WO2021127993A1 - 电解液以及使用其的电化学装置和电子装置 - Google Patents

电解液以及使用其的电化学装置和电子装置 Download PDF

Info

Publication number
WO2021127993A1
WO2021127993A1 PCT/CN2019/127966 CN2019127966W WO2021127993A1 WO 2021127993 A1 WO2021127993 A1 WO 2021127993A1 CN 2019127966 W CN2019127966 W CN 2019127966W WO 2021127993 A1 WO2021127993 A1 WO 2021127993A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
electrolyte
substituted
lithium
Prior art date
Application number
PCT/CN2019/127966
Other languages
English (en)
French (fr)
Inventor
崔辉
张水蓉
唐超
郑建明
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN201980027752.8A priority Critical patent/CN112119530B/zh
Priority to JP2020517451A priority patent/JP7237067B2/ja
Priority to US16/770,783 priority patent/US11742518B2/en
Priority to PCT/CN2019/127966 priority patent/WO2021127993A1/zh
Priority to KR1020207009375A priority patent/KR20210086573A/ko
Publication of WO2021127993A1 publication Critical patent/WO2021127993A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of energy storage, in particular to an electrolyte and an electrochemical device and an electronic device using the electrolyte.
  • Electrochemical devices e.g., lithium-ion batteries
  • electrochemical devices are widely used in electric vehicles, wearable devices, smart phones, drones, laptops, etc. due to their high working voltage, high energy density, environmental friendliness, stable cycle, and safety. field.
  • people have put forward higher requirements for lithium-ion batteries, such as cycle performance and storage performance under high temperature conditions.
  • the present application attempts to solve at least one of the problems in the related fields at least to some extent by providing an electrolyte and an electrochemical device and an electronic device using the electrolyte.
  • the present application provides an electrolyte, which includes at least one of a compound of formula I, a compound of formula II, or a compound of formula III; and a compound of formula IV:
  • R 11 , R 12 , R 13 , R 21 , R 22 , R 31 , R 32 , R 33 and R 34 are each independently selected from H, halogen, cyano, substituted or unsubstituted C 1 -C 10 Alkyl, substituted or unsubstituted C 2 -C 10 alkenyl, substituted or unsubstituted C 6 -C 12 aryl;
  • R 41 and R4 4 are each independently selected from H, F, cyano, substituted or unsubstituted C 1 -C 10 alkyl, substituted or unsubstituted C 2 -C 10 alkenyl, substituted or unsubstituted C 6 -C 12 aryl group, R a - (oR b), or (oR b);
  • R 42 and R 43 are each independently selected from R c -(OR d ) or (OR d );
  • R b is selected from substituted or unsubstituted C 1 -C 4 alkyl groups
  • R a , R c and R d are each independently selected from substituted or unsubstituted C 1 -C 4 alkylene, C 2 -C 5 alkenylene, or C 6 -C 12 aryl;
  • the substituent is selected from halogen, cyano or a combination thereof.
  • the compound of formula I includes at least one of the following compounds:
  • the compound of formula II is: And
  • the compound of formula III is:
  • the total content of the compound of formula I, the compound of formula II or the compound of formula III is 0.01 wt% to 10 wt%, and the total content of the compound of formula IV is 0.01 wt% to 8wt%.
  • the electrolyte further includes additive A
  • the additive A includes fluoroethylene carbonate, vinylene carbonate, vinyl ethylene carbonate, succinonitrile, adiponitrile, 1, 3, 6 At least one of hexanetricarbonitrile, 1,3,2-dioxazolethiophene-2,2-dioxide, 1,3-propane sultone or fluorobenzene.
  • the total content of the additive A is 1 wt% to 12 wt%.
  • the electrolyte further includes lithium difluorophosphate (LiPO 2 F 2 ), and the content of the lithium difluorophosphate is 0.01 wt% to 1.5 wt% based on the total weight of the electrolyte. In some embodiments, the content of the lithium difluorophosphate is 0.01 wt% to 0.49 wt% based on the total weight of the electrolyte.
  • LiPO 2 F 2 lithium difluorophosphate
  • the electrolyte further includes a compound of formula V:
  • R 51 and R 52 are each independently selected from a C 1 -C 4 alkyl group or a fluorine-substituted C 1 -C 4 alkyl group;
  • At least one of R 51 and R 52 is a fluorine-substituted C 1 -C 4 alkyl group.
  • the content of the compound having the formula V is 1 wt% to 30 wt%.
  • the compound of formula V comprises
  • the present application provides an electrochemical device including a positive electrode; a negative electrode including a negative active material layer; and an electrolyte according to the present application.
  • the ratio C004/C110 of the peak area C004 of the (004) plane and the peak area C110 of the (110) plane of the negative electrode active material layer measured by the X-ray diffraction pattern is in the range of 8-15 .
  • the negative active material layer includes primary particles and secondary particles, wherein the Dv50 of the primary particles is in the range of 3 ⁇ m to 10 ⁇ m, and the Dv50 of the secondary particles is in the range of 5 ⁇ m to 20 ⁇ m. .
  • the weight ratio of the primary particles to the secondary particles is 1:9 to 5:5.
  • the present application provides an electronic device including the electrochemical device according to the present application.
  • a list of items connected by the term "at least one of” can mean any combination of the listed items. For example, if items A and B are listed, then the phrase "at least one of A and B" means only A; only B; or A and B. In another example, if items A, B, and C are listed, then the phrase "at least one of A, B, and C" means only A; or only B; only C; A and B (excluding C); A and C (exclude B); B and C (exclude A); or all of A, B, and C.
  • Project A can contain a single element or multiple elements.
  • Project B can contain a single element or multiple elements.
  • Project C can contain a single element or multiple elements.
  • alkyl is expected to be a linear saturated hydrocarbon structure having 1 to 20 carbon atoms.
  • Alkyl is also expected to be a branched or cyclic hydrocarbon structure having 3 to 20 carbon atoms.
  • butyl means to include n-butyl, sec-butyl, isobutyl, tert-butyl And cyclobutyl;
  • propyl includes n-propyl, isopropyl and cyclopropyl.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl, n-pentyl, Isopentyl, neopentyl, cyclopentyl, methylcyclopentyl, ethylcyclopentyl, n-hexyl, isohexyl, cyclohexyl, n-heptyl, octyl, cyclopropyl, cyclobutyl, norbornyl Base and so on.
  • alkylene means a divalent saturated hydrocarbon group that may be linear or branched. Unless otherwise defined, the alkylene group usually contains 2 to 10 carbon atoms, and includes, for example, C 2 -C 3 alkylene and C 2 -C 6 alkylene. Representative alkylene groups include, for example, methylene, ethane-1,2-diyl ("ethylene"), propane-1,2-diyl, propane-1,3-diyl, butane -1,4-diyl, pentane-1,5-diyl, etc.
  • ethylene ethane-1,2-diyl
  • propane-1,3-diyl propane-1,3-diyl
  • butane -1,4-diyl pentane-1,5-diyl, etc.
  • alkenyl refers to a monovalent unsaturated hydrocarbon group that can be straight or branched and has at least one and usually 1, 2, or 3 carbon-carbon double bonds. Unless otherwise defined, the alkenyl group generally contains 2 to 20 carbon atoms and includes, for example, C 2 -C 4 alkenyl, C 2 -C 6 alkenyl, and C 2 -C 10 alkenyl. Representative alkenyl groups include, for example, vinyl, n-propenyl, isopropenyl, n-but-2-enyl, but-3-enyl, n-hex-3-enyl, and the like.
  • alkenylene means a difunctional group obtained by removing one hydrogen atom from an alkenyl group as defined above.
  • aryl means a monovalent aromatic hydrocarbon having a single ring (eg, phenyl) or a fused ring.
  • Condensed ring systems include those fully unsaturated ring systems (e.g., naphthalene) as well as those partially unsaturated ring systems (e.g., 1,2,3,4-tetrahydronaphthalene).
  • aryl groups typically contain from 6 to 26 ring carbon atoms and include (for example) C 6 -C 10 aryl group.
  • Representative aryl groups include, for example, phenyl, methylphenyl, propylphenyl, isopropylphenyl, benzyl and naphth-1-yl, naphth-2-yl, and the like.
  • cyano encompasses organics containing the organic group -CN.
  • halogen refers to a stable atom belonging to group 17 of the periodic table, such as fluorine, chlorine, bromine, or iodine.
  • substituted or unsubstituted means that a particular group is unsubstituted or substituted by one or more substituents.
  • substituents can be selected from the group consisting of halogen, alkyl, cycloalkyl, alkenyl, aryl, and heteroaryl.
  • the application provides an electrolyte, which includes at least one of a compound of formula I, a compound of formula II, or a compound of formula III; and a compound of formula IV:
  • R 11 , R 12 , R 13 , R 21 , R 22 , R 31 , R 32 , R 33 and R 34 are each independently selected from H, halogen, cyano, substituted or unsubstituted C 1 -C 10 Alkyl, substituted or unsubstituted C 2 -C 10 alkenyl, substituted or unsubstituted C 6 -C 12 aryl;
  • R 41 and R 44 are each independently selected from H, F, cyano, substituted or unsubstituted C 1 -C 10 alkyl, substituted or unsubstituted C 2 -C 10 alkenyl, substituted or unsubstituted C 6 -C 12 aryl group, R a - (oR b), or (oR b);
  • R 42 and R 43 are each independently selected from R c -(OR d ) or (OR d );
  • R b is selected from substituted or unsubstituted C 1 -C 4 alkyl groups
  • R a , R c and R d are each independently selected from substituted or unsubstituted C 1 -C 4 alkylene, C 2 -C 5 alkenylene, or C 6 -C 12 aryl;
  • the substituent is selected from halogen, cyano or a combination thereof.
  • the combination of the compounds of formula I, formula II and formula III and the compound of formula IV can improve the stability of the electrolyte, effectively reduce the damage of the solid electrolyte interface (SEI) membrane during the cycle of lithium-ion batteries, and reduce the consumption of the electrolyte at the same time. Improve the high-temperature interval cycling performance of lithium-ion batteries.
  • SEI solid electrolyte interface
  • lithium salts are easily decomposed (for example, LiPF 6 is easily decomposed to form HF and PF 6, etc.), making the electrolyte acidic.
  • the oxidation reaction of the electrolyte on the surface of the positive electrode accelerates, causing the transition metal of the positive electrode to dissolve out and destroy the performance of the lithium ion battery.
  • the compound of formula IV contains an oxy group (-O-), which will form a bond with the decomposition products of the lithium salt (for example, HF and PF 6 ) to reduce the solvolysis of the electrolyte.
  • the electrolyte contains at least one of the compound of formula I, compound of formula II or compound of formula III and the compound of formula IV at the same time, which can stabilize the negative electrode interface, protect the positive electrode surface, and isolate the contact between easily oxidizable components and the positive electrode interface, thereby effectively Improve the high-temperature interval cycle performance and high-temperature storage performance of lithium-ion batteries.
  • the compound of formula I is selected from at least one of the following compounds:
  • the compound of formula II is:
  • the compound of formula III is:
  • the total content of the compound of formula I, compound of formula II or compound of formula III is 0.01 wt% to 10 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the compound of formula I, compound of formula II, or compound of formula III is 0.05 wt% to 8 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the compound of formula I, the compound of formula II, or the compound of formula III is 0.1 wt% to 5 wt%.
  • the content of the compound of formula I, the compound of formula II, or the compound of formula III is 0.5 wt% to 6 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the compound of formula I, the compound of formula II, or the compound of formula III is 1 wt% to 3 wt%.
  • the content of the compound of formula I, the compound of formula II or the compound of formula III is 10wt%, 8wt%, 5wt%, 3wt%, 2wt%, 1wt%, 0.5 wt%, 0.3 wt%, 0.1 wt%, 0.05 wt%, or 0.01 wt%.
