WO2021129137A1 - 一种碳负载的纳米零价铁材料及其制备方法与应用 - Google Patents

一种碳负载的纳米零价铁材料及其制备方法与应用 Download PDF

Info

Publication number
WO2021129137A1
WO2021129137A1 PCT/CN2020/124996 CN2020124996W WO2021129137A1 WO 2021129137 A1 WO2021129137 A1 WO 2021129137A1 CN 2020124996 W CN2020124996 W CN 2020124996W WO 2021129137 A1 WO2021129137 A1 WO 2021129137A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
carbon
valent iron
iron material
chromium
Prior art date
Application number
PCT/CN2020/124996
Other languages
English (en)
French (fr)
Inventor
朱志华
叶代启
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021129137A1 publication Critical patent/WO2021129137A1/zh
Priority to ZA2021/09297A priority Critical patent/ZA202109297B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the field of nano material preparation technology and soil heavy metal pollution restoration, in particular to a carbon-loaded nano zero-valent iron material and a preparation method and application thereof.
  • Soil heavy metal pollution has the characteristics of concealment, lagging, accumulation, irreversibility, long residual time, and difficulty in treatment. It can be transferred through the food chain and cause profound adverse effects on the entire human living environment.
  • Chromium is a very important chemical raw material, which is widely used in fields such as chromium salt production, sodium salt production, leather production, alloy material processing, electroplating, anti-corrosion, and refractory production. Since the founding of the People’s Republic of China, my country has successively established more than 70 chromium salt enterprises, thousands of chromium plating enterprises, and hundreds of large-scale leather processing enterprises. While these enterprises consume a large amount of chromium resources for production, they also produce huge amounts of chromium-containing waste slag. Or chromium-containing wastewater, under the background of early policy supervision and poor environmental protection awareness of the people, a huge amount of chromium-containing pollutants are discharged into the environment, causing severe chromium pollution problems.
  • iron-based materials are widely used to repair chromium-contaminated soil due to the advantages of a wide range of sources, low cost, green, non-toxic, no secondary pollution risk, and high reduction and fixation efficiency.
  • nano-scale zero-valent iron has a better reduction and fixation effect on Cr(VI) due to its small size and large specific surface area and high reaction activity.
  • it is precisely because of the higher surface area and stronger magnetic properties of nano-zero-valent iron that it is particularly prone to agglomeration and oxidation, which reduces the effect of reducing and fixing heavy metals.
  • Singh R and colleagues obtained modified nano-zero-valent iron materials by first synthesizing nano-zero-valent iron and then embedding it in calcium alginate beads, and used them For fixing and stabilizing Cr(VI) in contaminated soil, although the performance is improved compared with unmodified nano-zero-valent iron, the improvement is very small. Therefore, the use of loading methods to improve the dispersion of nano-zero-valent iron and try to enhance its interaction with the carrier is of great significance for improving the use of zero-valent iron in the field of soil heavy metal pollution control.
  • the purpose of the present invention is to provide a carbon-supported nano-zero-valent iron material and a preparation method and application thereof.
  • the purpose of the present invention is to provide a method of simple operation, good repair effect, low repair cost and no risk of secondary pollution, using iron MOF in situ reduction to prepare carbon-loaded nano zero-valent iron and applying it to fixation and stabilization to repair chromium pollution Soil method.
  • the method for preparing a carbon-loaded nano zero-valent iron material provided by the present invention includes the following steps:
  • step (1) Heat the mixed solution described in step (1) for heat treatment, and naturally cool to room temperature to obtain the heat-treated product, which is centrifuged with water and dried to obtain the MIL-88A iron MOF;
  • step (3) In a tube furnace, the temperature of the MIL-88A iron MOF described in step (2) is heated up and roasted in a reducing gas atmosphere to obtain the carbon-supported nano zero-valent iron material (nano Fe 0 /C composite material) ).
  • step (1) the molar ratio of FeCl 3 •6H 2 O to fumaric acid is 0.8:1 -1.2:1; the molar volume ratio of FeCl 3 •6H 2 O to water is 0.1-0.3: 1mol/L.
  • the uniform stirring time in step (1) is 0.5 h.
  • the temperature of the heat treatment in step (2) is 90-120° C.
  • the time of the heat treatment is 3-6 h.
  • the temperature of the heat treatment in step (2) is 100° C.
  • the time of the heat treatment is 4 h.
  • step (2) the drying temperature in step (2) is 50-80°C, and the drying time is 8-12 h.
  • the drying temperature in step (2) is 65°C.
  • the number of centrifugal washing in step (2) is 3 times, the rotation speed of the centrifugation is 6000 rpm, and the time of each centrifugation is 2 min.
  • the reducing atmosphere in step (3) is a mixed atmosphere of H 2 and Ar, wherein the volume percentage of H 2 is 3-10%.
  • step (3) the rate of temperature increase in step (3) is 5-10°C/min, the temperature of the roasting treatment is 500-700°C, and the time of the roasting treatment is 0.5-2 h.
  • the temperature of the calcination treatment in step (3) is 600° C., and the time of the calcination treatment is 1 h.
  • the present invention provides a carbon-supported nano-zero-valent iron prepared by the above preparation method, and the loading amount of the nano-zero-valent iron is 4 wt% to 10 wt%.
  • the carbon-loaded nano zero-valent iron material (Fe 0 /C composite material) provided by the present invention can be applied to repair chromium-contaminated soil.
  • the application of the carbon-loaded nano-zero-valent iron in repairing chromium-contaminated soil includes the following steps:
  • the chromium-contaminated soil and the carbon-loaded nano-zero-valent iron material are mixed uniformly, and then water is added to mix uniformly, and then shake treatment (reduction and fixation reaction) on a shaker to obtain the repaired soil.
  • the pH of the chromium-contaminated soil is 2.0-12.0; the leaching concentration of Cr(VI) in the chromium-contaminated soil is in the range of 0.05-800 mg/L; the carbon-loaded nano-zero-valent iron material is contaminated with chromium
  • the mass ratio of soil is (1-10): 1000; the mass ratio of the carbon-loaded nano-zero-valent iron material to water is (1-10): 1000; the rotation speed of the shaking treatment is 150-250 rpm, shaking The treatment time is 6-24 h.
  • the rotational speed of the shaking treatment is 200 rpm
  • the shaking time is 12 h.
  • the carbon-loaded nano zero-valent iron material provided by the invention has the effect of repairing chromium-contaminated soil, and the repairing effect can be evaluated by measuring the leaching toxicity.
  • the determination of the leaching toxicity includes the following steps:
  • the present invention has the following advantages and beneficial effects:
  • the carbon-loaded nano-zero-valent iron material provided by the present invention can be used for the remediation and treatment of chromium-contaminated soil.
  • the preparation method is simple, and the in-situ reduction method can ensure the high dispersion of the zero-valent iron, so that it can be reduced and fixed. Compared with pure zero-valent iron, the capacity of chromium is significantly improved. This method can be widely used in the remediation of other heavy metal contaminated soils;
  • the method for preparing carbon-loaded nano-zero-valent iron material uses MIL-88A iron MOF as a precursor to prepare carbon-loaded nano-zero-valent iron by in-situ reduction, which can ensure that the carrier and nano The strong interaction between zero-valent iron, thus avoiding possible zero-valent iron loss in the process of using composite materials to repair chromium-contaminated soil, that is, avoiding secondary pollution to the environment;
  • the method for preparing carbon-supported nano-zero-valent iron materials provided by the present invention can expand the pH range of repair materials (2-12) by using carbon as a carrier, and because the nano-zero-valent iron in the composite material has good dispersibility Strong magnetism, which is conducive to the recovery of materials after repair.
  • Figure 1 is the XRD pattern of the carbon-supported nano zero-valent iron material (Fe 0 /C composite material) prepared in Example 1;
