WO2023078059A1 - 电解液以及使用其的电化学装置和电子装置 - Google Patents

电解液以及使用其的电化学装置和电子装置 Download PDF

Info

Publication number
WO2023078059A1
WO2023078059A1 PCT/CN2022/125307 CN2022125307W WO2023078059A1 WO 2023078059 A1 WO2023078059 A1 WO 2023078059A1 CN 2022125307 W CN2022125307 W CN 2022125307W WO 2023078059 A1 WO2023078059 A1 WO 2023078059A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
electrolyte
positive electrode
particles
active material
Prior art date
Application number
PCT/CN2022/125307
Other languages
English (en)
French (fr)
Inventor
陈辉
周邵云
林能镖
陈伟伟
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2023078059A1 publication Critical patent/WO2023078059A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage, in particular to an electrolyte and an electrochemical device and an electronic device using it.
  • Electrochemical devices e.g., lithium-ion batteries
  • portable electronic equipment including mobile phones, notebooks and cameras and other electronic products
  • power tools and electric vehicles and other fields In portable electronic equipment (including mobile phones, notebooks and cameras and other electronic products), power tools and electric vehicles and other fields.
  • people have put forward higher requirements for power supplies of electronic products, such as thinner, lighter, more diverse shapes, higher power and higher battery life ability etc.
  • the cycle performance of the battery cell and the expansion performance of the battery cell during the cycle are usually sacrificed at the same time.
  • the temperature rise of the battery cell under high power may be too high, resulting in further deterioration of the performance of the battery cell.
  • the present application attempts to solve at least one problem existing in the related art to at least some extent by providing an electrolytic solution and an electrochemical device and an electronic device using the same.
  • the present application provides a kind of electrolytic solution, it is characterized in that: described electrolytic solution comprises compound A and compound B, and compound A comprises dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, carbonic acid Acrylate, Propyl Propionate, Ethyl Acetate, Ethyl Propionate, Propyl Acetate, Methyl Acetate, Methyl Propyl Carbonate, Methyl Propionate, Methyl Butyrate, Methyl Pivalate, Gamma-Butyrol At least one of ester, sulfolane, ethyl propyl ether, ethylene glycol dimethyl ether, 1,3-dioxane or 1,4-dioxane, and compound B includes one or more fluorine atoms Substituted Compound A.
  • the compound A and the compound B have the same main structure.
  • the mass percentage of the compound A is a
  • the mass percentage of the compound B is b
  • a and b satisfy the relational formula: 0.0016 ⁇ a/b ⁇ 2.
  • the electrolyte is further compound C, and the compound C has formula II:
  • R1 is substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl or substituted or unsubstituted C1-C6 ether bond-containing alkane A group, when substituted, the substituent includes at least one of F or C3-C5 cycloalkyl; and
  • M is an alkali metal
  • the mass percentage of the compound C is c, and a and c satisfy the relational formula: 1 ⁇ a/c ⁇ 500.
  • the compound C includes at least one of the following compounds:
  • the electrolyte is further compound D, and the compound D includes 1,2-bis(cyanoethoxy)ethane, succinonitrile, adiponitrile, 1,4-dicyano- At least one of 2-butene, 1,3,6-hexanetrinitrile or 1,2,3-tris(2-cyanooxy)propane, and based on the weight of the electrolyte, the content of the compound D is 0.5% to 3%.
  • the electrolyte is further compound E, and the compound E includes LiBOB, LiBF 4 , LiDFOB, LiPO 2 F 2 , LiFSI, LiTFSI, LiCF 3 SO 3 , LITDI or B 4 Li 2 O 7 at least one of .
  • the present application provides an electrochemical device comprising a positive electrode and the electrolyte according to the present application.
  • the positive electrode includes a positive electrode active material, and the positive electrode active material satisfies at least one of the following characteristics:
  • the positive electrode active material includes first particles and second particles, wherein the Dv50 of the first particles is 7-20 ⁇ m, and the Dv50 of the second particles is 1-6 ⁇ m;
  • the positive electrode active material includes first particles and second particles, and the mass ratio of the first particles to the second particles is 0.1 to 10.
  • the present application provides an electronic device comprising the electrochemical device according to the present application.
  • the electrolyte solution provided by the application has good kinetic properties, and can significantly improve the high-temperature cycle or storage performance of electrochemical devices.
  • a list of items linked by the term "at least one of” may mean any combination of the listed items.
  • the phrase "at least one of A and B” means only A; only B; or A and B.
  • the phrase "at least one of A, B, and C” means only A; or only B; only C; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B, and C.
  • Item A may contain a single element or multiple elements.
  • Item B may contain a single element or multiple elements.
  • Item C may contain a single element or multiple elements.
  • the term "at least one of" has the same meaning as "at least one of”.
  • alkyl is intended to be a straight chain saturated hydrocarbon structure having from 1 to 20 carbon atoms. "Alkyl” is also contemplated as branched or cyclic hydrocarbon structures having from 3 to 20 carbon atoms. When an alkyl group having a particular number of carbons is specified, all geometric isomers having that number of carbons are intended to be encompassed; thus, for example, “butyl” is meant to include n-butyl, sec-butyl, iso-butyl, tert-butyl and cyclobutyl; “propyl” includes n-propyl, isopropyl and cyclopropyl.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl, n-pentyl, Isopentyl, neopentyl, cyclopentyl, methylcyclopentyl, ethylcyclopentyl, n-hexyl, isohexyl, cyclohexyl, n-heptyl, octyl, cyclopropyl, cyclobutyl, norbornyl Base etc. Additionally, alkyl groups may be optionally substituted.
  • alkenyl refers to a monovalent unsaturated hydrocarbon group which may be straight-chain or branched and which has at least one and usually 1, 2 or 3 carbon-carbon double bonds. Unless otherwise defined, such alkenyl groups typically contain 2 to 20 carbon atoms and include, for example, -C 2-4 alkenyl, -C 2-6 alkenyl, and -C 2-10 alkenyl. Representative alkenyl groups include, for example, ethenyl, n-propenyl, isopropenyl, n-but-2-enyl, but-3-enyl, n-hex-3-enyl, and the like. Additionally, alkenyl groups can be optionally substituted.
  • alkynyl refers to a monovalent unsaturated hydrocarbon group which may be straight-chain or branched and which has at least one, and usually 1, 2 or 3, carbon-carbon triple bonds. Unless otherwise defined, such alkynyl groups typically contain 2 to 20 carbon atoms and include, for example, -C 2-4 alkynyl, -C 3-6 alkynyl, and -C 3-10 alkynyl. Representative alkynyl groups include, for example, ethynyl, prop-2-ynyl (n-propynyl), n-but-2-ynyl, n-hex-3-ynyl, and the like. Additionally, alkynyl groups may be optionally substituted.
  • ether bond-containing alkyl group refers to an alkyl group containing an -O- bond.
  • the ether linkage-containing alkyl group may be optionally substituted.
  • cycloalkyl encompasses cyclic alkyl groups.
  • the cycloalkyl group may be a cycloalkyl group of 3-20 carbon atoms, a cycloalkyl group of 6-20 carbon atoms, a cycloalkyl group of 3-12 carbon atoms, or a cycloalkyl group of 3-6 carbon atoms.
  • cycloalkyl may be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • cycloalkyl groups may be optionally substituted.
  • alkali metal refers to the metal elements in group IA of the periodic table except hydrogen (H), which includes lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs ) and Francium (Fr).
  • Electrochemical devices eg, lithium-ion batteries
  • these methods usually accelerate electrolyte decomposition, leading to rapid electrolyte consumption and gas generation, which lead to rapid capacity fading of electrochemical devices and swelling during high-temperature cycling or storage.
  • described electrolytic solution comprises compound A and compound B, and compound A comprises dimethyl carbonate ethyl methyl carbonate diethyl carbonate Propylene carbonate Propyl propionate ethyl acetate ethyl propionate Propyl acetate Methyl acetate methyl propyl carbonate Methyl propionate methyl butyrate Methyl pivalate ⁇ -butyrolactone
  • Sulfolane Ethyl ether Ethylene glycol dimethyl ether 1,3-Dioxane or 1,4-dioxane and compound B includes compound A substituted with one or more fluorine atoms.