  • the total content of the compound of formula IV is 0.01 wt% to 8 wt%. In some embodiments, based on the total weight of the electrolyte, the total content of the compound of formula IV is 0.05 wt% to 8 wt%. In some embodiments, based on the total weight of the electrolyte, the total content of the compound of formula IV is 0.1 wt% to 6 wt%. In some embodiments, based on the total weight of the electrolyte, the total content of the compound of formula IV is 0.5 wt% to 5 wt%.
  • the total content of the compound of formula IV is 1 wt% to 3 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the compound of formula IV is 8wt%, 5wt%, 3wt%, 2wt%, 1wt%, 0.5wt%, 0.3wt%, 0.1wt%, 0.05wt% or 0.01wt%.
  • the electrolyte further includes lithium difluorophosphate (LiPO 2 F 2 ), and the content of the lithium difluorophosphate is 0.01 wt% to 1.5 wt% based on the total weight of the electrolyte. In some embodiments, based on the total weight of the electrolyte, the content of the lithium difluorophosphate (LiPO 2 F 2 ) is 0.01 wt% to 1 wt %. In some embodiments, based on the total weight of the electrolyte, the content of the lithium difluorophosphate (LiPO 2 F 2 ) is 0.01 wt% to 0.8 wt %.
  • LiPO 2 F 2 lithium difluorophosphate
  • the content of the lithium difluorophosphate (LiPO 2 F 2 ) is 0.01 wt% to 0.6 wt %. In some embodiments, based on the total weight of the electrolyte, the content of the lithium difluorophosphate (LiPO 2 F 2 ) is 0.01 wt% to 0.49 wt %.
  • the electrolyte further includes additive A, which includes fluoroethylene carbonate (FEC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), succinonitrile (SN), adiponitrile (ADN), 1,3,6 hexane tricarbonitrile, 1,3,2-dioxazole thiophene-2,2-dioxide (DTD), 1,3-propane sulfonate At least one of acid lactone (PS) or fluorobenzene.
  • FEC fluoroethylene carbonate
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • ADN succinonitrile
  • ADN adiponitrile
  • 1,3,6 hexane tricarbonitrile 1,3,2-dioxazole thiophene-2,2-dioxide
  • DTD 1,3-propane sulfonate
  • PS acid lactone
  • fluorobenzene fluorobenzene
  • the electrolyte includes VC
  • the content of VC is 0.01 wt% to 5 wt% based on the total weight of the electrolyte.
  • SEI solid electrolyte interface
  • the electrolyte includes FEC and the content of FEC is 0.01 wt% to 10 wt% based on the total weight of the electrolyte. Within this content range, FEC can fully affect the formation of a solid electrolyte interface (SEI) film on the surface of the negative electrode, and significantly improve the cycle performance of the high energy density electrochemical device.
  • the electrolyte includes ADN or SN, and the content of ADN or SN is 0.01 wt% to 10 wt% based on the total weight of the electrolyte. Within this content range, ADN or SN can further stabilize the positive electrode structure, further improve cycle performance and storage gas production performance.
  • the total content of the additive A is 1 wt% to 12 wt%.
  • the electrolyte further includes at least one compound of formula V:
  • R 51 and R 52 are each independently selected from a C 1 -C 4 alkyl group or a fluorine-substituted C 1 -C 4 alkyl group;
  • At least one of R 51 and R 52 is a fluorine-substituted C 1 -C 4 alkyl group.
  • the content of the compound of formula V is 1 wt% to 30 wt%
  • the compound of the formula II or the compound of the formula III and the compound of the formula IV can further improve the high-temperature interval cycling performance and high-temperature storage performance of the lithium ion battery.
  • At least one of the compound of the formula I, the compound of the formula II or the compound of the formula III, the compound of the formula IV and the compound of the formula V can make the electrolyte have a lower viscosity and a higher flash point and thermal stability.
  • the electrolyte has higher electrochemical stability, which can further improve the high-temperature interval cycle performance, high-temperature storage expansion phenomenon and the recoverable capacity after storage of the lithium-ion battery.
  • the compound of formula V comprises
  • the total content of the compound of formula V is 1 wt% to 30 wt%. In some embodiments, based on the total weight of the electrolyte, the total content of the compound of formula V is 3 wt% to 25 wt%. In some embodiments, based on the total weight of the electrolyte, the total content of the compound of formula V is 3 wt% to 15 wt%. In some embodiments, based on the total weight of the electrolyte, the total content of the compound of formula V is 12% to 15% by weight.
  • the content of the compound of formula V is 30wt%, 28wt%, 25wt%, 20wt%, 18wt%, 15wt%, 12wt%, 10wt%, 8wt%, 5wt%, 3wt% or 1wt%.
  • the electrolyte further includes an organic solvent
  • the organic solvent includes, but is not limited to, carbonate, carboxylate, or a combination of the two.
  • the carbonate may be any kind of carbonate as long as it can be used as an organic solvent for the non-aqueous electrolyte, and may be a cyclic carbonate or a chain carbonate.
  • the cyclic carbonate may be ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, pentylene carbonate, and the like.
  • the chain carbonate may be dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, etc., but it is not limited to this, and may also be their halogenated derivatives. Things.
  • the carboxylic acid ester may be methyl propionate, methyl butyrate, ethyl acetate, ethyl propionate, propyl propionate, ethyl butyrate.
  • the electrolyte further includes a lithium salt
  • the lithium salt is selected from at least one of an inorganic lithium salt and an organic lithium salt.
  • the lithium salt includes, but is not limited to, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate, lithium perchlorate, lithium bisfluorosulfonimide ( LiFSI), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium bisoxalate LiB(C 2 O 4 ) 2 (LiBOB), and lithium difluorooxalate LiBF 2 (C 2 O 4 ) (LiDFOB).
  • the lithium salt is lithium hexafluorophosphate (LiPF 6 ). In some embodiments, the concentration of the lithium salt is 0.6M to 2M. In some embodiments, the concentration of the lithium salt is 0.8M to 1.2M.
  • the electrolyte of the present application can be prepared by any known method. In some embodiments, the electrolyte of the present application can be prepared by mixing components.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material provided on the current collector.
  • the specific types of negative electrode active materials are not subject to specific restrictions, and can be selected according to requirements.
  • the negative electrode current collector may be selected from copper foil, nickel foil, stainless steel foil, titanium foil, foamed nickel, foamed copper, polymer substrate coated with conductive metal, and combinations thereof.
  • the negative active material is selected from the group consisting of natural graphite, artificial graphite, mesophase carbon microspheres (referred to as MCMB), hard carbon, soft carbon, silicon, silicon-carbon composite, Li-Sn alloy, Li -One or more of Sn-O alloy, Sn, SnO, SnO 2 , spinel structure lithiated TiO 2 -Li 4 Ti 5 O 12 , and Li-Al alloy.
  • Non-limiting examples of carbon materials include crystalline carbon, amorphous carbon, and mixtures thereof.
  • the crystalline carbon may be amorphous or flake-shaped, flake-shaped, spherical or fibrous natural graphite or artificial graphite.
  • Amorphous carbon can be soft carbon, hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • the negative active material includes a binder.
  • the binder improves the bonding of the negative active material particles with each other and the bonding of the negative active material with the current collector.
  • binders include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, ethylene-containing Oxygen polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene butadiene rubber, acrylic (ester) styrene butadiene rubber, epoxy resin, Nylon etc.
  • the negative active material includes a conductive material, thereby imparting conductivity to the electrode.
  • the conductive material may include any conductive material as long as it does not cause a chemical change.
  • Non-limiting examples of conductive materials include carbon-based materials (e.g., natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, etc.), metal-based materials (e.g., metal powder, metal fiber, etc., such as Copper, nickel, aluminum, silver, etc.), conductive polymers (for example, polyphenylene derivatives), and mixtures thereof.
  • the ratio C004/C110 of the peak area C004 of the (004) plane and the peak area C110 of the (110) plane of the negative electrode active material layer measured by X-ray diffraction spectroscopy is in the range of 8-15. In some embodiments, the C004/C110 is 8, 9, 10, 11, 12, 13, 14 or 15.
  • the C004/C110 value can reflect the orientation of the negative electrode active material layer.
  • the larger the C004/C110 value the larger the anisotropy of the negative electrode active material layer.
  • carbon coatings with high C004/C110 values tend to expand between layers, that is, expansion in the Z direction (vertical direction), rather than the X/Y direction.
  • Choosing the C004/C110 of the negative active material layer in the range of 8 to 15 can suppress or offset the stress generated by the insertion or extraction of lithium ions during the high temperature interval cycling process, thereby effectively improving the swelling phenomenon of the lithium ion battery during the high temperature interval cycling process.
  • the negative active material layer includes primary particles and secondary particles, wherein the Dv50 of the primary particles is in the range of 3 ⁇ m to 10 ⁇ m, and the Dv50 of the secondary particles is in the range of 5 ⁇ m to 20 ⁇ m. In some embodiments, the Dv50 of the primary particles is in the range of 5 ⁇ m to 8 ⁇ m. In some embodiments, the Dv50 of the primary particles is 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m. In some embodiments, the Dv50 of the secondary particles is in the range of 8 ⁇ m to 18 ⁇ m.
  • the Dv50 of the secondary particles is in the range of 10 ⁇ m to 15 ⁇ m. In some embodiments, the Dv50 of the secondary particles is 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 12 ⁇ m, 14 ⁇ m, 16 ⁇ m, or 18 ⁇ m.
  • the weight ratio of the primary particles to the secondary particles is 1:9 to 5:5. In some embodiments, the weight ratio of the primary particles to the secondary particles is 1:8 to 3:4. In some embodiments, the weight ratio of the primary particles to the secondary particles is 1:6 to 2:3. In some embodiments, the weight ratio of the primary particles to the secondary particles is 1:5 to 1:2. In some embodiments, the weight ratio of the primary particles to the secondary particles is 1:4 to 1:3.
  • the presence of secondary particles in the negative active material layer can increase the pressure surface of the pole piece during compression and increase the direction of the force, thereby showing that the pole piece remains at a certain angle with the current collector plane after being compressed.
  • the stress generated by the insertion or extraction of lithium ions from the negative active material layer can be suppressed or offset by forces from various directions, thereby greatly improving the thickness direction expansion of the lithium-ion battery during the high-temperature interval cycling.
  • the improvement of the swelling phenomenon of lithium-ion batteries can reduce the contact area between the negative electrode active material and the electrolyte, thereby reducing the SEI film that needs to be formed on the surface of the negative electrode, and lowering the consumption of the electrolyte. Therefore, under the same electrolyte content, the use of the negative electrode active material layer can further improve the high temperature interval cycle performance of the lithium ion battery.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material provided on the positive electrode current collector.
  • the positive active material includes a compound that reversibly intercalates and deintercalates lithium ions.
  • the positive electrode active material includes a composite oxide containing lithium and at least one element selected from cobalt, manganese, and nickel. The specific types of positive electrode active materials are not subject to specific restrictions, and can be selected according to requirements.
