモジュール100Eを平面視した場合に、無給電素子123において、給電配線141Aのシフト領域170と重なる部分に開口部150が形成されている。このため、給電素子121の共振周波数に対応する高周波信号を給電配線141Aに供給した場合に、給電配線141Aのシフト領域170と無給電素子123との間の容量結合が抑制される。そのため、容量結合に起因して生じる不要共振が抑制され、アンテナモジュールのゲイン特性の低下を抑制することができる。
 なお、アンテナモジュールを構成する誘電体シートの厚み、および、給電配線の寸法については、実施の形態1および実施の形態2で示したものには限られない。他の例においては、誘電体シートの厚みを75μmとし、ビア145の直径を150μmとし、電極パッド146の直径を290μmとし、ビアピッチを290μmとしてもよい。さらに他の例においては、誘電体シートの厚みを100μmとし、ビア145の直径を200μmとし、電極パッド146の直径を340μmとし、ビアピッチを340μmとしてもよい。
 誘電体シートの厚みを厚くすると、誘電体基板130を形成するための誘電体シートの枚数が少なくなり、製造プロセスにおけるシートの積層工程が少なくなるので製造コストを低減することができる。一方、誘電体シートの厚みが厚くなると、貫通孔を形成する際に誘電体シートに照射するレーザのエネルギを大きくする必要があるため、ビア径が大きくなり、それに伴って電極パッド径およびビアピッチも大きくなる。そうすると、低周波数側の放射素子に形成すべき開口部が大きくなるので、低周波数側の放射素子の特性あるいは2つの偏波のアイソレーションに影響が及ぶ可能性がある。したがって、誘電体シートの厚みは、製造コストおよび所望のアンテナ特性に応じて適宜決定される。
 (変形例5)
 上述の各実施の形態および変形例においては、2つの放射素子(給電素子121と給電素子122、給電素子121と無給電素子123)および接地電極GNDが、同じ誘電体基板130に形成される構成について説明したが、各放射素子および接地電極GNDは、以下の図16および図17の例のように、異なる誘電体基板に配置されていいてもよい。
 図16は、変形例5における第1例のアンテナモジュール100Fの断面透視図である。アンテナモジュール100Fにおいては、図3で示したアンテナモジュール100における給電素子121が、給電素子122および接地電極GNDが形成される誘電体基板130とは異なる誘電体基板130Aに形成されている。給電素子121に高周波信号を伝達する給電配線141A,141Bは、誘電体基板130と誘電体基板130Aとの間において、はんだバンプ180によって電気的に接続される。なお、はんだバンプ180に代えて、圧着あるいは接着層によって給電配線を電気的に接続してもよい。
 また、図17は、変形例5における第2例のアンテナモジュール100Gの断面透視図である。アンテナモジュール100Gにおいては、図3で示したアンテナモジュール100における給電素子121,122が、接地電極GNDが形成される誘電体基板130とは異なる誘電体基板130Bに形成されている。給電素子121に高周波信号を伝達する給電配線141A,141B、および、給電素子122に高周波信号を伝達する給電配線142A,142Bは、誘電体基板130と誘電体基板130Bとの間において、はんだバンプ180によって電気的に接続される。なお、はんだバンプ180に代えて、圧着あるいは接着層によって給電配線を電気的に接続してもよい。
 なお、図16および図17の構成は、他の実施の形態および変形例の構成にも適用可能である。
 上述の各実施の形態および変形例における「給電素子121」は、本開示における「第1放射素子」に対応する。また、「給電素子122」あるいは「無給電素子123」は、本開示における「第2放射素子」に対応する。各実施の形態および変形例における「給電配線141,161」は、本開示における「第1給電配線」に対応する。また、「給電配線142,162」は、本開示における「第2給電配線」に対応する。
 なお、上述の実施の形態および各変形例においては、放射素子と接地電極とが同じ誘電体基板に配置される構成について説明したが、放射素子が配置される基板と、接地電極が配置される基板とが別個の基板で形成される構成であってもよい。
 また、上述の実施の形態および各変形例においては、給電素子121と給電素子122、あるいは、給電素子121と無給電素子123とが、互いに対向する構成について説明したが、誘電体基板を法線方向から平面視した場合に、給電素子121と給電素子122あるいは無給電素子123とが、重なっていなくてもよい。
 また、無給電素子123は、給電素子121と容量結合するキャパシタとして機能するものであってもよい。この場合、無給電素子123は寄生素子として機能し、それによって給電素子121の周波数帯域を拡大することができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 通信装置、100,100A~100G,100#1,100#2 アンテナモジュール、110 RFIC、111A~111H,113A~113H,117A,117B スイッチ、112AR~112HR ローノイズアンプ、112AT~112HT パワーアンプ、114A~114H 減衰器、115A~115H 移相器、116A,116B 信号合成/分波器、118A,118B ミキサ、119A,119B 増幅回路、120 アンテナ装置、121,122 給電素子、123 無給電素子、125 放射素子、130,130A,130B 誘電体基板、141A,141B,142A,142B,161A,161B,162A,162B 給電配線、145 ビア、146 電極パッド、150,150A,150#,155,155# 開口部、170,170A~170C,170X シフト領域、180 はんだバンプ、200 BBIC、GND 接地電極、SP1A,SP1B,SP2A,SP2B 給電点。

Claims (10)

