JP6393178B2 - 蒸気タービン静翼 - Google Patents

蒸気タービン静翼 Download PDF

Info

Publication number
JP6393178B2
JP6393178B2 JP2014253390A JP2014253390A JP6393178B2 JP 6393178 B2 JP6393178 B2 JP 6393178B2 JP 2014253390 A JP2014253390 A JP 2014253390A JP 2014253390 A JP2014253390 A JP 2014253390A JP 6393178 B2 JP6393178 B2 JP 6393178B2
Authority
JP
Japan
Prior art keywords
blade
slit
stationary blade
steam turbine
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014253390A
Other languages
English (en)
Other versions
JP2016113966A (ja
JP2016113966A5 (ja
Inventor
光司 石橋
光司 石橋
晋 中野
晋 中野
健 工藤
健 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014253390A priority Critical patent/JP6393178B2/ja
Priority to CN201510917663.4A priority patent/CN105697071B/zh
Priority to US14/968,272 priority patent/US10132178B2/en
Priority to EP15200088.1A priority patent/EP3034818B1/en
Publication of JP2016113966A publication Critical patent/JP2016113966A/ja
Publication of JP2016113966A5 publication Critical patent/JP2016113966A5/ja
Application granted granted Critical
Publication of JP6393178B2 publication Critical patent/JP6393178B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/123Fluid guiding means, e.g. vanes related to the pressure side of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/124Fluid guiding means, e.g. vanes related to the suction side of a stator vane