  • Compound B includes at least one of the following compounds:
  • Compound A and Compound B may have the same or different main structures.
  • the same main structure means that the number and connection of atoms other than hydrogen/fluorine in Compound A and Compound B are the same, and Compound B is the corresponding fluorinated form of Compound A (i.e., partially or fully hydrogen atoms replaced by fluorine atoms).
  • compound A is dimethyl carbonate and compound B is fluorodimethyl carbonate.
  • “different main structures” means that the number and connection of atoms other than hydrogen/fluorine in compound A and compound B are different, and compound B may be a fluorinated form of any compound A above.
  • compound A is dimethyl carbonate and compound B is ethyl methyl fluorocarbonate.
  • Compound B (that is, the fluorinated compound of compound A) can be polymerized at the negative electrode to form a film to enhance the interfacial stability of the negative electrode, and it can improve the oxidation resistance of the electrolyte to inhibit the oxidative decomposition of the electrolyte.
  • Compound B defluorinates to produce hydrofluoric acid.
  • the presence of compound A just suppresses the generation of hydrofluoric acid in the electrolyte, thereby reducing the damage of hydrofluoric acid to the electrode material.
  • compound A can improve the kinetic performance of the electrolyte. Therefore, the combined use of compound A and compound B in the electrolyte can significantly improve the high-temperature cycle or storage performance of electrochemical devices.
  • the mass percentage of the compound A is a
  • the mass percentage of the compound B is b
  • a and b satisfy the relational formula: 0.0016 ⁇ a/b ⁇ 2.
  • a/b is 0.0016, 0.002, 0.005, 0.01, 0.05, 0.5, 1, 1.1, 1.2, 1.3, 1.4, 1.5 or within a range composed of any of the above values.
  • the mass percentage a of compound A in the electrolyte is 0.05, 0.1, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 or any of the above values composition range.
  • the mass percentage b of the compound B in the electrolyte is 5, 10, 20, 30, 40, 50, 60, 70 or within the range formed by any of the above numerical values.
  • the electrolyte is further compound C, which has the formula II:
  • R1 is substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl or substituted or unsubstituted C1-C6 ether bond-containing alkane A group, when substituted, the substituent includes at least one of F or C3-C5 cycloalkyl; and
  • M is an alkali metal.
  • the compound C includes at least one of the following compounds:
  • Compound C is an organophosphate lithium salt, which can assist in the formation of negative electrode solid electrolyte interface (SEI) film and positive electrode solid electrolyte interface (CEI) film, thereby further protecting the active material. Moreover, the resistance of the SEI film assisted by compound C is lower, which can further improve the rate performance of the electrochemical device.
  • SEI negative electrode solid electrolyte interface
  • CEI positive electrode solid electrolyte interface
  • the mass percentage of compound C is c, and a and c satisfy the relational formula: 1 ⁇ a/c ⁇ 500. In some embodiments, 5 ⁇ a/c ⁇ 450. In some embodiments, 10 ⁇ a/c ⁇ 400. In some embodiments, 50 ⁇ a/c ⁇ 350. In some embodiments, 100 ⁇ a/c ⁇ 300. In some embodiments, 150 ⁇ a/c ⁇ 200. In some embodiments, a/c is 1, 5, 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 or within a range composed of any of the above values. When the content ratio of compound A and compound C is within the above range, it is helpful to further improve the rate performance of the electrochemical device.
  • the mass percentage c of compound C in the electrolyte is 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 or within the range formed by any of the above numerical values.
  • the electrolyte is further compound D, and the compound D includes 1,2-bis(cyanoethoxy)ethane, succinonitrile, adiponitrile, 1,4-dicyano-2 -at least one of butene, 1,3,6-hexanetrinitrile or 1,2,3-tris(2-cyanooxy)propane.
  • Nitrile compounds can effectively stabilize the transition metals in the positive electrode, inhibit the dissolution of transition metals and the deposition of transition metals on the surface of the negative electrode, and reduce the growth of lithium dendrites in the cell, thereby effectively improving the overcharge performance of the electrochemical device.
  • compound D does not affect the high-temperature cycling or storage performance of the electrochemical device.
  • the content of the compound D is 0.5% to 3%. In some embodiments, based on the weight of the electrolyte, the content of the compound D is 1% to 2%. In some embodiments, based on the weight of the electrolyte, the content of the compound D is 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2%, 2.5%, 2.5%, 3% % or within the range formed by any of the above numerical values.
  • the electrolyte is further compound E, and the compound E includes LiBOB, LiBF 4 , LiDFOB, LiPO 2 F 2 , LiFSI, LiTFSI, LiCF 3 SO 3 , LITDI or B 4 Li 2 O 7 at least one.
  • Compound E can form a solid electrolyte interface film with good stability on the positive and negative electrodes to protect the electrode material and avoid direct contact between the electrode material and the electrolyte, thereby inhibiting the electrolyte from being further oxidized, thereby improving the float charge performance of the electrochemical device .
  • compound E does not affect the high-temperature cycling or storage performance of electrochemical devices.
  • the content of the compound E is 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2%, 2.5%, or within the range formed by any of the above values.
  • the electrolyte solution of the present application can be prepared by any known method. In some embodiments, the electrolyte solution of the present application can be prepared by mixing the components.
  • the positive electrode includes a positive electrode collector and a positive electrode active material disposed on one or both surfaces of the positive electrode collector.
  • the positive active material includes first particles and second particles, wherein the Dv50 of the first particles is 7-20 ⁇ m, and the Dv50 of the second particles is 1-6 ⁇ m. In some embodiments, the Dv50 of the first particle is 10-15 ⁇ m. In some embodiments, the Dv50 of the second particle is 3-5 ⁇ m.
  • the Dv50 of the first particle and the second particle of the positive electrode active material can be measured by the following method: adopt the Malvern laser particle size analyzer to measure the Dv50 of the positive electrode active material; or the lithium ion battery is discharged to a voltage of 2.8V, and the positive electrode is placed in dicarbonate Soak in the methyl ester solution for 4 hours, then bake at 80°C for 12 hours, take the positive electrode active material layer, set the temperature at 400°C in the air atmosphere, and burn for 4 hours to obtain the positive electrode active material, then use the Malvern laser particle size analyzer After testing, the Dv50 of the positive electrode active material can be obtained.
  • the mass ratio of the first particles to the second particles is 0.1 to 10. In some embodiments, the mass ratio of the first particles to the second particles is 0.5 to 8. In some embodiments, the mass ratio of the first particles to the second particles is 1 to 5. In some embodiments, the mass ratio of the first particles to the second particles is 2-4. In some embodiments, the mass ratio of the first particle to the second particle is 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or any combination of the above values In the range.
  • the positive electrode active material includes, but is not limited to, LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
  • the positive active material layer further includes a binder.
  • the binder can improve the bonding of the positive electrode active material particles to each other, and can improve the bonding of the positive electrode active material and the positive electrode current collector.
  • the binder includes, but is not limited to, polyvinyl alcohol, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, Ethyl oxide polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylic (ester) styrene-butadiene rubber, epoxy resin and nylon etc.
  • the positive active material layer further includes a conductive material, thereby imparting conductivity to the electrode.
  • the conductive material may include any conductive material as long as it does not cause chemical changes.
  • Non-limiting examples of conductive materials include carbon-based materials (e.g., natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fibers, carbon nanotubes, etc.), metal-based materials (e.g., metal powder, metal fibers, etc., including, for example, copper, nickel, aluminum, silver, etc.), conductive polymers (eg, polyphenylene derivatives), and mixtures thereof.
  • the positive current collector includes, but is not limited to, aluminum (Al).
  • the negative electrode includes a negative electrode collector and a negative electrode active material disposed on one or both surfaces of the negative electrode collector.
  • Specific types of negative electrode active materials are not subject to specific restrictions, and can be selected according to requirements.
  • the negative electrode current collector may be selected from copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, polymer substrate coated with conductive metal, and combinations thereof.