  • Example 2 is a SEM and element mapping diagram of the carbon-supported nano zero-valent iron material (Fe 0 /C composite material) prepared in Example 2;
  • Fig. 3 is a bar graph comparing the remediation effect of carbon-loaded nano-zero-valent iron material (Fe 0 /C composite material) on chromium-contaminated soil in Example 4.
  • the ferric chloride used in the following examples is a drug of Aladdin company, which is analytically pure; the fumaric acid used is a drug of Macleans, which is analytically pure.
  • the tube furnace used in the following examples is a product of Hefei Kejing Company, and the gases used (H 2 and Ar) are provided by Guangzhou Danoutong Gas Company, with a purity level of 99.999%.
  • a method for preparing carbon-loaded nano zero-valent iron material includes the following steps:
  • MIL-88A type iron MOF 10 mmol FeCl 3 •6H 2 O and 10 mmol fumaric acid are dissolved in 50 mL H 2 O, stirred for 0.5 h to completely dissolve the drug; transfer the system to 100 mL reaction In the kettle, put it in an oven for heat treatment at 100 o C for 4 h; after natural cooling, the product was centrifuged and washed 3 times with water at 6000 rpm and 2 min each time; the washed product was placed in an oven at 65 o C and dried for 10 h. Obtained MIL-88A iron MOF;
  • the peak of carbon element can be seen in the range.
  • the morphology of the carbon-supported nano-zero-valent iron material prepared in Example 1 still maintains the shuttle shape of MIL-88A, and the Fe 0 generated in situ is dispersed on the shuttle-shaped carbon in the form of particles, as shown in FIG. 2.
  • a method for preparing carbon-loaded nano zero-valent iron material includes the following steps:
  • MIL-88A type iron MOF 5 mmol FeCl 3 •6H 2 O and 6.25 mmol fumaric acid are dissolved in 50 mL H 2 O, stirred for 0.5 h to completely dissolve the drug; transfer the system to a 100 mL reactor Place it in an oven for heat treatment at 90 o C for 3 h; after natural cooling, the product is centrifuged and washed 3 times with water at 6000 rpm and 2 min each time; the washed product is placed in an oven at 50 o C and dried for 8 h.
  • MIL-88A type iron MOF 5 mmol FeCl 3 •6H 2 O and 6.25 mmol fumaric acid
  • the mapping test results confirm the above judgment.
  • the carbon-supported nano-zero-valent iron material prepared in Example 2 has a crystal shape that matches the number Fe 0 of 06-0696 and is in the range of 10-15 .
  • the peaks of carbon are visible in the range, as shown in Figure 1.
  • a method for preparing carbon-loaded nano zero-valent iron material includes the following steps:
  • MIL-88A iron MOF 15 mmol FeCl 3 •6H 2 O and 12.5 mmol fumaric acid are dissolved in 50 mL H 2 O, stirred for 0.5 h to completely dissolve the drug; transfer the system to a 100 mL reactor Put it in an oven for heat treatment at 120 o C for 6 h; after natural cooling, the product is centrifuged and washed 3 times with water at 6000 rpm and 2 min each time; the washed product is placed in an oven at 80 o C and dried for 12 h.
  • MIL-88A type iron MOF 15 mmol FeCl 3 •6H 2 O and 12.5 mmol fumaric acid are dissolved in 50 mL H 2 O, stirred for 0.5 h to completely dissolve the drug; transfer the system to a 100 mL reactor Put it in an oven for heat treatment at 120 o C for 6 h; after natural cooling, the product is centrifuged and washed 3 times with water at 6000 rpm and 2 min
  • the application of the carbon-loaded nano-zero-valent iron material in the fixation, stabilization, and restoration of chromium-contaminated soil includes the following steps:
  • the restoration material and the chromium-contaminated soil are stirred and mixed to react: Take 10 g of the chromium-contaminated soil (taken from the old site of a chromium salt factory in Inner Mongolia) into 3 plastic bottles, and then add 10 mg to the 3 plastic bottles. Prepare Fe 0 /C composite material (carbon-supported nano-zero-valent iron material), 10 mg of pure carbon material, and 10 mg of nano-zero-valent iron material in 1. Then add 10 mL H 2 O to 3 plastic bottles and seal them , Put these 3 plastic bottles on a shaker at 200 rpm for 12 hours;
  • the sulfuric acid nitric acid leaching concentration of Cr(VI) in the chromium-contaminated soil is 552 mg/L; the dosage of the Fe 0 /C composite material in the sewage can be between 0.1-1 wt%.
  • the pure carbon material is the carbon-supported nano-zero-valent iron material prepared in Example 1 and the product is obtained by washing the Fe element with HCl, and the nano-zero-valent iron material is prepared by the conventional method of reducing FeCl 3 with NaBH 4 material.
  • Evaluation of the restoration effect that is, the determination of leaching toxicity: After shaking the reaction, open the plastic bottle and place it in an oven to dry the soil samples at 75 o C. Take 2 g of the original contaminated soil sample and the restored soil sample in an Erlenmeyer flask and add 20 mL of sulfuric acid and nitric acid extractant, leached for about 18 hours with shaking at 200 rpm on a shaker, filtered the supernatant and measured the concentration of Cr(VI) in the solution according to the diphenylcarbazide spectrophotometric method, calculated and evaluated the repair effect.
  • the soil restoration effect is shown in Figure 3.
  • the original contaminated soil in Figure 3 represents the chromium-contaminated soil taken from the old site of a chromium salt factory in Inner Mongolia, pure C represents pure carbon material, and pure Fe 0 represents nano-zero-valent iron material (material prepared by the conventional method of reducing FeCl 3 with NaBH 4) , Fe 0 /C composite material represents the carbon-supported nano zero-valent iron material prepared in Example 1.
  • the leaching concentration of Cr(VI) in the original contaminated soil is 550 mg/L.
  • Adding pure carbon materials has almost no repair effect.
  • Adding nano-zero-valent iron materials prepared by conventional methods can make Cr(VI) leaching The concentration is reduced to about 350 mg/L, and when the carbon-loaded nano-zero-valent iron material prepared in Example 1 is used as the repair material, the Cr(VI) in the contaminated soil can be effectively fixed (significant leaching concentration) It is reduced to below 100 mg/L), indicating that the Fe 0 /C composite material prepared in Example 1 of the present invention has a good remediation effect on chromium-contaminated soil.
  • the leaching reaction can also choose 150 g soil sample plus 1500 mL leaching solution; the drying temperature of the soil sample can be between 60-100 o C.
  • the application of the carbon-loaded nano-zero-valent iron material in the fixation, stabilization, and restoration of chromium-contaminated soil includes the following steps:
  • the restoration material and the chromium-contaminated soil are stirred and mixed to react: Take 10 g of the chromium-contaminated soil (taken from the chromium residue storage site of a sodium salt factory in Sichuan) into two plastic bottles, and then add them to the two plastic bottles. 10 mg of the carbon-supported nano-zero-valent iron material prepared in Example 2 and the carbon-supported nano-zero-valent iron material prepared in Example 3, and then add 10 mL of H 2 O to the two plastic bottles and seal them on a shaker Shake at 150 rpm for 24 hours;
  • the sulfuric acid nitric acid leaching concentration of Cr(VI) in contaminated soil is 768 mg/L; the dosage of carbon-loaded nano-zero-valent iron material in the contaminated soil is 0.1-1 It can be between wt%.
  • Evaluation of the restoration effect that is, the determination of leaching toxicity: After shaking the reaction, open the plastic bottle and place it in an oven to dry the soil samples at 75 o C. Take 2 g of the original contaminated soil sample and the restored soil sample in an Erlenmeyer flask and add 20 mL of sulfuric acid and nitric acid extractant, leached for about 18 hours with shaking at 200 rpm on a shaker, filtered the supernatant and measured the concentration of Cr(VI) in the solution according to the diphenylcarbazide spectrophotometric method, calculated and evaluated the repair effect.
  • the leaching reaction can also choose 150 g soil sample plus 1500 mL leaching solution; the drying temperature of the soil sample can be between 60-100 o C.
  • Example 2 and Example 3 have a good remediation effect on chromium-contaminated soil, and can effectively fix Cr(VI) in the contaminated soil (the leaching concentration is reduced to 100 mg/L or less), refer to Figure 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种碳负载的纳米零价铁材料的制备方法。该方法包括:首先制备MIL-88A型铁MOF,然后在还原性气氛(H 2/Ar混合气氛)下焙烧MOF前驱体,即可制备出形貌仍旧为梭型的碳负载的纳米零价铁材料。还涉及由上述方法制得的碳负载的纳米零价铁材料,以及该碳负载的纳米零价铁材料在修复铬污染土壤中的应用。该制备方法简单,原位还原的方式可保证零价铁的高分散性,从而使得其还原固定铬的能力相对于单纯零价铁有显著提升,该方法可广泛应用于重金属污染土壤的修复领域。