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、蒸気タービン静翼に関する。
低圧タービンの最終段落やその1〜2段前の段落では、一般的に圧力が非常に低いため、作動流体(蒸気)は液化した微細な水滴を含む湿り蒸気の状態となっている。そして、作動流体に含まれる水滴が静翼の翼面に付着し、他の水滴と合体すると、翼面上に水膜(ドレン)が形成される。この水膜が作動流体により翼面から離脱すると、水滴に比べて遥かに大きな粗大水滴の状態で作動流体とともに流路を流下する。粗大水滴は、作動流体により多少微細化されるものの、ある程度の大きさを保ちながら流下する。ところが、粗大水滴はその慣性力により作動流体のように流路に沿って流れ方向を急激に転向することができない。そのため、粗大水滴が流れ方向の下流側の動翼に高速で衝突し、動翼表面が侵食されるエロージョンが生じたり、動翼の回転が妨げられて損失が生じたりする。
エロージョンを低減させるためには、一般的に、静翼の翼面に形成された水膜を除去することが最も効果的である。それに対し、静翼の後縁側(翼尾部)にスリットを設けて、スリットを介して翼の中空部に水膜を吸引することが提案されている(特許文献1等を参照)。
特開2014−25443号公報
特許文献1の静翼の翼尾部は間隙を介して対向するように背側板に腹側板を取り付けた構成であり、翼腹面において背側板と腹側板との間に間隙を確保することでスリットを形成している。そのため、翼腹面においてスリットを挟んで背側板と腹側板との間に段差が生じる場合がある。そうすると、段差部分において水膜の一部が翼面から離脱し、エロージョンが生じる可能性がある。
本発明は上記に鑑みてなされたもので、水膜を効果的に除去することができる蒸気タービン静翼を提供することを目的とする。
上記目的を達成するために、本発明は、内部に中空部を有する蒸気タービン静翼において、作動流体流路と前記中空部とを連通するとともに翼長方向に延在するように設けられ、コード長方向に複数並べて配置された複数のスリットと、前記複数のスリットのうちの最下流スリットに対応して前記作動流体流路側の面が翼面よりも前記中空部側に位置するように設けられ、前記最下流スリットの前記コード長方向の両側の壁面を接続する少なくとも1つの接続部とを備え、前記最下流スリットが少なくとも翼長方向の中間部からダイヤフラム外輪にかけて連続して延びる1本のスリットであることを特徴とする。
本発明によれば、翼面の水膜を効果的に除去することができる蒸気タービン静翼を提供することができる。
本発明の第1実施形態に係る蒸気タービン静翼(静翼)を適用する蒸気タービン設備の一構成例の全体構成を表す概略図である。 本発明の第1実施形態に係る静翼を備える最終段落の一構成例を表す概略図である。 図2の静翼の斜視図である。 図3の矢印IV−IV線による矢視断面図である。 図3の矢印V−V線による矢視断面図である。 図3の矢印VI−VI線による矢視断面図である。 本発明の第1実施形態に係る静翼の上面図である。 本発明の第1実施形態に係る静翼の翼腹面に形成される水膜厚さ(水膜量)を例示する図である。 比較例1の最終段落の一構成例を表す概略図である。 比較例2の最終段落の一構成例を表す概略図である。 図10の静翼の一部を拡大して表す斜視図である。 本発明の第2実施形態に係る静翼の斜視図である。 本発明の第3実施形態に係る静翼の斜視図である。 本発明の第4実施形態に係る静翼の横断面図である。 本発明の第5実施形態に係る静翼の横断面図である。
<第1実施形態>
(構成)
図1は本実施形態に係る蒸気タービン静翼(静翼)を適用する蒸気タービン設備の一構成例の全体構成を表す概略図である。
図1に示した蒸気タービン設備50は、ボイラ1、高圧タービン3、中圧タービン6、低圧タービン9、及び復水器11を備えている。
ボイラ1は化石燃料焚きボイラであって蒸気発生源の一例である。ボイラ1で化石燃料を燃焼し復水器11から供給された復水を加熱し、高温高圧の蒸気を発生させる。ボイラ1で発生した蒸気は主蒸気管2を介して高圧タービン3に導かれ、高圧タービン3を駆動する。高圧タービン3を駆動して減圧した蒸気は、高圧タービン排気管4を流下してボイラ1に導かれ、再度加熱されて再熱蒸気となる。
ボイラ1で加熱された再熱蒸気は、高温再熱蒸気管5を介して中圧タービン6に導かれて中圧タービン6を駆動する。中圧タービン6を駆動して減圧した蒸気は、中圧タービン排気管7を介して低圧タービン9に導かれ、低圧タービン9を駆動する。低圧タービン9を駆動して減圧した蒸気は、低圧タービン排気室10を介して低圧タービン直下の復水器11に導かれる。復水器11は冷却水配管(不図示)を備えており、復水器11に導かれた蒸気と冷却水配管内を流れる冷却水とを熱交換させて蒸気を復水する。復水器11で復水された復水は再びボイラ1に送られる。
高圧タービン3、中圧タービン6及び低圧タービン9は、同軸上に連結されている。また、タービンロータ12には発電機13が連結されていて、高圧タービン3、中圧タービン6及び低圧タービン9の回転動力によって発電機13が駆動し、高圧タービン3、中圧タービン6及び低圧タービン9の出力が電力として取り出される。
高圧タービン3、中圧タービン6及び低圧タービン9は、静翼と静翼に対して作動流体の流れ方向の下流側に設けられた蒸気タービン動翼(動翼)とを有するタービン段落を複数備えた軸流タービンである。複数のタービン段落はタービンロータ12に設けられていて、タービンロータ12の軸方向に配列されている。
