WO2021117880A1 - 光重合開始剤 - Google Patents

光重合開始剤 Download PDF

Info

Publication number
WO2021117880A1
WO2021117880A1 PCT/JP2020/046328 JP2020046328W WO2021117880A1 WO 2021117880 A1 WO2021117880 A1 WO 2021117880A1 JP 2020046328 W JP2020046328 W JP 2020046328W WO 2021117880 A1 WO2021117880 A1 WO 2021117880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photopolymerization initiator
carbon atoms
meth
photopolymerization
Prior art date
Application number
PCT/JP2020/046328
Other languages
English (en)
French (fr)
Inventor
明理 平田
大輔 小林
賀美 竹田
Original Assignee
Kjケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kjケミカルズ株式会社 filed Critical Kjケミカルズ株式会社
Priority to EP20897762.9A priority Critical patent/EP4074736A4/en
Priority to CN202410114348.7A priority patent/CN118005827A/zh
Priority to JP2021539560A priority patent/JP7016199B2/ja
Priority to KR1020227023677A priority patent/KR20220117266A/ko
Priority to US17/783,060 priority patent/US11787884B2/en
Priority to CN202080086263.2A priority patent/CN114929757B/zh
Publication of WO2021117880A1 publication Critical patent/WO2021117880A1/ja
Priority to JP2022005723A priority patent/JP7262722B2/ja
Priority to JP2022005722A priority patent/JP7236773B2/ja
Priority to JP2022082956A priority patent/JP2022113706A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F120/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/302Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and two or more oxygen atoms in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/305Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the present invention relates to a photopolymerization initiator having an unsaturated bond and a photocurable resin composition containing the same.
  • UV ultraviolet rays
  • radicals radical type
  • ions cationic type or anion type
  • a raw material having an unsaturated group, an epoxy group, etc. is polymerized to solidify (cure) a liquid composition in a short time. Paints and coating materials, adhesives and adhesives, elastomeric materials, inkjets. It is used in a wide range of fields such as inks, sealing materials and sealing materials, dental hygiene materials, and optical materials. In particular, since it can be cured at any place and shape, it is widely used as nail cosmetics such as gel nails and as a material for three-dimensional stereolithography in 3D printers.
  • the photocurable resin composition using a radical photopolymerization initiator has high curability, and a general-purpose monofunctional or polyfunctional (meth) acrylic monomer or an oligomer or polymer having a (meth) acrylic group introduced therein is assembled. It is widely used because it can realize a wide range of physical properties by combining them. Further, in recent years, with the spread of UV curable inks and paints, along with the increase in size of UV curing devices, there is an increasing demand for enhanced safety of light sources such as the inability to emit light rays of 300 nm or less, and mercury-free lamps. , LED lamps, black lights and other light sources have been proposed.
  • the main output rays of these light sources are 365 nm (black light), 375 nm (UV-LED) and 405 nm (LED lamp), and even if the safety of the light rays can be ensured, it is a general-purpose photopolymerization initiator.
  • the absorption wavelength is around 350 nm at the longest, and absorption of 375 nm or more is hardly observed, and there is a new problem that the physical properties of the cured product due to non-uniform curing cannot be satisfied due to incomplete curing and long required curing time.
  • the radical-based photopolymerization initiator examples include an intramolecular cleavage type and a hydrogen abstraction type that generate a radically active species by light irradiation.
  • Intramolecular cleavage-type photopolymerization initiation has high photopolymerization initiation efficiency, but its stability against heat is low, so that there is a problem in the storage stability of the initiator and the resin composition containing the initiator.
  • unreacted initiators and residues after the reaction remain in the cured product as low molecular weight compounds, and they bleed out from the cured product over time, resulting in deterioration of physical properties and durability of the cured product. It causes deterioration of sexual characteristics and generation of odor, and has been regarded as a problem especially regarding safety.
  • the latter hydrogen abstraction type photopolymerization initiator has a diarylketone structure like benzophenone, abstracts hydrogen from a hydrogen donor to generate a radical active species, and thus can improve the residue problem after the reaction, and has been attracting attention in recent years. The degree is increasing.
