WO2023123427A1 - 电化学装置和包含其的电子装置 - Google Patents

电化学装置和包含其的电子装置 Download PDF

Info

Publication number
WO2023123427A1
WO2023123427A1 PCT/CN2021/143871 CN2021143871W WO2023123427A1 WO 2023123427 A1 WO2023123427 A1 WO 2023123427A1 CN 2021143871 W CN2021143871 W CN 2021143871W WO 2023123427 A1 WO2023123427 A1 WO 2023123427A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
electrochemical device
weight
electrolyte
Prior art date
Application number
PCT/CN2021/143871
Other languages
English (en)
French (fr)
Inventor
徐春瑞
许艳艳
唐超
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Priority to CN202180064117.4A priority Critical patent/CN116250112A/zh
Priority to PCT/CN2021/143871 priority patent/WO2023123427A1/zh
Publication of WO2023123427A1 publication Critical patent/WO2023123427A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage, in particular to an electrochemical device and an electronic device containing it, especially a lithium ion battery.
  • lithium-ion batteries have been widely used in electric vehicles, consumer electronics, energy storage devices and other fields, and have gradually become the mainstream batteries in the above fields due to their advantages such as high energy density and no memory effect.
  • the electric vehicle, micro-power and energy storage industries have entered the track of rapid development, providing a broad blue ocean for the application of lithium-ion batteries.
  • the battery formed by it Due to the characteristics of the lithium iron phosphate cathode material itself, the battery formed by it has the characteristics of high safety performance, long service life, high temperature performance, low cost, and environmental protection. Compared with other types of lithium-ion batteries, it has greater advantages and application prospects.
  • the long life and safety performance of lithium iron phosphate batteries are improved by optimizing the electrolyte, which has a high cost performance.
  • the embodiment of the present application provides an electrochemical device to try to solve at least one problem existing in the related field at least to some extent.
  • the embodiment of the present application also provides an electronic device including the electrochemical device.
  • the present application provides an electrochemical device, which includes a negative electrode; a positive electrode, wherein the positive electrode includes a current collector and a positive electrode active material layer on the current collector, and the positive electrode is active
  • the material layer includes a positive electrode active material, the active specific surface area of the positive electrode is X m 2 /g; and an electrolyte, the electrolyte includes an additive A, and the additive A includes LiPO 2 F 2 , wherein based on the Weight, the weight percentage of LiPO 2 F 2 is Y%; wherein, 0.005 ⁇ X/Y ⁇ 2 is satisfied.
  • X and Y satisfy at least one of the following conditions (i) to (iii): (i) 0.01 ⁇ X ⁇ 0.1; (ii) 0.01 ⁇ Y ⁇ 2; and (iii) 0.005 ⁇ X /Y ⁇ 1.
  • the electrolytic solution further includes vinylene carbonate, wherein based on the weight of the electrolytic solution, the weight percentage of the vinylene carbonate is Z%, wherein Z is 0.01 to 6.
  • Z/Y is from 0.5 to 600.
  • the electrolytic solution further includes fluoroethylene carbonate, wherein the weight percentage of the fluoroethylene carbonate is 0.01% to 5% based on the weight of the electrolytic solution.
  • the electrolyte solution further includes additive B
  • the additive B is at least one selected from the following compounds: lithium difluorooxalate borate, lithium bisoxalate borate, lithium bisfluorosulfonyl imide, bistrifluorooxalate Lithium fluoromethanesulfonylimide, lithium tetrafluoroborate, B 4 Li 2 O 7 , Li 3 BO 3 , CF 3 LiO 3 S, lithium hexafluorophosphate, and lithium perchlorate; and/or wherein based on the weight of the electrolyte, The weight percentage of the additive B is 0.01% to 16%.
  • the positive electrode active material includes M element, and the M element is selected from at least one of Fe, Mn, Al, Ca, K, Na, Mg, Ti and Zn.
  • the weight of the vinylene carbonate is W1g
  • the weight of the negative electrode is W2g
  • W1/W2 is 0.001 to 0.031.
  • the present application provides an electronic device, which includes the electrochemical device according to the embodiment of the present application.
  • the electrochemical device provided by the present application has improved cycle performance, high-temperature storage performance, and good charging performance and energy efficiency.
  • a list of items linked by the terms “one of”, “one of”, “one of” or other similar terms may mean that any of the listed items one.
  • the phrase “one of A and B” means only A or only B.
  • the phrase “one of A, B, and C” means only A; only B; or only C.
  • Item A may contain a single element or multiple elements.
  • Item B may contain a single element or multiple elements.
  • Item C may contain a single element or multiple elements.
  • a list of items linked by the terms “at least one of”, “at least one of”, “at least one of” or other similar terms may mean that the listed items any combination of .
  • the phrase “at least one of A and B” means only A; only B; or A and B.
  • the phrase “at least one of A, B, and C” means only A; or only B; only C; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B, and C.
  • Item A may contain a single element or multiple elements.
  • Item B may contain a single element or multiple elements.
  • Item C may contain a single element or multiple elements.
  • the present application provides an electrochemical device, and the electrochemical device includes a negative electrode, a positive electrode and an electrolyte.
  • the positive electrode includes a current collector and a positive active material layer on the current collector, the positive active material layer includes a positive active material, and the active specific surface area of the positive electrode is X m 2 /g;
  • the electrolyte includes additive A, and the additive A includes LiPO 2 F 2 , wherein based on the weight of the electrolyte, the weight percentage of LiPO 2 F 2 is Y%; where 0.005 ⁇ X/Y ⁇ 2 .
  • X/Y is 0.005, 0.0075, 0.01, 0.02, 0.05, 0.08, 0.10, 0.15, 0.3, 0.5, 0.8, 1, 1.5, 2 or a range consisting of any two of these values.
  • the X is 0.01 to 0.1. In some embodiments, the X is 0.01, 0.015, 0.02, 0.05, 0.08, 0.1 or a range consisting of any two of these values.
  • the Y ranges from 0.01 to 2. In some embodiments, Y is 0.01, 0.03, 0.05, 0.06, 0.1, 0.14, 0.16, 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2, or any two of these values range of composition.
  • the electrolytic solution further includes vinylene carbonate, wherein based on the weight of the electrolytic solution, the weight percentage of the vinylene carbonate is Z%, wherein Z is 0.01-6.
  • Z is 0.01, 0.05, 0.08, 0.1, 0.2, 0.5, 0.8, 0.01, 1, 1.5, 2, 2.5, 2.8, 3, 3.5, 3.8, 4, 4.5, 4.8, 5, 5.5, 5.8, 6, or a range consisting of any two of these values.
  • Z/Y is from 0.5 to 600. In some embodiments, Z/Y is 0.5-50. In some embodiments, Z/Y is 0.5, 1, 1.5, 2, 3, 4, 5, 6, 10, 20, 40, 50, 100, 150, 200, 300, 350, 400, 450, 500, 550, 600, or a range of any two of these values.
  • the electrolyte solution further includes fluoroethylene carbonate.
  • the weight percentage of the fluoroethylene carbonate is 0.01% to 5%.
  • the weight percentage of the fluoroethylene carbonate is 0.01%, 0.05%, 0.07%, 0.1%, 0.15%, 0.3%, 0.8%, 1%, 1.2% %, 1.5%, 1.8%, 2%, 2.2%, 2.5%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 4.8%, 5%, or any two of these values range of composition.
  • the electrolyte solution further includes additive B
  • the additive B is at least one selected from the following compounds: lithium difluorooxalate borate, lithium bisoxalate borate, lithium bisfluorosulfonyl imide, bistrifluorooxalate Lithium fluoromethanesulfonylimide, lithium tetrafluoroborate, B 4 Li 2 O 7 , Li 3 BO 3 , CF 3 LiO 3 S, lithium hexafluorophosphate, and lithium perchlorate.
  • the weight percentage of the additive B is 0.01% to 16%. In some embodiments, based on the weight of the electrolyte, the weight percentage of the additive B is 0.01%, 0.04%, 0.06%, 0.08%, 0.1%, 0.15%, 0.2%, 0.5%, 0.8%, 1 %, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16% or any of these values Any range consisting of the two.
  • the weight of the vinylene carbonate is W1g
  • the weight of the negative electrode is W2g
  • W1/W2 is 0.001 to 0.031.
  • W1/W2 is 0.001, 0.006, 0.008, 0.01, 0.02, 0.025, 0.031 or a range consisting of any two of these values.
  • the positive electrode active material includes M element, and the M element is selected from at least one of Fe, Mn, Al, Ca, K, Na, Mg, Ti and Zn.
  • the positive electrode active material is at least one selected from lithium iron phosphate and lithium manganese iron phosphate.
  • the positive active material layer further includes a conductive agent.
  • the conductive agent includes at least one of carbon nanotubes, carbon fibers, acetylene black, graphene, Ketjen black, or carbon black.
  • the positive active material layer further includes a binder.
