WO2021117883A1 - タービン静翼、タービン静翼組立体、及び蒸気タービン - Google Patents

タービン静翼、タービン静翼組立体、及び蒸気タービン Download PDF

Info

Publication number
WO2021117883A1
WO2021117883A1 PCT/JP2020/046349 JP2020046349W WO2021117883A1 WO 2021117883 A1 WO2021117883 A1 WO 2021117883A1 JP 2020046349 W JP2020046349 W JP 2020046349W WO 2021117883 A1 WO2021117883 A1 WO 2021117883A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
steam
downstream side
inner peripheral
radial direction
Prior art date
Application number
PCT/JP2020/046349
Other languages
English (en)
French (fr)
Inventor
俊介 水見
創一朗 田畑
冲非 段
光司 石橋
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to KR1020227013250A priority Critical patent/KR20220062650A/ko
Priority to EP20900122.1A priority patent/EP4036380B1/en
Priority to US17/771,589 priority patent/US11773753B2/en
Priority to JP2021564067A priority patent/JP7292421B2/ja
Priority to CN202080074515.XA priority patent/CN114651113A/zh
Publication of WO2021117883A1 publication Critical patent/WO2021117883A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/123Fluid guiding means, e.g. vanes related to the pressure side of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/51Hydrophilic, i.e. being or having wettable properties