図2は本実施形態に係る静翼を備える最終段落の一構成例を表す概略図、図3は図2の静翼の斜視図である。以下、本実施形態に係る静翼を低圧タービン9の最終段落に設けた場合について説明するが、低圧タービン9の他のタービン段落、高圧タービン3のタービン段落、又は中圧タービン6のタービン段落など、作動流体が湿り蒸気の状態となっている環境下にあるタービン段落に設けた場合も同様である。なお、以下の説明では、最終段落を流れる作動流体の流れ方向の上流側及び下流側をそれぞれ上流側及び下流側と言う。
図2に示すように、最終段落100は、静翼101、ダイアフラム外輪102、ダイアフラム内輪103、動翼104及びディスク105を備えている。
ダイアフラム内輪103は、低圧タービン9の径方向の内周側にタービンロータ12の周方向に沿って設けられた環状部材である。ダイアフラム内輪103は内部に中空部115を備えている。ダイアフラム外輪102は、低圧タービン9の径方向の外周側にタービンロータ12の周方向に沿って設けられた環状部材である。ダイアフラム外輪102も内部に中空部114を備えている。ダイアフラム外輪102の中空部114は、連通管(不図示)を介して排気室(不図示)と連通している。ダイアフラム外輪102とダイアフラム内輪103との間にタービンロータ12の周方向に沿って複数の静翼101が固設されている。ディスク105の外周部にタービンロータ12の周方向に沿って複数の動翼104が取り付けられている。他の段落と同様、最終段落100の上流側は下流側に比べ高圧になっている。
図3に示すように、静翼101は、金属板を板曲げ等により塑性変形させて成形されている。静翼101は、内部に中空部113を有している。中空部113は、ダイアフラム外輪102の中空部114及びダイアフラム内輪103の中空部115と連通している。ダイアフラム外輪102の中空部114は排気室と連通しているため、静翼101の中空部113内の圧力は作動流体流路(つまり、静翼101の外側)の圧力よりも低くなっている。
静翼101の翼腹面101Aには、スリット(上流スリット)110及びスリット(最下流スリット)111がコード長方向に間隔Dをあけて並べて配置されている。なお、図2,3は、静翼101に上流スリット110及び最下流スリット111を設けた場合を示しているが、最下流スリット111より上流側に新たにスリットを設け、静翼101に3列以上のスリットを設けても良い。
最下流スリット111は、静翼101に設けられたスリットのうち静翼101のコード長方向の最下流側に設けられたスリットである。最下流スリット111は、静翼101の翼長方向に延在するように静翼101の翼腹面101Aに連続的に形成され、作動流体流路と中空部113とを連通している。翼腹面101Aに連続的に形成するとは、翼腹面101Aに間隔を空けずに形成することを言う。最下流スリット111には、少なくとも1つの接続部112が設けられている。接続部112については後述する。
上流スリット110は、最下流スリット111に対して静翼101のコード長方向の上流側に設けられている。上流スリット110は、静翼101の翼長方向に延在するように形成され、作動流体流路と中空部113とを連通している。上流スリット110は、静翼101の翼腹面101Aに翼長方向に所定の間隔を空けて直線上に配置された複数本(図3では5本)のスリット121を備えている。静翼101の翼長方向に隣接する上流スリット110間には、翼腹面101Aと面一な不連続部116が形成されている。上述した接続部112は、不連続部116に対して翼長方向に位置をずらして設けてある。
上述のように、中空部113内の圧力は作動流体流路の圧力よりも低くなっているので、上流スリット110及び最下流スリット111において作動流体流路側の圧力は中空部113側の圧力よりも高くなっている。つまり、上流スリット110及び最下流スリット111では、入口側(作動流体流路側)と出口側(中空部113側)に圧力差が生じている。
なお、図2,3では、上流スリット110及び最下流スリット111を直線状に形成しているが、例えば、静翼101の後縁部101Bの形状に合わせて湾曲形状に形成しても良い。また、上流スリット110及び最下流スリット111を翼長方向の中間部から静翼101のダイアフラム外輪102側のみに設けているが、上流スリット110及び最下流スリット111の少なくとも一方をダイアフラム外輪102からダイアフラム内輪103まで(つまり、静翼101の翼長方向の全長に渡って)設けても良い。
上流スリット110及び最下流スリット111について詳しく説明する。以下の説明では、静翼101の翼腹面101Aに形成された水膜20を上流スリット110及び最下流スリット111を介して除去する場合について説明するが、上流スリット110及び最下流スリット111を翼背面に設け、翼背面に形成された水膜を除去する場合も同様である。
・上流スリット110及び最下流スリット111の作用
最終段落100を流れる作動流体が湿り蒸気の状態の場合、作動流体中に含まれる水滴が静翼101の翼腹面101Aに付着する。そして、翼腹面101Aに付着した水滴が他の水滴と合体することにより、図2に示すように、翼腹面101Aに水膜20が形成される。なお、図2は、翼腹面101Aに形成される水膜のうち、動翼のエロージョンの直接的な原因となり得るダイアフラム外輪102側に形成される水膜のみを示している。水膜20は作動流体との界面における圧力とせん断力との合力が作用する方向に従い、翼腹面101Aを静翼101の後縁部101B側に向かって流れていく。
図4は図3の矢印IV−IV線による矢視断面図、図5は図3の矢印V−V線による矢視断面図、図6は図3の矢印VI−VI線による矢視断面図である。