  • the binder includes polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, polyvinyl alcohol, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated Polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, acrylic (ester) At least one of styrene-butadiene rubber, epoxy resin or nylon.
  • the current collector includes at least one of copper foil or aluminum foil.
  • the positive electrode can be prepared by a preparation method known in the art.
  • the positive electrode may be obtained by mixing a positive electrode active material, a conductive agent, and a binder in a solvent to prepare an active material composition, and coating the active material composition on a current collector.
  • the solvent may include N-methylpyrrolidone and the like, but is not limited thereto.
  • the electrochemical device includes any device that undergoes an electrochemical reaction.
  • the electrochemical device further includes a separator between the positive and negative electrodes.
  • the electrochemical device is a lithium secondary battery.
  • the lithium secondary battery includes, but is not limited to: lithium metal secondary battery, lithium ion secondary battery, lithium polymer secondary battery or lithium ion polymer secondary battery, all-solid secondary lithium battery Battery.
  • the material, composition and manufacturing method of the negative electrode used in the electrochemical device of the present application may include any technology disclosed in the prior art.
  • the anode is the anode described in US patent application US9812739B, which is incorporated herein by reference in its entirety.
  • the negative electrode includes a current collector and a negative active material layer on the current collector.
  • the negative active material layer includes a negative active material.
  • negative electrode active materials include, but are not limited to: lithium metal, structured lithium metal, natural graphite, artificial graphite, mesophase microcarbon spheres (MCMB), hard carbon, soft carbon, silicon, silicon-carbon Composite, silicon-oxygen material (such as SiO, SiO 2 ), Li-Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO 2 , lithiated TiO 2 -Li 4 Ti 5 O 12 with spinel structure, Li-Al alloy or any combination thereof.
  • the negative active material layer includes a binder.
  • binders include, but are not limited to: polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyfluoroethylene Ethylene, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, styrene-butadiene acrylic Rubber, epoxy or nylon.
  • the negative active material layer includes a conductive material.
  • conductive materials include, but are not limited to: natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder, metal fiber, copper, nickel, aluminum, silver, or polyphenylene derivative.
  • the current collector includes, but is not limited to, copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, or a polymer substrate coated with conductive metal.
  • the negative electrode may be obtained by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and coating the active material composition on a current collector.
  • solvents may include, but are not limited to: deionized water, N-methylpyrrolidone.
  • the negative electrode in the all-solid-state secondary lithium battery is metal lithium foil.
  • the material and shape of the separator used in the electrochemical device of the present application are not particularly limited, and it can be any technology disclosed in the prior art.
  • the separator includes a polymer or an inorganic substance formed of a material stable to the electrolyte of the present application.
  • a release film may include a substrate layer and a surface treatment layer.
  • the substrate layer is non-woven fabric, film or composite film with a porous structure, and the material of the substrate layer is at least one selected from polyethylene, polypropylene, polyethylene terephthalate and polyimide.
  • polypropylene porous membrane, polyethylene porous membrane, polypropylene non-woven fabric, polyethylene non-woven fabric or polypropylene-polyethylene-polypropylene porous composite membrane can be selected.
  • At least one surface of the substrate layer is provided with a surface treatment layer, and the surface treatment layer may be a polymer layer or an inorganic layer, or a layer formed by mixing polymers and inorganic materials.
  • the inorganic layer includes inorganic particles and a binder, and the inorganic particles are selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium oxide, tin oxide, cerium oxide, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, One or a combination of yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium sulfate.
  • the binder is selected from polyvinylidene fluoride, copolymer of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinyl pyrrolidone, polyvinyl ether, One or a combination of polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene.
  • the polymer layer comprises a polymer, and the polymer material includes polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polyvinylidene fluoride or poly( at least one of vinylidene fluoride-hexafluoropropylene).
  • the electrolyte used in the electrolyte of the embodiment of the present application can be an electrolyte known in the prior art, and the electrolyte includes, but is not limited to: inorganic lithium salts, such as LiClO 4 , LiPF 6 , LiBF 4 , LiSbF 6 , LiSO 3 F, LiN(FSO 2 ) 2 , etc.; fluorine-containing organic lithium salts, such as LiCF 3 SO 3 , LiN(FSO 2 )(CF 3 SO 2 ), LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , cyclic lithium 1,3-hexafluoropropanedisulfonylimide, cyclic lithium 1,2-tetrafluoroethanedisulfonylimide, LiN(CF 3 SO 2 )(C 4 F 9 SO 2 ), LiC(CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF
  • the electrolyte includes a combination of LiPF 6 and LiBF 4 .
  • the electrolyte includes a combination of an inorganic lithium salt such as LiPF 6 or LiBF 4 and a fluorine-containing organic lithium salt such as LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 .
  • the concentration of the electrolyte is in the range of 0.8 to 3 mol/L, such as in the range of 0.8 to 2.5 mol/L, in the range of 0.8 to 2 mol/L, in the range of 1 to 2 mol/L, in the range of 0.5 to 1.5mol/L, 0.8 to 1.3mol/L, 0.5 to 1.2mol/L, and for example 1mol/L, 1.15mol/L, 1.2mol/L, 1.5mol/L, 2mol/L or 2.5mol/L.
  • the electronic device of the present application may be any device using the electrochemical device according to the embodiment of the present application.
  • the electronic devices include, but are not limited to: notebook computers, pen-based computers, mobile computers, e-book players, cellular phones, portable fax machines, portable copiers, portable printers, stereo headsets , VCR, LCD TV, Portable Cleaner, Portable CD Player, Mini Disc, Transceiver, Electronic Notepad, Calculator, Memory Card, Portable Recorder, Radio, Backup Power, Motor, Automobile, Motorcycle, Assisted Bicycle, Bicycle , Lighting appliances, toys, game consoles, clocks, electric tools, flashlights, cameras, large household batteries or lithium-ion capacitors, etc.
  • the lithium ion battery is taken as an example below and the preparation of the lithium ion battery is described in conjunction with specific examples. Those skilled in the art will understand that the preparation method described in this application is only an example, and any other suitable preparation methods are described in this application. within range.
  • the specific types and contents of additives used in the electrolyte are shown in the table below. The content of each substance in the electrolyte solution described in this application is calculated based on the weight of the electrolyte solution.
  • the positive electrode active material lithium iron phosphate (LFP), the conductive agent conductive carbon black (Super P), and the binder polyvinylidene fluoride according to a weight ratio of 96.3:1.5:2.2, and add N-methylpyrrolidone (NMP) , stirred evenly under the action of a vacuum mixer to obtain a positive electrode slurry, wherein the solid content of the positive electrode slurry is 72wt%; the positive electrode slurry is evenly coated on the aluminum foil of the positive electrode current collector; the aluminum foil is dried at 85 ° C, and then passed through After cold pressing, cutting into pieces and cutting, drying under vacuum conditions at 85° C. for 4 hours to obtain a positive electrode.
  • NMP N-methylpyrrolidone
  • Negative electrode active material artificial graphite, conductive agent Super P, thickener sodium carboxymethylcellulose (CMC), binder styrene-butadiene rubber (SBR) were mixed according to the weight ratio of 96.4:1.5:0.5:1.6, and deionized water, under the action of a vacuum mixer to obtain the negative electrode slurry, wherein the solid content of the negative electrode slurry is 54wt%; the negative electrode slurry is evenly coated on the negative electrode current collector copper foil; the copper foil is dried at 85 ° C, and then passed through After cold pressing, cutting into pieces and slitting, drying under vacuum conditions at 120° C. for 12 hours to obtain the negative electrode.
  • CMC thickener sodium carboxymethylcellulose
  • SBR binder styrene-butadiene rubber
  • the lithium-ion battery that has reached a constant temperature is charged at a constant current of 1C to a voltage of 3.65V, then charged at a constant voltage of 3.65V to a current of 0.05C, and then discharged at a constant current of 1C to a voltage of 2.5V.