Definitions

  • This disclosure relates to turbine vanes, turbine vane assemblies, and steam turbines.
  • This application claims priority based on Japanese application Japanese Patent Application No. 2019-223560 filed on December 11, 2019, and incorporates all the contents described in the Japanese application.
  • a steam turbine has a rotating shaft that can rotate around an axis, a plurality of turbine moving blade stages arranged at intervals in the axial direction on the outer peripheral surface of the rotating shaft, a rotating shaft, and a turbine moving blade stage. It includes a casing that covers from the side, and a plurality of turbine stationary blade stages that are alternately arranged with turbine moving blade stages on the inner peripheral surface of the casing. An intake port for taking in steam from the outside is formed on the upstream side of the casing, and an exhaust port is formed on the downstream side. The high-temperature and high-pressure steam taken in from the suction port is converted into the rotational force of the rotating shaft at the turbine blade stage after adjusting the flow direction and velocity at the turbine blade stage.
  • the steam passing through the turbine loses energy from the upstream side to the downstream side, and the temperature (and pressure) drops. Therefore, in the turbine vane stage on the most downstream side, a part of steam is liquefied and exists in the air flow as fine water droplets, and a part of the water droplets adheres to the surface of the turbine vane. These water droplets quickly grow on the blade surface to form a liquid film.
  • the liquid film is constantly exposed to a high-speed steam flow around it, but when the liquid film grows further and becomes thicker, a part of the liquid film is torn by the steam flow and scattered in the form of coarse droplets. The scattered droplets flow downstream while gradually accelerating due to the steam flow.
  • a guide groove or a guide rib for guiding a droplet or a liquid film to the downstream side of the moving blade is provided on the surface of the blade.
  • the present disclosure has been made to solve the above problems, and includes a turbine vane, a turbine vane assembly, and a steam turbine capable of further reducing the growth of a liquid film and effectively removing the liquid film.
  • the purpose is to provide.
  • the turbine stationary blade according to the present disclosure extends in the radial direction intersecting the steam flow direction, and has a ventral surface facing the upstream side and a back surface facing the downstream side in the flow direction. At least on the ventral surface, a plurality of grooves extending outward in the radial direction are formed toward the downstream side, and the circumference of the groove on the ventral surface is recessed in the depth direction intersecting the ventral surface so as to be larger than the ventral surface.
  • a hydrophilic concavo-convex region having a large liquid film tolerance is formed, and the downstream ends of the plurality of grooves are connected to a slit for capturing the liquefied component of the vapor.
  • the turbine stationary blade assembly includes a turbine stationary blade having a ventral surface facing upstream and a back surface facing downstream in the radial direction intersecting the steam flow direction, and the turbine stationary.
  • a turbine stationary blade assembly comprising an outer peripheral ring provided at the radial outer end of the blade, wherein at least the ventral surface is formed with a plurality of grooves extending outward in the radial direction toward the downstream side.
  • On the inner peripheral surface of the outer peripheral ring a ring groove is formed which is connected to the groove and extends toward the downstream side along the inner peripheral surface, and the downstream end portion of the plurality of grooves is formed. It is connected to a slit that captures the liquefied component of the vapor.
  • the steam turbine according to the present disclosure includes a turbine stationary blade extending in the radial direction intersecting the steam flow direction and a turbine moving blade arranged with a gap on the downstream side of the turbine stationary blade in the flow direction.
  • the turbine stationary blade and the turbine casing that covers the turbine moving blade from the outer peripheral side are provided, and the turbine stationary blade has a ventral surface facing the upstream side in the flow direction and a back surface facing the downstream side.
  • a plurality of grooves extending outward in the radial direction are formed toward the downstream side, and a hydrophilic uneven region having higher hydrophilicity than the ventral surface is formed around the groove on the ventral surface.
  • the downstream ends of the plurality of grooves are connected to the gap as a slit for capturing the liquefied component of the steam.
  • FIG. 1 It is a schematic diagram which shows the structure of the steam turbine which concerns on 1st Embodiment of this disclosure. It is a figure which shows the structure of the turbine vane assembly which concerns on 1st Embodiment of this disclosure. It is a perspective view which shows an example of the hydrophilic concavo-convex region which concerns on 1st Embodiment of this disclosure. It is a figure which shows the structure of the turbine vane assembly which concerns on 2nd Embodiment of this disclosure. It is sectional drawing which looked at the turbine vane assembly which concerns on 2nd Embodiment of this disclosure from the radial direction. It is sectional drawing of the turbine vane assembly which concerns on 2nd Embodiment of this disclosure as seen from the chord direction.
  • the steam turbine 100 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
  • the steam turbine 100 according to the present embodiment has a steam turbine rotor 1 extending along the axis O direction, a steam turbine casing 2 covering the steam turbine rotor 1 from the outer peripheral side, and a shaft end 11 of the steam turbine rotor 1 around the axis O. It is provided with a journal bearing 4A and a thrust bearing 4B that rotatably support the turbine.
  • the steam turbine rotor 1 has a rotating shaft 3 extending along the axis O and a plurality of moving blades 30 provided on the outer peripheral surface of the rotating shaft 3.
  • a plurality of moving blades 30 are arranged at regular intervals in the circumferential direction of the rotating shaft 3.
  • a plurality of rows of moving blades 30 are arranged at regular intervals.
  • the moving blade 30 has a moving blade main body 31 (turbine moving blade) and a moving blade shroud 34.
  • the rotor blade body 31 projects radially outward from the outer peripheral surface of the steam turbine rotor 1.
  • the rotor blade body 31 has an airfoil-shaped cross section when viewed from the radial direction.
  • a rotor blade shroud 34 is provided at the tip end portion (diameter outer end portion) of the rotor blade body 31.
  • a platform 32 is integrally provided with the rotating shaft 3 at the base end portion (diameter inner end portion) of the rotor blade main body 31 (see FIG. 2).
  • the steam turbine casing 2 has a substantially tubular shape that covers the steam turbine rotor 1 from the outer peripheral side.
  • a steam supply pipe 12 for taking in steam S is provided on one side of the steam turbine casing 2 in the O-axis direction.
  • a steam discharge pipe 13 for discharging steam S is provided on the other side of the steam turbine casing 2 in the O-axis direction. Steam flows inside the steam turbine casing 2 from one side in the O direction of the axis toward the other side. In the following description, the direction in which steam flows is simply referred to as "flow direction".
  • the side where the steam supply pipe 12 is located as viewed from the steam discharge pipe 13 is referred to as an upstream side in the flow direction
  • the side where the steam discharge pipe 13 is located as viewed from the steam supply pipe 12 is referred to as a downstream side in the flow direction.
  • a row of a plurality of vanes 20 is provided on the inner peripheral surface of the steam turbine casing 2.
  • the stationary blade 20 has a stationary blade main body 21 (turbine stationary blade), a stationary blade shroud 22, and an outer peripheral ring 24.
  • the stationary blade main body 21 is a blade-shaped member connected to the inner peripheral surface of the steam turbine casing 2 via the outer peripheral ring 24.
  • a stationary blade shroud 22 is provided at the tip end portion (diameterally inner end portion) of the stationary blade main body 21.
  • a plurality of stationary blades 20 are arranged on the inner peripheral surface along the circumferential direction and the axis O direction.
  • the moving blades 30 are arranged so as to enter the region between the plurality of adjacent stationary blades 20. That is, the stationary blade 20 and the moving blade 30 extend in a direction intersecting the steam flow direction (diameter direction with respect to the axis O).
  • the steam S is supplied to the inside of the steam turbine casing 2 configured as described above via the steam supply pipe 12 on the upstream side.
  • the steam S alternately passes through the stationary blades 20 and the moving blades 30.
  • the stationary blade 20 rectifies the flow of the steam S, and the rectified mass of the steam S pushes the moving blade 30 to give a rotational force to the steam turbine rotor 1.
  • the rotational force of the steam turbine rotor 1 is taken out from the shaft end 11 and used to drive an external device (generator or the like).
  • the steam turbine rotor 1 rotates, the steam S is discharged toward a subsequent device (condenser or the like) through the steam discharge pipe 13 on the downstream side.
  • the journal bearing 4A supports a radial load with respect to the axis O.
  • One journal bearing 4A is provided at both ends of the steam turbine rotor 1.
  • the thrust bearing 4B supports a load in the axis O direction.
  • the thrust bearing 4B is provided only at the upstream end of the steam turbine rotor 1.
  • the stationary blade main body 21 extends in the radial direction (diameter direction with respect to the axis O), which is a direction intersecting the flow direction.
  • the cross section of the stationary blade body 21 seen from the radial direction has an airfoil shape. More specifically, the front edge 21F, which is the edge on the upstream side in the flow direction, has a curved surface shape.
  • the trailing edge 21R which is the edge on the downstream side, has a tapered shape because the dimension in the circumferential direction is gradually reduced when viewed from the radial direction.
  • the stationary blade main body 21 is gently curved from one side in the circumferential direction with respect to the axis O toward the other side. Further, the dimension of the stationary blade main body 21 in the axial direction O direction decreases toward the inner side in the radial direction.
  • An outer peripheral ring 24 is attached to the radial outer end of the stationary blade body 21.
  • the outer peripheral ring 24 has an annular shape centered on the axis O.
  • the surface facing the upstream side is the ring upstream surface 24A
  • the surface facing the inner peripheral side is the ring inner peripheral surface 24B
  • the surface facing the downstream side is the ring downstream surface 24C.
  • the ring upstream surface 24A and the ring downstream surface 24C extend in the radial direction with respect to the axis O.
  • the radial dimension of the ring upstream surface 24A is larger than the radial dimension of the ring downstream surface 24C.
  • the inner peripheral surface 24B of the ring is gradually increased in diameter toward the outer side in the radial direction toward the downstream side.
  • the ring downstream surface 24C faces the moving blade shroud 34 of the moving blade 30 adjacent to the downstream side of the stationary blade 20 with a gap S2.
  • the surface facing the upstream side is the shroud upstream surface 34A
  • the surface facing the inner peripheral side is the shroud inner peripheral surface 34B
  • the surface facing the downstream side is the shroud downstream surface 34C. ing. That is, the above-mentioned ring downstream surface 24C faces the shroud upstream surface 34A with a gap.
  • the gap S2 is a part of the slit S for capturing the droplet described later.
  • the surface facing the upstream side is the ventral surface 21P
  • the surface facing the downstream side is the back surface 21Q.
  • the ventral surface 21P and the back surface 21Q at least the ventral surface 21P is formed with a plurality of grooves R1 and R2, and a hollow slit S1 as a part of the slit S described above. These grooves R1 and R2 are provided to capture and guide droplets (water droplets) generated on the ventral surface 21P.
  • the grooves R1 and R2 are both recessed from the ventral surface 21P in the blade thickness direction and extend outward in the radial direction toward the downstream side.
  • the radial outer end of the groove R1 may extend to the inner peripheral surface (ring inner peripheral surface 24B) of the outer peripheral ring 24, and the radial inner end may extend to the front edge 21F.
  • the groove R2 extends from the front edge 21F to the hollow slit S1.
  • the hollow slit S1 is formed in the vicinity of the downstream end (that is, the trailing edge 21R) on the ventral surface 21P, extends in the radial direction, and is recessed in the blade thickness direction.
  • three grooves R1 and five grooves R2 are formed, but the number of these grooves R1 and R2 is not limited to this embodiment and can be appropriately changed according to the design and specifications. Is.
  • a hydrophilic uneven region W is formed around the grooves R1 and R2 on the ventral surface 21P. That is, the ventral surface 21P has the hydrophilic concavo-convex region W and a main ventral surface region other than the hydrophilic concavo-convex region W. As shown in the cross-sectional view as an example in FIG. 3, this hydrophilic uneven region W is formed by a large number of fine grooves G recessed in the depth direction intersecting the ventral surface 21P. As a result, in the hydrophilic uneven region W, the liquid film tolerance is larger than that of the unprocessed abdominal surface 21P itself.
  • the "liquid film permissible amount" referred to here indicates the amount of permeation and retention of the liquid film in the region.
  • the hydrophilicity is higher than in other regions.
  • such hydrophilicity can also be realized by coating or the like.
  • the permeation amount and the retention amount are determined by the porosity in the region.
  • the inner surfaces of the grooves R1 and R2 are not subjected to such hydrophilic treatment.
  • the width of the hollow slit S1 is generally set to a milliorder of about 1 mm to 2 mm
  • the width of the grooves R1 and R2 on the ventral surface 21P is generally set to a submillimeter of about several hundred ⁇ m to 1 mm.
  • the width of each fine groove G is several ⁇ m to several tens of ⁇ m, which is on the order of microns.
  • the scattered droplets try to flow downstream on the mainstream of steam, but the coarse droplets cannot get on the mainstream sufficiently due to the large inertial force acting on themselves, and the turbine blades (moving blades) It collides with the main body 31). Since the peripheral speed of the turbine blade may exceed the speed of sound, when the scattered droplets collide with the turbine blade, the surface thereof may be eroded and erosion may occur. In addition, the collision of droplets may hinder the rotation of the turbine blades, resulting in braking loss.
  • the droplets generated on the ventral surface 21P or the back surface 21Q gather toward the grooves R1 and R2 to form a liquid vein.
  • This liquid vein flows along the grooves R1 and R2 when exposed to the flow of steam.
  • the liquid veins that have passed through the grooves R1 and R2 are then captured by the slit S and discharged to the outside.
  • the liquid vein that has passed through the groove R1 flows downstream along the inner peripheral surface (ring inner peripheral surface 24B) of the outer peripheral ring 24, and then between the outer peripheral ring 24 and the rotor blade shroud 34. It flows into the gap S2.
  • the liquid vein that has passed through the groove R2 flows into the hollow slit S1. This makes it possible to reduce the possibility of droplets or liquid film growing on the surface (ventral surface 21P or back surface 21Q) of the stationary blade main body 21.
  • a hydrophilic uneven region W is formed around the grooves R1 and R2.
  • the tension between the water and the wall surface is increased by performing microfabrication such as the groove G described above, coating treatment, or the like.
  • the liquid film tends to spread over the entire hydrophilic uneven region W. That is, the thickness of the liquid film in the region can be reduced.
  • the liquid film on the blade surface is swept away by the airflow in the turbine, but the flow velocity of the airflow becomes slower as it gets closer to the wall surface. Therefore, the flow velocity of the airflow acting on the thin liquid film is slower than that of the airflow acting on the thick liquid film.