  • the positive active material is selected from at least one of the following: lithium cobalt oxide (LiCoO 2 ), lithium nickel manganese cobalt ternary material, lithium manganate (LiMn 2 O 4 ), lithium nickel manganese oxide (LiNi 0.5 Mn 1.5 O 4 ), lithium iron phosphate (LiFePO 4 ).
  • the positive electrode active material is a mixture of lithium cobalt oxide and lithium nickel manganese cobalt ternary materials.
  • the mixing ratio of lithium cobalt oxide and lithium nickel manganese cobalt ternary material meets 1:9 ⁇ lithium cobaltate: lithium nickel manganese cobalt ⁇ 9:1. In some embodiments, in the mixture of lithium cobalt oxide and lithium nickel manganese cobalt ternary material, the mixing ratio of lithium cobalt oxide and lithium nickel manganese cobalt ternary material meets 2:8 ⁇ lithium cobaltate: lithium nickel manganese cobalt ⁇ 4:6.
  • the combination of lithium cobaltate and lithium nickel manganese cobalt increases the amount of transition metals, and the transition metals have a catalytic effect on the film formation of the electrolyte, thereby improving the safety performance of the positive electrode active material.
  • the positive active material has a coating on the surface.
  • the coating includes an oxide of a coating element, a hydroxide of a coating element, an oxyhydroxide of a coating element, an oxycarbonate of a coating element, or a hydroxyl group of a coating element. At least one of hydroxycarbonate.
  • the coating element contained in the coating may include Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof.
  • the compound used for the coating may be amorphous or crystalline.
  • the coating can be applied by any method as long as the method does not adversely affect the performance of the positive electrode active material.
  • the method of applying the coating may include any coating method well known to those of ordinary skill in the art, such as spraying, dipping, and the like.
  • the positive active material layer further includes a binder.
  • the binder can improve the binding of the positive electrode active material particles to each other, and can improve the binding of the positive electrode active material and the positive electrode current collector.
  • the binder includes, but is not limited to, polyvinyl alcohol, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, and Ethyloxy polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene butadiene rubber, acrylic (ester) styrene butadiene rubber, epoxy Resin and nylon, etc.
  • the positive electrode active material layer further includes a conductive material, thereby imparting conductivity to the electrode.
  • the conductive material may include any conductive material as long as it does not cause a chemical change.
  • Non-limiting examples of conductive materials include carbon-based materials (e.g., natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, etc.), metal-based materials (e.g., metal powder, metal fiber, etc., including For example, copper, nickel, aluminum, silver, etc.), conductive polymers (for example, polyphenylene derivatives), and mixtures thereof.
  • the positive electrode current collector includes, but is not limited to, aluminum (Al).
  • a separator is provided between the positive electrode and the negative electrode to prevent short circuits.
  • the material and shape of the isolation film are not particularly limited, and it may be any technology disclosed in the prior art.
  • the isolation membrane includes a polymer or an inorganic substance formed of a material that is stable to the electrolyte of the present application.
  • the isolation film includes a substrate layer.
  • the substrate layer is a non-woven fabric, film or composite film with a porous structure.
  • the material of the substrate layer is selected from at least one of polyethylene, polypropylene, polyethylene terephthalate, and polyimide.
  • the material of the substrate layer is selected from polypropylene porous film, polyethylene porous film, polypropylene non-woven fabric, polyethylene non-woven fabric, or polypropylene-polyethylene-polypropylene porous composite film.
  • a surface treatment layer is provided on at least one surface of the substrate layer.
  • the surface treatment layer may be a polymer layer, an inorganic substance layer, or a layer formed by a mixed polymer and an inorganic substance.
  • the polymer layer contains a polymer, and the material of the polymer is selected from polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, At least one of polyvinylidene fluoride and poly(vinylidene fluoride-hexafluoropropylene).
  • the inorganic layer includes inorganic particles and a binder.
  • the inorganic particles are selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, ceria, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, yttrium oxide, One or a combination of silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and barium sulfate.
  • the binder is selected from polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyethylene One or a combination of rolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene.
  • the electrochemical device of the present application includes any device that undergoes an electrochemical reaction, and specific examples thereof include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the application also provides an electronic device, which includes the electrochemical device according to the application.
  • the use of the electrochemical device of the present application is not particularly limited, and it can be used in any electronic device known in the prior art.
  • the electrochemical device of the present application can be used in, but not limited to, notebook computers, pen-input computers, mobile computers, e-book players, portable phones, portable fax machines, portable copiers, portable printers, and headsets.
  • Stereo headsets video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notebooks, calculators, memory cards, portable recorders, radios, backup power supplies, motors, cars, motorcycles, power assistance Bicycles, bicycles, lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large household storage batteries and lithium-ion capacitors, etc.
  • Lithium cobaltate LCO (LiCO 2 ), acetylene black, and polyvinylidene fluoride PVDF were dissolved in an N-methylpyrrolidone (NMP) solvent system at a weight ratio of 96:2:2, and stirred and mixed to prepare a positive electrode slurry.
  • NMP N-methylpyrrolidone
  • the positive electrode slurry is uniformly coated on the positive electrode current collector aluminum foil, dried, and cold pressed to obtain a positive electrode.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • a polyethylene (PE) porous polymer film is selected as the isolation membrane.
  • Capacity retention rate remaining discharge capacity / initial discharge capacity ⁇ 100%
  • Thickness increase rate after high temperature interval cycles (%) thickness after high temperature interval cycles/initial thickness ⁇ 100%
  • the lithium ion battery was placed in a 25°C thermostat, charged to 4.4V at a constant current of 0.7C, and the initial thickness of the lithium ion battery was measured. Charge at a constant voltage at 4.4V to a current of 0.05C, then discharge at a constant current of 1.0C to 3.0V, and measure the initial discharge capacity of the lithium-ion battery. The lithium-ion battery was then stored in a 60°C thermostat for 30 days. After the storage is over, measure the thickness of the lithium-ion battery after high temperature storage, and measure the recovery capacity after high temperature storage in the same way as the initial discharge capacity. Calculate the high-temperature storage thickness growth rate of lithium-ion batteries and the capacity recovery rate after high-temperature storage by the following formula:
  • High temperature storage thickness growth rate (%) thickness after high temperature storage / initial thickness ⁇ 100%
  • Capacity recovery rate after high temperature storage (%) Recovery capacity after high temperature storage/Initial discharge capacity ⁇ 100%
  • the 004 diffraction line pattern and the 110 diffraction line pattern in the X-ray diffraction pattern of the negative electrode active material layer in the negative electrode were tested in accordance with the People's Republic of China Machinery Industry Standard JB/T 4220-2011 "Method for Determination of Lattice Parameters of Artificial Graphite".
  • the test conditions are as follows: X-rays use CuK ⁇ radiation, and CuK ⁇ radiation is removed by a filter or monochromator.
  • the working voltage of the X-ray tube is (30-35) kV, and the working current is (15-20) mA.
  • the scanning speed of the counter is 1/4 (°) /min.
  • the scanning range of the diffraction angle 2 ⁇ is 53°-57°.
  • the scanning range of the diffraction angle 2 ⁇ is 75°-79°.
  • the peak area of the (004) plane obtained from the 004 diffraction line pattern is recorded as C004.
  • the peak area of the (110) plane obtained from the 110 diffraction line pattern is recorded as C110.
  • Table 1 shows the components of the electrolyte used in the lithium ion batteries of Examples 1-20 and Comparative Examples 1-3 and their high-temperature interval cycle performance and high-temperature storage performance.
  • the performance improvement of the lithium ion battery is particularly obvious.
  • Table 2 shows the effects of other components in the electrolyte on the high-temperature interval cycling performance and high-temperature storage performance of lithium-ion batteries. Specifically, Examples 19-33 show the high-temperature interval cycling performance and high-temperature storage performance of the lithium ion battery after adding LiPO 2 F 2, VC and/or ADN on the basis of Example 12.
  • Table 3 shows the high temperature interval cycling performance and high temperature storage performance of the lithium ion battery after the compound of formula V is further added to the electrolyte containing at least one of the compound of formula I, the compound of formula II or the compound of formula III and the compound of formula IV.
  • the compound of formula V can further improve the low capacity retention rate of lithium ion batteries after high temperature interval cycling, and after high temperature storage Expansion phenomenon and capacity recovery rate after high temperature storage.
  • Table 4 shows the effect of the C004/C110 ratio of the negative active material layer on the high temperature interval cycling performance of the lithium ion battery.
  • Tables 5 and 6 show the comprehensive effects of the various components in the electrolyte and the negative active material layer.
  • the compound of formula V LiPO 2 F 2 is further added to the electrolyte containing at least one of the compound of formula I, compound of formula II or compound of formula III and the compound of formula IV, and the C004/C110 value of the negative active material layer is selected to be 8.
  • the low capacity retention rate after high-temperature interval cycles, the expansion phenomenon after high-temperature interval cycles, and the expansion phenomenon after high-temperature storage of lithium-ion batteries can be particularly significantly improved.
  • Table 7 shows the performance of the Dv50 and the weight ratio of the primary particles and the secondary particles of the negative active material to the high-temperature interval cycle performance.
  • references to “embodiments”, “partial examples”, “one embodiment”, “another example”, “examples”, “specific examples” or “partial examples” throughout the specification mean that At least one embodiment or example in this application includes the specific feature, structure, material, or characteristic described in the embodiment or example. Therefore, descriptions appearing in various places throughout the specification, such as: “in some embodiments”, “in embodiments”, “in one embodiment”, “in another example”, “in an example “In”, “in a specific example” or “exemplified”, which are not necessarily quoting the same embodiment or example in this application.
  • the specific features, structures, materials, or characteristics herein can be combined in one or more embodiments or examples in any suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电解液以及使用其的电化学装置和电子装置。具体而言,所述电解液包括具有含氮杂环的锂盐化合物以及具有腈基和氧基的化合物。所述电解液可改善电化学装置的高温间隔循环性能、高温存储膨胀现象和/或高温存储后的容量恢复率。