  • this type of initiator has high heat stability, the efficiency of photopolymerization initiation is low, and it is necessary to use it in combination with a hydrogen donor such as amine, a photosensitizer, or a curing accelerator as an additive. Unreacted additives, residues after the reaction, decomposition products, etc. are also low molecular weight compounds, and when these remain in the cured product, the physical properties of the cured product are also reduced, durability is reduced, odor is generated, and aging occurs. Problems such as target coloring may occur.
  • Patent Document 1 describes benzophenones having a large number of peracid ester structures in the molecule as a highly sensitive photopolymerization initiator. A derivative was synthesized. However, although the sensitivity could be increased by introducing the peracid ester structure, it is known that the peracid ester structure itself is easily decomposed by light or heat, and a low molecular weight compound is left as a residue after the polymerization reaction by light irradiation. There was a problem that would occur.
  • Patent Document 2 proposes a polymer photoinitiator having a benzophenone group as a photoactive moiety and an amine functional group or a third amino group acting as a co-initiator. According to Patent Document 2, the inclusion of an amino group reduces inhibition by oxygen and can improve the curing rate. However, both amines and amino groups are generally recognized as functional groups having an amine odor, and it is known that these functional groups are very easily colored by light irradiation. Further, since the photopolymerization initiator of Patent Document 2 has a high molecular weight, it exhibits low mobility, and generally has a problem that the efficiency of radical generation and the reactivity (curing rate) of photopolymerization are lowered.
  • growth active species such as radicals, cations, or anions are generated by light irradiation to cure the photocurable composition, and as a constituent component of the photocurable composition by utilizing unsaturated bonds in the molecule.
  • An object of the present invention is to provide a photopolymerization initiator having photocurability that can be incorporated into a cured product by a photocuring reaction.
  • the photopolymerization initiator has both a photopolymerization-initiating functional group and a photopolymerizable functional group, has high sensitivity to long-wavelength light having a wavelength of 300 nm or more, and has good solubility in general-purpose monomers and oligomers.
  • the photopolymerization initiator becomes a part of the cured product after curing as a constituent component of the photocurable resin, and a low molecular weight decomposition product is not produced as a by-product when a growth active species is generated, and the cured product has low odor and high safety. Can be obtained. Furthermore, when one or more (meth) acrylamide groups are contained in the molecule as an ethylenically unsaturated bond, the sensitivity to highly safe light rays having a wavelength of 360 nm or more is high, the photocurability is good, and the strength and elongation are good. It is possible to obtain a cured product having durability and hydrolysis resistance.
  • the present invention (1) A photopolymerization initiator having one or more ethylenically unsaturated bonds and one or more photopolymerization-initiating functional groups in the molecule.
  • the ethylenically unsaturated bond is selected from the group consisting of a (meth) acrylamide group, a (meth) acrylate group, a vinyl group, a vinyl ether group, an alkyl vinyl ether group, an allyl group, a (meth) allyl ether group and a maleimide group.
  • the photopolymerization initiator according to (1) above which is one or more bonds.
  • R 3 is a straight-chain alkylene group having 1 to 24 carbon atoms
  • 2 carbon atoms Represents 24 alkenyl groups or alkyleneoxyalkylene groups, branched alkylene groups having 3 to 36 carbon atoms, aromatic hydrocarbons having 6 to 24 carbon atoms
  • R 4 is a carbon which may be substituted with an ethylenically unsaturated bond.
  • the ethylenically unsaturated bonds in R 4 (meth) acrylamide group, (meth) acrylate group, vinyl group, vinyl ether group, an alkyl vinyl ether group, an allyl group, (meth ) One or more bonds selected from the group consisting of an allyl ether group and a maleimide group.
  • A represents a benzophenone derivative represented by the general formula (2)
  • B represents a urethane group, a urea group, or an ester. It represents a divalent or higher organic group having a group, an amide group or an imide group, and i represents an integer of 1 to 25.
  • R 5 and R 6 are linear alkyl groups having 1 to 24 carbon atoms and 2 to 24 carbon atoms, which may be independently substituted with an ether group, a cyclic ether group, an ester group or a halogen group, respectively.
  • R 7 and R 8 are independent halogen groups, respectively.