Description

一种碳负载的纳米零价铁材料及其制备方法与应用 技术领域
本发明涉及纳米材料制备技术及土壤重金属污染修复领域,具体涉及一种碳负载的纳米零价铁材料及其制备方法与应用。
背景技术
随着工业化及城市化的快速推进,我国土壤污染日益严重,特别是通过工业排放、交通运输、市政建设和大气沉降等造成的土壤重金属污染越来越严重。土壤重金属污染具有隐蔽、滞后、累积、不可逆转、残留时间长、难治理等特点,并能通过食物链转移,对整个人类的生存环境造成深远的不利影响。
铬是一种非常重要的化工原料,被广泛应用于如铬盐生产、钠盐生产、皮革制作、合金材料加工、电镀、防腐、耐火材料生产等领域。建国以来,我国先后建立起70多家铬盐企业、上千家镀铬企业以及数百家规模较大的皮革加工企业,这些企业大量消耗铬资源生产的同时,也副产出巨量的含铬废渣或含铬废水,早期政策监管不严以及人民环保意识不强的背景下,巨量的含铬污染物被排放到环境中,造成了严峻的铬污染问题。据统计,仅600多万吨历史堆存铬渣污染源一项,造成的铬污染土壤总量就超过1250万吨。因此铬污染土壤的修复已经成为行业领域研究的热点和难点。
目前,使用化学药剂固定稳定化修复是铬污染土壤修复领域最广泛采用也最有前景的修复方法。其中,铁系材料(尤其是零价铁)由于来源广泛成本低廉、绿色无毒无二次污染风险、还原固定效率高等优点被大量用于修复铬污染土壤。相比于零价铁块材,纳米级的零价铁由于尺寸小比表面积大、反应活性高,因而对Cr(VI)的还原固定效果更好。然而正是因为纳米零价铁较高的表面积能和较强的磁性,其特别容易发生团聚和氧化,从而使得还原固定重金属的效果下降。
将纳米零价铁与其它材料复合或者将其负载到一些载体上,可以显著地改善纳米零价铁的团聚情况,提高其反应活性,但常规的负载方式由于载体和纳米零价铁之间作用力较弱,因而在复合材料的使用过程中,纳米零价铁依然很容易流失。(Singh R, Misra V, Singh R P. Remediation of Cr (VI) contaminated soil by zero-valent iron nanoparticles (nZVI) entrapped in calcium alginate beads[C]//Second International Conference on Environmental Science and Development, IPCBEE. 2011, 4.)例如,Singh R及其同事通过先合成纳米零价铁再将其包埋在海藻酸钙微珠中的方式获得改性纳米零价铁材料,并将其用于固定稳定受污染土壤中的Cr(VI),虽然性能相对于未修饰的纳米零价铁有所提升但提升作用十分微小。因此,利用负载的方式来提高纳米零价铁的分散性并设法增强其与载体的相互作用力,对于提高零价铁在土壤重金属污染治理领域的使用效果有重要意义。
技术解决方案
为了克服现有技术存在的上述不足,本发明的目的是提供一种碳负载的纳米零价铁材料及其制备方法与应用。
本发明的目的旨在提供一种操作简便、修复效果好、修复成本低且无二次污染风险的,利用铁MOF原位还原制备碳负载的纳米零价铁并应用于固定稳定化修复铬污染土壤的方法。
本发明的目的至少通过如下技术方案之一实现。
本发明提供的一种碳负载的纳米零价铁材料的制备方法,包括如下步骤:
(1)将FeCl 3•6H 2O及富马酸加入水中,搅拌均匀,得到混合液;
(2)将步骤(1)所述混合液升温进行热处理,自然冷却至室温,得到热处理后的产物,用水离心洗涤,烘干,得到所述MIL-88A型铁MOF;
(3)在管式炉中,还原气体氛围下将步骤(2)所述MIL-88A型铁MOF升温进行焙烧处理,得到所述碳负载的纳米零价铁材料(纳米Fe 0/C复合材料)。
进一步地,步骤(1)所述FeCl 3•6H 2O与富马酸的摩尔比为0.8 : 1 -1.2 : 1;所述FeCl 3•6H 2O与水的摩尔体积比为0.1-0.3 :1mol/L。
优选地,步骤(1)所述搅拌均匀的时间为0.5 h。
进一步地,步骤(2)所述热处理的温度为90-120 ℃,所述热处理的时间为3-6 h。
优选地,步骤(2)所述热处理的温度为100 ℃,热处理的时间为4 h。
进一步地,步骤(2)所述烘干的温度为50-80 ℃,烘干的时间为8-12 h。
优选地,步骤(2)所述烘干的温度为65 ℃。
优选地,步骤(2)所述离心洗涤的次数为3次,离心的转速为6000 rpm,每次离心的时间为2 min。
进一步地,步骤(3)所述还原气氛为H 2与Ar的混合气氛,其中,H 2的体积百分比为3-10 %。
进一步地,步骤(3)所述升温的速率为5-10℃/min,焙烧处理的温度为500~700 ℃,焙烧处理的时间为0.5-2 h。
优选地,步骤(3)所述焙烧处理的温度为600 ℃,焙烧处理的时间为1 h。
本发明提供一种由上述的制备方法制得的碳负载的纳米零价铁,其纳米零价铁的负载量为4 wt% -10 wt%。
本发明提供的碳负载的纳米零价铁材料(Fe 0/C复合材料)能够应用在修复铬污染土壤中。
本发明提供的碳负载的纳米零价铁在修复铬污染土壤中的应用,包括如下步骤:
将铬污染土壤与所述碳负载的纳米零价铁材料混合均匀,然后加入水,混合均匀,然后在摇床上进行摇荡处理(还原固定反应),得到修复后的土壤。
进一步地,所述铬污染土壤的pH值为2.0-12.0;所述铬污染土壤的Cr(VI)浸出浓度范围为0.05-800 mg/L;所述碳负载的纳米零价铁材料与铬污染土壤的质量比为(1-10):1000;所述碳负载的纳米零价铁材料与水的质量比为(1-10):1000;所述摇荡处理的转速为150-250 rpm,摇荡处理的时间为6-24 h。
优选地,所述摇荡处理的转速为200 rpm,摇荡处理的时间为12 h。
本发明提供的碳负载的纳米零价铁材料修复铬污染土壤效果,可以通过浸出毒性的测定评价修复效果。
所述浸出毒性的测定,包括如下步骤:
摇荡处理后,将修复后的土壤置于烘箱中烘干土样(温度为75℃),分别取原污染土样以及修复后的土样2 g于锥形瓶中,并加入20 mL硫酸硝酸浸提剂,摇床上200 rpm摇荡浸出18 h左右,取上清液过滤并依据二苯碳酰二肼分光光度法测量溶液中Cr(VI)的浓度,计算并评价修复效果。
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明提供的碳负载的纳米零价铁材料,可用于铬污染土壤的修复治理,其制备方法简单,原位还原的方式可保证零价铁的高分散性,从而使得其还原固定铬的能力相对于单纯零价铁有显著提升,此种方法可广泛应用于其它重金属污染土壤的修复领域;
(2)本发明提供的碳负载的纳米零价铁材料的制备方法,以MIL-88A型铁MOF为前驱体,通过原位还原的方式制备碳负载的纳米零价铁,可以保证载体与纳米零价铁之间较强的相互作用,从而避免使用复合材料修复铬污染土壤过程中可能的零价铁流失,即避免对环境造成二次污染;
(3)本发明提供的碳负载的纳米零价铁材料的制备方法,使用碳作为载体可以扩大修复材料的pH适用范围(2-12),且由于此复合材料中纳米零价铁分散性好磁性较强,利于修复后材料的回收。
附图说明
图1为实施例1制备的碳负载的纳米零价铁材料(Fe 0/C复合材料)的XRD图;
图2为实施例2制备的碳负载的纳米零价铁材料(Fe 0/C复合材料)的SEM及元素mapping图;
图3为实施例4使用碳负载的纳米零价铁材料(Fe 0/C复合材料)对铬污染土壤的修复效果对比柱状图。
本发明的实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
以下实施例中所用氯化铁为阿拉丁公司药品,分析纯;所用富马酸为麦克林公司药品,分析纯。
以下实施例中所用管式炉为合肥科晶公司产品,所用气体(H 2和Ar)由广州丹欧童气体公司提供,纯度级别为99.999%。
实施例1
一种制备碳负载的纳米零价铁材料的方法,包括如下步骤:
(1)MIL-88A型铁MOF的制备:10 mmol FeCl 3•6H 2O以及10 mmol富马酸溶于50 mL H 2O中,搅拌0.5 h使药品彻底溶解;将体系转移到100 mL反应釜中,放入烘箱100 oC热处理4 h;自然冷却后,产物用水离心洗涤3次,离心条件为6000 rpm及每次2 min;洗涤后的产物放入烘箱65 oC烘干10 h,得MIL-88A型铁MOF;
(2)还原气氛下焙烧铁MOF制备Fe 0/C复合材料:将步骤(1)中制得的MIL-88A型铁MOF放入刚玉磁舟,置于管式炉中升温至600 oC焙烧1 h,使用的气氛为含5 % H 2的H 2/Ar混合气,升温速率为5 oC /min,焙烧后获得有磁性的黑色固体即Fe 0/C复合材料(即所述碳负载的纳米零价铁材料)。产物的XRD图如图1所示,图1中的Carbon表示为实施例1制得的碳负载的纳米零价铁材料,晶形与06-0696编号Fe 0匹配,并且在10-15 范围内可见碳元素的峰。实施例1制得的碳负载的纳米零价铁材料形貌仍旧保持MIL-88A的梭型,原位产生的Fe 0呈颗粒状分散在梭型碳上,可参照图2所示。
实施例2
一种制备碳负载的纳米零价铁材料的方法,包括如下步骤:
(1)MIL-88A型铁MOF的制备:5 mmol FeCl 3•6H 2O以及6.25 mmol富马酸溶于50 mLH 2O中,搅拌0.5 h使药品彻底溶解;将体系转移到100 mL反应釜中,放入烘箱90 oC热处理3 h;自然冷却后,产物用水离心洗涤3次,离心条件为6000 rpm及每次2 min;洗涤后的产物放入烘箱50 oC烘干8 h,得MIL-88A型铁MOF;
(2)还原气氛下焙烧铁MOF制备Fe 0/C复合材料:将步骤(1)中制得的MIL-88A型铁MOF放入刚玉磁舟,置于管式炉中升温至500 oC焙烧0.5 h,使用的气氛为含3 % H 2的H 2/Ar混合气,升温速率为10 oC /min,焙烧后获得有磁性的黑色固体即Fe 0/C复合材料(即所述碳负载的纳米零价铁材料)。所得产物的形貌仍旧保持MIL-88A的梭型(如图2所示),原位产生的Fe 0呈颗粒状分散在梭型碳上,mapping测试结果印证上述判断。实施例2制得的碳负载的纳米零价铁材料,其晶形与06-0696编号Fe 0匹配,并且在10-15 范围内可见碳元素的峰,可参照图1所示。
实施例3
一种制备碳负载的纳米零价铁材料的方法,包括如下步骤:
(1)MIL-88A型铁MOF的制备:15 mmol FeCl 3•6H 2O以及12.5 mmol富马酸溶于50 mLH 2O中,搅拌0.5 h使药品彻底溶解;将体系转移到100 mL反应釜中,放入烘箱120 oC热处理6 h;自然冷却后,产物用水离心洗涤3次,离心条件为6000 rpm及每次2 min;洗涤后的产物放入烘箱80 oC烘干12 h,得MIL-88A型铁MOF;
(2)还原气氛下焙烧铁MOF制备Fe 0/C复合材料:将步骤(1)中制得的MIL-88A型铁MOF放入刚玉磁舟,置于管式炉中升温至700 oC焙烧2 h,使用的气氛为含10 % H 2的H 2/Ar混合气,升温速率为7.5 oC /min,焙烧后获得有磁性的黑色固体即Fe 0/C复合材料(即所述碳负载的纳米零价铁材料)。实施例3制得的碳负载的纳米零价铁材料形貌仍旧保持MIL-88A的梭型,原位产生的Fe 0呈颗粒状分散在梭型碳上,可参照图2所示。实施例3制得的碳负载的纳米零价铁材料,其晶形与06-0696编号Fe 0匹配,并且在10-15 范围内可见碳元素的峰,可参照图1所示。
实施例4
所述碳负载的纳米零价铁材料在固定稳定化修复铬污染土壤中的应用,包括如下步骤:
修复材料与铬污染土壤搅拌混匀进行反应:分别取10 g铬污染土壤(取自内蒙某铬盐厂旧址)于3个塑料瓶中,然后分别往这3个塑料瓶中加入10 mg实施例1中制备Fe 0/C复合材料(碳负载的纳米零价铁材料)、10mg的纯碳材料、10mg的纳米零价铁材料,接着往3个塑料瓶中分别加入10 mL H 2O并密封,将这3个塑料瓶放在摇床上200 rpm摇荡反应12 h;
具体地,所述铬污染土壤中Cr(VI)的硫酸硝酸法浸出浓度为552 mg/L;Fe 0/C复合材料在污土中的投加量在0.1-1 wt%之间均可。所述纯碳材料为实施例1制得的碳负载的纳米零价铁材料使用HCl洗去Fe元素后所获得的产物,所述纳米零价铁材料为使用NaBH 4还原FeCl 3常规方法制备的材料。
所述碳负载的纳米零价铁材料在固定稳定化修复铬污染土壤中的应用中,可以选择静置反应不摇荡;若摇荡,速度在150-250 rpm之间均可;摇荡反应时间在6-24 h之间均可。
修复效果评价即浸出毒性测定:摇荡反应后,将塑料瓶打开并置于烘箱75 oC烘干土样,各取原污染土样以及修复后的土样2 g于锥形瓶中,并加入20 mL硫酸硝酸浸提剂,摇床上200 rpm摇荡浸出18 h左右,取上清液过滤并依据二苯碳酰二肼分光光度法测量溶液中Cr(VI)的浓度,计算并评价修复效果。
土壤的修复效果如图3所示。图3中的原始污染土表示取自内蒙某铬盐厂旧址的铬污染土壤,纯C表示纯碳材料,纯Fe 0表示纳米零价铁材料(使用NaBH 4还原FeCl 3常规方法制备的材料),Fe 0/C复合材料表示实施例1制备得到的碳负载的纳米零价铁材料。
如图3所示,原始污染土中Cr(VI)的浸出浓度为550 mg/L,添加纯碳材料几乎无修复效果,添加常规方法制备的纳米零价铁材料可使Cr(VI)的浸出浓度降低到350 mg/L左右,而使用实施例1中制备的碳负载的纳米零价铁材料作为修复材料时,可更高效地将受污染土中的Cr(VI)有效固定(浸出浓度显著降低到100 mg/L以下),说明本发明实施例1制备的Fe 0/C复合材料对铬污染土壤有良好的修复作用。
在上述浸出毒性测定中,浸出反应也可以选择150 g土样加1500 mL浸提液;土样烘干的温度在60-100 oC之间均可。
实施例5
所述碳负载的纳米零价铁材料在固定稳定化修复铬污染土壤中的应用,包括如下步骤:
修复材料与铬污染土壤搅拌混匀进行反应:分别取10 g铬污染土壤(取自四川某钠盐厂铬渣堆存地)于两个塑料瓶中,然后分别往这两个塑料瓶中加入10 mg实施例2制备的碳负载的纳米零价铁材料、实施例3制备的碳负载的纳米零价铁材料,接着分别往这两个塑料瓶中加入10 mL H 2O并密封,摇床上150 rpm摇荡反应24 h;
具体地,污染土壤中Cr(VI)的硫酸硝酸法浸出浓度为768 mg/L;碳负载的纳米零价铁材料在污土中的投加量在0.1-1 wt%之间均可。
所述碳负载的纳米零价铁材料在固定稳定化修复铬污染土壤中的应用中,可以选择静置反应不摇荡;若摇荡,速度在150-250 rpm之间均可;摇荡反应时间在6-24 h之间均可。
 修复效果评价即浸出毒性测定:摇荡反应后,将塑料瓶打开并置于烘箱75 oC烘干土样,各取原污染土样以及修复后的土样2 g于锥形瓶中,并加入20 mL硫酸硝酸浸提剂,摇床上200 rpm摇荡浸出18 h左右,取上清液过滤并依据二苯碳酰二肼分光光度法测量溶液中Cr(VI)的浓度,计算并评价修复效果。
在上述浸出毒性测定中,浸出反应也可以选择150 g土样加1500 mL浸提液;土样烘干的温度在60-100 oC之间均可。
实施例2和实施例3制得的碳负载的纳米零价铁材料均具对铬污染土壤有良好的修复作用,能够高效地将受污染土中的Cr(VI)有效固定(浸出浓度降低到100 mg/L以下),可参照图3所示。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