  • the negative electrode active material is selected from natural graphite, artificial graphite, mesophase microcarbon spheres (abbreviated as MCMB), hard carbon, soft carbon, silicon, silicon-carbon composite, Li-Sn alloy, Li - One or more of Sn-O alloy, Sn, SnO, SnO 2 , lithiated TiO 2 with spinel structure - Li 4 Ti 5 O 12 , Li-Al alloy.
  • Non-limiting examples of carbon materials include crystalline carbon, amorphous carbon, and mixtures thereof.
  • the crystalline carbon may be amorphous or flake, platelet, spherical or fibrous natural or artificial graphite.
  • the amorphous carbon may be soft carbon, hard carbon, mesophase pitch carbide, calcined coke, or the like.
  • the negative active material includes a binder.
  • the binder improves the bonding of the negative electrode active material particles to each other and the bonding of the negative electrode active material to the current collector.
  • binders include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, ethylene-containing Oxygen polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylic (ester) styrene-butadiene rubber, epoxy resin, Nylon etc.
  • the negative active material includes a conductive material, thereby imparting electrical conductivity to the electrode.
  • the conductive material may include any conductive material as long as it does not cause chemical changes.
  • Non-limiting examples of conductive materials include carbon-based materials (e.g., carbon black, acetylene black, ketjen black, carbon fibers, carbon nanotubes, etc.), metal-based materials (e.g., metal powders, metal fibers, etc., such as copper, nickel, aluminum, silver, etc.), conductive polymers (eg, polyphenylene derivatives), and mixtures thereof.
  • a separator is provided between the positive electrode and the negative electrode to prevent short circuit.
  • the material and shape of the isolation film are not particularly limited, and it can be any technology disclosed in the prior art.
  • the separator includes a polymer or an inorganic substance formed of a material stable to the electrolyte of the present application.
  • the isolation film includes a substrate layer.
  • the substrate layer is a non-woven fabric, film or composite film with a porous structure.
  • the material of the substrate layer is at least one selected from polyethylene, polypropylene, polyethylene terephthalate and polyimide.
  • the material of the substrate layer is selected from polypropylene porous film, polyethylene porous film, polypropylene non-woven fabric, polyethylene non-woven fabric or polypropylene-polyethylene-polypropylene porous composite film.
  • the surface treatment layer may be a polymer layer, an inorganic layer, or a layer formed by mixing polymers and inorganic materials.
  • the polymer layer comprises a polymer, and the material of the polymer is selected from polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, At least one of polyvinylidene fluoride and poly(vinylidene fluoride-hexafluoropropylene).
  • the inorganic layer includes inorganic particles and a binder.
  • the inorganic particles are selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium oxide, tin oxide, cerium oxide, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, yttrium oxide, One or a combination of silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium sulfate.
  • the binder is selected from polyvinylidene fluoride, copolymers of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinyl pyrene One or a combination of rolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene.
  • the present application also provides an electronic device comprising the electrolyte solution according to the present application.
  • the electrochemical device of the present application includes any device that undergoes an electrochemical reaction, and its specific examples include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • the electrochemical device of the present application includes a positive electrode sheet with a positive electrode active material capable of absorbing and releasing metal ions; a negative electrode sheet according to an embodiment of the application; an electrolyte; and a positive electrode sheet placed on the positive electrode sheet and the separator between the negative pole piece.
  • the present application further provides an electronic device comprising the electrochemical device according to the present application.
  • the application of the electrochemical device of the present application is not particularly limited, and it can be used in any electronic device known in the prior art.
  • the electrochemical device of the present application can be used in, but not limited to, notebook computers, pen-based computers, mobile computers, e-book players, portable phones, portable fax machines, portable copiers, portable printers, head-worn Stereo headphones, VCRs, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic organizers, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, automobiles, motorcycles, power assist Bicycles, bicycles, lighting equipment, toys, game consoles, clocks, electric tools, flashlights, cameras, large household storage batteries and lithium-ion capacitors, etc.
  • the lithium ion battery is taken as an example below and the preparation of the lithium ion battery is described in conjunction with specific examples. Those skilled in the art will understand that the preparation method described in this application is only an example, and any other suitable preparation methods are described in this application. within range.
  • the positive electrode active material NCM811 (molecular formula LiNi 0.8 Mn 0.1 Co 0.1 O 2 ), the conductive agent acetylene black and the binder polyvinylidene fluoride (PVDF) are mixed in an appropriate amount of N-formaldehyde in a weight ratio of 96:2:2 Fully stir and mix in the base pyrrolidone (NMP) solvent to form a uniform positive electrode slurry; coat the positive electrode slurry on the aluminum foil of the positive electrode current collector, dry and cold press to obtain the positive electrode, and the compacted density of the positive electrode is 3.50g /cm 3 .
  • NMP base pyrrolidone
  • concentration and pH value can promote the growth of crystal nuclei, so that the primary particles can be tightly packed into secondary particles;
  • the positive electrode active material LCO molecular formula is LiCoO 2
  • conductive carbon black conductive paste and binder polyvinylidene fluoride (PVDF) in an appropriate amount of N-formaldehyde in a weight ratio of 97.9:0.4:0.5:1.2
  • NMP base pyrrolidone
  • Negative electrode active material graphite, binder styrene-butadiene rubber (SBR), thickener sodium carboxymethylcellulose (CMC) are fully stirred and mixed in an appropriate amount of deionized water solvent according to a weight ratio of 97.4:1.4:1.2, so that A uniform negative electrode slurry is formed; the negative electrode slurry is coated on the copper foil of the negative electrode current collector, dried and cold pressed to obtain the negative electrode, and the compacted density of the negative electrode is 1.80 g/cm 3 .
  • a single-layer polyethylene (PE) porous polymer film with a thickness of 5 micrometers and a porosity of 39% was used as the separator.
  • the lithium-ion battery was charged to 4.35V at 1C, then charged to 0.05C at a constant voltage at 4.35V, and then discharged to 2.8V at a current of 10C, and cycled for 800 cycles under this condition, recorded Capacity retention and cycle thickness expansion of lithium-ion batteries.
  • the lithium-ion battery was discharged at 0.5C to 2.8V, then charged at 1C to 4.35V, and then charged at a constant voltage of 4.35V to 0.05C.
  • the thickness of the lithium-ion battery was measured and recorded as d 0 .
  • Calculate the float thickness expansion rate of the lithium-ion battery by the following formula:
  • the lithium-ion battery was charged at a constant current of 0.5C to 4.45V, and then charged at a constant voltage to a current of 0.05C.
  • the thickness of the lithium-ion battery was measured and recorded as d 1 .
  • the lithium-ion battery was stored in an oven at 60°C for 60 days, and the thickness was monitored and recorded as d 2 .
  • the high-temperature storage thickness expansion rate of lithium-ion batteries is calculated by the following formula:
  • High temperature storage thickness expansion ratio (d 2 -d 1 )/d 1 ⁇ 100%.
  • Table 1 shows the effects of compound A and compound B in the electrolyte and their content on the high-temperature cycle performance of lithium-ion batteries.
  • the positive electrode active material is the positive electrode active material NCM811.
  • the results show that when the ternary material is used as the positive electrode active material, when the electrolyte does not contain compound A and compound B or the electrolyte only contains one of compound A and compound B, the high-temperature cycle capacity retention rate of lithium-ion batteries is relatively low. Low and high temperature cycle thickness expansion rate is high.
  • the electrolyte contains compound A and compound B at the same time, the high-temperature cycle capacity retention rate of the lithium-ion battery can be significantly improved and its high-temperature cycle thickness expansion rate can be significantly reduced.
  • Table 2 shows the effect of compound A and compound B in the electrolyte and their content on the high-temperature storage performance of lithium-ion batteries.
  • the positive electrode active material is the positive electrode active material LCO.
  • the content ratio a/b of the compound A and the compound B is in the range of 0.0016-2, it is helpful to further improve the high-temperature storage thickness expansion rate of the lithium-ion battery.
  • Table 3 shows the effect of compound C and its content in the electrolyte on the high-temperature cycle performance and rate performance of lithium-ion batteries.