  • the thinner the liquid film the slower the moving speed of the liquid film.
  • the surface area in contact with the liquid film becomes larger and the friction between the blade surface and the liquid film becomes larger even if the blade surface has the same area. ..
  • the flow resistance can be increased.
  • the grooves R1 and R2 make it possible to capture the liquid film more stably.
  • the hollow slit S1 as the slit S is formed at least on the downstream side portion of the ventral surface 21P.
  • the liquid film formed on the ventral surface 21P can be guided by the groove R2 and then immediately captured by the hollow slit S1.
  • the possibility that the liquid film is scattered on the downstream side can be further reduced.
  • the liquid film formed on the ventral surface 21P can be guided by the groove R1 and then immediately captured by the gap S2 as the slit S. Since the gap S2 is a gap between the stationary blade 20 and the moving blade 30, more liquid veins can be captured as compared with the case where only the hollow slit S1 is formed in the stationary blade main body 21. As a result, the possibility that the liquid film is scattered on the downstream side can be further reduced.
  • the ring groove R3 extends downstream along the shape of the ventral surface 21P on the inner peripheral surface 24B of the ring, and is connected to the radial outer end of the groove R1 formed on the ventral surface 21P.
  • the starting point of the ring groove R3 is provided at a position biased toward the front edge 21F on the ventral surface 21P.
  • the ring groove R3 has a rectangular shape in a cross-sectional view.
  • the cross-sectional shape of the ring groove R3 is not limited to a rectangle, and may be a concave curved surface shape having no corners (in this case, concentration of local stress can be suppressed as compared with a rectangle). As shown in FIG.
  • the ring groove R3 may be provided not only on the ventral surface 21P side but also on the back surface 21Q side together with the grooves R1 and R2.
  • the downstream end of the ring groove R3 does not reach the downstream end (slit S2) of the inner peripheral surface 24B, but this is the outer circumference as described in [Modification] described later.
  • the portion of the inner peripheral surface of the ring 24 (ring inner peripheral surface 24B) including the downstream end is curved outward in the radial direction from the upstream side to the downstream side as shown in FIG. to cause.
  • the ring grooves R3 may be provided on both sides of the ventral surface 21P and the back surface 21Q, respectively.
  • a fillet portion F for connecting the stationary blade main body 21 and the ring inner peripheral surface 24B is provided between the stationary blade main body 21 and the ring inner peripheral surface 24B.
  • the fillet portion F is curved in a direction away from the stationary blade main body 21 from the stationary blade main body 21 side toward the ring inner peripheral surface 24B side. That is, the fillet portion F has a curved surface shape that becomes concave toward the stationary blade main body 21, so that the stationary blade main body 21 and the ring inner peripheral surface 24B are smoothly connected.
  • the ring groove R3 described above is formed on the inner peripheral surface 24B side of the ring with respect to the fillet portion F. In other words, the ring groove R3 is formed in the vicinity thereof so as not to overlap with the fillet portion F and to trace the extension of the fillet portion F.
  • the droplets generated on the ventral surface 21P or the back surface 21Q gather toward the grooves R1 and R2 to form a liquid vein.
  • This liquid vein flows along the grooves R1 and R2 when exposed to the flow of steam.
  • the liquid vein that has passed through the groove R1 then flows into the ring groove R3.
  • the liquid vein that has flowed into the ring groove R3 is captured by the gap S2 as the slit S and discharged to the outside. This makes it possible to reduce the possibility of droplets or liquid film growing on the surface (ventral surface 21P or back surface 21Q) of the stationary blade main body 21.
  • the ring groove R3 is formed on the inner peripheral surface 24B side of the ring with respect to the fillet portion F. That is, the ring groove R3 can be formed without changing the shape of the fillet portion F. As a result, the liquid vein can be stably guided while suppressing the decrease in the strength of the fillet portion F.
  • the starting point of the ring groove R3 is provided at a position biased toward the front edge 21F side on the ventral surface 21P.
  • the liquid vein is guided to the ring groove R3 at an early stage before growth at a position biased toward the front edge 21F side. Can be done.
  • the third embodiment of the present disclosure will be described with reference to FIG.
  • the same components as those in the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the hydrophilic concavo-convex region W described in the first embodiment is provided on the stationary blade main body 21, and the ring groove R3 described in the second embodiment is provided on the outer peripheral ring 24.
  • the configurations of the first embodiment and the second embodiment are used in combination. According to such a configuration, any of the effects described in each embodiment can be obtained. As a result, it becomes possible to further reduce the growth of the liquid film on the stationary blade 20.
  • the portion of the inner peripheral surface (ring inner peripheral surface 24B) of the outer peripheral ring 24 including the downstream end portion is from the upstream side to the downstream side as shown in FIG. It may be curved outward in the radial direction toward the direction of. According to such a configuration, the droplet can be smoothly guided along the downstream end of the ring inner peripheral surface 24B curved outward in the radial direction to reach the gap S2 as the slit S.
  • the droplet is scattered from the curved portion and is not captured by the slit S2, it is not on the tip side of the turbine rotor blade 31 rotating at a high peripheral speed with respect to the vehicle interior, but on the upstream side of the shroud which is a stationary member. Since the droplets collide with the surface 34A, the possibility of causing erosion or the like on the turbine blade 31 can be reduced.
  • an extension line (broken line L in FIG. 10) extending the inner peripheral surface (ring inner peripheral surface 24B) of the outer peripheral ring 24 to the downstream side is It may intersect the turbine blade 31 located on the downstream side with the shroud upstream surface 34A facing from the radial direction.
  • the turbine stationary blade 21 has a ventral surface 21P facing the upstream side and a back surface 21Q facing the downstream side while extending in the radial direction intersecting the steam flow direction. At least on the ventral surface 21P, a plurality of grooves R1 and R2 extending outward in the radial direction are formed toward the downstream side, and a depth intersecting the ventral surface 21P is formed around the grooves R1 and R2 on the ventral surface 21P. By denting in the direction, a hydrophilic concavo-convex region W having a larger liquid film tolerance than the ventral surface 21P is formed, and the downstream ends of the plurality of grooves R1 and R2 capture the liquefied component of the vapor. It is connected to the slit S to be used.
  • the droplets generated on the ventral surface 21P or the back surface 21Q gather toward the grooves R1 and R2 to form a liquid vein.
  • This liquid vein flows along the grooves R1 and R2 when exposed to the flow of steam.
  • the liquid veins that have passed through the grooves R1 and R2 are then captured by the slit S and discharged to the outside.
  • the hydrophilic uneven region W is formed around the grooves R1 and R2.
  • the thickness of the liquid film in the region can be reduced and the flow resistance can be increased.
  • the grooves R1 and R2 make it possible to capture the liquid film more stably.
  • the slit S is a hollow slit S1 formed at least on the downstream side of the ventral surface 21P and extending in the radial direction.
  • the hollow slit S1 is formed at least in the downstream portion of the ventral surface 21P.
  • the liquid film formed on the ventral surface 21P can be guided by the groove R2 and then immediately captured by the hollow slit S1.
  • the possibility that the liquid film is scattered on the downstream side can be further reduced.
  • the turbine vane 21 according to the third aspect has a plurality of the grooves R1 and R2.
  • the droplet can be captured and guided in a wider range.
  • the turbine stationary blade assembly 20 according to the fourth aspect includes the turbine stationary blade 21 according to any one of the above aspects and an outer peripheral ring provided at the radial outer end of the turbine stationary blade 21. 24.
  • a ring groove R3 is formed.
  • the droplets generated on the ventral surface 21P or the back surface 21Q gather toward the groove R1 to form a liquid vein.
  • This liquid vein flows along the groove R1 by being exposed to the flow of steam.
  • the liquid vein that has passed through the groove R1 then flows into the ring groove R3.
  • the liquid vein that has flowed into the ring groove R3 is captured by the slit S and discharged to the outside. This makes it possible to reduce the possibility of droplets or liquid film growing on the surface (ventral surface 21P or back surface 21Q) of the turbine vane 21.
  • the starting point of the ring groove R3 is provided at a position biased toward the front edge 21F side of the ventral surface 21P.
  • the liquid vein can be guided to the ring groove R3 at an early stage from a position biased toward the front edge 21F on the ventral surface 21P.
  • the turbine stationary blade assembly 20 connects the turbine stationary blade 21 and the inner peripheral surface 24B, and goes from the turbine stationary blade 21 side toward the inner peripheral surface 24B side. It further has a curved fillet portion F, and the ring groove R3 is formed on the inner peripheral surface 24B side of the fillet portion F.
  • the ring groove R3 is formed on the inner peripheral surface 24B side of the fillet portion F. That is, the ring groove R3 can be formed without changing the shape of the fillet portion F. As a result, the liquid vein can be stably guided while suppressing the decrease in the strength of the fillet portion F.
  • the slit S is a hollow slit S1 formed at least on the downstream side of the ventral surface 21P and extending in the radial direction.
  • the hollow slit S1 is formed at least in the downstream portion of the ventral surface 21P.
  • the liquid film formed on the ventral surface 21P can be guided by the groove R2 and then immediately captured by the hollow slit S1.
  • the possibility that the liquid film is scattered on the downstream side can be further reduced.
  • the turbine stationary blade assembly 20 extends in the radial direction intersecting the steam flow direction, and has a ventral surface 21P facing the upstream side in the flow direction and a back surface 21Q facing the downstream side.
  • a turbine stationary blade assembly 20 including a turbine stationary blade 21 and an outer peripheral ring 24 provided at the radial outer end of the turbine stationary blade 21, at least downstream of the ventral surface 21P.
  • a plurality of grooves R1 extending outward in the radial direction are formed toward the outside, and the inner peripheral surface 24B of the outer peripheral ring 24 is connected to the groove R1 and toward the downstream side along the inner peripheral surface 24B.
  • An extending ring groove R3 is formed, and downstream ends of the plurality of grooves R1 are connected to a slit S that captures a liquefied component of the vapor.
  • the droplets generated on the ventral surface 21P or the back surface 21Q gather toward the groove R1 to form a liquid vein.
  • This liquid vein flows along the groove R1 by being exposed to the flow of steam.
  • the liquid vein that has passed through the groove R1 then flows into the ring groove R3.
  • the liquid vein that has flowed into the ring groove R3 is captured by the slit S and discharged to the outside. This makes it possible to reduce the possibility of droplets or liquid film growing on the surface (ventral surface 21P or back surface 21Q) of the turbine vane 21.
  • the starting point of the ring groove R3 is provided at a position biased toward the front edge 21F side of the ventral surface 21P.
  • the liquid vein can be guided to the ring groove R3 at an early stage from a position biased toward the front edge 21F on the ventral surface 21P.
  • the turbine stationary blade assembly 20 connects the turbine stationary blade 21 and the inner peripheral surface 24B, and goes from the turbine stationary blade 21 side toward the inner peripheral surface 24B side. It further has a curved fillet portion F, and the ring groove R3 is formed on the inner peripheral surface 24B side of the fillet portion F.
  • the ring groove R3 is formed on the inner peripheral surface 24B side of the fillet portion F. That is, the ring groove R3 can be formed without changing the shape of the fillet portion F. As a result, the liquid vein can be stably guided while suppressing the decrease in the strength of the fillet portion F.
  • the slit S is a hollow slit S1 formed at least on the downstream side of the ventral surface 21P and extending in the radial direction.
  • the hollow slit S1 is formed at least in the downstream portion of the ventral surface 21P.
  • the liquid film formed on the ventral surface 21P can be guided by the groove R2 and then immediately captured by the hollow slit S1.
  • the possibility that the liquid film is scattered on the downstream side can be further reduced.
  • the portion of the inner peripheral surface of the outer peripheral ring 24 including the downstream end is directed outward in the radial direction from the upstream side to the downstream side. Is curved.
  • the droplet can be smoothly guided along the inner peripheral surface 24B of the ring curved outward in the radial direction to reach the gap S2 as the slit S. Further, even when the droplet is scattered from the curved portion and is not captured by the slit S2, it is not on the tip side of the turbine rotor blade 31 rotating at a high peripheral speed with respect to the vehicle interior, but on the upstream side of the shroud which is a stationary member. Since the droplets collide with the surface 34A, the possibility of causing erosion or the like on the turbine blade 31 can be reduced.
  • an extension line L extending the inner peripheral surface (ring inner peripheral surface 24B) of the outer peripheral ring 24 to the downstream side is provided in a cross-sectional view including the axis O.
  • the turbine blade 31 located on the downstream side intersects the shroud upstream surface 34A facing from the radial direction.
  • the steam turbine 100 according to the fourteenth aspect is arranged with a gap S2 between the turbine stationary blade 21 extending in the radial direction intersecting the steam flow direction and the downstream side of the turbine stationary blade 21 in the flow direction.
  • the turbine stationary blade 31 is provided with the turbine stationary blade 21 and the turbine casing 2 that covers the turbine stationary blade 31 from the outer peripheral side, and the turbine stationary blade 21 has a ventral surface 21P facing the upstream side in the flow direction.
  • a back surface 21Q facing the downstream side, and at least on the ventral surface 21P a plurality of grooves R1 and R2 extending outward in the radial direction toward the downstream side are formed, and the grooves R1 and R2 on the ventral surface 21P are formed.
  • a hydrophilic concavo-convex region W having higher hydrophilicity than the ventral surface 21P is formed in the periphery, and the downstream ends of the plurality of grooves R1 and R2 are slits for capturing the liquefied component of the steam. It is connected to the gap S2 as S.
  • the liquid film formed on the ventral surface 21P can be guided by the groove R1 and then immediately captured by the gap S2. Since the gap S2 is a gap between the turbine blade 21 and the turbine rotor blade 30, more liquid veins can be captured as compared with the case where a slit or the like is formed only on the ventral surface 21P, for example. As a result, the possibility that the liquid film is scattered on the downstream side can be further reduced.
  • the turbine stationary blade 21 is formed at least on the downstream side of the ventral surface 21P and further has a hollow slit S1 extending in the radial direction.
  • the hollow slit S1 is formed at least in the downstream portion of the ventral surface 21P.
  • the liquid film formed on the ventral surface 21P can be guided by the groove R2 and then immediately captured by the hollow slit S1.
  • the possibility that the liquid film is scattered on the downstream side can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