  • a linear alkyl group having 1 to 24 carbon atoms, an alkenyl group or an alkyleneoxyalkyl group having 2 to 24 carbon atoms, a branched alkyl group having 3 to 24 carbon atoms or an alicyclic hydrocarbon which may be substituted with Represents an aromatic hydrocarbon having 6 to 24 carbon atoms.
  • X represents a tetravalent organic group represented by the general formula (3).
  • N and m each independently represent an integer of 1 to 10.
  • R 9 and R 10 each independently represent a hydrogen atom, a linear alkyl group having 1 to 8 carbon atoms, and a branched alkyl group having 3 to 8 carbon atoms.
  • the photopolymerization initiator according to the general formula (1) is characterized in that B is a divalent or higher organic group having one or more urethane groups and has a number average molecular weight of 1000 to 100,000.
  • (12) The photopolymerization initiator according to any one of (1) to (11) above, which has a polymerization initiator with light having a wavelength of 300 to 450 nm.
  • a photopolymerizable resin composition containing the photopolymerization initiator according to any one of (1) to (12) above is provided.
  • a photopolymerization initiator having an unsaturated bond generates a growth active species by light irradiation and cures the photocurable resin composition, and the photopolymerization initiator is also a cured product by a photocuring reaction. It is incorporated as a constituent component therein, and a cured product having low odor and high safety can be obtained.
  • (meth) acrylamide is used as the unsaturated bond in the photopolymerization initiator of the present invention, the sensitivity to long wavelength light having a wavelength of 300 nm or more is improved, and the solubility in general-purpose monomers and oligomers is improved, which is further obtained.
  • the photopolymerization initiator containing a benzophenone derivative having one or more (meth) acrylamide groups and one or more urethane bonds in the molecule which is one embodiment of the present invention, has an excellent photopolymerization initiation function. Since it has photocurability, it is not necessary to use an amine-based hydrogen donor or a thioxanthone-based sensitizer in combination to improve the curability. This is because the urethane group is in the vicinity of the benzophenone tetraester structure and / or the (meth) acrylamide group is contained in the molecule, so that efficient hydrogen extraction in the molecule and / or between the molecules of the photopolymerization initiator is realized.
  • the inventors speculate that it is possible. Further, when a urethane bond is formed in the vicinity of the benzophenone tetraester structure, the sensitivity to visible light having a wavelength of about 450 nm from a long wavelength ray having a wavelength of 360 nm or more is improved, and the photopolymerization initiator can be used without using a special light irradiation device. It can be preferably used.
  • the photopolymerization initiator of the present disclosure has one or more ethylenically unsaturated bonds and one or more photopolymerization initiator functional groups in the molecule.
  • two ethylenically unsaturated bonds in the molecule It is preferable to have the above.
  • the ratio of the number of ethylenically unsaturated bonds in the molecule to the number of photopolymerization-initiating functional groups is preferably 1/10 to 10/1, more preferably 1/8 to 8/1, and 1/5 to 1/5. 5/1 is particularly preferable. When the ratio of this number is less than 0.1 (1/10), even if the photopolymerization initiator completes the photopolymerization reaction (curing), it is not fixed as a structural unit in the cured product via the covalent bond.
  • the photopolymerization rate of the photocurable resin composition depends on the content of the photopolymerization initiator in the photocurable resin composition. Remarkably improved, the temperature rises sharply due to the heat of polymerization, and it has the drawback of being difficult to use as an adhesive for plastic substrates, adhesives, encapsulants for optical members, and cosmetics for nails such as gel nails. is there.
  • the ethylenically unsaturated bond contained in the photopolymerization initiator of the present disclosure includes a (meth) acrylamide group, a (meth) acrylate group, a vinyl group, a vinyl ether group, a methyl vinyl ether group, an allyl group, a (meth) allyl ether group and a maleimide group. It is one or more combinations selected from the group consisting of. Further, when the photopolymerization initiator has two or more ethylenically unsaturated bonds, they may be the same or different. Further, it is preferable to have at least one (meth) acrylamide group as an ethylenically unsaturated bond.
  • the absorption wavelength of light shifts to the long wavelength side due to the inclusion of the (meth) acrylamide group, and it is not necessary to use high-energy and highly dangerous short-wavelength light, so that the photocuring reaction occurs.
  • the (meth) acrylamide group is highly polymerizable, the photocurability of the resin composition containing the (meth) acrylamide group is high.