Description

电解液以及使用其的电化学装置和电子装置 技术领域
本申请涉及储能领域,具体涉及一种电解液以及使用其的电化学装置和电子装置。
背景技术
电化学装置(例如,锂离子电池)由于具有工作电压高、能量密度高、环境友好、循环稳定、安全等优点而被广泛应用于电动车辆、穿戴设备、智能手机、无人机、笔记本电脑等领域。随着现代信息技术的发展及锂离子电池应用的拓展,人们对锂离子电池提出了更高的要求,例如高温条件的循环性能和存储性能等。
有鉴于此,确有必要提供一种改进的电解液以及使用其的电化学装置和电子装置。
发明内容
本申请通过提供一种电解液以及使用其的电化学装置和电子装置以试图在至少某种程度上解决至少一种存在于相关领域中的问题。
根据本申请的一个方面,本申请提供了一种电解液,其包括式I化合物、式II化合物或式III化合物中的至少一种;和式IV化合物:
Figure PCTCN2019127966-appb-000001
其中,
R 11、R 12、R 13、R 21、R 22、R 31、R 32、R 33和R 34各自独立地选自H、卤素、氰基、经取代或未经取代的C 1-C 10烷基、经取代或未经取代的C 2-C 10烯基、经取代或未经取代的C 6-C 12芳基;
R 41和R4 4各自独立地选自H、F、氰基、经取代或未经取代的C 1-C 10烷基、经取代或未经取代的C 2-C 10烯基、经取代或未经取代的C 6-C 12芳基、R a-(O-R b)或(O-R b);
R 42和R 43各自独立地选自R c-(O-R d)或(O-R d);
R b选自经取代或未经取代的C 1-C 4的烷基;
R a、R c和R d各自独立地选自经取代或未经取代的C 1-C 4亚烷基、C 2-C 5亚烯基或C 6-C 12芳基;并且
当经取代时,取代基选自卤素、氰基或其组合。
根据本申请的实施例,所述式I化合物包含以下化合物中的至少一种:
Figure PCTCN2019127966-appb-000002
所述式II化合物为:
Figure PCTCN2019127966-appb-000003
所述式III化合物为:
Figure PCTCN2019127966-appb-000004
根据本申请的实施例,其中所述式IV化合物包含
Figure PCTCN2019127966-appb-000005
Figure PCTCN2019127966-appb-000006
中的至少一种。
根据本申请的实施例,基于所述电解液的总重量,所述式I化合物、式II化合物或式III化合物的总含量为0.01wt%至10wt%,所述式IV化合物的总含量为0.01wt%至8wt%。
根据本申请的实施例,所述电解液进一步包括添加剂A,所述添加剂A包括氟代碳酸乙烯酯、碳酸亚乙烯酯、乙烯基碳酸乙烯酯、丁二腈、己二腈、1,3,6己烷三甲腈、1,3,2-二噁唑噻吩-2,2-二氧化物、1,3-丙烷磺酸内酯或氟苯中的至少一种。
根据本申请的实施例,基于所述电解液的总重量,所述添加剂A的总含量为1wt%至12wt%。
根据本申请的实施例,所述电解液进一步包括二氟磷酸锂(LiPO 2F 2),基于所述电解液的总重量,所述二氟磷酸锂的含量为0.01wt%至1.5wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂的含量为0.01wt%至0.49wt%。
根据本申请的实施例,所述电解液进一步包含式V化合物:
Figure PCTCN2019127966-appb-000007
其中:
R 51和R 52各自独立地选自C 1-C 4烷基或氟取代的C 1-C 4烷基;并且
R 51和R 52中至少一者为氟取代的C 1-C 4烷基。
根据本申请的实施例,基于所述电解液的总重量,所述具有式V的化合物的含量为1wt%至30wt%。
根据本申请的实施例,所述式V化合物包含
Figure PCTCN2019127966-appb-000008
Figure PCTCN2019127966-appb-000009
中的至少一种。
根据本申请的另一个方面,本申请提供了一种电化学装置,其包含正极;负极,所述负极包括负极活性物质层;和根据本申请的电解液。
根据本申请的实施例,X射线衍射图谱测定得到的所述负极活性物质层的(004)面的峰面积C004和(110)面的峰面积C110的比值C004/C110在8至15的范围内。
根据本申请的实施例,所述负极活性物质层包括一次颗粒和二次颗粒,其中所述一次颗粒的Dv50在3μm至10μm的范围内,所述二次颗粒的Dv50在5μm至20μm的范围内。
根据本申请的实施例,所述一次颗粒与所述二次颗粒的重量比为1∶9至5∶5。
根据本申请的又一个方面,本申请提供了一种电子装置,其包括根据本申请的电化学装置。
本申请的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
在具体实施方式及权利要求书中,由术语“中的至少一种”连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一种”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、 B及C中的至少一种”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
如本文中所使用,术语“烷基”预期是具有1至20个碳原子的直链饱和烃结构。“烷基”还预期是具有3至20个碳原子的支链或环状烃结构。当指定具有具体碳数的烷基时,预期涵盖具有该碳数的所有几何异构体;因此,例如,“丁基”意思是包括正丁基、仲丁基、异丁基、叔丁基和环丁基;“丙基”包括正丙基、异丙基和环丙基。烷基实例包括,但不限于甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、正戊基、异戊基、新戊基、环戊基、甲基环戊基、乙基环戊基、正己基、异己基、环己基、正庚基、辛基、环丙基、环丁基、降冰片基等。
如本文中所使用,术语“亚烷基”意指可为直链或具支链的二价饱和烃基。除非另有定义,否则所述亚烷基通常含有2到10个碳原子,且包括(例如)C 2-C 3亚烷基和C 2-C 6亚烷基。代表性亚烷基包括(例如)亚甲基、乙烷-1,2-二基(“亚乙基”)、丙烷-1,2-二基、丙烷-1,3-二基、丁烷-1,4-二基、戊烷-1,5-二基等。
如本文中所使用,术语“烯基”是指可为直链或具支链且具有至少一个且通常1个、2个或3个碳碳双键的单价不饱和烃基团。除非另有定义,否则所述烯基通常含有2个到20个碳原子且包括(例如)C 2-C 4烯基、C 2-C 6烯基及C 2-C 10烯基。代表性烯基包括(例如)乙烯基、正丙烯基、异丙烯基、正-丁-2-烯基、丁-3-烯基、正-己-3-烯基等。
如本文中所使用,术语“亚烯基”意指通过从上述定义的烯基中除去一个氢原子而获得的双官能团。优选的亚烯基包括但不限于-CH=CH-、-C(CH3)=CH-、-CH=CHCH 2-等。
如本文中所使用,术语“芳基”意指具有单环(例如,苯基)或稠合环的单价芳香族烃。稠合环系统包括那些完全不饱和的环系统(例如,萘)以及那些部分不饱和的环系统(例如,1,2,3,4-四氢萘)。除非另有定义,否则所述芳基通常含有6个到26个碳环原子且包括(例如)C 6-C 10芳基。代表性芳基包括(例如)苯基、甲基苯基、丙基苯基、异丙基苯基、苯甲基和萘-1-基、萘-2-基等等。
如本文中所使用,术语“氰基”涵盖含有机基团-CN的有机物。
如本文中所使用,术语“卤素”是指属于元素周期表的第17族的稳定原子,例如氟、氯、溴或碘。
如本文中所使用,术语“经取代的或未经取代的”表示特定基团是未被取代基取代或 被一个或多个取代基取代。当上述取代基经取代时,取代基可选自由以下组成的群组:卤素、烷基、环烷基、烯基、芳基和杂芳基。
电解液
本申请提供了一种电解液,其包括式I化合物、式II化合物或式III化合物中的至少一种;和式IV化合物:
Figure PCTCN2019127966-appb-000010
其中,
R 11、R 12、R 13、R 21、R 22、R 31、R 32、R 33和R 34各自独立地选自H、卤素、氰基、经取代或未经取代的C 1-C 10烷基、经取代或未经取代的C 2-C 10烯基、经取代或未经取代的C 6-C 12芳基;
R 41和R 44各自独立地选自H、F、氰基、经取代或未经取代的C 1-C 10烷基、经取代或未经取代的C 2-C 10烯基、经取代或未经取代的C 6-C 12芳基、R a-(O-R b)或(O-R b);
R 42和R 43各自独立地选自R c-(O-R d)或(O-R d);
R b选自经取代或未经取代的C 1-C 4的烷基;
R a、R c和R d各自独立地选自经取代或未经取代的C 1-C 4亚烷基、C 2-C 5亚烯基或C 6-C 12芳基;并且
当经取代时,取代基选自卤素、氰基或其组合。
式I、式II和式III化合物与式IV化合物共同作用可提高电解液的稳定性,有效地减轻锂离子电池循环过程中固体电解质界面(SEI)膜的破坏,同时降低电解液的消耗,从而改善锂离子电池的高温间隔循环性能。
在高温存储过程中,锂盐易分解(例如LiPF 6易分解形成HF和PF 6等),使得电解液呈酸性。在酸性条件下,电解液在正极表面处的氧化反应加速,使得正极过渡金属溶出,破坏锂离子电池的性能。式IV化合物含有氧基(-O-),其会与锂盐的分解产物(例如HF和PF 6等)形成键,降低电解液溶剂分解。
电解液中同时包含式I化合物、式II化合物或式III化合物中的至少一种和式IV化合物,则可稳定负极界面,同时保护正极表面,并隔离易氧化成分与正极界面的接触,从而有效改善锂离子电池的高温间隔循环性能及高温存储性能。
根据本申请的实施例,所述式I化合物选自以下化合物中的至少一种:
Figure PCTCN2019127966-appb-000011
所述式II化合物为:
Figure PCTCN2019127966-appb-000012
所述式III化合物为:
Figure PCTCN2019127966-appb-000013
根据本申请的实施例,其中所述式IV化合物包含
Figure PCTCN2019127966-appb-000014
Figure PCTCN2019127966-appb-000015
Figure PCTCN2019127966-appb-000016
中的至少一种。
根据本申请的实施例,基于所述电解液的总重量,所述式I化合物、式II化合物或式III化合物的总含量为0.01wt%至10wt%。在一些实施例中,基于所述电解液的总重量,所述式I化合物、式II化合物或式III化合物的含量为0.05wt%至8wt%。在一些实施例中,基于所述电解液的总重量,所述式I化合物、式II化合物或式III化合物的含量为0.1wt%至5wt%。在一些实施例中,基于所述电解液的总重量,所述式I化合物、式II化合物或式III化合物的含量为0.5wt%至6wt%。在一些实施例中,基于所述电解液的总重量,所述式I化合物、式II化合物或式III化合物的含量为1wt%至3wt%。在一些实施例中,基于所述电解液的总重量,所述式I化合物、式II化合物或式III化合物的含量为10wt%、8wt%、5wt%、3wt%、2wt%、1wt%、0.5wt%、0.3wt%、0.1wt%、0.05wt%或0.01wt%。