図4に示すように、矢印IV−IV線による断面は上流スリット110及び最下流スリット111を含む断面である。図4に示す断面では、上流スリット110が作動流体流路と中空部113を連通しているため、静翼101の翼腹面101Aに形成された水膜20は上流スリット110を介して翼腹面101Aから中空部113に吸引される。また、最下流スリット111が作動流体流路と中空部113を連通しているため、上流スリット110の下流側で翼腹面101Aに付着した水滴21により新たに形成された水膜20aは最下流スリット111を介して翼腹面101Aから中空部113に吸引される。中空部113内に吸引された水膜20は、ダイアフラム外輪102の中空部114等に送られ、連通管を介して排気室等に送られる。
図5に示すように、矢印V−V線による断面は上流スリット110間の不連続部116と最下流スリット111を含む断面である。図5に示す断面では、静翼101の翼腹面101Aに形成された水膜20bは上流スリット110間の不連続部116を通過し、上流スリット110の下流側で翼腹面101Aに付着した水滴21を取り込みながら翼腹面101Aを下流側に流れていく。しかしながら、図5に示す断面では、最下流スリット111が作動流体流路と中空部113を連通しているため、水膜20bは最下流スリット111を介して翼腹面101Aから中空部113に吸引され、排気室等に送られる。
図6に示すように、矢印VI−VI線による断面は上流スリット110と最下流スリット111に設けられた接続部112を含む断面である。
接続部112は、最下流スリット111に対応して作動流体流路側の面117が翼腹面101Aよりも中空部113側に位置するように最下流スリット111内に設けられている。すなわち、VI−VI線においては、翼腹面101Aから中空部113側に窪み、作動流体流路側の面117を底面とする窪み部120が翼腹面101Aに最下流スリット111に対応するように形成されている。接続部112は、最下流スリット111のコード長方向の両側の壁面、すなわち、最下流スリット111のコード長方向に対向する内面118,119を接続している。接続部112の翼長方向の両端部は最下流スリット111を介して中空部113と連通している。接続部112は、例えば、翼腹面101Aと一体に形成又は翼腹面101Aを加工して形成したものである。
接続部112の翼腹面101Aから作動流体流路側の面117までの深さ及び翼長方向の幅は限定されないが、可能な範囲で窪み部120の深さは深く、接続部112の幅は狭い方が良く、例えば、深さは翼腹面101Aの板厚の1/2以上で、幅は10mm以下が好ましい。
図6に示す断面では、上流スリット110が作動流体流路と中空部113を連通しているため、静翼101の翼腹面101Aに形成された水膜20は上流スリット110を介して翼腹面101Aから中空部113に吸引され、排気室等に送られる。
一方、図6に示す断面では、作動流体流路側の面117が翼腹面101Aよりも中空部113側に位置するように接続部112が設けられているため、上流スリット110の下流側で翼腹面101Aに付着した水滴21による水膜20cは、窪み部120に流入し、作動流体流路側の面117を翼長方向に流れ、最下流スリット111を介して中空部113に吸引され、排気室等に送られる。つまり、窪み部120で水膜20cを捕集することで、捕集した水膜20cに吸引作用が働く。
・上流スリット110及び最下流スリット111を設ける位置
図7は本実施形態に係る静翼101の上面図、図8は本実施形態に係る静翼101の翼腹面101Aに形成される水膜厚さ(水膜量)を例示する図である。図8において、横軸は無次元翼面位置、縦軸は水膜厚さを示している。なお、無次元翼面位置とは、静翼101の前縁部101Cから翼腹面101Aの任意の位置までの翼腹面101Aに沿った距離lを静翼101の前縁部101Cから後縁部101Bまでの翼腹面101Aに沿った距離Lで除した無次元値(l/L)のことを言う(図7を参照)。
一般的に、静翼の前縁部から後縁部までの翼腹面に沿った線上の水膜厚さは翼腹面の位置によって異なり、翼腹面には、作動流体の翼腹面に対する流速の増加により翼腹面に集積する湿分が増加して水膜厚さが最大となる位置(ピーク位置)が存在する。そのため、翼腹面に形成された水膜を効率良く除去するには、水膜厚さのピーク位置の若干下流側にスリットを設けることが好ましい。
図8の場合、静翼101の翼腹面101Aに形成される水膜厚さは無次元値l/L=0.6の位置付近で最大となる。また、水膜厚さが最大となる位置より下流側では、作動流体の翼腹面101Aに対する流速の増加に伴い水膜厚さは薄くなっていく。
そこで、本実施形態では、図8に破線で示すように、水膜厚さが最大となる領域の若干下流側である無次元値l/L=0.6〜0.8の範囲内に上流スリット110を設けている。
一方、仮に上流スリット110の上流側に形成された水膜を上流スリット110を介して100%除去したとしても、上流スリット110の下流側で翼腹面101Aに水滴が付着し、翼腹面101Aに再び水膜が形成される場合がある。
そこで、本実施形態では、無次元値l/Lが上流スリット110の無次元値l/Lより大きく、可能な限り無次元値l/L=1.0に近い位置(すなわち、静翼101の後縁部101Bに近い位置)に最下流スリット111を設け、翼腹面101Aに形成される水膜を極力多く除去するように構成している。
(比較例1)
図9は比較例1の最終段落の一構成例を表す概略図である。図9において、図2の最終段落100と同等の部分には同一の符号を付し、適宜説明を省略する。