  • This is a charge-discharge cycle. Taking the capacity of the first discharge as 100%, the charge-discharge cycle is repeated, and when the discharge capacity decays to 70%, the test is stopped and the number of cycles is recorded as an index for evaluating the cycle performance of lithium-ion batteries.
  • the cycle performance test method of the battery at 45°C is basically the same as the cycle performance test at 25°C above, except that the test temperature is 45°C.
  • Lithium-ion battery high state of charge (100% SOC) high temperature storage test :
  • Residual capacity retention rate (residual capacity after 90 days of storage - initial capacity of the battery) / initial capacity of the battery * 100%
  • Recovery capacity retention rate (recoverable capacity after 90 days of storage - battery initial capacity) / battery initial capacity * 100%
  • Lithium-ion battery low charge state (0% SOC) high temperature storage test :
  • S is the active specific surface area of the positive electrode, in m 2 /g, denoted as X m 2 /g;
  • S 1 is the active surface area of the positive electrode, in cm 2 ;
  • C is the measured capacitance of the sample, and uf is the capacitance in microfarads (micro Faraday);
  • M is the coating mass of the electrode (single side) after deducting the current collector, in g; 20uf is the electric double layer capacitance per square centimeter of the smooth electrode.
  • X represents the numerical value of the active specific surface area of the positive electrode.
  • Table 1 shows the relevant performance parameters of additive type and content and lithium-ion battery in related examples and comparative examples.
  • Table 2 shows the relevant performance parameters of additive type and content and lithium-ion battery in related examples and comparative examples.
  • the electrolyte solution in embodiment 2-1 to embodiment 2-12 is prepared by adding vinylene carbonate (VC) to the electrolyte solution in embodiment 1-4.
  • VC vinylene carbonate
  • the active specific surface area of the positive electrode in Example 2-1 to Example 2-12 is the same as that of the positive electrode in Example 1-4.
  • Vinylene carbonate can form a solid electrolyte interface (SEI) film with excellent thermal and chemical stability on the graphite surface, effectively inhibit the side reactions of solvents on the graphite surface, and at the same time inhibit the deposition of transition metals.
  • SEI solid electrolyte interface
  • the film-forming resistance of vinylene carbonate is relatively high, and if the content is too high, it will easily lead to the lithium deposition of the battery and the deterioration of the discharge performance.
  • Simultaneously introducing LiPO 2 F 2 into the electrolyte solution containing vinylene carbonate can inhibit the decomposition of vinylene carbonate and synergize the film formation.
  • Z/Y preferably ranges from 0.5 to 300.
  • Table 3 shows the relevant performance parameters of additive type and content and lithium-ion battery in related examples and comparative examples.
  • the electrolyte solutions of Example 3-1 to Example 3-8 are obtained by adding fluoroethylene carbonate (FEC) to the electrolyte solution in Example 2-3.
  • FEC fluoroethylene carbonate
  • the active specific surface area of the positive electrode and the concentration of LiPO 2 F 2 in the electrolyte solution in Examples 3-1 to 3-8 are the same as those in Example 2-3.
  • Fluoroethylene carbonate can form an SEI film with excellent thermal and chemical stability and low impedance on the graphite surface, effectively inhibit the side reactions of solvents on the graphite surface, and at the same time inhibit the deposition of transition metals, which can effectively reduce the active lithium on the graphite negative electrode. loss, significantly improving capacity retention during cycling and storage.
  • the viscosity of the electrolyte will increase and the dynamic performance will deteriorate.
  • more HF will be decomposed at high temperature, which will bring the risk of storage and gas production. Therefore, in the present application, the preferred content of fluoroethylene carbonate is 0.01% to 5%.
  • Table 4 shows the relevant performance parameters of additive type and content and lithium-ion battery in related examples and comparative examples.
  • the electrolyte solution in Example 4-1 to Example 4-19 is prepared by adding the additives shown in Table 4 to the electrolyte solution in Example 1-4.
  • the active specific surface area of the positive electrode and the concentration of LiPO 2 F 2 in the electrolyte in Examples 4-1 to 4-19 are the same as those in Examples 1-4.
  • Table 5 shows the relevant performance parameters of the lithium-ion batteries in the above-mentioned examples and comparative examples.
  • Lithium difluorooxalate borate LiDFOB
  • LiBOB lithium bisoxalate borate
  • LiFSI lithium bisfluorosulfonyl imide
  • LiTFSI lithium bistrifluoromethanesulfonyl imide
  • LiBF 4 lithium tetrafluoroborate
  • B 4 Li 2 O 7 , Li 3 BO 3 , CF 3 LiO 3 S, and lithium hexafluorophosphate (LiPF 6 ) can all form a protective film with good thermal and chemical stability on the surface of the positive and negative electrodes, which can suppress the side effects of the electrode and the electrolyte. Reaction, to achieve excellent cycle stability and storage stability and kinetic performance, safety performance.
  • LiFSI and LiTFSI have high thermal stability, low association degree of anion and cation, and high solubility and dissociation degree in carbonate system. Using LiFSI and LiTFSI to replace part or all of LiPF 6 as electrolyte can get better cycle performance, storage performance, kinetic performance and safety performance.
  • Table 6 shows the composition and performance test results of lithium-ion batteries in related examples.
  • the electrolyte composition in Examples 5-1 and 5-2 is the same as that in Example 1-4.
  • the types of positive electrode active materials in Examples 5-1 and 5-2 are shown in Table 6.
  • LFP means lithium iron phosphate
  • LMFP means lithium manganese iron phosphate.
  • the electrolyte solution in the above embodiments is also applicable to the positive electrode using LMFP or a mixture of LFP and LMFP as the active material.
  • Table 7 shows the composition and performance test results of lithium-ion batteries in related examples.
  • the electrolyte solutions in Examples 6-1 to 6-11 were prepared by adding VC to the electrolyte solutions in Example 1-3.
  • the active specific surface area of the positive electrode and the concentration of LiPO 2 F 2 in the electrolyte solution in Examples 6-1 to 6-11 are the same as those in Example 1-3.
  • the weight of vinylene carbonate in the electrolyte is W1g
  • the weight of the negative electrode is W2g
  • W1/W2 represents the content of VC in the negative electrode per unit mass.
  • Vinylene carbonate can form an SEI film with excellent thermal and chemical stability on the surface of graphite, effectively inhibit the side reactions of solvents on the surface of graphite, and at the same time inhibit the deposition of transition metals.
  • Sufficient VC can ensure the formation of a dense protective film on the graphite surface, but its film-forming resistance is relatively high, and too high a content can easily lead to lithium deposition and deterioration of discharge performance of the battery. Therefore, in the present application, the content of VC per unit mass of the negative electrode is preferably 0.001 to 0.031.
  • Table 8 shows the composition and performance test results of lithium-ion batteries in related examples.
  • the active specific surface area of the positive electrode and the concentration of LiPO 2 F 2 in the electrolyte solution in Examples 7-1 to 7-12 are the same as those in Example 6-7.
  • the weight of vinylene carbonate in the electrolyte is W1g
  • the weight of the negative electrode is W2g
  • W1/W2 represents the content of VC in the negative electrode per unit mass.
  • Table 9 shows the performance test results of the above-mentioned embodiments.
  • references to “some embodiments”, “partial embodiments”, “one embodiment”, “another example”, “example”, “specific example” or “partial example” in the entire specification mean that At least one embodiment or example in this application includes a specific feature, structure, material or characteristic described in the embodiment or example.
  • descriptions that appear throughout the specification such as: “in some embodiments”, “in an embodiment”, “in one embodiment”, “in another example”, “in an example In”, “in a particular example” or “example”, they are not necessarily referring to the same embodiment or example in this application.
  • the particular features, structures, materials, or characteristics herein may be combined in any suitable manner in one or more embodiments or examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及电化学装置和包含其的电子装置。本申请的电化学装置包括:负极;正极,其中所述正极包括集流体和位于所述集流体上的正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极的活性比表面积为Xm 2/g;和电解液,所述电解液包括添加剂A,所述添加剂A包括LiPO 2F 2,其中基于所述电解液的重量,所述LiPO 2F 2的重量百分比为Y%;其中,满足0.005≤X/Y≤2。本申请的电化学装置具有提高的循环性能、存储性能、过充性能和降低的阻抗。