根据本申请的实施例,所述式IV化合物的总含量为0.01wt%至8wt%。在一些实施例中,基于所述电解液的总重量,所述式IV化合物的总含量为0.05wt%至8wt%。在一些实施例中,基于所述电解液的总重量,所述式IV化合物的总含量为0.1wt%至6wt%。在一些实施例中,基于所述电解液的总重量,所述式IV化合物的总含量为0.5wt% 至5wt%。在一些实施例中,基于所述电解液的总重量,所述式IV化合物的总含量为1wt%至3wt%。在一些实施例中,基于所述电解液的总重量,所述式IV化合物的含量为8wt%、5wt%、3wt%、2wt%、1wt%、0.5wt%、0.3wt%、0.1wt%、0.05wt%或0.01wt%。
根据本申请的实施例,所述电解液进一步包括二氟磷酸锂(LiPO 2F 2),基于所述电解液的总重量,所述二氟磷酸锂的含量为0.01wt%至1.5wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂(LiPO 2F 2)的含量为0.01wt%至1wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂(LiPO 2F 2)的含量为0.01wt%至0.8wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂(LiPO 2F 2)的含量为0.01wt%至0.6wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂(LiPO 2F 2)的含量为0.01wt%至0.49wt%。
根据本申请的实施例,所述电解液进一步包括添加剂A,所述添加剂A包含氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)、乙烯基碳酸乙烯酯(VEC)、丁二腈(SN)、己二腈(ADN)、、1,3,6己烷三甲腈、1,3,2-二噁唑噻吩-2,2-二氧化物(DTD)、1,3-丙烷磺酸内酯(PS)或氟苯中的至少一种。
在一些实施例中,所述电解液包括VC,且基于所述电解液的总重量,VC的含量为0.01wt%至5wt%。在该含量范围内,VC可充分影响负极表面固体电解质界面(SEI)膜的形成,并显著改善高能量密度二次电池的循环性能和存储产气性能。
在一些实施例中,所述电解液包括FEC且基于所述电解液的总重量,FEC的含量为0.01wt%至10wt%。在该含量范围内,FEC可充分影响负极表面固体电解质界面(SEI)膜的形成,并显著改善高能量密度电化学装置的循环性能。在一些实施例中,所述电解液包括ADN或SN,且基于所述电解液的总重量,ADN或SN的含量为0.01wt%至10wt%。在该含量范围内,ADN或SN可进一步稳定正极结构,进一步改善循环性能及存储产气性能。
在一些实施例中,基于所述电解液的总重量,所述添加剂A的总含量为1wt%至12wt%。
根据本申请的实施例,所述电解液进一步包含至少一种式V化合物:
Figure PCTCN2019127966-appb-000017
其中:
R 51和R 52各自独立地选自C 1-C 4烷基或氟取代的C 1-C 4烷基;并且
R 51和R 52中至少一者为氟取代的C 1-C 4烷基。
根据本申请的实施例,基于所述电解液的总重量,所述式V化合物的含量为1wt%至30wt%
在电解液包括式I化合物、式II化合物或式III化合物中的至少一种和式IV化合物的基础上进一步包含式V化合物可进一步改善锂离子电池的高温间隔循环性能及高温存储性能。式I化合物、式II化合物或式III化合物中的至少一种,式IV化合物和式V化合物共同作用可以使电解液具有较低的粘度以及较高的闪点和热稳定性。同时使电解液具有较高的电化学稳定性,可进一步改善锂离子电池的高温间隔循环性能、高温存储膨胀现象及存储后可恢复容量。
根据本申请的实施例,所述式V化合物包含
Figure PCTCN2019127966-appb-000018
Figure PCTCN2019127966-appb-000019
中的至少一种。
根据本申请的实施例,所述式V化合物的总含量为1wt%至30wt%。在一些实施例中,基于所述电解液的总重量,所述式V化合物的总含量为3wt%至25wt%。在一些实施例中,基于所述电解液的总重量,所述式V化合物的总含量为3wt%至15wt%。在一些实施例中,基于所述电解液的总重量,所述式V化合物的总含量为12wt%至15wt%。在一些实施例中,基于所述电解液的总重量,所述式V化合物的含量为30wt%、28wt%、25wt%、20wt%、18wt%、15wt%、12wt%、10wt%、8wt%、5wt%、3wt%或1wt%。
在一些实施例中,电解液进一步包括有机溶剂,所述有机溶剂包括,但不限于,碳酸酯、羧酸酯或两者的结合。在一些实施例中,所述碳酸酯可以是任意种类的碳酸酯,只要可以用作非水电解质有机溶剂即可,可以是环状碳酸酯或者链状碳酸酯等。在一些实施例中,所述的环状碳酸酯可以是碳酸乙烯酯、碳酸丙烯酯、碳酸亚丁酯、γ-丁内酯、碳酸亚戊酯等。在一些实施例中,所述的链状碳酸酯可以是碳酸二甲酯、碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯等,但并不仅限于此,也可以是他们的卤代衍生物。在一些实施例中,羧酸酯可以是丙酸甲酯、丁酸甲酯、乙酸乙酯、丙酸乙酯、丙酸丙酯、丁酸乙酯。
根据本申请的实施例,所述电解液进一步包括锂盐,所述锂盐选自无机锂盐和有机锂盐中的至少一种。在一些实施例中,所述锂盐包括,但不限于,六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、六氟砷酸锂、高氯酸锂、双氟磺酰亚胺锂(LiFSI)、双三氟甲烷磺酰亚胺锂(LiTFSI)、双草酸硼酸锂LiB(C 2O 4) 2(LiBOB)、二氟草酸硼酸锂LiBF 2(C 2O 4)(LiDFOB)。在一些实施例中,所述锂盐为六氟磷酸锂(LiPF 6)。在一些实施例中,所述锂盐的浓度为0.6M至2M。在一些实施例中,所述锂盐的浓度为0.8M至1.2M。
本申请的电解液可采用任何已知方法制备。在一些实施例中,本申请的电解液可通过混合各组分制备。
负极
负极包括负极集流体和设置在集流体上的负极活性物质。负极活性物质的具体种类均不受到具体的限制,可根据需求进行选择。
在一些实施例中,负极集流体可以选自于铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、覆有导电金属的聚合物基底和它们的组合。
在一些实施例中,所述负极活性物质选自天然石墨、人造石墨、中间相微碳球(简称为MCMB)、硬碳、软碳、硅、硅-碳复合物、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的锂化TiO 2-Li 4Ti 5O 12、Li-Al合金中的一种或几种。碳材料的非限制性示例包括结晶碳、非晶碳和它们的混合物。结晶碳可以是无定形的或片形的、小片形的、球形的或纤维状的天然石墨或人造石墨。非晶碳可以是软碳、硬碳、中间相沥青碳化物、煅烧焦等。
在一些实施例中,负极活性物质包括粘合剂。粘合剂提高负极活性材料颗粒彼此间的结合和负极活性材料与集流体的结合。粘合剂的非限制性示例包括聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等。
在一些实施例中,负极活性物质包括导电材料,从而赋予电极导电性。该导电材料可以包括任何导电材料,只要它不引起化学变化。导电材料的非限制性示例包括基于碳的材料(例如,天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维等)、基于金属的材料(例如,金属粉、金属纤维等,例如铜、镍、铝、银等)、导电聚合物(例如,聚亚苯基衍生物)和它们的混合物。
在一些实施例中,X射线衍射图谱测定得到的所述负极活性物质层的(004)面的峰 面积C004和(110)面的峰面积C110的比值C004/C110在8至15的范围内。在一些实施例中,所述C004/C110为8、9、10、11、12、13、14或15。
C004/C110值可反映出负极活性物质层的取向性。C004/C110值越大,负极活性物质层的各向异性越大。在锂离子电池的循环过程中,具有高C004/C110值的碳涂层倾向于发生层与层之间的膨胀,即在Z方向(垂直方向)上的膨胀,而不容易发生X/Y方向上的膨胀。选择负极活性物质层的C004/C110在8至15的范围内可抑制或抵消高温间隔循环过程中锂离子嵌入或脱出所产生的应力,从而有效改善锂离子电池高温间隔循环过程中的膨胀现象。
在一些实施例中,所述负极活性物质层包括一次颗粒和二次颗粒,其中所述一次颗粒的Dv50在3μm至10μm的范围内,所述二次颗粒的Dv50在5μm至20μm的范围内。在一些实施例中,所述一次颗粒的Dv50在5μm至8μm的范围内。在一些实施例中,所述一次颗粒的Dv50为3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。在一些实施例中,所述二次颗粒的Dv50在8μm至18μm的范围内。在一些实施例中,所述二次颗粒的Dv50在10μm至15μm的范围内。在一些实施例中,所述二次颗粒的Dv50为5μm、6μm、7μm、8μm、9μm、12μm、14μm、16μm或18μm。
在一些实施例中,所述一次颗粒与所述二次颗粒的重量比为1∶9至5∶5。在一些实施例中,所述一次颗粒与所述二次颗粒的重量比为1∶8至3∶4。在一些实施例中,所述一次颗粒与所述二次颗粒的重量比为1∶6至2∶3。在一些实施例中,所述一次颗粒与所述二次颗粒的重量比为1∶5至1∶2。在一些实施例中,所述一次颗粒与所述二次颗粒的重量比为1∶4至1∶3。
负极活性物质层中存在二次颗粒可增加极片在受压过程中的受压面,使受力的方向增多,从而表现出极片受压后仍保持与集流体平面呈现一定的夹角。在锂离子电池高温间隔循环过程中,锂离子嵌入或脱出负极活性物质层所产生的应力可被来自各方向力的抑制或抵消,从而大大改善了高温间隔循环过程中锂离子电池厚度方向的膨胀。锂离子电池膨胀现象的改善可减少负极活性物质与电解液的接触面积,从而减少在负极表面所需形成的SEI膜,将低电解液消耗。由此,在相同电解液含量下,使用负极活性物质层可进一步改善锂离子电池的高温间隔循环性能。
正极
正极包括正极集流体和设置在正极集流体上的正极活性材料。正极活性材料包括可逆地嵌入和脱嵌锂离子的化合物。正极活性材料包括复合氧化物,所述复合氧化物含有 锂和选自钴、锰和镍中的至少一种元素。正极活性材料的具体种类均不受到具体的限制,可根据需求进行选择。在一些实施例中,所述正极活性材料选自以下中的至少一种:钴酸锂(LiCoO 2)、锂镍锰钴三元材料、锰酸锂(LiMn 2O 4)、镍锰酸锂(LiNi 0.5Mn 1.5O 4)、磷酸铁锂(LiFePO 4)。在一些实施例中,所述正极活性材料为钴酸锂与锂镍锰钴三元材料的混合物。在一些实施例中,在钴酸锂与锂镍锰钴三元材料的混合物中,钴酸锂与锂镍锰钴三元材料的混合比例符合1∶9<钴酸锂∶锂镍锰钴<9∶1。在一些实施例中,在钴酸锂与锂镍锰钴三元材料的混合物中,钴酸锂与锂镍锰钴三元材料的混合比例符合2∶8<钴酸锂∶锂镍锰钴<4∶6。钴酸锂与锂镍锰钴组合增加了过渡金属的数量,其中过渡金属对电解液的成膜具有催化作用,从而可以提高正极活性材料的安全性能。