図9に示すように、比較例1の静翼201にはスリットが設けられていない。この場合、最終段落200を流れる作動流体が湿り蒸気の状態のとき、作動流体中に含まれる水滴により静翼201の翼腹面201Aに形成された水膜20は、静翼201の後縁部201B側に向かって翼腹面201Aを流れ、後縁部201Bに到達すると、作動流体により翼腹面201Aから離脱して水滴22の状態で下流側に飛散し、動翼104に衝突する。その結果、動翼104にエロージョン23が生じる。また、水滴22が動翼104に衝突することにより動翼104の回転が妨げられ、湿り損失も生じ得る。
(比較例2)
図10は比較例2の最終段落の一構成例を表す概略図、図11は図10の静翼の一部を拡大して表す斜視図である。図10,11において、図2の最終段落100と同等の部分には同一の符号を付し、適宜説明を省略する。
図10に示すように、最終段落300の静翼301は、スリット(上流スリット)310及びスリット(下流スリット)311を備えている。図11に示すように、上流スリット310及び下流スリット311は上流スリット110と同等の構成である。この場合、上流スリット310の不連続部316を通過して翼腹面301Aに形成された水膜20dや、上流スリット310の下流側で新たに形成された水膜の一部が下流スリット311の不連続部317を通過して下流スリット311の下流側に水膜20eが形成される可能性がある。水膜20eは動翼104のエロージョン23(図10を参照)や湿り損失の原因となる。
(効果)
(1)強度上の問題でスリットに不連続部を設けると、図11で説明したように、スリットを2本設けても下流スリット311の下流側に水膜20eが形成されてしまう。したがって、静翼の構造上可能な限り、少なくとも静翼のコード長方向の下流側(後縁部側)に翼長方向に連続的にスリットを設けることが好ましい。
一方、スリットを跨いで翼腹面に段差が生じると、段差部分において水膜の一部が翼腹面から離脱し、これが動翼のエロージョンの原因となり得る。そのため、翼腹面に形成された水膜を効率良く除去するためには、スリットを精度良く設ける必要もある。
本実施形態では、最下流スリット111に対応して設けた接続部112の作動流体流路側の面117が翼腹面101Aよりも中空部113側に位置するので、図11で説明した不連続部と異なり、窪み部120により水膜を捕捉することができる。加えて、適当な間隔で最下流スリット111の上流側と下流側の壁面を接続部112でつないでいるので、最下流スリット111を跨いで翼腹面101Aに段差が生じることを抑制することができる。そのため、翼腹面101Aに形成された水膜の離脱を抑制し、水膜を効果的に除去することができ、静翼101の下流側への水滴の飛散を抑制することができる。したがって、動翼のエロージョンを抑制し、また、動翼104における湿り損失を抑制することができ、蒸気タービンの信頼性を高めることができる。
(2)本実施形態では、接続部112により最下流スリット111のコード長方向に対向する内面118,119が接続しているので、翼長方向の全長に渡って中空部と連通するように最下流スリットを構成した場合に比べて、静翼101の強度を向上させることができる。加えて、最下流スリット111の変形を抑制することができるので、最下流スリット111の精度を容易に管理することができる。
(3)図8で説明したように、水膜厚さは翼腹面の位置によって異なる。そこで、本実施形態では、水膜厚さのピーク位置の若干下流側に上流スリット110を設け、上流スリット110の下流側であって静翼101の後縁部101Bに近い位置に最下流スリット111を設けている。そのため、膜厚の水膜を上流スリット110で凡そ除去し、さらに上流スリット110の下流側で形成された水膜も最下流スリット111で最終的に除去することができ、翼腹面101Aに形成された水膜を効率良く除去することができる。
(4)本実施形態に係る静翼101は、作動流体流路と中空部113とを連通するとともに翼長方向に延在するスリットをコード長方向に複数並べ、複数のスリットのうちの最下流スリット111に対応して作動流体流路側の面117が翼面よりも中空部113側に位置するように、最下流スリット111のコード長方向の両側の壁面118,119を接続する接続部112を設けている。
例えば、(比較例1)の静翼201のように翼面にスリットが設けられていない既存の静翼がある場合は、翼面をカッター状の部材やレーザー等で削って翼面に複数のスリットを形成し、最下流スリットに接続部を設けることにより本実施形態に係る静翼101とすることができる。また、(比較例2)の静翼301のように翼面に複数のスリットが所定の間隔を空けて設けられている静翼については、最下流スリット間の不連続部をカッター状の部材やレーザー等で削って接続部を設けることにより本実施形態に係る静翼101とすることができる。
このように、本実施形態に係る静翼101は既存の静翼に対し簡単な作業を施すことにより容易に得ることができる。
<第2実施形態>
図12は、本実施形態に係る静翼の斜視図である。図12において、上記第1実施形態の静翼101と同等の部分には同一の符号を付し、適宜説明を省略する。
図12に示すように、本実施形態に係る静翼401は、上流スリット110の代わりに上流スリット410及び接続部412を備える点で第1実施形態の静翼101と異なる。
上流スリット410及び接続部412は、最下流スリット111及び接続部112と同等の構成である。但し、接続部412は最下流スリット111の接続部112に対して翼長方向に位置をずらして設けてある。
上記構成により、本実施形態では上述した第1実施形態で得られる各効果に加えて、次の効果が得られる。