Description

电化学装置和包含其的电子装置 技术领域
本申请涉及储能领域,具体涉及一种电化学装置和包含其的电子装置,特别是锂离子电池。
背景技术
目前,锂离子电池已广泛应用于电动汽车、消费电子产品、储能装置等领域,并凭借其高能量密度、无记忆效应等优势逐渐成为上述领域的主流电池。尤其是电动汽车、微动力和储能行业进入到了快速发展的轨道,为锂离子电池的运用提供了广阔的蓝海。由于磷酸铁锂正极材料本身的特质,其构成的电池具有安全性能高、使用寿命长、高温性能高、成本低、绿色环保的特点,相对其它类型锂离子电池具有较大的优势和应用前景。尽管其相对寿命较长,但随着动力电池和储能领域对电池的使用寿命要求越来越高,如何以较低的成本进一步提升锂离子电池的存储性能、循环性能、安全性能、动力学性能依然具有重要的价值。
通过对电解液的优化来提升磷酸铁锂电池的长寿命和安全性能,具有较高的性价比。
发明内容
本申请实施例提供了一种电化学装置,以试图在至少某种程度上解决至少一种存在于相关领域中的问题。本申请实施例还提供了包含该电化学装置的电子装置。
在一个实施例中,本申请提供了一种电化学装置,所述电化学装置包括负极;正极,其中所述正极包括集流体和位于所述集流体上的正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极的活性比表面积为X m 2/g;和电解液,所述电解液包括添加剂A,所述添加剂A包括LiPO 2F 2,其中基于所述电解液的重量,所述LiPO 2F 2的重量百分比为Y%;其中,满足0.005≤X/Y≤2。
在一个实施例中,X和Y满足以下条件(i)至(iii)中的至少一者:(i)0.01≤X≤0.1;(ii)0.01≤Y≤2;和(iii)0.005≤X/Y≤1。
在一个实施例中,所述电解液进一步包括碳酸亚乙烯酯,其中基于所述电解液的重 量,所述碳酸亚乙烯酯的重量百分比为Z%,其中Z为0.01至6。
在一些实施例中,Z/Y为0.5至600。
在一些实施例中,所述电解液进一步包括氟代碳酸乙烯酯,其中基于所述电解液的重量,所述氟代碳酸乙烯酯的重量百分比为0.01%至5%。
在一些实施例中,所述电解液进一步包括添加剂B,所述添加剂B选自如下化合物中的至少一种:二氟草酸硼酸锂、双草酸硼酸锂、双氟磺酰亚胺锂、双三氟甲烷磺酰亚胺锂、四氟硼酸锂、B 4Li 2O 7、Li 3BO 3、CF 3LiO 3S、六氟磷酸锂和高氯酸锂;和/或其中基于所述电解液的重量,所述添加剂B的重量百分比为0.01%至16%。
在一些实施例中,所述正极活性材料包括M元素,所述M元素选自Fe、Mn、Al、Ca、K、Na、Mg、Ti和Zn中的至少一种。
在一些实施例中,所述碳酸亚乙烯酯的重量为W1g,所述负极的重量为W2g,W1/W2为0.001至0.031。
在一些实施例中,所述电解液进一步包括含有S=O官能团的化合物,所述含有S=O官能团的化合物选自以下化合物中的至少一种:1,3-丙烷磺内酯、硫酸乙烯酯、甲基二磺酸亚甲酯、丙烯磺酸内酯、4-甲基硫酸乙烯酯、1,4-丁基磺酸内酯和1,2,6-氧二噻烷-2,2,6,6-四氧化物;和/或其中基于所述电解液的重量,所述含有S=O官能团的化合物的重量百分比为0.01%至5%。
在另一个实施例中,本申请提供一种电子装置,其包括根据本申请的实施例所述的电化学装置。
本申请提供的电化学装置具有提高的循环性能、高温存储性能以及良好的充电性能和能量效率。
本申请实施例的额外层面及优点将部分地在后续说明中描述和显示,或是经由本申请实施例的实施而阐释。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
另外,有时在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式 是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
在具体实施方式及权利要求书中,由术语“中的一者”、“中的一个”、“中的一种”或其他相似术语所连接的项目的列表可意味着所列项目中的任一者。例如,如果列出项目A及B,那么短语“A及B中的一者”意味着仅A或仅B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的一者”意味着仅A;仅B;或仅C。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
一、电化学装置
在一些实施例中,本申请提供了一种电化学装置,所述电化学装置包括负极、正极和电解液。
在一些实施例中,所述正极包括集流体和位于所述集流体上的正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极的活性比表面积为X m 2/g;所述电解液包括添加剂A,所述添加剂A包括LiPO 2F 2,其中基于所述电解液的重量,所述LiPO 2F 2的重量百分比为Y%;其中,满足0.005≤X/Y≤2。
在一些实施例中,0.005≤X/Y≤1或0.015≤X/Y≤1。在一些实施例中,X/Y为0.005、0.0075、0.01、0.02、0.05、0.08、0.10、0.15、0.3、0.5、0.8、1、1.5、2或这些数值中任意两者组成的范围。
在一些实施例中,所述X为0.01至0.1。在一些实施例中,所述X为0.01、0.015、0.02、0.05、0.08、0.1或这些数值中任意两者组成的范围。
在一些实施例中,所述Y为0.01至2。在一些实施例中,Y为0.01、0.03、0.05、0.06、0.1、0.14、0.16、0.2、0.4、0.6、0.8、1.0、1.1、1.2、1.4、1.6、1.8、2或这些数值中任意两者组成的范围。
在一些实施例中,所述电解液进一步包括碳酸亚乙烯酯,其中基于所述电解液的重量,所述碳酸亚乙烯酯的重量百分比为Z%,其中Z为0.01至6。
在一些实施例中,Z为0.01、0.05、0.08、0.1、0.2、0.5、0.8、0.01、1、1.5、2、2.5、2.8、3、3.5、3.8、4、4.5、4.8、5、5.5、5.8、6或这些数值中任意两者组成的范围。
在一些实施例中,Z/Y为0.5至600。在一些实施例中,Z/Y为0.5至50。在一些实施例中,Z/Y为0.5、1、1.5、2、3、4、5、6、10、20、40、50、100、150、200、300、350、400、450、500、550、600或这些数值中任意两者组成的范围。
在一些实施例中,所述电解液进一步包括氟代碳酸乙烯酯。在一些实施例中,基于所述电解液的重量,所述氟代碳酸乙烯酯的重量百分比为0.01%至5%。在一些实施例中,基于所述电解液的重量,所述氟代碳酸乙烯酯的重量百分比为0.01%、0.05%、0.07%、0.1%、0.15%、0.3%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、4.8%、5%或这些数值中任意两者组成的范围。
在一些实施例中,所述电解液进一步包括添加剂B,所述添加剂B选自如下化合物中的至少一种:二氟草酸硼酸锂、双草酸硼酸锂、双氟磺酰亚胺锂、双三氟甲烷磺酰亚胺锂、四氟硼酸锂、B 4Li 2O 7、Li 3BO 3、CF 3LiO 3S、六氟磷酸锂和高氯酸锂。
在一些实施例中,基于所述电解液的重量,所述添加剂B的重量百分比为0.01%至16%。在一些实施例中,基于所述电解液的重量,所述添加剂B的重量百分比为0.01%、0.04%、0.06%、0.08%、0.1%、0.15%、0.2%、0.5%、0.8%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%或这些数值中任意两者组成的范围。
在一些实施例中,所述碳酸亚乙烯酯的重量为W1g,所述负极的重量为W2g,W1/W2为0.001至0.031。
在一些实施例中,W1/W2为0.001、0.006、0.008、0.01、0.02、0.025、0.031或这些数值中任意两者组成的范围。
在一些实施例中,所述电解液进一步包括含有S=O官能团的化合物,所述含有S=O官 能团的化合物选自以下化合物中的至少一种:1,3-丙烷磺内酯、硫酸乙烯酯、甲基二磺酸亚甲酯、丙烯磺酸内酯、4-甲基硫酸乙烯酯、1,4-丁基磺酸内酯和1,2,6-氧二噻烷,2,2,6,6-四氧化物。
在一些实施例中,其中基于所述电解液的重量,所述含有S=O官能团的化合物的重量百分比为0.01%至5%。在一些实施例中,其中基于所述电解液的重量,所述含有S=O官能团的化合物的重量百分比为0.01%、0.03%、0.05%、0.08%、0.1%、0.12%、0.15%、0.1%、0.15%、0.2%、0.5%、0.8%、1%、1.5%、1.8%、2.0%、2.5%、2.8%、3%、5%或这些数值中任意两者组成的范围。
在一些实施例中,所述正极活性材料包括M元素,所述M元素选自Fe、Mn、Al、Ca、K、Na、Mg、Ti和Zn中的至少一种。
在一些实施例中,所述正极活性材料选自磷酸铁锂和磷酸锰铁锂中的至少一种。
在一些实施例中,所述正极活性材料层进一步包括导电剂。在一些实施例中,所述导电剂包括碳纳米管、碳纤维、乙炔黑、石墨烯、科琴黑或碳黑中的至少一种。
在一些实施例中,所述正极活性材料层进一步包括粘结剂。在一些实施例中,所述粘结剂包括聚偏氟乙烯、羧甲基纤维素、丁苯橡胶、聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙中的至少一种。
在一些实施例中,所述集流体包括铜箔或铝箔中的至少一种。
在一些实施例中,所述正极可以通过本领域公知的制备方法制备。例如,所述正极可以通过如下方法获得:在溶剂中将正极活性材料、导电剂和粘合剂混合,以制备活性材料组合物,并将该活性材料组合物涂覆在集流体上。在一些实施例中,所述溶剂可以包括N-甲基吡咯烷酮等,但不限于此。
在一些实施例中,所述电化学装置包括发生电化学反应的任何装置。
在一些实施例中,所述电化学装置进一步包括位于所述正极和负极之间的隔离膜。
在一些实施例中,所述电化学装置是锂二次电池。
在一些实施例中,所述锂二次电池包括,但不限于:锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池、全固态二次锂电池。
负极
在一些实施例中,本申请的电化学装置中使用的负极的材料、构成和其制造方法可包括任何现有技术中公开的技术。在一些实施例中,负极为美国专利申请US9812739B中记载的负极,其以全文引用的方式并入本申请中。