タービン静翼は、蒸気の流れ方向に交差する径方向に延びるとともに、流れ方向の上流側を向く腹面、及び下流側を向く背面を有し、少なくとも腹面には、下流側に向かうに従って径方向の外側に延びる溝が複数形成され、腹面における溝の周囲には、該腹面よりも高い親水性を有する親水性凹凸領域が形成され、複数の溝の下流側の端部は、蒸気のうちの液化した成分を捕捉するスリットに接続されている。

Description

タービン静翼、タービン静翼組立体、及び蒸気タービン
 本開示は、タービン静翼、タービン静翼組立体、及び蒸気タービンに関する。本出願は、2019年12月11日に出願された日本出願特願2019-223560に基づく優先権を主張し、当該日本出願に記載された全ての記載内容を援用するものである。
 蒸気タービンは、軸線回りに回転可能な回転軸と、当該回転軸の外周面上で軸線方向に間隔をあけて配列された複数のタービン動翼段と、回転軸、及びタービン動翼段を外周側から覆うケーシングと、ケーシングの内周面上でタービン動翼段と交互に配列された複数のタービン静翼段と、を備えている。ケーシングの上流側には外部から蒸気を取り込む吸入口が形成され、下流側には排気口が形成されている。吸入口から取り込まれた高温高圧の蒸気は、タービン静翼段で流れの方向と速度を調整された後、タービン動翼段で回転軸の回転力に変換される。
 タービン内を通過する蒸気は、上流側から下流側に向かうにつれてエネルギーを失い、温度(と圧力)が低下する。そのため、最も下流側のタービン静翼段では、蒸気の一部が液化して微細な水滴として気流中に存在しており、その水滴の一部はタービン静翼の表面に付着する。この水滴は、翼面上ですぐに成長して液膜となる。液膜は、その周囲を常に高速の蒸気流に曝されているが、この液膜がさらに成長して厚みが増すと、その一部が蒸気流によってちぎれて粗大液滴の状態で飛散する。飛散した液滴は蒸気流により徐々に加速しながら下流側に流れる。大きな液滴ほど慣性力が大きく、主流蒸気に乗ってタービン動翼の間を通過することができずに、タービン動翼に衝突する。タービン動翼の周速は音速を超える場合があることから、飛散した液滴がタービン動翼に衝突した場合、その表面を侵食し、エロージョンを発生させることがある。また、液滴の衝突によってタービン動翼の回転が阻害され、制動損失が生じることもある。
 このような液滴の付着と成長を防ぐために、これまでに種々の技術が提唱されている。例えば下記特許文献1に記載された動翼では、液滴や液膜を動翼下流側に導くための案内溝、又は案内リブが翼の表面に設けられている。
特開2016-166569号公報
 ところで、タービン静翼壁面上で生じた液滴や液膜は、上記特許文献1に記載されている案内溝や案内リブの位置によらず、任意の箇所に発生する。さらに、回転しているタービン動翼では遠心力による液滴や液膜の移動が生じる一方で、静止体であるタービン静翼にはこのような外力が生じない。したがって、これら案内溝や案内リブを単に設けるだけでは、液滴や液膜を十分に案内・除去することができない虞がある。
 本開示は上記課題を解決するためになされたものであって、液膜の成長をより一層低減し、効果的に除去することが可能なタービン静翼、タービン静翼組立体、及び蒸気タービンを提供することを目的とする。
 上記課題を解決するために、本開示に係るタービン静翼は、蒸気の流れ方向に交差する径方向に延びるとともに、該流れ方向の上流側を向く腹面、及び下流側を向く背面を有し、少なくとも前記腹面には、下流側に向かうに従って前記径方向の外側に延びる溝が複数形成され、前記腹面における前記溝の周囲には、該腹面に交差する深さ方向に凹むことで前記腹面よりも液膜許容量が大きい親水性凹凸領域が形成され、前記複数の溝の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットに接続されている。
 本開示に係るタービン静翼組立体は、蒸気の流れ方向に交差する径方向に延びるとともに、該流れ方向の上流側を向く腹面、及び下流側を向く背面を有するタービン静翼と、該タービン静翼の径方向外側の端部に設けられた外周リングと、を備えるタービン静翼組立体であって、少なくとも前記腹面には、下流側に向かうに従って前記径方向の外側に延びる溝が複数形成され、前記外周リングの内周面には、前記溝に接続されるとともに、該内周面に沿って下流側に向かって延びるリング溝が形成され、前記複数の溝の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットに接続されている。
 本開示に係る蒸気タービンは、蒸気の流れ方向に交差する径方向に延びるタービン静翼と、前記流れ方向における前記タービン静翼の前記流れ方向の下流側に隙間をあけて配置されたタービン動翼と、前記タービン静翼、及び前記タービン動翼を外周側から覆うタービンケーシングと、を備え、前記タービン静翼は、前記流れ方向の上流側を向く腹面、及び下流側を向く背面を有し、少なくとも前記腹面には、下流側に向かうに従って前記径方向の外側に延びる溝が複数形成され、前記腹面における前記溝の周囲には、該腹面よりも高い親水性を有する親水性凹凸領域が形成され、前記複数の溝の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットとしての前記隙間に接続されている。
 本開示によれば、液膜の成長をより一層低減し、効果的に除去することが可能なタービン静翼、及びタービン静翼組立体を提供することができる。
本開示の第一実施形態に係る蒸気タービンの構成を示す模式図である。 本開示の第一実施形態に係るタービン静翼組立体の構成を示す図である。 本開示の第一実施形態に係る親水性凹凸領域の一例を示す斜視図である。 本開示の第二実施形態に係るタービン静翼組立体の構成を示す図である。 本開示の第二実施形態に係るタービン静翼組立体を径方向から見た断面図である。 本開示の第二実施形態に係るタービン静翼組立体を翼弦方向から見た断面図である。 本開示の第二実施形態に係るタービン静翼組立体の変形例を径方向から見た断面図である。 本開示の第二実施形態に係るタービン静翼組立体のさらなる変形例を径方向から見た断面図である。 本開示の第三実施形態に係るタービン静翼組立体の構成を示す図である。 本開示の第三実施形態に係るタービン静翼組立体の変形例を示す図である。
[第一実施形態]
(蒸気タービンの構成)
 本開示の第一実施形態に係る蒸気タービン100について、図1と図2を参照して説明する。本実施形態に係る蒸気タービン100は、軸線O方向に沿って延びる蒸気タービンロータ1と、蒸気タービンロータ1を外周側から覆う蒸気タービンケーシング2と、蒸気タービンロータ1の軸端11を軸線O回りに回転可能に支持するジャーナル軸受4A、及びスラスト軸受4Bと、を備えている。
 蒸気タービンロータ1は、軸線Oに沿って延びる回転軸3と、回転軸3の外周面に設けられた複数の動翼30を有している。動翼30は、回転軸3の周方向に一定の間隔をもって複数配列されている。軸線O方向においても、一定の間隔を持って複数の動翼30の列(動翼段)が配列されている。動翼30は、動翼本体31(タービン動翼)と、動翼シュラウド34と、を有している。動翼本体31は、蒸気タービンロータ1の外周面から径方向外側に向かって突出している。動翼本体31は、径方向から見て翼型の断面を有する。動翼本体31の先端部(径方向外側の端部)には、動翼シュラウド34が設けられている。動翼本体31の基端部(径方向内側の端部)には、プラットフォーム32が回転軸3に一体に設けられている(図2参照)。
 蒸気タービンケーシング2は、蒸気タービンロータ1を外周側から覆う略筒状をなしている。蒸気タービンケーシング2の軸線O方向一方側には、蒸気Sを取り込む蒸気供給管12が設けられている。蒸気タービンケーシング2の軸線O方向他方側には、蒸気Sを排出する蒸気排出管13が設けられている。蒸気は、蒸気タービンケーシング2の内部で、軸線O方向一方側から他方側に向かって流れる。以降の説明では、蒸気の流れる方向を単に「流れ方向」と呼ぶ。さらに、蒸気排出管13から見て蒸気供給管12が位置する側を流れ方向の上流側と呼び、蒸気供給管12から見て蒸気排出管13が位置する側を流れ方向の下流側と呼ぶ。
 蒸気タービンケーシング2の内周面には、複数の静翼20(タービン静翼組立体)の列が設けられている。静翼20は、静翼本体21(タービン静翼)と、静翼シュラウド22と、外周リング24と、を有している。静翼本体21は、外周リング24を介して蒸気タービンケーシング2の内周面に接続される羽根状の部材である。さらに、静翼本体21の先端部(径方向内側の端部)には、静翼シュラウド22が設けられている。動翼30と同様に、静翼20は内周面上で周方向及び軸線O方向に沿って複数配列される。動翼30は、隣り合う複数の静翼20の間の領域に入り込むようにして配置される。つまり、静翼20、及び動翼30は、蒸気の流れ方向に交差する方向(軸線Oに対する径方向)に延びている。
 蒸気Sは、上流側の蒸気供給管12を介して、上述のように構成された蒸気タービンケーシング2の内部に供給される。蒸気タービンケーシング2の内部を通過する中途で、蒸気Sは静翼20と動翼30とを交互に通過する。静翼20は蒸気Sの流れを整流し、整流された蒸気Sの塊が動翼30を押すことによって蒸気タービンロータ1に回転力を与える。蒸気タービンロータ1の回転力は、軸端11から取り出されて外部の機器(発電機等)の駆動に用いられる。蒸気タービンロータ1の回転に伴って、蒸気Sは下流側の蒸気排出管13を通じて後続の装置(復水器等)に向かって排出される。
 ジャーナル軸受4Aは、軸線Oに対する径方向への荷重を支持する。ジャーナル軸受4Aは、蒸気タービンロータ1の両端に1つずつ設けられている。スラスト軸受4Bは、軸線O方向への荷重を支持する。スラスト軸受4Bは、蒸気タービンロータ1の上流側の端部にのみ設けられている。
(静翼本体の構成)
 次いで、図2を参照して、静翼本体21の構成について説明する。静翼本体21は、流れ方向に交差する方向である径方向(軸線Oに対する径方向)に延びている。径方向から見た静翼本体21の断面は翼型をなしている。より詳細には、流れ方向の上流側の端縁である前縁21Fは曲面状をなしている。下流側の端縁である後縁21Rは径方向から見て周方向の寸法が次第に小さくなることでテーパ形状をなしている。前縁21Fから後縁21Rにかけて、静翼本体21は、軸線Oに対する周方向一方側から他方側に向かって緩やかに湾曲している。また、静翼本体21は、径方向内側に向かうに従って、軸線O方向の寸法が減少している。静翼本体21の径方向外側の端部には外周リング24が取り付けられている。外周リング24は、軸線Oを中心とする円環状をなしている。
 外周リング24の各面のうち、上流側を向く面はリング上流面24Aとされ、内周側を向く面はリング内周面24Bとされ、下流側を向く面はリング下流面24Cとされている。リング上流面24A、及びリング下流面24Cは、軸線Oに対する径方向に広がっている。リング上流面24Aの径方向における寸法は、リング下流面24Cの径方向における寸法よりも大きい。これにより、本実施形態では一例として、リング内周面24Bは、下流側に向かうに従って次第に径方向外側に向かうように拡径している。
 リング下流面24Cは、静翼20の下流側に隣接する動翼30の動翼シュラウド34に隙間S2をあけて対向している。動翼シュラウド34の各面のうち、上流側を向く面はシュラウド上流面34Aとされ、内周側を向く面はシュラウド内周面34Bとされ、下流側を向く面はシュラウド下流面34Cとされている。つまり、上述のリング下流面24Cは、シュラウド上流面34Aに対して隙間をあけて対向している。この隙間S2は、後述する液滴を捕捉するためのスリットSの一部である。