本実施形態では、上流スリット410を翼腹面401Aに連続的に設け、上流スリット410に少なくとも1つの接続部412を設けているので、翼長方向に所定の間隔を空けて設けられた複数本のスリットにより上流スリットを構成した場合に比べて、より多くの水膜を捕捉することができる。
<第3実施形態>
図13は、本実施形態に係る静翼の斜視図である。図13において、上記第2実施形態の静翼401と同等の部分には同一の符号を付し、適宜説明を省略する。
図13に示すように、本実施形態に係る静翼501は、翼腹面501Aに加えて、翼背面501Dに、上流スリット510及び接続部514並びに最下流スリット511及び接続部515を備える点で第2実施形態の静翼401と異なる。
上流スリット510及び接続部514は上流スリット410及び接続部412と同等の構成であり、最下流スリット511及び接続部515は最下流スリット111及び接続部112と同等の構成である。
上記構成により、本実施形態では上述した第2実施形態で得られる各効果に加えて、次の効果が得られる。
本実施形態では、翼腹面501Aに加えて、翼背面501Dに、上流スリット510及び接続部514並びに最下流スリット511及び接続部515を設けているので、翼背面501Dに形成された水膜も捕捉することができる。
<第4実施形態>
図14は、本実施形態に係る静翼の横断面図である。図14において、上記第1実施形態の静翼101と同等の部分には同一の符号を付し、適宜説明を省略する。
本実施形態に係る静翼601は、接続部112の代わりに接続部612を備える点で第1実施形態の静翼101と異なる。その他の構成は、第1実施形態と同様である。
図14に示すように、接続部612は、最下流スリット111に対応して作動流体流路側の面617が翼腹面601Aよりも中空部113側に位置するように中空部113内に設けられている。接続部612は、最下流スリット111を跨ぐようにして最下流スリット111のコード長方向の両側の壁面618,619を接続している。すなわち、図14に示す断面においては、翼腹面601Aから中空部113側に窪み、作動流体流路側の面617を底面とする窪み部620が翼腹面601Aに最下流スリット111に対応するように形成されている。接続部612の翼長方向の両端部は最下流スリット111を介して中空部113と連通している。接続部612は、例えば溶接により壁面618,619に取り付けられている。
翼腹面601Aから窪み部620に流入した水膜は、作動流体流路側の面617を翼長方向に流れ、最下流スリット111を介して中空部113に吸引され、排気室等に送られる。
上記構成により、本実施形態では上述した第1実施形態で得られる各効果に加えて、次の効果が得られる。
最下流スリットのコード長方向に対向する内面を接続部により接続する場合、窪み部の深さを確保する必要があるため、窪み部の深さ方向における接続部の高さが制限されてしまう。これに対し、本実施形態では、接続部612を中空部113内に設けているため、窪み部の深さ方向における接続部の高さを大きく確保することができ、静翼601の強度をより高めることができる。加えて、接続部をスリット内に設ける場合に比べて翼腹面601Aから作動流体流路側の面617までの深さを深くすることができる(翼腹面601Aの板厚分確保できる)ため、水膜の捕捉効率がより向上する。
また、本実施形態の静翼601は、翼腹面601Aに最下流スリット111を設け、中空部113内に最下流スリット111を跨ぐようにして静翼601のコード長方向の両側の壁面118,119を接続するように接続部612を溶接等により設ければ良いので、容易に製作することができる。
<第5実施形態>
図15は、本実施形態に係る静翼の横断面図である。図15において、上記第4実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。
本実施形態に係る静翼701は、接続部612の代わりに接続部712を備える点で第4実施形態の静翼601と異なる。その他の構成は、第4実施形態と同等である。
接続部712は、中空部113を挟んで最下流スリット111と対向する面、つまり翼背面701Dに接している。その他の構成は、接続部612と同等である。
上記構成により、本実施形態では上述した第4実施形態で得られる各効果に加えて、次の効果が得られる。
本実施形態では、接続部712が翼背面701Bに接しているため、静翼701の強度を大幅に高めることができる。また、接続部712が翼腹面701Aと翼背面701Bとのスペースを維持するスペーサとして機能するため、静翼701の変形等を抑制することができ、静翼701の信頼性を高めることができる。
<その他>
本発明は上記した各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能である。また、各実施形態の構成の一部を削除及び置換することも可能である。
上述した実施形態では、最下流スリットに対応する接続部を中空部内に設けた場合を例示した。しかしながら、本発明の本質的効果は翼面の水膜を効果的に除去することができる蒸気タービン静翼を提供することであり、この本質的効果を得る限りにおいては、必ずしもこの構成に限定されない。例えば、最下流スリットに対応する接続部とともに上流スリットに対応する接続部を中空部内に設けても良い。
113 中空部
104 蒸気タービン動翼(動翼)
101,401,501,601,701 蒸気タービン静翼(静翼)
110,410,510 スリット(上流スリット)
111,511 スリット(最下流スリット)
112,412,514,515,612,712 接続部
101A,401A,501A,601A,701A 翼腹面
501D 翼背面
101C 前縁部
101B 後縁部