在一些实施例中,正极活性材料的表面上具有涂层。在一些实施例中,所述涂层包括涂覆元素的氧化物、涂覆元素的氢氧化物、涂覆元素的羟基氧化物、涂覆元素的碳酸氧盐(oxycarbonate)或涂覆元素的羟基碳酸盐(hydroxycarbonate)的至少一种。在涂层中含有的涂覆元素可以包括Mg、Al、Co、K、Na、Ca、Si、Ti、V、Sn、Ge、Ga、B、As、Zr或它们的混合物。用于涂层的化合物可以是非晶的或结晶的。可以通过任何方法来施加涂层,只要该方法不对正极活性材料的性能产生不利影响即可。施加涂层的方法可以包括对本领域普通技术人员来说众所周知的任何涂覆方法,例如喷涂、浸渍等。
在一些实施例中,正极活性材料层还包括粘合剂。粘合剂可提高正极活性材料颗粒彼此间的结合,并且可提高正极活性材料与正极集流体的结合。在一些实施例中,所述粘合剂包括,但不限于,聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂和尼龙等。
在一些实施例中,正极活性材料层还包括导电材料,从而赋予电极导电性。该导电材料可以包括任何导电材料,只要它不引起化学变化。导电材料的非限制性示例包括基于碳的材料(例如,天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维等)、基于金属的材料(例如,金属粉、金属纤维等,包括例如铜、镍、铝、银等)、导电聚合物(例如,聚亚苯基衍生物)和它们的混合物。
在一些实施例中,正极集流体包括,但不限于,铝(Al)。
隔离膜
在一些实施例中,正极与负极之间设有隔离膜以防止短路。隔离膜的材料和形状没 有特别限制,其可为任何现有技术中公开的技术。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
在一些实施例中,隔离膜包括基材层。在一些实施例中,基材层为具有多孔结构的无纺布、膜或复合膜。在一些实施例中,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。在一些实施例中,基材层的材料选自聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
在一些实施例中,基材层的至少一个表面上设置有表面处理层。在一些实施例中,表面处理层可以是聚合物层、无机物层或混合聚合物与无机物所形成的层。在一些实施例中,聚合物层中包含聚合物,聚合物的材料选自聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯、聚(偏氟乙烯-六氟丙烯)中的至少一种。
在一些实施例中,无机物层包括无机颗粒和粘结剂。在一些实施例中,所述无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。在一些实施例中,所述粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。
电化学装置
本申请的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容。特别地,该电化学装置是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。
电子装置
本申请另提供了一种电子装置,其包括根据本申请的电化学装置。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何电子装置。在一些实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你 光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例
以下说明根据本申请的锂离子电池的实施例和对比例进行性能评估。
一、锂离子电池的制备
1、正极的制备
将钴酸锂LCO(LiCO 2)、乙炔黑和聚偏二氟乙烯PVDF按重量比96∶2∶2溶解于N-甲基吡咯烷酮(NMP)溶剂体系中,搅拌混合,制得正极浆料。将正极浆料均匀涂覆于正极集流体铝箔上,烘干,冷压,得到正极。
2、负极的制备
将人造石墨、丁苯橡胶(SBR)和羧甲基纤维素钠(CMC)按照重量比95∶2∶3溶解于去离子水溶剂体系中,搅拌混合,得到负极浆料。将负极浆料均匀涂覆在负极集流体铜箔上,烘干,冷压,得到负极。
3、电解液的制备
在干燥的氩气气氛手套箱中,将碳酸乙烯酯(简写为EC)、碳酸二乙酯(简写为DEC)、碳酸丙烯酯(简写为PC)、按照3∶4∶3的质量比混合均匀,加入下表中各实施例和对比例所示的组分,溶解并充分搅拌,然后加入锂盐LiPF 6,混合均匀,获得电解液。所得电解液中LiPF 6的浓度为1mol/L。
4、隔离膜的制备
选用聚乙烯(PE)多孔聚合物薄膜作为隔离膜。
5、锂离子电池的制备
将正极、隔离膜和负极按顺序叠好,使隔离膜处于正极和负极中间,然后卷绕、置于外包装箔中,并注入上述制备好的电解液,经过真空封装、静置、化成、整形等工序,得到锂离子电池。
二、测试方法
1、锂离子电池的高温间隔循环性能测试方法
将锂离子电池置于45℃恒温箱中,以恒定电流0.5C充电至4.4V,在4.4V下恒压充电至0.05C,保持19.5h,再以0.5C恒流放电至3.0V,此记为一个充放电循环过程。按上述方式进行23次。循环23次后再以0.5C充电至4.35V,4.35V下恒压充电至0.05C,放置到19小时,再以0.5C恒流放电至3.0V,此记为一个充放电循环过程。按上述方式进行113次。监控锂离子电池的电容量和厚度,通过下式高温间隔循环后的容量保持率和厚度增长率:
容量保持率=剩余放电容量/初始放电容量×100%
高温间隔循环后的厚度增长率(%)=高温间隔循环后的厚度/初始厚度×100%
2、锂离子电池的高温存储性能的测试方法
将锂离子电池置于25℃恒温箱中,以恒定电流0.7C充电至4.4V,测量锂离子电池的初始厚度。在4.4V下恒压充电至电流为0.05C,再以1.0C恒流放电至3.0V,测定锂离子电池的初始放电容量。然后将锂离子电池置于60℃恒温箱中存储30天。存储结束后,测量锂离子电池的高温存储后厚度,并按与测定初始放电容量相同的方式测量高温存储后恢复容量。通过下式计算锂离子电池高温存储厚度增长率和高温存储后容量恢复率:
高温存储厚度增长率(%)=高温存储后厚度/初始厚度×100%
高温存储后容量恢复率(%)=高温存储后恢复容量/初始放电容量×100%
3、C004/C110值的测试方法
按照中华人民共和国机械行业标准JB/T 4220-2011《人造石墨的点阵参数测定方法》测试负极中的负极活性物质层的X射线衍射图谱中的004衍射线图形和110衍射线图形。试验条件如下:X射线采用CuK α辐射,CuK α辐射由滤波片或单色器除去。X射线管的工作电压为(30-35)kV,工作电流为(15-20)mA。计数器的扫描速度为1/4 (°)/min。在记录004衍射线图形时,衍射角2θ的扫描范围为53°-57°。在记录110衍射线图形时,衍射角2θ的扫描范围为75°-79°。由004衍射线图形得到的(004)面的峰面积记为C004。由所述110衍射线图形得到的(110)面的峰面积记为C110。
三、测试结果
表1展示了实施例1-20和对比例1-3的锂离子电池中使用的电解液的组分及其高温间隔循环性能和高温存储性能。
表1
Figure PCTCN2019127966-appb-000020
如对比例1-3所示,使用不含式I化合物、式II化合物或式III化合物、式IV化合物或两类化合物的组合的电解液,锂离子电池的高温间隔循环后的容量保持率低、高温存储后膨胀现象严重、且高温存储后的容量恢复率低。如实施例1-20所示,当电解液中同时包含式I化合物、式II化合物或式III化合物中的至少一种和式IV化合物时可显著改善锂离子电池的高温间隔循环后的容量保持率低、高温存储后膨胀现象和/或高温存储后的容量恢复率。当式I化合物、式II化合物或式III化合物的总含量在0.5wt%至5wt%范围内且式IV化合物的总含量在2wt%至5wt%范围内,锂离子电池的性能改善尤为明显。
表2展示了电解液中的其它组分对锂离子电池的高温间隔循环性能和高温存储性能的影响。具体地,实施例19-33展示了在实施例12的基础上添加LiPO 2F 2、VC和/或ADN后锂离子电池的高温间隔循环性能和高温存储性能。
表2
Figure PCTCN2019127966-appb-000021
结果表明,在含有式I化合物、式II化合物或式III化合物中的至少一种和式IV化合物的电解液中进一步添加LiPO 2F 2、VC和/或ADN后,锂离子电池的高温间隔循环后的容量保持率低、高温存储后膨胀现象和/或高温存储后的容量恢复率得到显著改善。
表3展示了在含有式I化合物、式II化合物或式III化合物中的至少一种和式IV化合物的电解液中进一步添加式V化合物后锂离子电池的高温间隔循环性能和高温存储性能。
表3
Figure PCTCN2019127966-appb-000022
Figure PCTCN2019127966-appb-000023
结果表明,在式I化合物、式II化合物或式III化合物中至少一种和式IV化合物的基础上,式V化合物可进一步改善锂离子电池的高温间隔循环后的容量保持率低、高温存储后膨胀现象以及高温存储后的容量恢复率。
表4展示了负极活性物质层的C004/C110比值对锂离子电池的高温间隔循环性能的影响。
表4
Figure PCTCN2019127966-appb-000024
结果表明,在实施例12的基础上,将负极活性物质层的C004/C110值控制在8至15的范围内可显著改善锂离子电池在高温间隔循环过程中的容量保持率和膨胀现象。
表5和表6展示了电解液中各组分以及负极活性物质层的综合影响。
表5
Figure PCTCN2019127966-appb-000025
表6
Figure PCTCN2019127966-appb-000026
结果表明,在含有式I化合物、式II化合物或式III化合物中至少一种和式IV化合物的电解液中进一步添加式V化合物LiPO 2F 2并选择负极活性物质层的C004/C110值在8至15的范围内可尤为显著地改善锂离子电池的高温间隔循环后的容量保持率低、高温间隔循环后的膨胀现象以及高温存储后膨胀现象。
表7展示了负极活性物质一次颗粒和二次颗粒的Dv50及其重量比对高温间隔循环性能的性能。
表7
Figure PCTCN2019127966-appb-000027
结果表明,当负极活性物质层一次颗粒的Dv50在3μm至10μm的范围内、二次颗粒的Dv50在5μm至20μm的范围内且一次颗粒与二次颗粒的重量比为1∶9至5∶5范围内时,锂离子电池具有较优的高温间隔循环性能。
整个说明书中对“实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (12)