在一些实施例中,负极包括集流体和位于该集流体上的负极活性材料层。在一些实施例中,负极活性材料层包括负极活性材料。在一些实施例中,负极活性材料包括,但不限于:锂金属、结构化的锂金属、天然石墨、人造石墨、中间相微碳球(MCMB)、硬碳、软碳、硅、硅-碳复合物、硅氧材料(例如SiO、SiO 2)、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的锂化TiO 2-Li 4Ti 5O 12、Li-Al合金或其任意组合。
在一些实施例中,负极活性材料层包括粘合剂。在一些实施例中,粘合剂包括,但不限于:聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙。
在一些实施例中,负极活性材料层包括导电材料。在一些实施例中,导电材料包括,但不限于:天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维、金属粉、金属纤维、铜、镍、铝、银或聚亚苯基衍生物。
在一些实施例中,集流体包括,但不限于:铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜或覆有导电金属的聚合物基底。
在一些实施例中,负极可以通过如下方法获得:在溶剂中将活性材料、导电材料和粘合剂混合,以制备活性材料组合物,并将该活性材料组合物涂覆在集流体上。
在一些实施例中,溶剂可以包括,但不限于:去离子水、N-甲基吡咯烷酮。
在一些实施例中,全固态二次锂电池中的负极为金属锂箔。
隔离膜
在一些实施例中,本申请的电化学装置中使用的隔离膜的材料和形状没有特别限制,其可为任何现有技术中公开的技术。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
例如隔离膜可包括基材层和表面处理层。基材层为具有多孔结构的无纺布、膜或复合膜,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。具体 的,可选用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
无机物层包括无机颗粒和粘结剂,无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。聚合物层中包含聚合物,聚合物的材料包括聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)中的至少一种。
电解质
在一些实施例中,本申请实施例的电解液使用的电解质可以为现有技术中已知的电解质,电解质包括、但不限于:无机锂盐,例如LiClO 4、LiPF 6、LiBF 4、LiSbF 6、LiSO 3F、LiN(FSO 2) 2等;含氟有机锂盐,例如LiCF 3SO 3、LiN(FSO 2)(CF 3SO 2)、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2、环状1,3-六氟丙烷二磺酰亚胺锂、环状1,2-四氟乙烷二磺酰亚胺锂、LiN(CF 3SO 2)(C 4F 9SO 2)、LiC(CF 3SO 2) 3、LiPF 4(CF 3) 2、LiPF 4(C 2F 5) 2、LiPF 4(CF 3SO 2) 2、LiPF 4(C 2F 5SO 2) 2、LiBF 2(CF 3) 2、LiBF 2(C 2F 5) 2、LiBF 2(CF 3SO 2) 2、LiBF 2(C 2F 5SO 2) 2;含二羧酸配合物锂盐,例如双(草酸根合)硼酸锂、二氟草酸根合硼酸锂、三(草酸根合)磷酸锂、二氟双(草酸根合)磷酸锂、四氟(草酸根合)磷酸锂等。另外,上述电解质可以单独使用一种,也可以同时使用两种或两种以上。例如,在一些实施例中,电解质包括LiPF 6和LiBF 4的组合。在一些实施例中,电解质包括LiPF 6或LiBF 4等无机锂盐与LiCF 3SO 3、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2等含氟有机锂盐的组合。在一些实施例中,电解质的浓度在0.8至3mol/L的范围内,例如0.8至2.5mol/L的范围内、0.8至2mol/L的范围内、1至2mol/L的范围内、0.5至1.5mol/L、0.8至1.3mol/L、0.5至1.2mol/L,又例如为1mol/L、1.15mol/L、1.2mol/L、1.5mol/L、2mol/L或2.5mol/L。
二、电子装置
本申请的电子装置可为任何使用根据本申请的实施例的电化学装置的装置。
在一些实施例中,所述电子装置包括,但不限于:笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池或锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例
以下说明根据本申请的锂离子电池的实施例和对比例进行性能评估。
一、锂离子电池的制备
(1)电解液的制备
在含水量<10ppm的氩气气氛手套箱中,将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按照质量比为EC∶EMC∶DEC=35∶40∶25进行混合,接着加入添加剂,充分搅拌后加入LiPF 6,混合均匀后获得电解液,其中基于电解液的重量,LiPF 6的重量含量为12.5%。电解液中所用到的添加剂的具体种类以及含量如以下表格所示。本申请描述的电解液中各物质的含量均是基于电解液的重量计算得到。
(2)正极的制备
将正极活性材料磷酸铁锂材料(LFP)、导电剂导电炭黑(Super P)、粘结剂聚偏二氟乙烯按照重量比96.3∶1.5∶2.2进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌均匀,获得正极浆料,其中正极浆料的固含量为72wt%;将正极浆料均匀涂覆于正极集流体铝箔上;将铝箔在85℃下烘干,然后经过冷压、裁片、分切后,在85℃的真空条件下干燥4小时,得到正极。
(3)负极的制备
将负极活性材料人造石墨、导电剂Super P、增稠剂羧甲基纤维素钠(CMC)、粘结剂丁苯橡胶(SBR)按照重量比96.4∶1.5∶0.5∶1.6进行混合,加入去离子水,在真空搅拌机作用 下获得负极浆料,其中负极浆料的固含量为54wt%;将负极浆料均匀涂覆在负极集流体铜箔上;将铜箔在85℃下烘干,然后经过冷压、裁片、分切后,在120℃的真空条件下干燥12小时,得到负极。
(4)隔离膜的制备
选用7μm厚的聚乙烯(PE)隔离膜。
(5)锂离子电池的制备
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正、负极之间起到隔离的作用,然后卷绕得到裸电芯;焊接极耳后将裸电芯置于外包装铝塑膜中,将上述制备好的电解液注入到干燥后的裸电芯中;经过真空封装、静置、化成(0.02C恒流充电到3.3V,再以0.1C恒流充电到3.6V)、整形、容量测试等工序,获得软包锂离子电池(厚度3.3mm、宽度39mm、长度96mm)。
二、测试方法
1、锂离子电池循环性能测试:
25℃循环性能测试
将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。将达到恒温的锂离子电池以1C恒流充电至电压为3.65V,然后以3.65V恒压充电至电流为0.05C,接着以1C恒流放电至电压为2.5V,此为一个充放电循环。以首次放电的容量为100%,反复进行充放电循环,至放电容量衰减至70%时,停止测试,记录循环圈数,作为评价锂离子电池循环性能的指标。
45℃循环性能测试
电池在45℃的循环性能测试方法与上述25℃循环性能测试基本相同,不同之处在于测试温度为45℃。
2、锂离子电池高充电状态(100%SOC)高温存储测试:
将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。以1C恒流充电至3.65V,然后以3.65V恒压充电至电流为0.05C,接着以1C恒流放电至2.5V,记录放电容量,作为锂离子电池初始容量。之后以0.5C恒流充电至3.65V,然后以3.65V恒压充电至电流为0.05C,用千分尺测量并记录电池的厚度。将测试锂离子电池转至60℃恒温箱中存储90天,期间每隔30天测量并记录电池厚度一次。
将电池转移至25℃恒温箱中,静置60分钟,以1C恒流放电至2.5V,记录放电容量,作为锂离子电池剩余容量。以1C恒流充电至3.65V,然后以3.65V恒压充电至电流为0.05C,接着用1C恒流放电至2.5V,记录放电容量,作为锂离子电池可恢复容量。测试电池的厚度(THK)、开路电压(OCV)和阻抗(IMP)。1C恒流放电至电压为2.5V,记录恢复放电容量并计算锂离子电池存储残余容量保持率和可恢复容量保持率,并作为评价锂离子电池高温存储性能的指标,其中:
残余容量保持率=(存储90天后残余容量-电池初始容量)/电池初始容量*100%
恢复容量保持率=(存储90天后可恢复容量-电池初始容量)/电池初始容量*100%
3、锂离子电池低充电状态(0%SOC)高温存储测试:
将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。以1C恒流充电至3.65V,然后以3.65V恒压充电至电流为0.05C,接着用1C恒流放电至2.5V,记录放电容量,作为锂离子电池初始容量。之后用千分尺测量并记录电池的厚度。将测试锂离子电池转至60℃恒温箱中存储90天,期间每隔30天测量并记录电池厚度一次,并将电池转移至25℃恒温箱中,静置60分钟,以1C恒流充电至3.65V,恒压充电至电流为0.05C,然后用1C恒流放电至2.5V,记录放电容量,作为锂离子电池可恢复容量。测试电池的厚度(THK)、开路电压(OCV)和阻抗(IMP)。1C恒流放电至电压为2.5V,记录并计算锂离子电池存储过程中厚度的膨胀率,并作为评价锂离子电池0%SOC高温存储性能的指标:
0%SOC存储厚度膨胀率=(存储90天后厚度-电池初始厚度)/电池初始厚度*100%
4、锂离子电池直流阻抗DCR(-10℃)测试:
将锂离子电池置于-10℃高低温箱中,静置4小时,使锂离子电池达到恒温。以0.1C恒流充电至3.65V,3.65V恒压充电至电流为0.05C,静置10分钟。然后用0.1C恒流放电至2.5V,记录此步容量为实际放电容量D0。随后静置5分钟,以0.1C恒流充电至3.65V,3.65V恒压充电至电流为0.05C(电流以D0对应容量计算)。静置10分钟,用0.1C恒流放电7小时(电流以D0对应容量计算),记录此时电压V1。接着,用1C恒流放电1S(100ms采点,电流以电芯标注容量对应计算),记录此时电压V2。然后计算电芯30%充电状态(SOC)对应直流阻抗(DCR),计算公式如下:
30%SOC DCR=(V2-V1)/1C
5、锂离子电池能量转化效率RTE(25℃)测试:
将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。以0.5C横流放电至2.5V,静置15min。0.5C恒流充电至3.65V,3.65V恒压充电至电流为0.05C,静置60min,然后以0.5C恒流放电至2.5V。按上述电流大小连续充放电三次,分别记录充电和放电能量,并取最后1个循环的充电能量E c和放电能量E d计算能量转化效率:
能量转化效率=放电能量E d/充电能量E c*100%
6、锂离子电池过充测试:
将电池在25℃下以0.5C放电至2.5V,再以1C恒流充电至6.5V,再6.5V恒压充电3小时,监控电池表面温度变化(过充测试通过标准为电池不起火、不燃烧、不爆炸)。每个实施例或对比例测试10支电池,记录通过测试的电池数量。
7、锂离子电池正极的活性比表面积测试:
取锂离子电池正极,组装成扣电(LFP//Li),然后施加10mV阶跃电位到涂有正极活性材料的扣电,维持30S,根据电流-时间曲线积分获取活性电极电荷量Q,Q/10mV获取电容C。
采用电容法计算活性比表面积(详见田昭武老师著《电化学研究方法》):
S 1=C/(20uf)cm 2
S=(S 1×10 -4)/M m 2/g
其中,S为正极的活性比表面积,单位m 2/g,记为X m 2/g;S 1为正极的活性表面积,单位cm 2;C为测量的样品的电容,uf是电容单位微法(微法拉第);M为电极(单面)扣除集流体后的涂敷质量,单位g;20uf为光滑电极每平方厘米的双电层电容。
以下用X代表正极的活性比表面积的数值。
A、表1示出了相关实施例和对比例中添加剂种类和含量以及锂离子电池的相关性能参数。
表1
Figure PCTCN2021143871-appb-000001
Figure PCTCN2021143871-appb-000002
其中“-”表示不具有该物质。
由实施例1-1至1-12与对比例1-1的比较可以看出,向电解液中加入添加剂LiPO 2F 2能显著改善锂离子电池的循环性能和存储性能,且能降低锂离子电池的阻抗。
由实施例1-1至1-12与对比例1-2的比较可以看出,当X/Y的值过大时(例如为10时),锂离子电池的循环性能和存储性能明显恶化。通过控制X/Y在合适的范围,可以保证优异的存储性能、循环性能和动力学性能。在本申请中,X/Y的范围可以为0.005至2。
B、表2示出了相关实施例和对比例中添加剂种类和含量以及锂离子电池的相关性能参数。其中实施例2-1至实施例2-12中的电解液为在实施例1-4中的电解液中加入碳酸亚乙烯酯(VC)制得。实施例2-1至实施例2-12中的正极的活性比表面积与实施例1-4中的正极的活性比表面积相同。
表2
Figure PCTCN2021143871-appb-000003
其中“-”表示不具有该物质。
由以上性能测试结果可以看出,在满足0.005≤X/Y≤2的电解液中进一步加入碳酸亚乙烯酯(VC)能够显著提高锂离子电池的循环性能和存储性能,而其阻抗没有明显变化。尤其是当Z/Y在0.5至300范围内时,锂离子电池的循环性能和存储性能得到明显改善。
碳酸亚乙烯酯可以在石墨表面形成热稳定性和化学稳定性优异的固体电解质界面(SEI)膜,有效抑制溶剂在石墨表面的副反应,同时抑制过渡金属的沉积。但碳酸亚乙烯酯成膜阻抗较大,含量过高很容易导致电池充电析锂以及放电性能恶化。在含有碳酸亚乙烯酯的电解液中同时引入LiPO 2F 2,可以抑制碳酸亚乙烯酯分解,协同成膜。控制碳酸亚乙烯酯与LiPO 2F 2的比例,可形成稳定性好、阻抗低的SEI膜,从而保证优异的存储性能、循环性能和动力学性能。因此,在本申请中,Z/Y的优选范围为0.5至300。
C、表3示出了相关实施例和对比例中添加剂种类和含量以及锂离子电池的相关性能参数。实施例3-1至实施例3-8的电解液为在实施例2-3中的电解液中加入氟代碳酸乙烯酯(FEC)得到。实施例3-1至实施例3-8中的正极的活性比表面积以及电解液中LiPO 2F 2的浓度均与实施例2-3相同。
表3
Figure PCTCN2021143871-appb-000004
其中“-”表示不具有该物质。
由以上性能测试结果可以看出,在满足0.005≤X/Y≤2以及含有碳酸亚乙烯酯(VC)的电解液中进一步加入氟代碳酸乙烯酯(FEC)能够显著提高锂离子电池的循环性能、存储性能和能量转化效率,而其阻抗没有明显变化。
氟代碳酸乙烯酯可以在石墨表面形成热稳定性和化学稳定性优异、低阻抗的SEI膜,有效抑制溶剂在石墨表面的副反应,同时抑制过渡金属的沉积,可以有效降低活性锂在石墨负极的损耗,显著改善循环和存储过程中容量保持率。但其含量过高时,会导致电解液粘度增加,动力学性能恶化。此外,其含量过高时,高温下分解产生较多的HF,会带来存储产气风险。因此,本申请中,氟代碳酸乙烯酯的优选含量为0.01%至5%。
D、表4示出了相关实施例和对比例中添加剂种类和含量以及锂离子电池的相关性能参数。其中实施例4-1至实施例4-19中的电解液为在实施例1-4中的电解液中加入表4中所示的添加剂制得。实施例4-1至实施例4-19中的正极的活性比表面积以及电解液中LiPO 2F 2的浓度均与实施例1-4相同。
表4
Figure PCTCN2021143871-appb-000005
Figure PCTCN2021143871-appb-000006
其中“-”表示不具有该物质。
表5示出了上述实施例和对比例中锂离子电池的相关性能参数。
Figure PCTCN2021143871-appb-000007
二氟草酸硼酸锂(LiDFOB)、双草酸硼酸锂(LiBOB)、双氟磺酰亚胺锂(LiFSI)、双三氟甲烷磺酰亚胺锂(LiTFSI)、四氟硼酸锂(LiBF 4)、B 4Li 2O 7、Li 3BO 3、CF 3LiO 3S、六氟磷酸锂(LiPF 6)均可在正负极表面形成热稳定性和化学稳定性良好的保护膜,抑制电极和电解液的副反应,实现优异的循环稳定性和存储稳定性及动力学性能、安全性能。此外LiFSI和LiTFSI具有高的热稳定性,阴阳离子的缔合度小,在碳酸酯体系中具有高的溶解度和解离度。使用LiFSI和LiTFSI替代部分或全部LiPF 6作为电解质使用,可以得到更好的循环性能、存储性能、动力学性能和安全性能。
E、表6示出了相关实施例中锂离子电池的组成以及性能测试结果。实施例5-1和5-2中电解液组成与实施例1-4相同。实施例5-1和5-2中正极活性材料种类如表6所示。LFP表示磷酸铁锂,LMFP表示磷酸锰铁锂。
表6
Figure PCTCN2021143871-appb-000008
由以上性能测试结果可以看出,使用LMFP或者LMFP与LFP的混合物作为正极活性材料与使用LFP作为正极活性材料,锂离子电池的循环性能和存储性能未发生明显变化。因此,以上实施例中的电解液同样适用于使用LMFP或LFP与LMFP的混合物作为活性材料的正极。
F:表7示出了相关实施例中锂离子电池的组成以及性能测试结果。实施例6-1至6-11中的电解液为在实施例1-3中的电解液中加入VC制得。实施例6-1至6-11中的正极的活性比表面积以及电解液中LiPO 2F 2的浓度均与实施例1-3相同。电解液中碳酸亚乙烯酯的重量为W1g,负极的重量为W2g,W1/W2表示单位质量负极中VC的含量。
表7
Figure PCTCN2021143871-appb-000009
Figure PCTCN2021143871-appb-000010
其中“-”表示不具有该物质。
由以上性能测试结果可以看出,在满足0.005≤X/Y≤2的电解液中加入VC能显著提高锂离子电池的循环性能、存储性能,而阻抗未发生明显变化。尤其是当W1/W2为0.001至0.031时,锂离子电池的循环性能、存储性能显著提高,同时阻抗降低。
碳酸亚乙烯酯可以在石墨表面形成热稳定性和化学稳定性优异的SEI膜,有效抑制溶剂在石墨表面的副反应,同时抑制过渡金属的沉积。足够的VC才能够确保石墨表面形成致密的保护膜,但其成膜阻抗较大,含量过高很容易导致电池充电析锂以及放电性能恶化。因此,在本申请中,单位质量负极中VC的含量优选为0.001至0.031。
G:表8示出了相关实施例中锂离子电池的组成以及性能测试结果。实施例7-1至7-12中的电解液为在实施例6-7中的电解液中加入以下含有S=O官能团的化合物制得。实施例7-1至7-12中的正极的活性比表面积以及电解液中LiPO 2F 2的浓度均与实施例6-7相同。电解液中碳酸亚乙烯酯的重量为W1g,负极的重量为W2g,W1/W2表示单位质量负极中VC的含量。
表8中英文缩写的全称如下:
DTD:硫酸乙烯酯
MMDS:甲基二磺酸亚甲酯
PS:1,3-丙烷磺内酯
表8
Figure PCTCN2021143871-appb-000011
Figure PCTCN2021143871-appb-000012
其中“-”表示不具有该物质。
表9示出了上述实施例的性能测试结果。
表9
Figure PCTCN2021143871-appb-000013
由以上性能测试结果可以看出,向满足0.005≤X/Y≤2和/或W1/W2为0.001至0.031的电解液中加入含有S=O官能团的化合物能显著提高锂离子电池的循环性能、存储性能和过充测试性能,且能降低阻抗。
含有S=O官能团的化合物可在正负极表面形成热稳定性和化学稳定性良好的保护膜,抑制电极和电解液的副反应,实现优异的循环稳定性和存储稳定性(抑制产气和提升容量保持率)及动力学性能、安全性能。S=O官能团化合物含量过低,成膜保护不充分,性能提升不显著;含量过高,正负极成膜阻抗较高,性能无提升,反而恶化动力学。因此,在本申请中,含有S=O官能团的化合物的含量优选为0.01%至5%。
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举 例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (10)