  • the (meth) acrylamide group has excellent hydrolysis resistance under both acidic and basic conditions, so that the composition is stable before curing. The durability of the cured product after curing is also good.
  • photopolymerization initiators those that generate radicals as growth active species by light irradiation are photoradical polymerization initiators, those that generate acids (cations) as growth active species by light irradiation are photocationic polymerization initiators, and those that generate acids (cations) by light irradiation.
  • a photoanionic polymerization initiator is a growth active species that generates a base (anion).
  • the photopolymerization-initiating functional group used in the photopolymerization initiator of the present disclosure is one that generates one or more growth active species of radicals, cations, and anions by light irradiation.
  • the radical system since the radical system has been widely used for a long time, it is preferable to generate a radical as a growth active species. Further, from the viewpoint of improving the polymerization inhibition by oxygen peculiar to the radical system, a hybrid type in which radicals and cations are simultaneously generated or radicals and anions are simultaneously generated is more preferable.
  • the photopolymerization initiator of the present disclosure can also be used in a dual type in which a thermal polymerization initiator is used in combination.
  • Photopolymerization and thermal polymerization can be performed at the same time or in any order before and after, but since photopolymerization is fast but there are many residual monomers, photopolymerization is performed first, and then polymerization reaction and cross-linking reaction are performed by thermal polymerization. It is preferable to complete it.
  • the photoradical polymerization-initiating functional group used in the photopolymerization initiator of the present disclosure is not particularly limited as long as it generates active radicals by light irradiation. Examples thereof include an intramolecular cleavage type that generates radicals by intramolecular cleavage after light absorption, a hydrogen abstraction type that generates radicals by exchanging hydrogen and electrons, and an electron donating type photoradical polymerization-initiating functional group. Further, after the photopolymerization reaction, the photopolymerization initiator uses a hydrogen abstraction type photoradical polymerization initiating functional group from the viewpoint that it can exist as a structural unit in the cured product via a covalent bond and from the viewpoint of being industrially available and easy to manufacture. It is preferable to have. These photopolymerization-initiating functional groups can be used alone or in combination of two or more.
  • the photoradical polymerization-initiating functional group used in the photopolymerization initiator of the present disclosure is an intramolecular cleavage type photopolymerization-initiating functional group such as a benzoin derivative, benzyl ketal, ⁇ -hydroxyacetal, ⁇ -aminoacetophenone, and acylphosphine. Examples include oxides, titanocenes and o-acyloxime types. These photopolymerization-initiating functional groups can be used alone or in combination of two or more.
  • the photoradical polymerization initiator functional group used in the photopolymerization initiator of the present disclosure is a hydrogen abstraction type photopolymerization initiator functional group such as benzophenone, alkyldiaminobenzophenone, 4,4'-bis (dimethylamino) benzophenone, 4 Examples thereof include a benzophenone derivative having a diarylketone skeleton such as -benzoyl-4'-methyldiphenylsulfide and a thioxanthone derivative having a thioxanthone skeleton such as 2-hydroxythioxanthone. Further, a benzophenone derivative is preferable from the viewpoint of achieving both high photopolymerization initiation property and good color resistance.
  • These photopolymerization-initiating functional groups can be used alone or in combination of two or more.
  • the photocationic polymerization initiator functional group used in the photopolymerization initiator of the present disclosure generates acids (cations) by irradiation with light, and these acids generate ethylenically unsaturated bonds of the photopolymerization initiator of the present disclosure.
  • these acids generate ethylenically unsaturated bonds of the photopolymerization initiator of the present disclosure.
  • the double bond of the vinyl ether group is cleaved and polymerized.
  • Epoxide groups and oxetane groups can also be cleaved by these acids, and when a compound containing these functional groups is used in combination as a constituent component of a photocurable resin composition, photocationic polymerization with a photopolymerization initiator And the simultaneous progress of photoradical polymerization and photocationic polymerization can be performed.
  • photocationic polymerization-initiating functional group examples include sulfonium salts such as diazonium salt, iodonium salt and triarylsulfonium salt, and onium salt-based compounds such as phosphonium salt. These compounds may be used alone or in combination of two or more.