 静翼本体21における周方向を向く一対の面のうち、上流側を向く面は腹面21Pとされ、下流側を向く面は背面21Qとされている。これら腹面21P、及び背面21Qのうち、少なくとも腹面21Pには、複数の溝R1,R2、及び上述のスリットSの一部としての中空スリットS1が形成されている。これら溝R1,R2は、腹面21Pで生じた液滴(水滴)を捕捉し、案内するために設けられている。溝R1,R2は、いずれも腹面21Pから翼厚方向に凹むとともに、下流側に向かうに従って径方向の外側に延びている。
 このうち、溝R1の径方向外側の端部は外周リング24の内周面(リング内周面24B)まで延び、径方向内側の端部は前縁21Fまで延びていてもよい。一方で、溝R2は、前縁21Fから中空スリットS1にかけて延びている。中空スリットS1は、腹面21Pにおける下流側の端部(つまり、後縁21R)の近傍に形成され、径方向に延びるとともに翼厚方向に凹んでいる。本実施形態では、3つの溝R1と、5つの溝R2が形成されているが、これら溝R1,R2の個数は本実施形態に限定されず、設計や仕様に応じて適宜変更することが可能である。
 腹面21Pにおける溝R1,R2の周囲には、親水性凹凸領域Wが形成されている。即ち、腹面21Pは、上記親水性凹凸領域Wと、この親水性凹凸領域W以外の主腹面領域とを有している。図3に一例として断面図を示すように、この親水性凹凸領域Wは、腹面21Pに交差する深さ方向に凹む微細な多数の溝Gによって形成されている。これにより、親水性凹凸領域Wでは、未加工の腹面21P自体よりも液膜許容量が大きくなっている。なお、ここで言う「液膜許容量」とは、当該領域に対する液膜の浸透量と保持量を示す。つまり、この親水性凹凸領域Wでは、他の領域に比べて親水性が高くなっている。なお、このような親水性は、上記のような微細加工(溝Gの形成)のほか、コーティング等によっても実現可能である。また、この浸透量と保持量は、当該領域における空隙率によって決定される。なお、溝R1,R2の内面にはこのような親水加工は施されていない。ここで、一般に中空スリットS1の幅は1mmから2mm程度のミリオーダとされ、腹面21Pにおける溝R1,R2の幅は1本あたり数百μmから1mm程度のサブミリオーダとされているのに対して、微細な溝Gの幅は1本あたり数μmから数十μmとミクロンオーダとされる。
(作用効果)
 続いて、本実施形態に係る静翼20(静翼本体21)における蒸気の挙動について説明する。蒸気タービンケーシング2内を通過する蒸気は、上流側から下流側に向かうにつれて仕事をすることで温度が低下する。したがって、最も下流側のタービン静翼段では、蒸気の一部が液化し、液滴(水滴)として静翼本体21の表面に付着する。この液滴は、徐々に成長して液膜となる。液膜がさらに成長すると、その一部がちぎれて粗大液滴として飛散する。飛散した液滴は蒸気の主流に乗って下流側に流れようとするが、粗大液滴は自身に働く慣性力が大きいことから十分に主流に乗ることができずに、タービン動翼(動翼本体31)に衝突する。タービン動翼の周速は音速を超える場合があることから、飛散した液滴がタービン動翼に衝突した場合、その表面を侵食し、エロージョンを発生させることがある。また、液滴の衝突によってタービン動翼の回転が阻害され、制動損失が生じることもある。
 しかしながら、上記構成によれば、腹面21P又は背面21Qに生じた液滴は、溝R1,R2に向かって集まることで液脈を形成する。この液脈は、蒸気の流れに曝されることで、溝R1,R2に沿って流れる。溝R1,R2を通過した液脈はその後、スリットSによって捕捉され、外部に排出される。具体的には、溝R1を通過した液脈は、外周リング24の内周面(リング内周面24B)に沿って下流側に流れ、その後、外周リング24と動翼シュラウド34との間の隙間S2に流れ込む。一方で、溝R2を通過した液脈は、中空スリットS1によって流れ込む。これにより、静翼本体21の表面(腹面21P又は背面21Q)で液滴や液膜が成長する可能性を低減することができる。
 さらに、上記構成では、溝R1,R2の周囲に親水性凹凸領域Wが形成されている。当該親水性凹凸領域Wでは、上述した溝Gのような微細加工、又はコーティング処理等を施すことによって、水と壁面との張力が強くなっている。これにより、液膜は当該親水性凹凸領域Wの全体にわたって広がろうとする。つまり、当該領域における液膜の厚さを小さくすることができる。翼表面の液膜はタービン内の気流によって押し流されるが、気流は壁面近くになるほど流速が遅い。このため、厚い液膜に作用する気流よりも、薄い液膜に作用する気流は流速が遅くなる。つまり、液膜が薄いほど液膜の移動速度は遅くなる。さらに、翼表面に親水性凹凸領域Wを加工することで、同じ面積の翼表面であっても、液膜と接触する表面積がより大きくなり、翼表面と液膜との間の摩擦が大きくなる。これにより、流動抵抗を大きくすることができる。その結果、液膜が溝R1,R2を乗り越えて下流側に流れ去ってしまう可能性を低減することができる。言い換えれば、溝R1,R2によって液膜をさらに安定的に捕捉することが可能となる。
 上記構成によれば、スリットSとしての中空スリットS1が少なくとも腹面21Pにおける下流側の部分に形成されている。これにより、腹面21Pで生じた液膜を溝R2によって案内した後、直ちに当該中空スリットS1によって捕捉することができる。その結果、液膜が下流側に飛散する可能性をさらに低減することができる。
 上記構成によれば、腹面21Pで生じた液膜を溝R1によって案内した後、直ちにスリットSとしての隙間S2によって捕捉することができる。隙間S2は、静翼20と動翼30との間の間隙であることから、中空スリットS1のみを静翼本体21に形成した場合に比べて、より多くの液脈を捕捉することができる。これにより、液膜が下流側に飛散する可能性をさらに低減することができる。
 また、上記構成によれば、それぞれ複数の溝R1,R2が形成されていることによって、より広い範囲で液滴を捕捉・案内することができる。
 以上、本開示の第一実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて上記の構成に種々の変更や改修を施すことが可能である。
[第二実施形態]
 続いて、本開示の第二実施形態について、図4から図6を参照して説明する。なお、上記の第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図4に示すように、本実施形態では、静翼本体21に上述の親水性凹凸領域Wが形成されていない一方で、溝R1,R2に加えて外周リング24に他のリング溝R3が形成されている。
 リング溝R3は、リング内周面24B上で腹面21Pの形状に沿って下流側に延びるとともに、腹面21Pに形成された溝R1の径方向外側の端部に接続されている。図4と図5の例では、リング溝R3の始点は腹面21Pにおける前縁21F側に偏った位置に設けられている。また、図6に示すように、リング溝R3は断面視で矩形状をなしている。なお、リング溝R3の断面形状は矩形に限られず、角部を有しない凹曲面形状であってもよい(この場合、矩形に比べて局所応力の集中を抑制することができる)。このリング溝R3は、図7に示すように、腹面21P側のみならず、溝R1,R2とともに背面21Q側に設けられていてもよい。なお、図7の例ではリング溝R3の下流側端部が内周面24Bの下流端(スリットS2)に到達していないが、これは、後述の[変形例]に記載のように、外周リング24の内周面(リング内周面24B)における下流側の端部を含む部分が、図10に示すように上流側から下流側に向かうに従って径方向外側に向かって湾曲していることに起因する。また、図8に示すように、リング溝R3は、腹面21Pと背面21Qの両側にそれぞれ設けられていてもよい。
 ここで、図5又は図6に示すように、静翼本体21とリング内周面24Bとの間には、これら静翼本体21とリング内周面24Bとを接続するフィレット部Fが設けられている。フィレット部Fは、静翼本体21側からリング内周面24B側に向かうに従って、静翼本体21から離間する方向に湾曲している。つまり、フィレット部Fは、静翼本体21側に向かって凹となる曲面状をなすことで、静翼本体21とリング内周面24Bとを滑らかに接続している。上述のリング溝R3は、このフィレット部Fよりもリング内周面24B側に形成されている。言い換えれば、リング溝R3は、フィレット部Fと重複しないように、かつ当該フィレット部Fの外延をなぞるようにしてその近傍に形成されている。
 上記構成によれば、腹面21P又は背面21Qに生じた液滴は、溝R1,R2に向かって集まることで液脈を形成する。この液脈は、蒸気の流れに曝されることで、溝R1,R2に沿って流れる。このうち、溝R1を通過した液脈はその後リング溝R3に流れ込む。リング溝R3に流れ込んだ液脈は、スリットSとしての隙間S2に捕捉されて外部に排出される。これにより、静翼本体21の表面(腹面21P又は背面21Q)で液滴や液膜が成長する可能性を低減することができる。
 さらに、上記構成によれば、リング溝R3がフィレット部Fよりもリング内周面24B側に形成されている。つまり、当該フィレット部Fの形状を変更することなく、リング溝R3を形成することができる。これにより、フィレット部Fの強度低下を抑えつつ、液脈を安定的に案内することができる。
 また、上記構成によれば、リング溝R3の始点は腹面21Pにおける前縁21F側に偏った位置に設けられている。これにより、例えば当該始点が後縁21R側に偏って設けられている場合に比べて、前縁21F側に偏った位置で、成長する前の段階で液脈を早期にリング溝R3に導くことができる。
 以上、本開示の第二実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて上記の構成に種々の変更や改修を施すことが可能である。
[第三実施形態]
 次に、本開示の第三実施形態について、図9を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、第一実施形態で説明した親水性凹凸領域Wが静翼本体21に設けられているとともに、第二実施形態で説明したリング溝R3が外周リング24に形成されている。つまり、本実施形態では、第一実施形態と第二実施形態の各構成を組み合わせて用いている。このような構成によれば、各実施形態で説明した作用効果をいずれも得ることができる。その結果、静翼20における液膜の成長をより一層低減することが可能となる。
[変形例]
 上述の第二実施形態、又は第三実施形態において、外周リング24の内周面(リング内周面24B)における下流側の端部を含む部分は、図10に示すように上流側から下流側に向かうに従って径方向外側に向かって湾曲していてもよい。このような構成によれば、径方向外側に向かって湾曲しているリング内周面24Bの下流端に沿って液滴を円滑に案内し、スリットSとしての隙間S2に到達させることができる。また、液滴が湾曲部から飛散してスリットS2に捕捉されなかった場合も、車室に対して高周速で回転しているタービン動翼31の先端側ではなく、静止部材であるシュラウド上流面34Aに液滴が衝突するため、タービン動翼31にエロージョン等を生じる可能性を低減することができる。