  1. 一种电解液,其包括式I化合物、式II化合物或式III化合物中的至少一种;和式IV化合物:
    Figure PCTCN2019127966-appb-100001
    其中,
    R 11、R 12、R 13、R 21、R 22、R 31、R 32、R 33和R 34各自独立地选自H、卤素、氰基、经取代或未经取代的C 1-C 10烷基、经取代或未经取代的C 2-C 10烯基、经取代或未经取代的C 6-C 12芳基;
    R 41和R 44各自独立地选自H、F、氰基、经取代或未经取代的C 1-C 10烷基、经取代或未经取代的C 2-C 10烯基、经取代或未经取代的C 6-C 12芳基、R a-(O-R b)或(O-R b);
    R 42和R 43各自独立地选自R c-(O-R d)或(O-R d);
    R b选自经取代或未经取代的C 1-C 4的烷基;
    R a、R c和R d各自独立地选自经取代或未经取代的C 1-C 4亚烷基、C 2-C 5亚烯基或C 6-C 12芳基;并且
    当经取代时,取代基选自卤素、氰基或其组合。
  2. 根据权利要求1所述的电解液,其中:
    所述式I化合物包含以下化合物中的至少一种:
    Figure PCTCN2019127966-appb-100002
    所述式II化合物为:
    Figure PCTCN2019127966-appb-100003
    所述式III化合物为:
    Figure PCTCN2019127966-appb-100004
  3. 根据权利要求1所述的电解液,其中所述式IV化合物包含
    Figure PCTCN2019127966-appb-100005
    Figure PCTCN2019127966-appb-100006
    中的至少一种。
  4. 根据权利要求1所述的电解液,其中基于所述电解液的总重量,所述式I化合物、式II化合物或式III化合物的总含量为0.01wt%至10wt%,所述式IV化合物的总含量为0.01wt%至8wt%。
  5. 根据权利要求1所述的电解液,其进一步包括添加剂A,所述添加剂A包括氟代碳酸乙烯酯、碳酸亚乙烯酯、乙烯基碳酸乙烯酯、丁二腈、己二腈、1,3,6己烷三甲腈、1,3,2-二噁唑噻吩-2,2-二氧化物、1,3-丙烷磺酸内酯或氟苯中的至少一种,其中基于所述电解液的总重量,所述添加剂A的总含量为1wt%至12wt%。
  6. 根据权利要求1-5中任一项所述的电解液,其进一步包含式V化合物:
    Figure PCTCN2019127966-appb-100007
    其中:
    R 51和R 52各自独立地选自C 1-C 4烷基或氟取代的C 1-C 4烷基;并且
    R 51和R 52中至少一者为氟取代的C 1-C 4烷基;
    其中基于所述电解液的总重量,所述式V化合物的含量为1wt%至30wt%。
  7. 根据权利要求6所述的电解液,其中所述式V化合物包含
    Figure PCTCN2019127966-appb-100008
    Figure PCTCN2019127966-appb-100009
    中的至少一种。
  8. 一种电化学装置,其包含:
    正极;
    负极,所述负极包括负极活性物质层;和
    根据权利要求1-7中任一权利要求所述的电解液。
  9. 根据权利要求8所述的电化学装置,其中X射线衍射图谱测定得到的所述负极活性物质层的(004)面的峰面积C004和(110)面的峰面积C110的比值C004/C110在8至15的范围内。
  10. 根据权利要求8所述的电化学装置,其中所述负极活性物质层包括一次颗粒和二次颗粒,其中所述一次颗粒的Dv50在3μm至10μm的范围内,所述二次颗粒的Dv50在5μm至20μm的范围内。
  11. 根据权利要求10所述的电化学装置,其中所述一次颗粒与所述二次颗粒的重量比为1∶9至5∶5。
  12. 一种电子装置,其包括根据权利要求9-11中任一权利要求所述的电化学装置。
PCT/CN2019/127966 2019-12-24 2019-12-24 电解液以及使用其的电化学装置和电子装置 WO2021127993A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980027752.8A CN112119530B (zh) 2019-12-24 2019-12-24 电解液以及使用其的电化学装置和电子装置
JP2020517451A JP7237067B2 (ja) 2019-12-24 2019-12-24 電解液ならびにそれを用いた電気化学デバイス及び電子デバイス
US16/770,783 US11742518B2 (en) 2019-12-24 2019-12-24 Electrolyte, and electrochemical device and electronic device using the same
PCT/CN2019/127966 WO2021127993A1 (zh) 2019-12-24 2019-12-24 电解液以及使用其的电化学装置和电子装置
KR1020207009375A KR20210086573A (ko) 2019-12-24 2019-12-24 전해액 및 이를 이용한 전기화학 장치 및 전자 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127966 WO2021127993A1 (zh) 2019-12-24 2019-12-24 电解液以及使用其的电化学装置和电子装置