  1. 一种电化学装置,其包括:
    负极;
    正极,其中所述正极包括集流体和位于所述集流体上的正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极的活性比表面积为X m 2/g;和
    电解液,所述电解液包括添加剂A,所述添加剂A包括LiPO 2F 2,其中基于所述电解液的重量,所述LiPO 2F 2的重量百分比为Y%;
    其中,满足0.005≤X/Y≤2。
  2. 根据权利要求1所述的电化学装置,其满足以下条件(i)至(iii)中的至少一者:
    (i)0.01≤X≤0.1;
    (ii)0.01≤Y≤2;和
    (iii)0.005≤X/Y≤1。
  3. 根据权利要求1所述的电化学装置,其中所述电解液进一步包括碳酸亚乙烯酯,其中基于所述电解液的重量,所述碳酸亚乙烯酯的重量百分比为Z%,其中Z为0.01至6。
  4. 根据权利要求3所述的电化学装置,其中Z/Y为0.01至600。
  5. 根据权利要求1所述的电化学装置,其中所述电解液进一步包括氟代碳酸乙烯酯,其中基于所述电解液的重量,所述氟代碳酸乙烯酯的重量百分比为0.01%至5%。
  6. 根据权利要求1所述的电化学装置,其中所述电解液进一步包括添加剂B,所述添加剂B选自如下化合物中的至少一种:二氟草酸硼酸锂、双草酸硼酸锂、双氟磺酰亚胺锂、双三氟甲烷磺酰亚胺锂、四氟硼酸锂、B 4Li 2O 7、Li 3BO 3、CF 3LiO 3S、六氟磷酸锂和高氯酸锂;和/或其中基于所述电解液的重量,所述添加剂B的重量百分比为0.01%至16%。
  7. 根据权利要求1所述的电化学装置,其中所述正极活性材料包括M元素,所述M元素选自Fe、Mn、Al、Ca、K、Na、Mg、Ti和Zn中的至少一种。
  8. 根据权利要求3所述的电化学装置,其中所述碳酸亚乙烯酯的重量为W1 g,所述负极的重量为W2g,W1/W2为0.001至0.031。
  9. 根据权利要求1所述的电化学装置,其中所述电解液进一步包括含有S=O官能团的化合物,所述含有S=O官能团的化合物选自以下化合物中的至少一种:1,3-丙烷磺内酯、硫酸乙烯酯、甲基二磺酸亚甲酯、丙烯磺酸内酯、4-甲基硫酸乙烯酯、1,4-丁基磺酸内酯和1,2,6-氧二噻烷-2,2,6,6-四氧化物;和/或其中基于所述电解液的重量,所述含有S=O官能团的化合物的重量百分比为0.01%至5%。
  10. 一种电子装置,其中所述电子装置包括根据权利要求1-9中的任一项所述的电化学装置。
PCT/CN2021/143871 2021-12-31 2021-12-31 电化学装置和包含其的电子装置 WO2023123427A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180064117.4A CN116250112A (zh) 2021-12-31 2021-12-31 电化学装置和包含其的电子装置
PCT/CN2021/143871 WO2023123427A1 (zh) 2021-12-31 2021-12-31 电化学装置和包含其的电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143871 WO2023123427A1 (zh) 2021-12-31 2021-12-31 电化学装置和包含其的电子装置