  1. 一种碳负载的纳米零价铁材料的制备方法,其特征在于,包括如下步骤:
    (1)将FeCl 3•6H 2O及富马酸加入水中,搅拌均匀,得到混合液;
    (2)将步骤(1)所述混合液升温进行热处理,冷却至室温,得到热处理后的产物,用水离心洗涤,烘干,得到所述MIL-88A型铁MOF;
    (3)还原气体氛围下将步骤(2)所述MIL-88A型铁MOF升温进行焙烧处理,得到所述碳负载的纳米零价铁材料。
  2. 根据权利要求1所述的碳负载的纳米零价铁材料的制备方法,其特征在于,步骤(1)所述FeCl 3•6H 2O与富马酸的摩尔比为0.8 : 1 -1.2 : 1;所述FeCl 3•6H 2O与水的摩尔体积比为0.1-0.3 :1mol/L。
  3. 根据权利要求1所述的碳负载的纳米零价铁材料的制备方法,其特征在于,步骤(2)所述热处理的温度为90-120 ℃,所述热处理的时间为3-6 h。
  4. 根据权利要求1所述的碳负载的纳米零价铁材料的制备方法,其特征在于,步骤(2)所述烘干的温度为50-80 ℃,烘干的时间为8-12 h。
  5. 根据权利要求1所述的碳负载的纳米零价铁材料的制备方法,其特征在于,步骤(3)所述还原气氛为H 2与Ar的混合气氛,其中,H 2的体积百分比为3-10 %。
  6. 根据权利要求1所述的碳负载的纳米零价铁材料的制备方法,其特征在于,步骤(3)所述升温的速率为5-10℃/min,焙烧处理的温度为500-700 ℃,焙烧处理的时间为0.5-2 h。
  7. 一种由权利要求1-6任一项所述的制备方法制得的碳负载的纳米零价铁,其特征在于,纳米零价铁的负载量为4 wt% -10 wt%。
  8. 权利要求7所述的碳负载的纳米零价铁在修复铬污染土壤中的应用。
  9. 根据权利要求8所述的碳负载的纳米零价铁在修复铬污染土壤中的应用,其特征在于,包括如下步骤:
    将铬污染土壤与所述碳负载的纳米零价铁材料混合均匀,然后加入水,混合均匀,然后在摇床上进行摇荡处理,得到修复后的铬污染土壤。
  10. 根据权利要求9所述的碳负载的纳米零价铁材料在修复铬污染土壤中的应用,其特征在于,所述铬污染土壤的pH值为2.0-12.0;所述铬污染土壤的Cr(VI)的浸出浓度范围为0.05-800 mg/L;所述碳负载的纳米零价铁材料与铬污染土壤的质量比为(1-10):1000;所述碳负载的纳米零价铁材料与水的质量比为(1-10):1000;所述摇荡处理的转速为150-250 rpm,摇荡处理的时间为6-24 h。
     