Claims (10)

  1. 内部に中空部を有する蒸気タービン静翼において、
    作動流体流路と前記中空部とを連通するとともに翼長方向に延在するように設けられ、コード長方向に複数並べて配置された複数のスリットと、
    前記複数のスリットのうちの最下流スリットに対応して前記作動流体流路側の面が翼面よりも前記中空部側に位置するように設けられ、前記最下流スリットの前記コード長方向の両側の壁面を接続する少なくとも1つの接続部とを備え
    前記最下流スリットが少なくとも翼長方向の中間部からダイヤフラム外輪にかけて連続して延びる1本のスリットであることを特徴とする蒸気タービン静翼。
  2. 請求項1に記載の蒸気タービン静翼において、
    前記接続部は前記最下流スリット内に設けられ、該最下流スリットの前記コード長方向に対向する内面同士を接続することを特徴とする蒸気タービン静翼。
  3. 請求項1に記載の蒸気タービン静翼において、
    前記最下流スリットに対して前記コード長方向の上流側に配置された少なくとも1つの上流スリットに対応して前記作動流体流路側の面が前記翼面よりも前記中空部側に位置するように設けられ、前記上流スリットの前記コード長方向の両側の壁面を接続する少なくとも1つの接続部を備えることを特徴とする蒸気タービン静翼。
  4. 請求項1に記載の蒸気タービン静翼において、
    前記複数のスリットは、翼腹面に設けられていることを特徴とする蒸気タービン静翼。
  5. 請求項1に記載の蒸気タービン静翼において、
    前記複数のスリットは、翼背面に設けられていることを特徴とする蒸気タービン静翼。
  6. 請求項3に記載の蒸気タービン静翼において、
    前記上流スリットは、前縁部から翼腹面上の任意の位置までの距離lを該翼腹面に沿った該前縁部から後縁部までの距離Lで除した無次元値l/Lが0.6〜0.8の範囲内となる位置に設けられ、
    前記最下流スリットは、前記無次元値l/Lが前記上流スリットの無次元値l/Lより大きくなる範囲となる位置に設けられていることを特徴とする蒸気タービン静翼。
  7. 請求項1に記載の蒸気タービン静翼において、
    前記接続部は前記中空部内に設けられ、前記最下流スリットを跨ぐようにして前記コード長方向の両側の壁面を接続することを特徴とする蒸気タービン静翼。
  8. 請求項7に記載の蒸気タービン静翼において、
    前記接続部は前記中空部を挟んで前記最下流スリットに対向する面に接していることを特徴とする蒸気タービン静翼。
  9. 請求項1に記載の蒸気タービン静翼と、該蒸気タービン静翼に対して作動流体の流れ方向の下流側に設けられた蒸気タービン動翼とを有するタービン段落を備えることを特徴とする蒸気タービン。
  10. 内部に中空部を有する蒸気タービン静翼の改造方法であって、
    作動流体流路と前記中空部とを連通するとともに翼長方向に延在するスリットをコード長方向に複数並べて複数のスリットを形成し、前記複数のスリットのうちの最下流スリットを少なくとも翼長方向の中間部からダイヤフラム外輪にかけて連続して延びる1本のスリットとし、
    記最下流スリットに対応して前記作動流体流路側の面が翼面よりも前記中空部側に位置するように、前記最下流スリットの前記コード長方向の両側の壁面を接続する接続部を少なくとも1つ設けることを特徴とする蒸気タービン静翼の改造方法。
JP2014253390A 2014-12-15 2014-12-15 蒸気タービン静翼 Active JP6393178B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014253390A JP6393178B2 (ja) 2014-12-15 2014-12-15 蒸気タービン静翼
CN201510917663.4A CN105697071B (zh) 2014-12-15 2015-12-10 蒸汽涡轮机静叶片
US14/968,272 US10132178B2 (en) 2014-12-15 2015-12-14 Steam turbine stationary blade
EP15200088.1A EP3034818B1 (en) 2014-12-15 2015-12-15 Steam turbine stationary blade, corresponding steam turbine and modifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253390A JP6393178B2 (ja) 2014-12-15 2014-12-15 蒸気タービン静翼