Publications (1)

Publication Number Publication Date
WO2023123427A1 true WO2023123427A1 (zh) 2023-07-06

Family

ID=86631742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143871 WO2023123427A1 (zh) 2021-12-31 2021-12-31 电化学装置和包含其的电子装置

Country Status (2)

Country Link
CN (1) CN116250112A (zh)
WO (1) WO2023123427A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072025A (ja) * 2012-09-28 2014-04-21 Panasonic Corp 非水電解質二次電池及びその製造方法
CN107017429A (zh) * 2015-12-16 2017-08-04 三星Sdi株式会社 用于可再充电锂电池的电解液和包括其的可再充电锂电池
CN208460908U (zh) * 2018-07-26 2019-02-01 中航锂电技术研究院有限公司 用于测量电池电化学活性比表面积的三电极电池
US20190312306A1 (en) * 2016-06-13 2019-10-10 Nec Corporation Lithium ion secondary battery
CN111640977A (zh) * 2020-06-11 2020-09-08 珠海冠宇电池股份有限公司 一种高功率电解液及含有该电解液的锂离子电池
CN112331833A (zh) * 2020-11-10 2021-02-05 江西省汇亿新能源有限公司 一种磷酸铁锂启动电池及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072025A (ja) * 2012-09-28 2014-04-21 Panasonic Corp 非水電解質二次電池及びその製造方法
CN107017429A (zh) * 2015-12-16 2017-08-04 三星Sdi株式会社 用于可再充电锂电池的电解液和包括其的可再充电锂电池
US20190312306A1 (en) * 2016-06-13 2019-10-10 Nec Corporation Lithium ion secondary battery
CN208460908U (zh) * 2018-07-26 2019-02-01 中航锂电技术研究院有限公司 用于测量电池电化学活性比表面积的三电极电池
CN111640977A (zh) * 2020-06-11 2020-09-08 珠海冠宇电池股份有限公司 一种高功率电解液及含有该电解液的锂离子电池
CN112331833A (zh) * 2020-11-10 2021-02-05 江西省汇亿新能源有限公司 一种磷酸铁锂启动电池及其制作方法

Also Published As

Publication number Publication date
CN116250112A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN113851724B (zh) 电化学装置和电子装置
CN109860703A (zh) 一种电解液及电化学装置
CN111525191B (zh) 一种电解液及电化学装置
CN113809399B (zh) 一种电解液、包含该电解液的电化学装置和电子装置
CN114068910A (zh) 一种电化学装置及电子装置
CN111697266B (zh) 电解液和包括其的电化学装置及电子装置
WO2021189255A1 (zh) 一种电解液及电化学装置
US11031630B2 (en) Electrolyte and electrochemical device
WO2021223181A1 (zh) 一种电解液及电化学装置
CN112349961B (zh) 电解液及包含其的电化学装置和电子设备
WO2022133836A1 (zh) 电解液、电化学装置及电子装置
WO2021120434A1 (zh) 一种电解液及电化学装置
CN112005418A (zh) 一种电解液及电化学装置
WO2023087209A1 (zh) 电化学装置及电子装置
CN112103561B (zh) 一种电解液及电化学装置
US20230318042A1 (en) Electrolyte solution, secondary battery, battery module, battery pack and powered device
WO2021128203A1 (zh) 一种电解液及电化学装置
WO2023141953A1 (zh) 正极浆料组合物及由其制备的正极极片、二次电池、电池模块、电池包和用电装置
WO2022087830A1 (zh) 电解液及包括其的电化学装置和电子装置
WO2022198402A1 (zh) 电解液、电化学装置和电子装置
WO2021128205A1 (zh) 一种电解液及电化学装置
CN112368872A (zh) 一种电解液及电化学装置
WO2023123427A1 (zh) 电化学装置和包含其的电子装置
WO2021174417A1 (zh) 一种电解液及电化学装置
CN116783749A (zh) 电化学装置及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969772

Country of ref document: EP

Kind code of ref document: A1