  • the positive electrode active material is the positive electrode active material NCM811.
  • the content ratio a/c of the compound A and the compound C is in the range of 1-500, it is helpful to further improve the rate performance of the lithium-ion battery.
  • Table 4 shows the effect of compound D and its content in the electrolyte on the overcharge safety of lithium-ion batteries.
  • the positive electrode active material is the positive electrode active material NCM811.
  • TCEP is 1,2,3-tris(2-cyanoethoxy)propane and HTCN is 1,3,6-hexanetrinitrile.
  • Table 5 shows the effect of compound E and its content in the electrolyte on the float performance of lithium-ion batteries.
  • the positive electrode active material is the positive electrode active material NCM811.
  • Table 6 shows the effect of the particle size of the first particle and the second particle of the positive electrode active material on the high-temperature cycle performance of the lithium-ion battery.
  • the positive electrode active material is the positive electrode active material NCM811.
  • references to “embodiment”, “partial embodiment”, “an embodiment”, “another example”, “example”, “specific example” or “partial example” in the entire specification mean that At least one embodiment or example in the present application includes a specific feature, structure, material or characteristic described in the embodiment or example.
  • descriptions that appear throughout the specification such as: “in some embodiments”, “in an embodiment”, “in one embodiment”, “in another example”, “in an example In”, “in a particular example” or “example”, they are not necessarily referring to the same embodiment or example in this application.
  • the particular features, structures, materials, or characteristics herein may be combined in any suitable manner in one or more embodiments or examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种电解液以及电化学装置和电子装置。电解液包含化合物A和化合物B,化合物A包括碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸丙烯酯、丙酸丙酯、乙酸乙酯、丙酸乙酯、乙酸丙酯、乙酸甲酯、碳酸甲丙酯、丙酸甲酯、丁酸甲酯、特戊酸甲酯、γ-丁内酯、环丁砜、乙丙醚、乙二醇二甲基醚、1,3-二氧六环或1,4-二氧六环中的至少一种,并且化合物B包括经一或多个氟原子取代的化合物A。电解液有助于改善电化学装置的高温循环或存储性能。

Description

电解液以及使用其的电化学装置和电子装置 技术领域
本申请涉及储能领域,具体涉及一种电解液以及使用其的电化学装置和电子装置。
背景技术
电化学装置(例如,锂离子电池)因其具有高能量密度、低维护、相对较低的自放电、长循环寿命、无记忆效应、工作电压稳定和环境友好等特性受到广泛关注并被广泛用于便携式电子设备(包括手机、笔记本和相机等电子产品)、电动工具和电动汽车等领域。然而,随着技术的快速发展以及市场需求的多样性,人们对电子产品的电源提出了更高的要求,例如更薄、更轻、外形更多样化、更高的功率以及更高的续航能力等。在实现这些要求的时候,通常同时会牺牲电芯的循环性能、循环过程中电芯膨胀性能等,同时可能还会造成高功率下的电芯温升过高导致电芯的性能进一步恶化。
有鉴于此,确有必要提供一种改进的有助于改善电化学装置的高温循环或存储性能的电解液以及使用其的电化学装置和电子装置。
发明内容
本申请通过提供一种电解液以及使用其的电化学装置和电子装置以试图在至少某种程度上解决至少一种存在于相关领域中的问题。
根据本申请的一个方面,本申请提供了一种电解液,其特征在于:所述电解液包含化合物A和化合物B,化合物A包括碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸丙烯酯、丙酸丙酯、乙酸乙酯、丙酸乙酯、乙酸丙酯、乙酸甲酯、碳酸甲丙酯、丙酸甲酯、丁酸甲酯、特戊酸甲酯、γ-丁内酯、环丁砜、乙丙醚、乙二醇二甲基醚、1,3-二氧六环或1,4-二氧六环中的至少一种,并且化合物B包括经一或多个氟原子取代的化合物A。
根据本申请的实施例,所述化合物A和所述化合物B具有相同的主结构。
根据本申请的实施例,基于电解液的总量,所述化合物A的质量百分比为a,所述化合物B的质量百分比为b,a和b满足关系式:0.0016≤a/b≤2。
根据本申请的实施例,所述电解液进一步化合物C,所述化合物C具有式II:
Figure PCTCN2022125307-appb-000001
其中:
R1为取代或未取代的C1-C6烷基、取代或未取代的C2-C6烯基、取代或未取代的C2-C6炔基或经取代或未经取代的C1-C6的含醚键烷基,当取代时,取代基包括F或C3-C5环烷基中的至少一种;以及
M为碱金属,并且
基于电解液的总量,所述化合物C的质量百分比为c,a和c满足关系式:1≤a/c≤500。
根据本申请的实施例,所述化合物C包括以下化合物中的至少一种:
Figure PCTCN2022125307-appb-000002
根据本申请的实施例,所述电解液进一步化合物D,所述化合物D包括1,2-双(氰乙氧基)乙烷、丁二腈、己二腈、1,4-二氰基-2-丁烯、1,3,6-己三腈或1,2,3-三(2-氰氧基)丙烷中的至少一种,并且基于电解液的重量,所述化合物D的含量为0.5%至3%。
根据本申请的实施例,所述电解液进一步化合物E,所述化合物E包括LiBOB、LiBF 4、LiDFOB、LiPO 2F 2、LiFSI、LiTFSI、LiCF 3SO 3、LITDI或B 4Li 2O 7中的至少一 种。
根据本申请的另一个方面,本申请提供了一种电化学装置,其包含正极和根据本申请的电解液。
根据本申请的实施例,所述正极包括正极活性材料,所述正极活性材料满足如下特征中的至少一者:
(a)所述正极活性材料包括第一颗粒和第二颗粒,其中所述第一颗粒的Dv50为7-20μm,并且所述第二颗粒的Dv50为1-6μm;
(b)所述正极活性材料包括第一颗粒和第二颗粒,所述第一颗粒与所述第二颗粒质量比为0.1至10。
(c)所述正极活性材料具有化学式LiNi xCo yMn zO 2,其中0≤x<1,0≤y<1,0≤z<1,a+b+c=1。
根据本申请的又一个方面,本申请提供了一种电子装置,其包括根据本申请的电化学装置。
本申请提供的电解液具有良好的动力学性能,可显著改善电化学装置的高温循环或存储性能。
本申请的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
在具体实施方式及权利要求书中,由术语“中的至少一者”连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一种”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。术语“中的至少一种”与“中的至少一者”具有相同的含义。