Publications (1)

Publication Number Publication Date
WO2021127993A1 true WO2021127993A1 (zh) 2021-07-01

Family

ID=73795533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127966 WO2021127993A1 (zh) 2019-12-24 2019-12-24 电解液以及使用其的电化学装置和电子装置

Country Status (5)

Country Link
US (1) US11742518B2 (zh)
JP (1) JP7237067B2 (zh)
KR (1) KR20210086573A (zh)
CN (1) CN112119530B (zh)
WO (1) WO2021127993A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220006121A1 (en) * 2018-11-09 2022-01-06 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Including The Same
CN112751081B (zh) * 2020-12-29 2022-11-08 东莞新能源科技有限公司 电解液、电化学装置及电子装置
CN115443569A (zh) * 2021-12-28 2022-12-06 宁德新能源科技有限公司 一种电解液、包含该电解液的电化学装置和电子装置
CN114335734B (zh) * 2022-03-16 2022-06-28 宁德新能源科技有限公司 电解液、以及包含其的电化学装置及电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355968A (zh) * 2015-11-24 2016-02-24 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN107482253A (zh) * 2017-07-18 2017-12-15 东莞市迈科新能源有限公司 一种低温锂离子电池
CN109301322A (zh) * 2018-09-21 2019-02-01 宁德新能源科技有限公司 电解液和包含该电解液的电化学装置
CN109841831A (zh) * 2019-03-21 2019-06-04 宁德新能源科技有限公司 负极材料及包含该负极材料的负极及电化学装置
CN109980225A (zh) * 2019-03-18 2019-07-05 宁德新能源科技有限公司 电化学装置及包含其的电子装置
CN110165219A (zh) * 2019-06-03 2019-08-23 宁德新能源科技有限公司 电化学装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366790B2 (ja) 1999-11-12 2009-11-18 株式会社デンソー 電池用電解液および非水電解液二次電池
JP2002231306A (ja) 2001-01-30 2002-08-16 Denso Corp 電池用電解液および非水電解液電池
JP5461883B2 (ja) 2008-08-05 2014-04-02 三洋電機株式会社 二次電池用非水電解液及び非水電解液二次電池
JP2011198508A (ja) 2010-03-17 2011-10-06 Sony Corp リチウム二次電池、リチウム二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
CN102522590B (zh) * 2011-12-26 2014-09-17 华为技术有限公司 一种非水有机电解液、包含它的锂离子二次电池及其制备方法和终端通讯设备
US20130316252A1 (en) * 2012-05-22 2013-11-28 Lg Chem, Ltd. Non-Aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
CN102832408B (zh) 2012-09-18 2015-04-08 广州天赐高新材料股份有限公司 具有高阻燃性能和电化学性能的电解液及锂离子电池
CN104919641A (zh) * 2013-01-23 2015-09-16 宇部兴产株式会社 非水电解液以及使用了该非水电解液的蓄电设备
WO2015047045A1 (ko) * 2013-09-30 2015-04-02 주식회사 엘지화학 리튬 이차전지
US9979049B2 (en) * 2013-12-09 2018-05-22 Sk Innovation Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN104766995B (zh) * 2015-03-31 2017-03-15 宁德时代新能源科技股份有限公司 一种电解液添加剂及其在锂离子电池中的应用
JP6245312B2 (ja) 2016-05-30 2017-12-13 セントラル硝子株式会社 非水系電解液二次電池用電解液及びそれを用いた非水系電解液二次電池
KR20180050780A (ko) 2016-11-07 2018-05-16 솔브레인 주식회사 비수전해액 및 리튬 이차전지
CN108232296B (zh) 2016-12-14 2020-01-17 宁德时代新能源科技股份有限公司 电解液及锂二次电池
CN108242556B (zh) 2016-12-26 2020-01-17 宁德时代新能源科技股份有限公司 电解液及二次电池
KR20180093700A (ko) * 2017-02-14 2018-08-22 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
US20210218060A1 (en) * 2017-03-10 2021-07-15 HYDRO-QUéBEC Electrolyte composition and use thereof in lithium-ion batteries
CN109659614A (zh) * 2018-12-19 2019-04-19 珠海光宇电池有限公司 一种锂离子电池电解液及使用该电解液的高能量密度锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355968A (zh) * 2015-11-24 2016-02-24 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN107482253A (zh) * 2017-07-18 2017-12-15 东莞市迈科新能源有限公司 一种低温锂离子电池
CN109301322A (zh) * 2018-09-21 2019-02-01 宁德新能源科技有限公司 电解液和包含该电解液的电化学装置
CN109980225A (zh) * 2019-03-18 2019-07-05 宁德新能源科技有限公司 电化学装置及包含其的电子装置
CN109841831A (zh) * 2019-03-21 2019-06-04 宁德新能源科技有限公司 负极材料及包含该负极材料的负极及电化学装置
CN110165219A (zh) * 2019-06-03 2019-08-23 宁德新能源科技有限公司 电化学装置

Also Published As

Publication number Publication date
US11742518B2 (en) 2023-08-29
CN112119530A (zh) 2020-12-22
US20210408600A1 (en) 2021-12-30
JP2022518303A (ja) 2022-03-15
CN112119530B (zh) 2022-10-11
JP7237067B2 (ja) 2023-03-10
KR20210086573A (ko) 2021-07-08

Similar Documents

Publication Publication Date Title
CN109860703B (zh) 一种电解液及电化学装置
CN109786824B (zh) 电解液和使用其的电化学装置
CN110429335B (zh) 电解液及包含其的电化学装置与电子装置
CN110380120B (zh) 电解液、包含所述电解液的电化学装置和电子装置
CN111430793B (zh) 电解液及使用其的电化学装置和电子装置
WO2021127993A1 (zh) 电解液以及使用其的电化学装置和电子装置
WO2021218267A1 (zh) 一种电解液及电化学装置
CN109830749B (zh) 一种电解液及电化学装置
WO2021120434A1 (zh) 一种电解液及电化学装置
WO2021243525A1 (zh) 电解液以及使用其的电化学装置和电子装置
WO2021128206A1 (zh) 一种电解液及电化学装置
CN110518286A (zh) 电解液及包括电解液的电化学装置及电子装置
WO2021174421A1 (zh) 电解液和使用其的电化学装置
WO2021179300A1 (zh) 电化学装置及包含其的电子装置
WO2022000271A1 (zh) 电解液和包含其的电化学装置和电子装置
WO2021237664A1 (zh) 电解液和包括电解液的电化学装置及电子装置
CN110854432B (zh) 电解液以及使用其的电化学装置和电子装置
WO2021189449A1 (zh) 一种电解液及电化学装置
CN111740162A (zh) 电解液和包括电解液的电化学装置及电子装置
WO2018107746A1 (zh) 电解液及二次电池
WO2021128203A1 (zh) 一种电解液及电化学装置
WO2023078059A1 (zh) 电解液以及使用其的电化学装置和电子装置
CN111600065B (zh) 电解液和使用其的电化学装置
CN112055910B (zh) 一种电解液及电化学装置
CN116508189A (zh) 电解液及包括其的电化学装置和电子装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020517451

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957272

Country of ref document: EP

Kind code of ref document: A1