  • the photoanionic polymerization-initiating functional group used in the photopolymerization initiator of the present disclosure generates bases (anions) by irradiation with light, and these bases generate ethylenically unsaturated bonds of the photopolymerization initiator of the present disclosure. For example, it promotes the polymerization of vinyl groups and the like. Further, these bases can initiate and accelerate a photopolymerization reaction of an epoxy group or a thiol group and a condensation reaction of silanol, and a compound containing these functional groups is used in combination as a constituent component of a photocurable resin composition.
  • the photoanionic polymerization can be started by the photopolymerization initiator, or the photoradical polymerization and the photoanionic polymerization can be simultaneously carried out.
  • the photoanionic polymerization-initiating functional group include o-nitrobenzyl carbamate derivative, o-acyloxyl derivative, o-carbamoyl oxime amidine derivative, carbamate, alkylguanidium salt, guanidine salt and the like. These compounds may be used alone or in combination of two or more.
  • the method for introducing various photopolymerizable functional groups into the photopolymerization initiator of the present disclosure is not particularly limited, but for example, a carboxylic acid, epoxy, isocyanate or alcohol having an unsaturated bond with a general-purpose photopolymerization initiator having a hydroxyl group.
  • Examples thereof include a reaction with a general-purpose photopolymerization initiator having an amino group and a neutralization reaction with a carboxylic acid having an unsaturated bond, and a quaternization reaction with a quaternizing agent having an unsaturated bond.
  • the polarity, solubility, molecular weight, etc. of the photopolymerization initiator can be arbitrarily selected and combined by appropriately selecting and combining the structures and molecular weights of various reactive compounds having various photopolymerizable functional groups and unsaturated bonds, which are raw materials. Can be adjusted to.
  • the photopolymerization initiator of the present disclosure shall be produced by a known method using the above-mentioned various raw materials (photopolymerization initiator, compound having a photopolymerization-initiating functional group, various reactive compounds having an unsaturated bond, etc.). Can be done.
  • the production method is not limited, but for example, (1) a photopolymerization initiator having a hydroxyl group is reacted with a carboxylic acid or acid anhydride having an ethylenically unsaturated bond, a carboxylic acid halide, or an epoxy compound to form an ester structure.
  • Method for obtaining a photopolymerization initiator having (2) Method for reacting a photopolymerization initiator having a hydroxyl group with an alcohol having an ethylenically unsaturated bond to obtain a photopolymerization initiator having an ether structure; (3) A method for obtaining a photopolymerization initiator having an ether structure.
  • Method of obtaining a photopolymerization initiator (7) Method of reacting a photopolymerization initiator having an amino group with an isocyanate having an ethylenically unsaturated bond to obtain a photopolymerization initiator having a urea structure; (8) Amino group A method of reacting a photopolymerization initiator having the above with a compound having a plurality of ethylenically unsaturated bonds to obtain a photopolymerization initiator having a Michael adduct structure; (9) A photopolymerization initiator having an amino group and ethylene.
  • Method of reacting with an ester compound having a sex unsaturated bond to obtain a photopolymerization initiator having an amide structure (10) A photopolymerization initiator having an amino group, a carboxylic acid having an ethylenically unsaturated bond, a sulfonic acid, etc.
  • Method of obtaining a photopolymerization initiator having a neutralizing salt structure by neutralizing with an organic acid of (11)
  • a photopolymerization initiator having an amino group of a tertiary amine and a quaternary having an ethylenically unsaturated bond (10) A photopolymerization initiator having an amino group, a carboxylic acid having an ethylenically unsaturated bond, a sulfonic acid, etc.
  • an organic acid functional group such as a carboxyl group and a sulfo group
  • a reactive group such as a thiol group, a phenol group and an oxazoline group.
  • Examples thereof include a method of reacting a photopolymerization initiator having the above-mentioned property with a compound having an ethylenically unsaturated bond and capable of reacting with these reactive groups to obtain a photopolymerization initiator having various structures.
  • the molecular weight of the photopolymerization initiator of the present disclosure can be arbitrarily adjusted by combining the molecular weights of the raw materials, but the number average is preferably 200 to 100,000. If the number average molecular weight is 200 or more, one molecule of the photopolymerization initiator can have one or more ethylenically unsaturated bonds, and if the number average molecular weight is 100,000 or less, the obtained light can be obtained. It is easy to adjust the polarity (balance between hydrophilicity and hydrophobicity) of the polymerization initiator, it is highly soluble in each component used in the photocurable resin composition, and the viscosity of the composition in which the photopolymerization initiator is dissolved is applied and sprayed.