术语“烷基”预期是具有1至20个碳原子的直链饱和烃结构。“烷基”还预期是具有3至20个碳原子的支链或环状烃结构。当指定具有具体碳数的烷基时,预期涵盖具有该碳数的所有几何异构体;因此,例如,“丁基”意思是包括正丁基、仲丁基、异丁 基、叔丁基和环丁基;“丙基”包括正丙基、异丙基和环丙基。烷基实例包括,但不限于甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、正戊基、异戊基、新戊基、环戊基、甲基环戊基、乙基环戊基、正己基、异己基、环己基、正庚基、辛基、环丙基、环丁基、降冰片基等。另外,烷基可以是任选地被取代的。
术语“烯基”是指可为直链或具支链且具有至少一个且通常1个、2个或3个碳碳双键的单价不饱和烃基团。除非另有定义,否则所述烯基通常含有2个到20个碳原子且包括(例如)-C 2-4烯基、-C 2-6烯基及-C 2-10烯基。代表性烯基包括(例如)乙烯基、正丙烯基、异丙烯基、正-丁-2-烯基、丁-3-烯基、正-己-3-烯基等。另外,烯基可以是任选地被取代的。
术语“炔基”是指可为直链或具支链且具有至少一个且通常具有1个、2个或3个碳碳三键的单价不饱和烃基团。除非另有定义,否则所述炔基通常含有2个到20个碳原子且包括(例如)-C 2-4炔基、-C 3-6炔基及-C 3-10炔基。代表性炔基包括(例如)乙炔基、丙-2-炔基(正-丙炔基)、正-丁-2-炔基、正-己-3-炔基等。另外,炔基可以是任选地被取代的。
术语“含醚键烷基”是指含有-O-键的烷基。另外,含醚键烷基可以是任选地被取代的。
术语“环烷基”涵盖环状烷基。环烷基可为3-20个碳原子的环烷基、6-20个碳原子的环烷基、3-12个碳原子的环烷基、3-6个碳原子的环烷基。例如,环烷基可为环丙基、环丁基、环戊基、环己基等。另外,环烷基可以是任选地被取代的。
术语“碱金属”是指元素周期表中第ⅠA族中除氢(H)外的金属元素,其包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和钫(Fr)。
电解液
生产商或研发人员通常采用提高充电电压或增加活性物质的容量的方式来提升电化学装置(例如,锂离子电池)的能量密度。然而,这些方法通常会加速电解液的分解,导致电解液的消耗过快并出现产气现象,从而导致电化学装置的容量快速衰减,以及在高温循环或存储过程中发生膨胀。
为了解决上述问题,本申请提供了一种电解液,其特征在于:所述电解液包含化合物A和化合物B,化合物A包括碳酸二甲酯
Figure PCTCN2022125307-appb-000003
碳酸甲乙酯
Figure PCTCN2022125307-appb-000004
碳酸二乙酯
Figure PCTCN2022125307-appb-000005
碳酸丙烯酯
Figure PCTCN2022125307-appb-000006
丙酸丙酯
Figure PCTCN2022125307-appb-000007
乙酸乙酯
Figure PCTCN2022125307-appb-000008
丙酸乙酯
Figure PCTCN2022125307-appb-000009
乙酸丙酯
Figure PCTCN2022125307-appb-000010
乙酸甲酯
Figure PCTCN2022125307-appb-000011
碳酸甲丙酯
Figure PCTCN2022125307-appb-000012
丙酸甲酯
Figure PCTCN2022125307-appb-000013
丁酸甲酯
Figure PCTCN2022125307-appb-000014
特戊酸甲酯
Figure PCTCN2022125307-appb-000015
γ-丁内酯
Figure PCTCN2022125307-appb-000016
环丁砜
Figure PCTCN2022125307-appb-000017
乙丙醚
Figure PCTCN2022125307-appb-000018
乙二醇二甲基醚
Figure PCTCN2022125307-appb-000019
1,3-二氧六环
Figure PCTCN2022125307-appb-000020
或1,4-二氧六环
Figure PCTCN2022125307-appb-000021
中的至少一种,并且化合物B包括经一或多个氟原子取代的化合物A。
在一些实施例中,化合物B包括以下化合物中的至少一种:
Figure PCTCN2022125307-appb-000022
Figure PCTCN2022125307-appb-000023
在一些实施例中,化合物A和化合物B可具有相同或不同的主结构。如本文所使用,“相同的主结构”意指化合物A和化合物B中的除氢/氟以外的原子的数量和连接方式相同,化合物B为对应化合物A的氟代形式(即,部分或全部氢原子经氟原子取 代)。例如,化合物A为碳酸二甲酯,化合物B为氟代碳酸二甲酯。如本文所使用,“不同的主结构”意指化合物A和化合物B中的除氢/氟以外的原子的数量和连接方式不同,化合物B可为上述任意化合物A的氟代形式。例如,化合物A为碳酸二甲酯,化合物B为氟代碳酸甲乙酯。
化合物B(即,化合物A的氟代化合物)可以在负极聚合成膜以加强负极的界面稳定性,并且其可以提高电解液的抗氧化性以抑制电解液的氧化分解。然而,化合物B会脱氟产生氢氟酸。化合物A的存在恰好抑制了电解液中氢氟酸的产生,由此可降低氢氟酸对电极材料的破坏。并且,化合物A可改善电解液的动力学性能。因此,在电解液中组合使用化合物A和化合物B可显著改善电化学装置的高温循环或存储性能。
在一些实施例中,基于电解液的总量,所述化合物A的质量百分比为a,所述化合物B的质量百分比为b,a和b满足关系式:0.0016≤a/b≤2。在一些实施例中,0.002≤a/b≤1.5。在一些实施例中,0.005≤a/b≤1。在一些实施例中,0.01≤a/b≤0.5。在一些实施例中,0.05≤a/b≤0.3。在一些实施例中,0.1≤a/b≤0.2。在一些实施例中,a/b为0.0016、0.002、0.005、0.01、0.05、0.5、1、1.1、1.2、1.3、1.4、1.5或在上述任意数值所组成的范围内。当化合物A和化合物B的含量比在上述范围内时,有助于进一步改善电化学装置的高温循环或存储性能。
在一些实施例中,0.05≤a≤50。在一些实施例中,0.1≤a≤40。在一些实施例中,0.5≤a≤30。在一些实施例中,1≤a≤20。在一些实施例中,5≤a≤100。在一些实施例中,化合物A在电解液中的质量百分比a为0.05、0.1、0.5、1、5、10、15、20、25、30、35、40、45、50或在上述任意数值所组成的范围内。
在一些实施例中,5≤b≤70。在一些实施例中,10≤b≤60。在一些实施例中,20≤b≤50。在一些实施例中,30≤b≤40。在一些实施例中,化合物B在电解液中的质量百分比b为5、10、20、30、40、50、60、70或在上述任意数值所组成的范围内。
在一些实施例中,所述电解液进一步化合物C,所述化合物C具有式II:
Figure PCTCN2022125307-appb-000024
其中:
R1为取代或未取代的C1-C6烷基、取代或未取代的C2-C6烯基、取代或未取代的 C2-C6炔基或经取代或未经取代的C1-C6的含醚键烷基,当取代时,取代基包括F或C3-C5环烷基中的至少一种;以及
M为碱金属。
在一些实施例中,所述化合物C包括以下化合物中的至少一种:
Figure PCTCN2022125307-appb-000025
化合物C是有机磷酸锂盐,其可以进辅助负极固体电解质界面(SEI)膜及正极固体电解质界面(CEI)膜的形成,从而进一步保护活性材料。并且,由化合物C辅助形成的SEI膜阻抗更低,可以进一步提高电化学装置的倍率性能。
在一些实施例中,基于电解液的总量,化合物C的质量百分比为c,a和c满足关系式:1≤a/c≤500。在一些实施例中,5≤a/c≤450。在一些实施例中,10≤a/c≤400。在一些实施例中,50≤a/c≤350。在一些实施例中,100≤a/c≤300。在一些实施例中,150≤a/c≤200。在一些实施例中,a/c为1、5、10、50、100、150、200、250、300、350、400、450、500或在上述任意数值所组成的范围内。当化合物A和化合物C的含量比在上述范围内时,有助于进一步改善电化学装置的倍率性能。
在一些实施例中,0.01≤c≤0.5。在一些实施例中,0.05≤c≤0.4。在一些实施例中,0.1≤c≤0.3。在一些实施例中,化合物C在电解液中的质量百分比c为0.01、0.05、0.1、0.2、0.3、0.4、0.5或在上述任意数值所组成的范围内。
在一些实施例中,所述电解液进一步化合物D,所述化合物D包括1,2-双(氰乙氧基)乙烷、丁二腈、己二腈、1,4-二氰基-2-丁烯、1,3,6-己三腈或1,2,3-三(2-氰氧基)丙烷中的至少一种。腈类化合物可以有效稳定正极的过渡金属,抑制过渡金属的溶出以及过渡金属在负极表面的沉积,降低电芯锂枝晶的生长,从而有效改善电化学装置的过充性能。此外,化合物D不会影响电化学装置的高温循环或存储性能。