  1.  平板状の第1放射素子と、
     前記第1放射素子の法線方向において前記第1放射素子と異なる位置に配置され、前記第1放射素子と異なる共振周波数を有する平板状の第2放射素子と、
     給電回路から前記第2放射素子を貫通して前記第1放射素子に高周波信号を伝達する第1給電配線とを備え、
     前記第1給電配線は、前記給電回路から前記第1放射素子に至るまでの経路における前記第2放射素子とは異なる位置において、前記第1放射素子の法線方向に直交する方向に延伸するシフト領域を含み、
     前記第1放射素子の法線方向から平面視した場合に、前記第2放射素子において、前記シフト領域と重なる部分に開口部が形成されている、アンテナモジュール。
  2.  前記第2放射素子は、前記第1放射素子に対向して配置されている、請求項1に記載のアンテナモジュール。
  3.  前記第1放射素子および前記第2放射素子に対向して配置された接地電極をさらに備え、
     前記第2放射素子は、前記第1放射素子と前記接地電極との間に配置されており、
     前記第1放射素子の法線方向から平面視した場合に、前記第2放射素子は、前記第2放射素子と前記接地電極との間の距離の1/2の位置よりも前記第1放射素子側の部分に形成されている前記シフト領域と重なる部分に、前記開口部が形成されている、請求項2に記載のアンテナモジュール。
  4.  前記シフト領域は、前記第2放射素子と前記接地電極との間に形成されている、請求項3に記載のアンテナモジュール。
  5.  前記シフト領域は、前記第1放射素子と前記第2放射素子との間に形成されている、請求項2~4のいずれか1項に記載のアンテナモジュール。
  6.  前記給電回路から前記第2放射素子に高周波信号を伝達する第2給電配線をさらに備える、請求項1~5のいずれか1項に記載のアンテナモジュール。
  7.  前記第1給電配線は、
     前記給電回路に接続され、前記第1放射素子の法線方向に直交する方向に延伸する第1配線と、
     前記第1配線から前記第1放射素子に至る第2配線とを含み、
     前記シフト領域は、前記第2配線において、前記第1配線の延伸方向に直交する方向に形成されている、請求項1~6のいずれか1項に記載のアンテナモジュール。
  8.  前記第1給電配線は、
     前記給電回路に接続され、前記第1放射素子の法線方向に直交する方向に延伸する第1配線と、
     前記第1配線から前記第1放射素子に至る第2配線とを含み、
     前記シフト領域は、前記第2配線において、前記第1配線の延伸方向に平行な方向に形成されている、請求項1~6のいずれか1項に記載のアンテナモジュール。
  9.  前記給電回路をさらに備える、請求項1~8のいずれか1項に記載のアンテナモジュール。
  10.  請求項1~9のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
PCT/JP2020/048453 2020-02-19 2020-12-24 アンテナモジュールおよびそれを搭載した通信装置 WO2021166443A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080097067.5A CN115136413A (zh) 2020-02-19 2020-12-24 天线模块以及搭载有天线模块的通信装置
JP2022501668A JP7283623B2 (ja) 2020-02-19 2020-12-24 アンテナモジュールおよびそれを搭載した通信装置
US17/884,598 US20220384945A1 (en) 2020-02-19 2022-08-10 Antenna module and communication device equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020026077 2020-02-19
JP2020-026077 2020-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/884,598 Continuation US20220384945A1 (en) 2020-02-19 2022-08-10 Antenna module and communication device equipped with the same

Publications (1)

Publication Number Publication Date
WO2021166443A1 true WO2021166443A1 (ja) 2021-08-26

Family

ID=77390720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048453 WO2021166443A1 (ja) 2020-02-19 2020-12-24 アンテナモジュールおよびそれを搭載した通信装置

Country Status (4)

Country Link
US (1) US20220384945A1 (ja)
JP (1) JP7283623B2 (ja)
CN (1) CN115136413A (ja)
WO (1) WO2021166443A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188413A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2019189050A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2019208100A1 (ja) * 2018-04-27 2019-10-31 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112262B2 (en) * 2011-06-02 2015-08-18 Brigham Young University Planar array feed for satellite communications
KR102566993B1 (ko) * 2018-10-24 2023-08-14 삼성전자주식회사 안테나 모듈 및 이를 포함하는 rf 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188413A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2019189050A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
WO2019208100A1 (ja) * 2018-04-27 2019-10-31 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置

Also Published As

Publication number Publication date
CN115136413A (zh) 2022-09-30
JPWO2021166443A1 (ja) 2021-08-26
US20220384945A1 (en) 2022-12-01
JP7283623B2 (ja) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2020261806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP7047918B2 (ja) アンテナモジュール
WO2019189050A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020217689A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022185917A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11539122B2 (en) Antenna module and communication unit provided with the same
WO2020261920A1 (ja) フレキシブル基板、およびフレキシブル基板を備えるアンテナモジュール
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021039102A1 (ja) アンテナ装置、アンテナモジュールおよび通信装置
WO2022130877A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021166443A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
CN219419480U (zh) 天线模块和连接构造
JP7059385B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021153034A1 (ja) アンテナモジュール
WO2022230383A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023032581A1 (ja) アンテナモジュール、およびそれを搭載した通信装置
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022004111A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023120467A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2023095643A1 (ja) アンテナモジュール、およびそれを搭載した通信装置
WO2023210118A1 (ja) アンテナモジュール
WO2023047801A1 (ja) アンテナモジュールおよびそれを搭載する通信装置
WO2023157423A1 (ja) アンテナモジュール、それを搭載した通信装置
WO2024004283A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2024106004A1 (ja) アンテナモジュールおよびそれを搭載した通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919419

Country of ref document: EP

Kind code of ref document: A1