PCT/CN2020/124996 2019-12-25 2020-10-30 一种碳负载的纳米零价铁材料及其制备方法与应用 WO2021129137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/09297A ZA202109297B (en) 2019-12-25 2021-11-19 Carbon-loaded nano zero-valent iron material, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911356297.4A CN111112638A (zh) 2019-12-25 2019-12-25 一种碳负载的纳米零价铁材料及其制备方法与应用
CN201911356297.4 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021129137A1 true WO2021129137A1 (zh) 2021-07-01

Family

ID=70502130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124996 WO2021129137A1 (zh) 2019-12-25 2020-10-30 一种碳负载的纳米零价铁材料及其制备方法与应用

Country Status (3)

Country Link
CN (1) CN111112638A (zh)
WO (1) WO2021129137A1 (zh)
ZA (1) ZA202109297B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318705A (zh) * 2021-07-13 2021-08-31 榆林学院 一种活性焦负载型零价铁纳米复合材料及其制备方法和应用
CN113769721A (zh) * 2021-09-28 2021-12-10 上海大学 一种新型木质素水凝胶负载nZVI材料的制备方法及其应用
CN115011352A (zh) * 2022-06-16 2022-09-06 中电建生态环境集团有限公司 一种有机物-重金属复合污染土壤的铁碳基修复材料及其制备方法和使用方法
CN115055679A (zh) * 2022-06-07 2022-09-16 安徽师范大学 零价铁还原剂及其制备方法和应用
CN115228446A (zh) * 2022-06-30 2022-10-25 大连工业大学 木质素衍生碳包覆纳米零价铁复合材料及制备方法和应用
CN115448320A (zh) * 2022-08-31 2022-12-09 合肥工业大学 提升竖向隔离屏障防污性能的改性钙基膨润土的制备方法
CN117101692A (zh) * 2023-04-27 2023-11-24 江苏中吴环保产业发展有限公司 一种富氮化纳米零价铁/生物炭复合材料的制备方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111112638A (zh) * 2019-12-25 2020-05-08 华南理工大学 一种碳负载的纳米零价铁材料及其制备方法与应用
CN113634760B (zh) * 2021-07-22 2023-04-18 辽宁科技大学 一种制备活性炭负载纳米零价纯铁粉生产方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240423A (zh) * 2013-05-13 2013-08-14 山东大学 有序介孔碳负载纳米零价铁复合材料的制备方法
CN103721715A (zh) * 2013-11-28 2014-04-16 温州大学 一种负载活性炭纳米零价铁材料
WO2014209850A1 (en) * 2013-06-26 2014-12-31 Corning Incorporated Methods and apparatus for synthesis of stabilized zero valent nanoparticles
CN105903436A (zh) * 2016-05-11 2016-08-31 上海应用技术学院 一种生物质碳负载纳米零价铁材料、制备方法及其应用
CN106745645A (zh) * 2016-12-20 2017-05-31 山西省环境科学研究院 纳米零价铁复合材料的制备方法及其应用
KR20190134335A (ko) * 2018-05-25 2019-12-04 서울대학교산학협력단 나노영가철이 담지된 커피찌꺼기로 이루어진 중금속 흡착제 및 그 제조방법
CN111112638A (zh) * 2019-12-25 2020-05-08 华南理工大学 一种碳负载的纳米零价铁材料及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623824B (zh) * 2012-08-23 2015-10-28 华东师范大学 一种磁性铁碳复合材料及其制备方法和应用
CN105013811B (zh) * 2015-07-02 2018-11-20 华南师范大学 一种重金属铬污染土壤修复材料的制备及应用
WO2019191787A2 (en) * 2018-03-30 2019-10-03 Ford Cheer International Limited Solid-state electrolytes with biomimetic ionic channels for batteries and methods of making same
CN108355166B (zh) * 2018-05-15 2021-02-19 黄冈师范学院 一种介孔生物活性玻璃/金属有机框架支架材料及制备方法
CN108998040B (zh) * 2018-05-28 2020-07-03 上海建科环境技术有限公司 基于有机粘土负载纳米铁系的土壤砷与铬污染修复药剂
CN109999753B (zh) * 2019-03-18 2020-07-14 上海交通大学 一种高吸附性多孔碳负载零价铁催化剂及其制备方法和用途
CN110589897B (zh) * 2019-09-05 2022-04-22 北京工业大学 一种以金属有机骨架为前体制备碳负载Fe-Ti-O负极材料的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240423A (zh) * 2013-05-13 2013-08-14 山东大学 有序介孔碳负载纳米零价铁复合材料的制备方法
WO2014209850A1 (en) * 2013-06-26 2014-12-31 Corning Incorporated Methods and apparatus for synthesis of stabilized zero valent nanoparticles
CN103721715A (zh) * 2013-11-28 2014-04-16 温州大学 一种负载活性炭纳米零价铁材料
CN105903436A (zh) * 2016-05-11 2016-08-31 上海应用技术学院 一种生物质碳负载纳米零价铁材料、制备方法及其应用
CN106745645A (zh) * 2016-12-20 2017-05-31 山西省环境科学研究院 纳米零价铁复合材料的制备方法及其应用
KR20190134335A (ko) * 2018-05-25 2019-12-04 서울대학교산학협력단 나노영가철이 담지된 커피찌꺼기로 이루어진 중금속 흡착제 및 그 제조방법
CN111112638A (zh) * 2019-12-25 2020-05-08 华南理工大学 一种碳负载的纳米零价铁材料及其制备方法与应用