在一些实施例中,基于电解液的重量,所述化合物D的含量为0.5%至3%。在一些实施例中,基于电解液的重量,所述化合物D的含量为1%至2%。在一些实施例中,基于电解液的重量,所述化合物D的含量为0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.5%、3%或在上述任意数值所组成的范围内。
在一些实施例中,所述电解液进一步化合物E,所述化合物E包括LiBOB、LiBF 4、LiDFOB、LiPO 2F 2、LiFSI、LiTFSI、LiCF 3SO 3、LITDI或B 4Li 2O 7中的至少一种。化合物E可以在正极和负极形成稳定性较好的固体电解质界面膜,保护电极材料,避免电极材料和电解液的直接接触,从而抑制电解液被进一步氧化,由此改善电化学装置的浮充性能。此外,化合物E不会影响电化学装置的高温循环或存储性能。
在一些实施例中,基于电解液的重量,所述化合物E的含量为0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%或在上述任意数值所组成的范围内。
本申请的电解液可采用任何已知方法制备。在一些实施例中,本申请的电解液可通过混合各组分制备。
正极
正极包括正极集流体和设置在正极集流体的一个或两个表面的正极活性材料。
在一些实施例中,所述正极活性材料包括第一颗粒和第二颗粒,其中所述第一颗粒的Dv50为7-20μm,并且所述第二颗粒的Dv50为1-6μm。在一些实施例中,所述第一颗粒的Dv50为10-15μm。在一些实施例中,并且所述第二颗粒的Dv50为3-5μm。
正极活性材料的第一颗粒和第二颗粒的Dv50可通过以下方法测定:采用马尔文激光粒度仪测正极活性材料的Dv50;或者将锂离子电池放电至电压为2.8V,将正极放入碳酸二甲酯溶液中浸泡4小时,之后在80℃烘12小时,取正极活性材料层,在空气氛围中,设置温度为400摄氏度,烧4小时,得到正极活性材料,之后用马尔文激光粒度仪进行测试,即可得到正极活性材料的Dv50。
在一些实施例中,所述第一颗粒与所述第二颗粒质量比为0.1至10。在一些实施例中,所述第一颗粒与所述第二颗粒质量比为0.5至8。在一些实施例中,所述第一颗粒 与所述第二颗粒质量比为1至5。在一些实施例中,所述第一颗粒与所述第二颗粒质量比为2至4。在一些实施例中,所述第一颗粒与所述第二颗粒质量比为0.1、0.5、1、2、3、4、5、6、7、8、9、10或在上述任意数值所组成的范围内。
在一些实施例中,所述正极活性材料具有化学式LiNi xCo yMn zO 2,其中0≤x<1,0≤y<1,0≤z<1,a+b+c=1。在一些实施例中,0.55<x<0.92,0.03<y<0.2,0.04<z<0.3。
在一些实施例中,所述正极活性材料包括,但不限于,LiNi 0.8Mn 0.1Co 0.1O 2、LiCoO 2、LiNiO 2、LiMnO 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi 1/3Co 1/3Mn 1/3O 2
在一些实施例中,正极活性材料层还包括粘合剂。粘合剂可提高正极活性材料颗粒彼此间的结合,并且可提高正极活性材料与正极集流体的结合。在一些实施例中,所述粘合剂包括,但不限于,聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂和尼龙等。
在一些实施例中,正极活性材料层还包括导电材料,从而赋予电极导电性。该导电材料可以包括任何导电材料,只要它不引起化学变化。导电材料的非限制性示例包括基于碳的材料(例如,天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维、碳纳米管等)、基于金属的材料(例如,金属粉、金属纤维等,包括例如铜、镍、铝、银等)、导电聚合物(例如,聚亚苯基衍生物)和它们的混合物。
在一些实施例中,正极集流体包括,但不限于,铝(Al)。
负极
负极包括负极集流体和设置在负极集流体的一个或两个表面的负极活性材料。负极活性材料的具体种类均不受到具体的限制,可根据需求进行选择。
在一些实施例中,负极集流体可以选自于铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、覆有导电金属的聚合物基底和它们的组合。
在一些实施例中,所述负极活性材料选自天然石墨、人造石墨、中间相微碳球(简称为MCMB)、硬碳、软碳、硅、硅-碳复合物、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的锂化TiO 2-Li 4Ti 5O 12、Li-Al合金中的一种或几种。碳材料的非限制性示例包括结晶碳、非晶碳和它们的混合物。结晶碳可以是无定形的或片形的、小片形的、球形的或纤维状的天然石墨或人造石墨。非晶碳可以是软碳、硬碳、中间相沥青碳 化物、煅烧焦等。
在一些实施例中,负极活性材料包括粘合剂。粘合剂提高负极活性材料颗粒彼此间的结合和负极活性材料与集流体的结合。粘合剂的非限制性示例包括聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等。
在一些实施例中,负极活性材料包括导电材料,从而赋予电极导电性。该导电材料可以包括任何导电材料,只要它不引起化学变化。导电材料的非限制性示例包括基于碳的材料(例如,碳黑、乙炔黑、科琴黑、碳纤维、碳纳米管等)、基于金属的材料(例如,金属粉、金属纤维等,例如铜、镍、铝、银等)、导电聚合物(例如,聚亚苯基衍生物)和它们的混合物。
隔离膜
在一些实施例中,正极与负极之间设有隔离膜以防止短路。隔离膜的材料和形状没有特别限制,其可为任何现有技术中公开的技术。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
在一些实施例中,隔离膜包括基材层。在一些实施例中,基材层为具有多孔结构的无纺布、膜或复合膜。在一些实施例中,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。在一些实施例中,基材层的材料选自聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
在一些实施例中,基材层的至少一个表面上设置有表面处理层。在一些实施例中,表面处理层可以是聚合物层、无机物层或混合聚合物与无机物所形成的层。在一些实施例中,聚合物层中包含聚合物,聚合物的材料选自聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯、聚(偏氟乙烯-六氟丙烯)中的至少一种。
在一些实施例中,无机物层包括无机颗粒和粘结剂。在一些实施例中,所述无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。在一些实施例中,所述粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚 乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。
电化学装置
本申请还提供了一种电子装置,其包括根据本申请的电解液。
本申请的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容器。特别地,该电化学装置是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。在一些实施例中,本申请的电化学装置包括具有能够吸留、放出金属离子的正极活性物质的正极极片;根据本申请的实施例的负极极片;电解液;和置于正极极片和负极极片之间的隔离膜。
电子装置
本申请另提供了一种电子装置,其包括根据本申请的电化学装置。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何电子装置。在一些实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例
以下说明根据本申请的锂离子电池的实施例和对比例进行性能评估。
一、锂离子电池的制备
1、正极的制备
(1)将正极活性材料NCM811(分子式LiNi 0.8Mn 0.1Co 0.1O 2)、导电剂乙炔黑和粘结剂聚偏二氟乙烯(PVDF)按重量比96:2:2在适量的N-甲基吡咯烷酮(NMP)溶剂中充分搅拌混合,使其形成均匀的正极浆料;将正极浆料涂覆于正极集流体铝箔上,烘干、冷压,得到正极,正极的压实密度为3.50g/cm 3。其中正极活性材料的制备过程如下:
(a):配置镍钴锰金属盐溶液、沉淀剂溶液、氨水溶液和分散剂溶液;
(b):在反应釜中加入步骤(a)配置的沉淀剂溶液及氨水溶液,在搅拌状态下调节氨浓度以及pH值;
(c):在步骤(b)的基础上,向反应釜中同时加入镍钴锰金属盐溶液、沉淀剂溶液和氨水溶液,制备镍钴锰氢氧化物晶核;在搅拌状态下,调节氨浓度以及pH值,促进晶核生长,使一次颗粒紧密堆积成二次颗粒;
(d):当反应浆料的粒径数值达到目标Dv50的60%-80%后,停釜,抽取上清液提浓;
(e):当反应浆料中,颗粒尺寸达到目标值后,停止反应,陈化,即得到第一颗粒前驱体;
(f):减小目标Dv50,重复上述步骤(a)-(e),获得第二颗粒的前驱体;
(g):将上述步骤(e)获得的第一颗粒前驱体与氢氧化锂高速混合,并使用高温气氛炉进行通氧煅烧,获得第一颗粒的正极材料;
(h):将上述步骤(f)获得的第二颗粒前驱体与氢氧化锂高速混合,并使用高温气氛炉进行通氧煅烧,获得第二颗粒的正极材料;