 また、上述の第三実施形態において、軸線Oを含む断面視で、外周リング24の内周面(リング内周面24B)を下流側に延長した延長線(図10中の破線L)が、下流側に位置するタービン動翼31と径方向から対向するシュラウド上流面34Aと交差していてもよい。このような構成によれば、リング溝R3から液滴の一部がスリットS2に捕捉されずにリング内周面24Bからタービン動翼31側に飛散した場合であっても、タービン動翼31ではなく、シュラウド上流面34Aに衝突するため、タービン動翼31にエロージョン等を生じる可能性をさらに低減することができる。
[付記]
 各実施形態に記載のタービン静翼、及びタービン静翼組立体は、例えば以下のように把握される。
(1)第1の態様に係るタービン静翼21は、蒸気の流れ方向に交差する径方向に延びるとともに、該流れ方向の上流側を向く腹面21P、及び下流側を向く背面21Qを有し、少なくとも前記腹面21Pには、下流側に向かうに従って前記径方向の外側に延びる溝R1,R2が複数形成され、前記腹面21Pにおける前記溝R1,R2の周囲には、該腹面21Pに交差する深さ方向に凹むことで前記腹面21Pよりも液膜許容量が大きい親水性凹凸領域Wが形成され、前記複数の溝R1,R2の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットSに接続されている。
 上記構成によれば、腹面21P又は背面21Qに生じた液滴は、溝R1,R2に向かって集まることで液脈を形成する。この液脈は、蒸気の流れに曝されることで、溝R1,R2に沿って流れる。溝R1,R2を通過した液脈はその後、スリットSによって捕捉され、外部に排出される。これにより、タービン静翼21の表面(腹面21P又は背面21Q)で液滴や液膜が成長する可能性を低減することができる。
 さらに、上記構成では、溝R1,R2の周囲に親水性凹凸領域Wが形成されている。これにより、当該領域における液膜の厚さを小さくすることができるとともに、流動抵抗を大きくすることができる。その結果、液膜が溝R1,R2を乗り越えて下流側に流れ去ってしまう可能性を低減することができる。言い換えれば、溝R1,R2によって液膜をさらに安定的に捕捉することが可能となる。
(2)第2の態様に係るタービン静翼21では、前記スリットSは、少なくとも前記腹面21Pにおける下流側に形成され、前記径方向に延びる中空スリットS1である。
 上記構成によれば、中空スリットS1が少なくとも腹面21Pにおける下流側の部分に形成されている。これにより、腹面21Pで生じた液膜を溝R2によって案内した後、直ちに当該中空スリットS1によって捕捉することができる。その結果、液膜が下流側に飛散する可能性をさらに低減することができる。
(3)第3の態様に係るタービン静翼21は、複数の前記溝R1,R2を有する。
 上記構成によれば、複数の溝R1,R2が形成されていることによって、より広い範囲で液滴を捕捉・案内することができる。
(4)第4の態様に係るタービン静翼組立体20は、上記いずれか一の態様に係るタービン静翼21と、該タービン静翼21の前記径方向外側の端部に設けられた外周リング24と、を備えるタービン静翼組立体20であって、前記外周リング24の内周面24Bには、前記溝R1に接続されるとともに、該内周面24Bに沿って下流側に向かって延びるリング溝R3が形成されている。
 上記構成によれば、腹面21P又は背面21Qに生じた液滴は、溝R1に向かって集まることで液脈を形成する。この液脈は、蒸気の流れに曝されることで、溝R1に沿って流れる。溝R1を通過した液脈はその後リング溝R3に流れ込む。リング溝R3に流れ込んだ液脈は、スリットSに捕捉されて外部に排出される。これにより、タービン静翼21の表面(腹面21P又は背面21Q)で液滴や液膜が成長する可能性を低減することができる。
(5)第5の態様に係るタービン静翼組立体20では、前記リング溝R3の始点は前記腹面21Pにおける前縁21F側に偏った位置に設けられている。
 上記構成によれば、腹面21Pにおける前縁21F側に偏った位置から液脈を早期にリング溝R3に導くことができる。
(6)第6の態様に係るタービン静翼組立体20は、前記タービン静翼21と前記内周面24Bとを接続するとともに、該タービン静翼21側から該内周面24B側に向かうに従って湾曲しているフィレット部Fをさらに有し、前記リング溝R3は、該フィレット部Fよりも前記内周面24B側に形成されている。
 上記構成によれば、リング溝R3がフィレット部Fよりも内周面24B側に形成されている。つまり、当該フィレット部Fの形状を変更することなく、リング溝R3を形成することができる。これにより、フィレット部Fの強度低下を抑えつつ、液脈を安定的に案内することができる。
(7)第7の態様に係るタービン静翼21では、前記スリットSは、少なくとも前記腹面21Pにおける下流側に形成され、前記径方向に延びる中空スリットS1である。
 上記構成によれば、中空スリットS1が少なくとも腹面21Pにおける下流側の部分に形成されている。これにより、腹面21Pで生じた液膜を溝R2によって案内した後、直ちに当該中空スリットS1によって捕捉することができる。その結果、液膜が下流側に飛散する可能性をさらに低減することができる。
(8)第8の態様に係るタービン静翼組立体20は、蒸気の流れ方向に交差する径方向に延びるとともに、該流れ方向の上流側を向く腹面21P、及び下流側を向く背面21Qを有するタービン静翼21と、該タービン静翼21の前記径方向外側の端部に設けられた外周リング24と、を備えるタービン静翼組立体20であって、少なくとも前記腹面21Pには、下流側に向かうに従って前記径方向の外側に延びる溝R1が複数形成され、前記外周リング24の内周面24Bには、前記溝R1に接続されるとともに、該内周面24Bに沿って下流側に向かって延びるリング溝R3が形成され、前記複数の溝R1の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットSに接続されている。
 上記構成によれば、腹面21P又は背面21Qに生じた液滴は、溝R1に向かって集まることで液脈を形成する。この液脈は、蒸気の流れに曝されることで、溝R1に沿って流れる。溝R1を通過した液脈はその後リング溝R3に流れ込む。リング溝R3に流れ込んだ液脈は、スリットSに捕捉されて外部に排出される。これにより、タービン静翼21の表面(腹面21P又は背面21Q)で液滴や液膜が成長する可能性を低減することができる。
(9)第9の態様に係るタービン静翼組立体20では、前記リング溝R3の始点は前記腹面21Pにおける前縁21F側に偏った位置に設けられている。
 上記構成によれば、腹面21Pにおける前縁21F側に偏った位置から液脈を早期にリング溝R3に導くことができる。
(10)第10の態様に係るタービン静翼組立体20は、前記タービン静翼21と前記内周面24Bとを接続するとともに、該タービン静翼21側から該内周面24B側に向かうに従って湾曲しているフィレット部Fをさらに有し、前記リング溝R3は、該フィレット部Fよりも前記内周面24B側に形成されている。
 上記構成によれば、リング溝R3がフィレット部Fよりも内周面24B側に形成されている。つまり、当該フィレット部Fの形状を変更することなく、リング溝R3を形成することができる。これにより、フィレット部Fの強度低下を抑えつつ、液脈を安定的に案内することができる。
(11)第11の態様に係るタービン静翼組立体20では、前記スリットSは、少なくとも前記腹面21Pにおける下流側に形成され、前記径方向に延びる中空スリットS1である。
 上記構成によれば、中空スリットS1が少なくとも腹面21Pにおける下流側の部分に形成されている。これにより、腹面21Pで生じた液膜を溝R2によって案内した後、直ちに当該中空スリットS1によって捕捉することができる。その結果、液膜が下流側に飛散する可能性をさらに低減することができる。
(12)第12の態様に係るタービン静翼組立体20では、前記外周リング24の内周面における下流側の端部を含む部分は、上流側から下流側に向かうに従って前記径方向外側に向かって湾曲している。
 上記構成によれば、径方向外側に向かって湾曲しているリング内周面24Bに沿って液滴を円滑に案内し、スリットSとしての隙間S2に到達させることができる。また、液滴が湾曲部から飛散してスリットS2に捕捉されなかった場合も、車室に対して高周速で回転しているタービン動翼31の先端側ではなく、静止部材であるシュラウド上流面34Aに液滴が衝突するため、タービン動翼31にエロージョン等を生じる可能性を低減することができる。
(13)第13の態様に係るタービン静翼組立体20では、軸線Oを含む断面視で、前記外周リング24の内周面(リング内周面24B)を下流側に延長した延長線Lが、下流側に位置するタービン動翼31と前記径方向から対向するシュラウド上流面34Aと交差している。
 上記構成によれば、リング溝R3から液滴の一部がスリットS2に捕捉されずにリング内周面24Bからタービン動翼31側に飛散した場合であっても、タービン動翼31ではなく、シュラウド上流面34Aに衝突するため、タービン動翼31にエロージョン等を生じる可能性をさらに低減することができる。
(14)第14の態様に係る蒸気タービン100は、蒸気の流れ方向に交差する径方向に延びるタービン静翼21と、前記流れ方向における前記タービン静翼21の下流側に隙間S2をあけて配置されたタービン動翼31と、前記タービン静翼21、及び前記タービン動翼31を外周側から覆うタービンケーシング2と、を備え、前記タービン静翼21は、前記流れ方向の上流側を向く腹面21P、及び下流側を向く背面21Qを有し、少なくとも前記腹面21Pには、下流側に向かうに従って前記径方向の外側に延びる溝R1,R2が複数形成され、前記腹面21Pにおける前記溝R1,R2の周囲には、該腹面21Pよりも高い親水性を有する親水性凹凸領域Wが形成され、前記複数の溝R1,R2の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットSとしての前記隙間S2に接続されている。
 上記構成によれば、腹面21Pで生じた液膜を溝R1によって案内した後、直ちに当該隙間S2によって捕捉することができる。隙間S2は、タービン静翼21とタービン動翼30との間の間隙であることから、例えば腹面21Pのみにスリット等を形成した場合に比べて、より多くの液脈を捕捉することができる。これにより、液膜が下流側に飛散する可能性をさらに低減することができる。
(15)第15の態様に係る蒸気タービン100では、前記タービン静翼21は、少なくとも前記腹面21Pにおける下流側に形成され、前記径方向に延びる中空スリットS1をさらに有する。
 上記構成によれば、中空スリットS1が少なくとも腹面21Pにおける下流側の部分に形成されている。これにより、腹面21Pで生じた液膜を溝R2によって案内した後、直ちに当該中空スリットS1によって捕捉することができる。その結果、液膜が下流側に飛散する可能性をさらに低減することができる。
 本開示によれば、液膜の成長をより一層低減し、効果的に除去することが可能なタービン静翼、及びタービン静翼組立体を提供することができる。
100 蒸気タービン
1 蒸気タービンロータ
2 蒸気タービンケーシング
3 回転軸
4A ジャーナル軸受
4B スラスト軸受
11 軸端
12 蒸気供給管
13 蒸気排出管
20 静翼
21 静翼本体
21F 前縁
21P 腹面
21Q 背面
21R 後縁
22 静翼シュラウド
24 外周リング
24A リング上流面
24B リング内周面
24C リング下流面
30 動翼
31 動翼本体
32 プラットフォーム
34 動翼シュラウド
34A シュラウド上流面
34B シュラウド内周面
34C シュラウド下流面
F フィレット部
O 軸線
R1,R2 溝
R3 リング溝
S スリット
S1 中空スリット
S2 隙間
W 親水性凹凸領域