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318705A (zh) * 2021-07-13 2021-08-31 榆林学院 一种活性焦负载型零价铁纳米复合材料及其制备方法和应用
CN113769721A (zh) * 2021-09-28 2021-12-10 上海大学 一种新型木质素水凝胶负载nZVI材料的制备方法及其应用
CN115055679A (zh) * 2022-06-07 2022-09-16 安徽师范大学 零价铁还原剂及其制备方法和应用
CN115055679B (zh) * 2022-06-07 2024-05-21 安徽师范大学 零价铁还原剂及其制备方法和应用
CN115011352A (zh) * 2022-06-16 2022-09-06 中电建生态环境集团有限公司 一种有机物-重金属复合污染土壤的铁碳基修复材料及其制备方法和使用方法
CN115011352B (zh) * 2022-06-16 2023-12-19 中电建生态环境集团有限公司 一种有机物-重金属复合污染土壤的铁碳基修复材料及其制备方法和使用方法
CN115228446A (zh) * 2022-06-30 2022-10-25 大连工业大学 木质素衍生碳包覆纳米零价铁复合材料及制备方法和应用
CN115228446B (zh) * 2022-06-30 2023-09-22 大连工业大学 木质素衍生碳包覆纳米零价铁复合材料及制备方法和应用
CN115448320A (zh) * 2022-08-31 2022-12-09 合肥工业大学 提升竖向隔离屏障防污性能的改性钙基膨润土的制备方法
CN115448320B (zh) * 2022-08-31 2024-01-23 合肥工业大学 提升竖向隔离屏障防污性能的改性钙基膨润土的制备方法
CN117101692A (zh) * 2023-04-27 2023-11-24 江苏中吴环保产业发展有限公司 一种富氮化纳米零价铁/生物炭复合材料的制备方法及其应用
CN117101692B (zh) * 2023-04-27 2024-03-22 江苏中吴环保产业发展有限公司 一种富氮化纳米零价铁/生物炭复合材料的制备方法及其应用

Also Published As

Publication number Publication date
ZA202109297B (en) 2022-04-28
CN111112638A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021129137A1 (zh) 一种碳负载的纳米零价铁材料及其制备方法与应用
CN108311117B (zh) 一种用于重金属废水处理的磁性生物炭材料及其制备方法
CN111718719B (zh) 一种硫化纳米零价铁-酸活化蒙脱石复合材料及其制备方法与应用
CN111408413A (zh) 一种改性氮化碳/Fe基MOF复合材料及其制备方法和应用
CN111517444A (zh) 一种内嵌碳化铁的硼氮共掺杂碳纳米管催化剂降解有机污染物的方法
CN113333007B (zh) 一种可高效活化过硫酸盐的氮掺杂钴化铁/碳催化剂及其制备方法和应用
CN114377647B (zh) 一种改性凹凸棒负载硫化亚铁的制备方法及应用
CN110801814A (zh) 一种磁性氨基核桃壳生物炭新型吸附剂的制备方法
CN114849650B (zh) 一种双表面特性磁改性锆系MOFs吸附剂的制备方法及应用
CN111250032A (zh) 一种磁性粉煤灰/二硫化钼复合材料的制备方法及应用
CN106669672B (zh) 一种用于二氧化硫回收的活性炭催化剂及其制备方法
CN111871361A (zh) 环境修复材料及其制备方法和应用
CN107321295A (zh) 一种铃铛型结构Fe@SiO2复合微球、制备方法及其应用
CN114130396A (zh) 一种具有超高诺氟沙星降解性能的单原子催化剂的制备方法
CN110449120B (zh) 一种除磷吸附剂及其制备方法
CN113318768A (zh) 一种复合光催化剂及其制备方法
WO2024055515A1 (zh) 一种污泥基六价铬复合吸附剂及其制备方法
Xu et al. Efficient Removal of Anionic Organic Dyes from Aqueous Solution with Cu‐Organic Frameworks
Yuan et al. Preparation of chitosan mesoporous membrane/halloysite composite for efficiently selective adsorption of Al (III) from rare earth ions solution through constructing pore structure on substrate
CN108273559B (zh) 一种负载型Fe2O3复合光催化剂
CN114100573B (zh) 一种MOFs衍生多孔碳包覆的铁氧化物复合材料的制备方法
CN109985600A (zh) 一种改性海泡石及其在废水处理中的应用
CN115055679A (zh) 零价铁还原剂及其制备方法和应用
CN113023823A (zh) 一种用于净化含砷重金属溶液的复合材料的制备方法
CN112916027A (zh) 一种酵母生物质制备磷化铁/碳复合材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20905122

Country of ref document: EP

Kind code of ref document: A1