(i):将上述步骤(g)和(h)获得的正极材料按一定比例混合,即可获得锂含量不同的大小颗粒混合的正极材料。
(2)将正极活性物质LCO(分子式为LiCoO 2)、导电碳黑、导电浆料和粘结剂聚偏二氟乙烯(PVDF)按重量比97.9:0.4:0.5:1.2在适量的N-甲基吡咯烷酮(NMP)溶剂中充分搅拌混合,使其形成均匀的正极浆料;将正极浆料涂覆于正极集流体Al箔上,烘干、冷压,得到正极,正极压实密度为4.15g/cm 3
2、负极的制备
将负极活性物质石墨、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比97.4:1.4:1.2在适量的去离子水溶剂中充分搅拌混合,使其形成均匀的负极浆料;将负极浆料涂覆于负极集流体铜箔上,烘干、冷压,得到负极,负极的压实密度为1.80g/cm 3
3、电解液的制备
在含水量小于10ppm的氩气气氛手套箱中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)和碳酸二乙酯(DEC)按照3:3:4的质量比混合均匀,再将充分干燥的锂盐LiPF 6(12.5%)溶解于上述非水溶剂,得到基础电解液。根据实施例或对比例的设置向基础电解液中添 加目标化合物,得到电解液。
4、隔离膜的制备
使用单层聚乙烯(PE)多孔聚合物薄膜作为隔离膜,其厚度为5微米,孔隙率为39%。隔离膜上有有机涂成和无机涂层,无机涂层为Al 2O 3,有机颗粒涂层为聚偏二氟乙烯。
5、锂离子电池的制备
将正极、隔离膜和负极按顺序叠好,使隔离膜处于正极和负极中间,然后卷绕、焊接极耳并置于外包装箔中,注入上述制备好的电解液,经过真空封装、静置、化成、整形等工序,得到锂离子电池。
二、测试方法
1、锂离子电池的高温循环性能的测试方法
在45℃条件下,将锂离子电池以1C充电至4.35V,然后在4.35V条件下恒压充电至0.05C,之后以10C的电流放电至2.8V,并以此条件循环进行800圈,记录锂离子电池的容量保持率及循环厚度膨胀率。
2、锂离子电池的浮充性能的测试方法
在25℃下,将锂离子电池以0.5C放电至2.8V,再以1C充电至4.35V,然后在4.35V下恒压充电至0.05C,测试锂离子电池的厚度并记为d 0。然后将锂离子电池放置到45℃烘箱中,以4.35V恒压充电50天,监控厚度,记为d。通过下式计算锂离子电池的浮充厚度膨胀率:
浮充厚度膨胀率=(d-d 0)/d 0×100%。
当锂离子电池的浮充厚度膨胀率大于50%时则停止测试。
3、锂离子电池的倍率性能的测试方法
在25℃下,将锂离子电池以0.5C放电至2.8V,再以1C充电至4.35V,然后在25℃恒温下,以10C的倍率进行放电,监控电芯表面温度变化,过程中温度的最高值记录为t。计算t-25记为锂离子电池的10C倍率温升。
4、锂离子电池的过充安全性的测试方法
在25℃下,将锂离子电池以0.5C放电至2.8V,再以2C恒流充电至6V(其中100%荷电状态下电池的电压为4.35V),再恒压充电3小时,监控电芯表面温度变化,不着火不冒烟即为通过。每个实施例或对比例测试10个样品,统计通过测试的百分率。
5、锂离子电池的高温存储性能的测试方法
在25℃下,将锂离子电池以0.5C恒流充电至4.45V,然后恒压充电至电流为0.05C,测试锂离子电池的厚度并记为d 1。然后将锂离子电池放置到60℃烘箱当中存储60天,监控厚度,记为d 2。通过下式计算锂离子电池的高温存储厚度膨胀率:
高温存储厚度膨胀率=(d 2-d 1)/d 1×100%。
三、测试结果
表1展示了电解液中化合物A和化合物B及其含量对锂离子电池的高温循环性能的影响。在表1中的各对比例和实施中,正极活性材料为正极活性材料NCM811。
表1
Figure PCTCN2022125307-appb-000026
Figure PCTCN2022125307-appb-000027
结果表明,在使用三元材料作为正极活性材料时,当电解液不包含化合物A和化合物B或者电解液仅包含化合物A和化合物B中的一者时,锂离子电池的高温循环容量保持率较低且高温循环厚度膨胀率较高。当电解液同时包含化合物A和化合物B时,可显著提高锂离子电池的高温循环容量保持率并显著降低其高温循环厚度膨胀率。
当化合物A和化合物B的含量比a/b在0.0016-2的范围内时,有助于进一步改善锂离子电池的高温循环容量保持率和高温循环厚度膨胀率。
表2展示了电解液中化合物A和化合物B及其含量对锂离子电池的高温存储性能的影响。在表2中的各对比例和实施中,正极活性材料为正极活性材料LCO。
表2
Figure PCTCN2022125307-appb-000028
Figure PCTCN2022125307-appb-000029
结果表明,在使用钴酸锂作为正极活性材料时,当电解液不包含化合物A和化合物B或者电解液仅包含化合物A和化合物B中的一者时,锂离子电池的高温存储厚度膨胀率较高。当电解液同时包含化合物A和化合物B时,可显著降低锂离子电池的高温存储厚度膨胀率。
当化合物A和化合物B的含量比a/b在0.0016-2的范围内时,有助于进一步改善锂离子电池的高温存储厚度膨胀率。
表3展示了电解液中化合物C及其含量对锂离子电池的高温循环性能和倍率性能的影响。在表3中的各实施中,正极活性材料为正极活性材料NCM811。
表3
Figure PCTCN2022125307-appb-000030
Figure PCTCN2022125307-appb-000031
结果表明,在电解液包含化合物A和化合物B的基础上,当电解液进一步包含化合物C时,锂离子电池依然保持良好的高温循环容量保持率和高温循环厚度膨胀率,同时锂离子电池的10C倍率温升显著降低。
当化合物A和化合物C的含量比a/c在1-500的范围内时,有助于进一步改善锂离子电池的倍率性能。
表4展示了电解液中化合物D及其含量对锂离子电池的过充安全性的影响。在表4中的各实施中,正极活性材料为正极活性材料NCM811。TCEP为1,2,3-三(2-氰乙氧基)丙烷,HTCN为1,3,6-己烷三腈。
表4
Figure PCTCN2022125307-appb-000032
结果表明,在电解液包含化合物A和化合物B的基础上,当电解液进一步包含化合物D时,锂离子电池具有显著提升的过充安全性。此外,锂离子电池可依然保持良好的高温循环容量保持率和高温循环厚度膨胀率。
表5展示了电解液中化合物E及其含量对锂离子电池的浮充性能的影响。在表5中的各实施中,正极活性材料为正极活性材料NCM811。
表5
Figure PCTCN2022125307-appb-000033
Figure PCTCN2022125307-appb-000034
结果表明,在电解液包含化合物A和化合物B的基础上,当电解液进一步包含化合物E时,锂离子电池的浮充厚度膨胀率显著降低。此外,锂离子电池可依然保持良好的高温循环容量保持率和高温循环厚度膨胀率。
表6展示了正极活性材料的第一颗粒和第二颗粒的粒径对锂离子电池的高温循环性能的影响。在表6中的各实施中,正极活性材料为正极活性材料NCM811。
表6
Figure PCTCN2022125307-appb-000035
结果表明,当正极活性材料的第一颗粒的Dv50在7-20μm范围内且第二颗粒的Dv50在1-6μm范围内时,可显著提升锂离子电池的高温循环容量保持率并降低其高温循环厚度膨胀率。
整个说明书中对“实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实 施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例”,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (10)

  1. 一种电解液,其特征在于:
    所述电解液包含化合物A和化合物B,
    化合物A包括碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸丙烯酯、丙酸丙酯、乙酸乙酯、丙酸乙酯、乙酸丙酯、乙酸甲酯、碳酸甲丙酯、丙酸甲酯、丁酸甲酯、特戊酸甲酯、γ-丁内酯、环丁砜、乙丙醚、乙二醇二甲基醚、1,3-二氧六环或1,4-二氧六环中的至少一种,并且
    化合物B包括经一或多个氟原子取代的化合物A。
  2. 根据权利要求1所述的电解液,其特征在于所述化合物A和所述化合物B具有相同的主结构。
  3. 根据权利要求1所述的电解液,其特征在于基于电解液的总量,所述化合物A的质量百分比为a,所述化合物B的质量百分比为b,a和b满足关系式:0.0016≤a/b≤2。
  4. 根据权利要求1所述的电解液,其特征在于所述电解液进一步化合物C,所述化合物C具有式II:
    Figure PCTCN2022125307-appb-100001
    其中:
    R 1为取代或未取代的C1-C6烷基、取代或未取代的C2-C6烯基、取代或未取代的C2-C6炔基或经取代或未经取代的C1-C6的含醚键烷基,当取代时,取代基包括F或C3-C5环烷基中的至少一种;以及
    M为碱金属,并且
    基于电解液的总量,所述化合物C的质量百分比为c,a和c满足关系式:1≤a/c≤500。
  5. 根据权利要求4所述的电解液,其特征在于所述化合物C包括以下化合物中的至少一种:
    Figure PCTCN2022125307-appb-100002