Claims (15)

  1.  蒸気の流れ方向に交差する径方向に延びるとともに、該流れ方向の上流側を向く腹面、及び下流側を向く背面を有し、
     少なくとも前記腹面には、下流側に向かうに従って前記径方向の外側に延びる溝が複数形成され、
     前記腹面における前記溝の周囲には、該腹面よりも高い親水性を有する親水性凹凸領域が形成され、
     前記複数の溝の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットに接続されているタービン静翼。
  2.  前記スリットは、少なくとも前記腹面における下流側に形成され、前記径方向に延びる中空スリットである請求項1に記載のタービン静翼。
  3.  複数の前記溝を有する請求項1又は2に記載のタービン静翼。
  4.  請求項1から3のいずれか一項に記載のタービン静翼と、
     該タービン静翼の前記径方向外側の端部に設けられた外周リングと、
    を備えるタービン翼組立体であって、
     前記外周リングの内周面には、前記溝に接続されるとともに、該内周面に沿って下流側に向かって延びるリング溝が形成されているタービン静翼組立体。
  5.  前記リング溝の始点は前記腹面における前縁側に偏った位置に設けられている請求項4に記載のタービン静翼組立体。
  6.  前記タービン静翼と前記内周面とを接続するとともに、該タービン静翼側から該内周面側に向かうに従って湾曲しているフィレット部をさらに有し、
     前記リング溝は、該フィレット部よりも前記内周面側に形成されている請求項4又は5に記載のタービン静翼組立体。
  7.  前記スリットは、少なくとも前記腹面における下流側に形成され、前記径方向に延びる中空スリットである請求項4から6のいずれか一項に記載のタービン静翼組立体。
  8.  蒸気の流れ方向に交差する径方向に延びるとともに、該流れ方向の上流側を向く腹面、及び下流側を向く背面を有するタービン静翼と、
     該タービン静翼の前記径方向外側の端部に設けられた外周リングと、
    を備えるタービン静翼組立体であって、
     少なくとも前記腹面には、下流側に向かうに従って前記径方向の外側に延びる溝が複数形成され、
     前記外周リングの内周面には、前記溝に接続されるとともに、該内周面に沿って下流側に向かって延びるリング溝が形成され、
     前記複数の溝の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットに接続されているタービン静翼組立体。
  9.  前記リング溝の始点は前記腹面における前縁側に偏った位置に設けられている請求項8に記載のタービン静翼組立体。
  10.  前記タービン静翼と前記内周面とを接続するとともに、該タービン静翼側から該内周面側に向かうに従って湾曲しているフィレット部をさらに有し、
     前記リング溝は、該フィレット部よりも前記内周面側に形成されている請求項8又は9に記載のタービン静翼組立体。
  11.  前記スリットは、少なくとも前記腹面における下流側に形成され、前記径方向に延びる中空スリットである請求項8から10のいずれか一項に記載のタービン静翼組立体。
  12.  前記外周リングの内周面における下流側の端部を含む部分は、上流側から下流側に向かうに従って前記径方向外側に向かって湾曲している請求項4から11のいずれか一項に記載のタービン静翼組立体。
  13.  軸線を含む断面視で、前記外周リングの内周面を下流側に延長した延長線が、下流側に位置するタービン動翼と前記径方向から対向するシュラウド上流面と交差している請求項4から12のいずれか一項に記載のタービン静翼組立体。
  14.  蒸気の流れ方向に交差する径方向に延びるタービン静翼と、
     前記流れ方向における前記タービン静翼の下流側に隙間をあけて配置されたタービン動翼と、
     前記タービン静翼、及び前記タービン動翼を外周側から覆うタービンケーシングと、を備え、
     前記タービン静翼は、前記流れ方向の上流側を向く腹面、及び下流側を向く背面を有し、
     少なくとも前記腹面には、下流側に向かうに従って前記径方向の外側に延びる溝が複数形成され、
     前記腹面における前記溝の周囲には、該腹面よりも高い親水性を有する親水性凹凸領域が形成され、
     前記複数の溝の下流側の端部は、前記蒸気のうちの液化した成分を捕捉するスリットとしての前記隙間に接続されている蒸気タービン。
  15.  前記タービン静翼は、少なくとも前記腹面における下流側に形成され、前記径方向に延びる中空スリットをさらに有する請求項14に記載の蒸気タービン。
PCT/JP2020/046349 2019-12-11 2020-12-11 タービン静翼、タービン静翼組立体、及び蒸気タービン WO2021117883A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227013250A KR20220062650A (ko) 2019-12-11 2020-12-11 터빈 정익, 터빈 정익 조립체, 및 증기 터빈
EP20900122.1A EP4036380B1 (en) 2019-12-11 2020-12-11 Turbine stator vane assembly and steam turbine
US17/771,589 US11773753B2 (en) 2019-12-11 2020-12-11 Turbine stator vane, turbine stator vane assembly, and steam turbine
JP2021564067A JP7292421B2 (ja) 2019-12-11 2020-12-11 タービン静翼、タービン静翼組立体、及び蒸気タービン
CN202080074515.XA CN114651113A (zh) 2019-12-11 2020-12-11 涡轮静叶片、涡轮静叶片组件及蒸汽涡轮