Publications (3)

Publication Number Publication Date
JP2016113966A JP2016113966A (ja) 2016-06-23
JP2016113966A5 JP2016113966A5 (ja) 2017-08-17
JP6393178B2 true JP6393178B2 (ja) 2018-09-19

Family

ID=54849891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253390A Active JP6393178B2 (ja) 2014-12-15 2014-12-15 蒸気タービン静翼

Country Status (4)

Country Link
US (1) US10132178B2 (ja)
EP (1) EP3034818B1 (ja)
JP (1) JP6393178B2 (ja)
CN (1) CN105697071B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179651B2 (ja) * 2019-02-27 2022-11-29 三菱重工業株式会社 タービン静翼、及び蒸気タービン
JP7179652B2 (ja) * 2019-02-27 2022-11-29 三菱重工業株式会社 タービン静翼、及び蒸気タービン
JP7378970B2 (ja) 2019-06-10 2023-11-14 三菱重工業株式会社 蒸気タービン静翼、蒸気タービンおよび蒸気タービン静翼の製造方法
EP4036380B1 (en) * 2019-12-11 2023-08-30 Mitsubishi Heavy Industries, Ltd. Turbine stator vane assembly and steam turbine
JP7352534B2 (ja) * 2020-11-25 2023-09-28 三菱重工業株式会社 蒸気タービン動翼、蒸気タービン動翼の製造方法及び改造方法
JP7245215B2 (ja) * 2020-11-25 2023-03-23 三菱重工業株式会社 蒸気タービン動翼
CN116324126A (zh) 2020-11-25 2023-06-23 三菱重工业株式会社 涡轮机
JP7527487B2 (ja) * 2021-06-28 2024-08-02 三菱重工業株式会社 タービン静翼、及び蒸気タービン
CN114382551B (zh) * 2022-01-20 2024-06-18 刘建松 一种汽轮机节能方法及汽轮机叶片和节能汽轮机结构
US11927132B1 (en) 2023-02-10 2024-03-12 Rtx Corporation Water separator for hydrogen steam injected turbine engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1576982B1 (de) * 1967-07-04 1970-12-23 Siemens Ag Leitschaufelkranz mit Einrichtungen zum Absaugen von Kondenswasser in Dampfturbinen
US3881842A (en) * 1973-04-10 1975-05-06 Jury Fedorovich Kosyak Diaphragm for steam turbine stage
JPS63272902A (ja) * 1987-04-30 1988-11-10 Toshiba Corp 蒸気タ−ビン
JPH04255503A (ja) * 1991-02-08 1992-09-10 Toshiba Corp 蒸気タービンの水滴除去装置
DE19709607A1 (de) * 1997-03-08 1998-09-10 Abb Research Ltd Leitschaufel für Dampfturbinen
JP3971009B2 (ja) * 1998-01-28 2007-09-05 Juki会津株式会社 ドレン穴付きノズル翼の製造方法
US20100329853A1 (en) * 2009-06-30 2010-12-30 General Electric Company Moisture removal provisions for steam turbine
JP5919123B2 (ja) * 2012-07-30 2016-05-18 三菱日立パワーシステムズ株式会社 蒸気タービン、および蒸気タービンの静翼
JP5968173B2 (ja) * 2012-09-14 2016-08-10 三菱日立パワーシステムズ株式会社 蒸気タービン静翼及び蒸気タービン
WO2015047516A1 (en) * 2013-07-03 2015-04-02 General Electric Company Trench cooling of airfoil structures
WO2015015859A1 (ja) 2013-07-30 2015-02-05 三菱重工業株式会社 蒸気タービンの水分除去装置、及びスリット孔の形成方法
CN203856516U (zh) * 2014-03-26 2014-10-01 北京全四维动力科技有限公司 一种饱和汽轮机末级空心静叶片

Also Published As

Publication number Publication date
JP2016113966A (ja) 2016-06-23
CN105697071B (zh) 2018-03-27
US20160169015A1 (en) 2016-06-16
EP3034818B1 (en) 2020-06-17
CN105697071A (zh) 2016-06-22
US10132178B2 (en) 2018-11-20
EP3034818A1 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP6393178B2 (ja) 蒸気タービン静翼
EP2743451A1 (en) Methods of manufacturing turbomachines blades with shaped channels by additive manufacturing, turbomachine blades and turbomachines
US9598964B2 (en) Steam turbine stationary blade and steam turbine
JP5919123B2 (ja) 蒸気タービン、および蒸気タービンの静翼
JP2008190531A (ja) 片持ちタービン翼
EP2282013A2 (en) Moisture removal provisions for steam turbine
JP2013508618A (ja) 遠心圧縮機のための小滴キャッチャ
US11852034B2 (en) Tandem rotor blades
JP6230383B2 (ja) 蒸気タービンの静翼と蒸気タービン
JP2009057959A (ja) 遠心圧縮機とその羽根車およびその運転方法
JP2009138540A (ja) 蒸気タービンおよび蒸気タービン段落の湿分除去構造
CN105324553A (zh) 蒸气涡轮的水分除去装置
US11840938B2 (en) Steam turbine stator vane, steam turbine, and production method for steam turbine stator vane
JP6884665B2 (ja) 蒸気タービン
JP5653659B2 (ja) 蒸気タービンの車室構造
JP5080183B2 (ja) 蒸気タービンの動作を制御する装置及び蒸気タービン
KR101509383B1 (ko) 터빈 냉각장치
JP6000876B2 (ja) 蒸気タービン
US9567862B2 (en) Vane profile for axial-flow compressor
JP6302172B2 (ja) タービンおよびタービンでの衝撃損失を低減するための方法
JP2022020219A (ja) 蒸気タービン静翼
KR102690061B1 (ko) 증기 터빈 동익
EP3266984A2 (en) Moving blade and turbine using moving blade
JP2012167641A (ja) 回転機械の抽気構造

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180824

R150 Certificate of patent or registration of utility model

Ref document number: 6393178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350