  6. 根据权利要求1所述的电解液,其特征在于所述电解液进一步化合物D,所述化合物D包括1,2-双(氰乙氧基)乙烷、丁二腈、己二腈、1,4-二氰基-2-丁烯、1,3,6-己三腈或1,2,3-三(2-氰氧基)丙烷中的至少一种,并且基于电解液的重量,所述化合物D的含量为0.5%至3%。
  7. 根据权利要求1所述的电解液,其特征在于所述电解液进一步化合物E,所述化合物E包括LiBOB、LiBF 4、LiDFOB、LiPO 2F 2、LiFSI、LiTFSI、LiCF 3SO 3、LITDI或B 4Li 2O 7中的至少一种。
  8. 一种电化学装置,其包含正极和根据权利要求1-7中任一权利要求所述的电解液。
  9. 根据权利要求8所述的电化学装置,其特征在于所述正极包括正极活性材料, 所述正极活性材料满足如下特征中的至少一者:
    (a)所述正极活性材料包括第一颗粒和第二颗粒,其中所述第一颗粒的Dv50为7-20μm,并且所述第二颗粒的Dv50为1-6μm;
    (b)所述正极活性材料包括第一颗粒和第二颗粒,所述第一颗粒与所述第二颗粒质量比为0.1至10;
    (c)所述正极活性材料具有化学式LiNi xCo yMn zO 2,其中0≤x<1,0≤y<1,0≤z<1,a+b+c=1。
  10. 一种电子装置,其包含根据权利要求8或9所述的电化学装置。
PCT/CN2022/125307 2021-11-02 2022-10-14 电解液以及使用其的电化学装置和电子装置 WO2023078059A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111286926.8A CN114006035A (zh) 2021-11-02 2021-11-02 电解液以及使用其的电化学装置和电子装置
CN202111286926.8 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023078059A1 true WO2023078059A1 (zh) 2023-05-11

Family

ID=79926293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125307 WO2023078059A1 (zh) 2021-11-02 2022-10-14 电解液以及使用其的电化学装置和电子装置

Country Status (2)

Country Link
CN (2) CN114006035A (zh)
WO (1) WO2023078059A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006035A (zh) * 2021-11-02 2022-02-01 宁德新能源科技有限公司 电解液以及使用其的电化学装置和电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014196A (ko) * 2000-07-25 2002-02-25 김순택 리튬 설퍼 전지용 전해액
CN102569888A (zh) * 2012-01-06 2012-07-11 中国科学院过程工程研究所 用于锂离子电池的高压电解液及其制备方法
CN105940544A (zh) * 2014-08-11 2016-09-14 关东电化工业株式会社 包含一氟磷酸酯盐的非水电解液和使用了其的非水电解液电池
CN106384840A (zh) * 2016-12-01 2017-02-08 张家港金盛莲能源科技有限公司 一种低温锂离子二次电池
CN108063280A (zh) * 2017-12-23 2018-05-22 清远佳致新材料研究院有限公司 锂离子电池电解液
CN108475822A (zh) * 2015-12-25 2018-08-31 斯泰拉化工公司 二次电池用非水电解液及具备其的二次电池
CN112448034A (zh) * 2019-09-05 2021-03-05 东莞市杉杉电池材料有限公司 一种高电压锂离子电池用非水电解液及锂离子电池
CN114006035A (zh) * 2021-11-02 2022-02-01 宁德新能源科技有限公司 电解液以及使用其的电化学装置和电子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866183B2 (ja) * 2016-03-01 2021-04-28 Muアイオニックソリューションズ株式会社 非水電解液及びそれを用いた蓄電デバイス
CN110854432B (zh) * 2019-11-05 2021-06-29 宁德新能源科技有限公司 电解液以及使用其的电化学装置和电子装置
CN112005418A (zh) * 2019-12-26 2020-11-27 宁德新能源科技有限公司 一种电解液及电化学装置
CN113067031B (zh) * 2021-03-10 2022-11-08 厦门海辰储能科技股份有限公司 电解液、电化学装置及电子装置
CN113206296A (zh) * 2021-04-30 2021-08-03 宁德新能源科技有限公司 电解液、电化学装置和电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014196A (ko) * 2000-07-25 2002-02-25 김순택 리튬 설퍼 전지용 전해액
CN102569888A (zh) * 2012-01-06 2012-07-11 中国科学院过程工程研究所 用于锂离子电池的高压电解液及其制备方法
CN105940544A (zh) * 2014-08-11 2016-09-14 关东电化工业株式会社 包含一氟磷酸酯盐的非水电解液和使用了其的非水电解液电池
CN108475822A (zh) * 2015-12-25 2018-08-31 斯泰拉化工公司 二次电池用非水电解液及具备其的二次电池
CN106384840A (zh) * 2016-12-01 2017-02-08 张家港金盛莲能源科技有限公司 一种低温锂离子二次电池
CN108063280A (zh) * 2017-12-23 2018-05-22 清远佳致新材料研究院有限公司 锂离子电池电解液
CN112448034A (zh) * 2019-09-05 2021-03-05 东莞市杉杉电池材料有限公司 一种高电压锂离子电池用非水电解液及锂离子电池
CN114006035A (zh) * 2021-11-02 2022-02-01 宁德新能源科技有限公司 电解液以及使用其的电化学装置和电子装置

Also Published As

Publication number Publication date
CN116979148A (zh) 2023-10-31
CN114006035A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN111342137B (zh) 一种电解液及电化学装置
CN111430793B (zh) 电解液及使用其的电化学装置和电子装置
CN110994018B (zh) 一种电解液及电化学装置
CN112335090B (zh) 电解液和使用其的电化学装置
WO2021189255A1 (zh) 一种电解液及电化学装置
WO2021223181A1 (zh) 一种电解液及电化学装置
CN111697266B (zh) 电解液和包括其的电化学装置及电子装置
US11031630B2 (en) Electrolyte and electrochemical device
WO2021127993A1 (zh) 电解液以及使用其的电化学装置和电子装置
CN112005418A (zh) 一种电解液及电化学装置
CN111697267A (zh) 电解液和包含电解液的电化学装置及电子装置
JP7311593B2 (ja) 電解液及び電気化学装置
WO2023078059A1 (zh) 电解液以及使用其的电化学装置和电子装置
WO2021128203A1 (zh) 一种电解液及电化学装置
CN111740162A (zh) 电解液和包括电解液的电化学装置及电子装置
WO2022087830A1 (zh) 电解液及包括其的电化学装置和电子装置
CN112055910B (zh) 一种电解液及电化学装置
WO2021196019A1 (zh) 一种电解液及电化学装置
CN113889664B (zh) 电解液、电化学装置和电子装置
CN116759648B (zh) 一种电化学装置及包括其的电子装置
WO2021195965A1 (zh) 一种电化学装置及包括其的电子装置
WO2023123427A1 (zh) 电化学装置和包含其的电子装置
CN116454400A (zh) 电化学装置和包括其的电子装置
WO2023137701A1 (zh) 电化学装置及包含其的电子装置
WO2022204980A1 (zh) 一种电解液及含有该电解液的电化学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889084

Country of ref document: EP

Kind code of ref document: A1