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019223560 2019-12-11
JP2019-223560 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021117883A1 true WO2021117883A1 (ja) 2021-06-17

Family

ID=76330029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046349 WO2021117883A1 (ja) 2019-12-11 2020-12-11 タービン静翼、タービン静翼組立体、及び蒸気タービン

Country Status (6)

Country Link
US (1) US11773753B2 (ja)
EP (1) EP4036380B1 (ja)
JP (1) JP7292421B2 (ja)
KR (1) KR20220062650A (ja)
CN (1) CN114651113A (ja)
WO (1) WO2021117883A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220154586A1 (en) * 2019-02-27 2022-05-19 Mitsubishi Power, Ltd. Turbine stator blade and steam turbine
US11352908B1 (en) * 2019-02-27 2022-06-07 Mitsubishi Heavy Industries, Ltd. Turbine stator blade and steam turbine
US20220381157A1 (en) * 2019-12-11 2022-12-01 Mitsubishi Heavy Industries, Ltd. Turbine stator vane, turbine stator vane assembly, and steam turbine
EP4212705A4 (en) * 2021-06-28 2023-11-29 Mitsubishi Heavy Industries, Ltd. TURBINE AND STEAM TURBINE STATOR BLADE
WO2024101217A1 (ja) * 2022-11-11 2024-05-16 三菱重工業株式会社 蒸気タービン用翼、蒸気タービン、及び蒸気タービン用翼の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190803U (ja) * 1986-05-23 1987-12-04
JPS6480705A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Stationary blade construction for steam turbine
JPH0495604A (ja) * 1990-08-10 1992-03-27 Katsumi Ikeda 構造体の施工方法
JPH0925803A (ja) * 1995-05-11 1997-01-28 Mitsubishi Heavy Ind Ltd 蒸気タービンのドレン除去装置
JPH10299410A (ja) * 1997-04-22 1998-11-10 Hitachi Ltd 蒸気タービンの湿分排出構造
JP2007309235A (ja) * 2006-05-19 2007-11-29 Toshiba Corp タービン翼
JP2015010482A (ja) * 2013-06-27 2015-01-19 株式会社東芝 蒸気タービン
JP2015081601A (ja) * 2013-10-23 2015-04-27 ゼネラル・エレクトリック・カンパニイ ガスタービンノズルの後縁フィレット
JP2016166569A (ja) 2015-03-09 2016-09-15 株式会社東芝 蒸気タービン
JP2017106451A (ja) * 2015-12-11 2017-06-15 ゼネラル・エレクトリック・カンパニイ 蒸気タービン、蒸気タービンノズル、並びに蒸気タービンで水分を管理する方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1829674A (en) * 1928-12-08 1931-10-27 Gen Electric Elastic fluid turbine and the like
JPS62190803A (ja) 1986-02-18 1987-08-21 松下電器産業株式会社 電圧非直線性素子の製造方法
JPS63183205A (ja) 1987-01-23 1988-07-28 Hitachi Ltd タ−ボ機械の動翼浸食防止装置
JPH0495604U (ja) * 1991-01-18 1992-08-19
JP2000145404A (ja) * 1998-11-10 2000-05-26 Hitachi Ltd 蒸気タービンの湿分飛散防止構造
JP4507877B2 (ja) * 2004-12-27 2010-07-21 株式会社日立製作所 蒸気タービン
CN101154395B (zh) * 2005-02-16 2012-07-04 三菱电机株式会社 光盘和光盘装置
JP2007023895A (ja) * 2005-07-15 2007-02-01 Toshiba Corp 蒸気タービン、タービンノズルダイアフラム、及びこれらに用いられるノズル翼、並びにその製造方法
JP4886271B2 (ja) * 2005-10-31 2012-02-29 株式会社東芝 蒸気タービンおよびその親水性コーティング材料
US8206095B2 (en) * 2008-11-19 2012-06-26 Alstom Technology Ltd Compound variable elliptical airfoil fillet
JP2013155725A (ja) 2012-02-01 2013-08-15 Hitachi Ltd 蒸気タービンおよび蒸気タービンの静翼
JP5919123B2 (ja) * 2012-07-30 2016-05-18 三菱日立パワーシステムズ株式会社 蒸気タービン、および蒸気タービンの静翼
JP5968173B2 (ja) * 2012-09-14 2016-08-10 三菱日立パワーシステムズ株式会社 蒸気タービン静翼及び蒸気タービン
JP5936992B2 (ja) * 2012-11-06 2016-06-22 株式会社東芝 蒸気タービン
JP6230383B2 (ja) * 2013-11-21 2017-11-15 三菱日立パワーシステムズ株式会社 蒸気タービンの静翼と蒸気タービン
JP6480705B2 (ja) * 2014-10-30 2019-03-13 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP6393178B2 (ja) * 2014-12-15 2018-09-19 三菱日立パワーシステムズ株式会社 蒸気タービン静翼
JP2017020443A (ja) 2015-07-13 2017-01-26 株式会社東芝 蒸気タービンのノズルおよびこのノズルを具備する蒸気タービン
JP7179652B2 (ja) * 2019-02-27 2022-11-29 三菱重工業株式会社 タービン静翼、及び蒸気タービン
JP7179651B2 (ja) * 2019-02-27 2022-11-29 三菱重工業株式会社 タービン静翼、及び蒸気タービン
JP7378970B2 (ja) * 2019-06-10 2023-11-14 三菱重工業株式会社 蒸気タービン静翼、蒸気タービンおよび蒸気タービン静翼の製造方法
JP7293011B2 (ja) * 2019-07-10 2023-06-19 三菱重工業株式会社 蒸気タービン用静翼、蒸気タービン及び蒸気タービン用静翼の加熱方法
EP4036380B1 (en) * 2019-12-11 2023-08-30 Mitsubishi Heavy Industries, Ltd. Turbine stator vane assembly and steam turbine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190803U (ja) * 1986-05-23 1987-12-04
JPS6480705A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Stationary blade construction for steam turbine
JPH0495604A (ja) * 1990-08-10 1992-03-27 Katsumi Ikeda 構造体の施工方法
JPH0925803A (ja) * 1995-05-11 1997-01-28 Mitsubishi Heavy Ind Ltd 蒸気タービンのドレン除去装置
JPH10299410A (ja) * 1997-04-22 1998-11-10 Hitachi Ltd 蒸気タービンの湿分排出構造
JP2007309235A (ja) * 2006-05-19 2007-11-29 Toshiba Corp タービン翼
JP2015010482A (ja) * 2013-06-27 2015-01-19 株式会社東芝 蒸気タービン
JP2015081601A (ja) * 2013-10-23 2015-04-27 ゼネラル・エレクトリック・カンパニイ ガスタービンノズルの後縁フィレット
JP2016166569A (ja) 2015-03-09 2016-09-15 株式会社東芝 蒸気タービン
JP2017106451A (ja) * 2015-12-11 2017-06-15 ゼネラル・エレクトリック・カンパニイ 蒸気タービン、蒸気タービンノズル、並びに蒸気タービンで水分を管理する方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220154586A1 (en) * 2019-02-27 2022-05-19 Mitsubishi Power, Ltd. Turbine stator blade and steam turbine
US11352908B1 (en) * 2019-02-27 2022-06-07 Mitsubishi Heavy Industries, Ltd. Turbine stator blade and steam turbine
US11719132B2 (en) * 2019-02-27 2023-08-08 Mitsubishi Heavy Industries, Ltd. Turbine stator blade and steam turbine
US20220381157A1 (en) * 2019-12-11 2022-12-01 Mitsubishi Heavy Industries, Ltd. Turbine stator vane, turbine stator vane assembly, and steam turbine
US11773753B2 (en) * 2019-12-11 2023-10-03 Mitsubishi Heavy Industries, Ltd. Turbine stator vane, turbine stator vane assembly, and steam turbine
EP4212705A4 (en) * 2021-06-28 2023-11-29 Mitsubishi Heavy Industries, Ltd. TURBINE AND STEAM TURBINE STATOR BLADE
WO2024101217A1 (ja) * 2022-11-11 2024-05-16 三菱重工業株式会社 蒸気タービン用翼、蒸気タービン、及び蒸気タービン用翼の製造方法

Also Published As

Publication number Publication date
JPWO2021117883A1 (ja) 2021-06-17
KR20220062650A (ko) 2022-05-17
JP7292421B2 (ja) 2023-06-16
EP4036380A4 (en) 2022-11-02
EP4036380B1 (en) 2023-08-30
US11773753B2 (en) 2023-10-03
CN114651113A (zh) 2022-06-21
EP4036380A1 (en) 2022-08-03
US20220381157A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2021117883A1 (ja) タービン静翼、タービン静翼組立体、及び蒸気タービン
KR102587390B1 (ko) 터빈 정익 및 증기 터빈
KR102590708B1 (ko) 터빈 정익 및 증기 터빈
EP3208467B1 (en) Compressor rotor for supersonic flutter and/or resonant stress mitigation
EP3722556A1 (en) Turbine section having non-axisymmetric endwall contouring with aft mid-passage peak
US11821331B2 (en) Steam turbine, and blade
US11293289B2 (en) Shrouded blades with improved flutter resistance
US20180142569A1 (en) Inlet guide wheel for a turbo engine
JP7429296B2 (ja) タービン静翼、及び蒸気タービン
WO2023276385A1 (ja) タービン静翼、及び蒸気タービン
JP7264685B2 (ja) タービン静翼、及びタービン
JP7130372B2 (ja) 回転機械
US11220910B2 (en) Compressor stator
JPH10122192A (ja) 軸流圧縮機動翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227013250

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021564067

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020900122

Country of ref document: EP

Effective date: 20220426

NENP Non-entry into the national phase

Ref country code: DE