  • the photopolymerization initiator of the present invention has a low molecular weight monomer type (number average molecular weight less than 200 to 1000) and a medium molecular weight oligomer type photopolymerization initiator (number average molecular weight less than 1,000 to 10,000) depending on the molecular weight. And high molecular weight polymer types (number average molecular weight is 10,000 to 100,000).
  • Monomer-type photopolymerization initiators mainly have photopolymerization-initiating functional groups and ethylenically unsaturated bonds
  • oligomer-type photopolymerization initiators mainly have polyester skeletons, polyether skeletons, polycarbonate skeletons, and polyolefin skeletons. It has one or more skeletons selected from the polyacrylic skeleton, a photopolymerization initiator functional group and an ethylenically unsaturated bond
  • the polymer type photopolymerization initiator is mainly composed of a polycarbonate skeleton, a polyolefin skeleton and a polyacrylic skeleton.
  • the oligomer-type photopolymerization initiator has good solubility in various general-purpose organic solvents, radical-based, cationic-based and anionic-based polymerizable monomers and polymerizable oligomers used in the photocurable resin composition, and is photocurable.
  • the viscosity of the resin composition can be adjusted as appropriate, and while having excellent workability, it is particularly preferable because it has high polymerization initiation property with respect to light, particularly sensitivity to long-wavelength light of 300 to 450 nm.
  • the photopolymerization initiator of the present disclosure is a hydrogen abstraction type photoradical polymerization initiator functional group
  • the photopolymerization initiator has a functional group that can be a hydrogen donor group in the molecule.
  • the functional group that can be a hydrogen donating group is not particularly limited, and examples thereof include an amide group, a urethane group, a urea group, a hydroxyl group, a thiol group, and a carboxylic acid. Above all, it is more preferable to have a urethane group having excellent coloring resistance.
  • the functional group that can be a hydrogen donor group may be directly bonded to the photopolymerization-initiating functional group, and the hydrogen extraction can be performed intermolecularly or intramolecularly by bonding via other functional groups, and the wavelength is 360 nm. It is particularly preferable because it exhibits sufficient polymerization initiation property even with high-safety long-wavelength light from.
  • the structure of the photopolymerization initiator of the present disclosure is not particularly limited as long as it has one or more ethylenically unsaturated bonds and one or more photopolymerization-initiating functional groups in the molecule, but the general formula (1)
  • the benzophenone derivative having a (meth) acrylamide group represented by (meth) has photopolymerization initiator, photocurability, solubility in other components constituting the photocurable resin composition, and the performance of the obtained photocurable product. It can be easily adjusted and is particularly preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 is a linear alkyl group or hydroxyalkylene group having 1 to 24 carbon atoms, an alkenyl group or an alkyleneoxyalkyl group having 2 to 24 carbon atoms, and carbon.
  • R 3 is a linear alkyl group having 1 to 24 carbon atoms
  • 2 carbon atoms Represents 24 alkenyl or alkyleneoxyalkyl groups, branched alkylene groups with 3 to 36 carbon atoms, aromatic hydrocarbons with 6 to 24 carbon atoms
  • R 4 is a carbon that may be substituted with an ethylenically unsaturated bond.
  • the ethylenically unsaturated bonds in R 4 (meth) acrylamide group, (meth) acrylate group, vinyl group, vinyl ether group, an alkyl vinyl ether group, an allyl group, (meth ) One or more bonds selected from the group consisting of an allyl ether group and a maleimide group.
  • A represents a benzophenone derivative represented by the general formula (2)
  • B represents a urethane group, a urea group, or an ester. It represents a divalent or higher organic group having a group, an amide group or an imide group, and i represents an integer of 1 to 25.
  • R 5 and R 6 are linear alkyl groups having 1 to 24 carbon atoms and 2 to 24 carbon atoms, which may be independently substituted with an ether group, a cyclic ether group, an ester group or a halogen group, respectively.
  • R 7 and R 8 are independent halogen groups, respectively.
  • a linear alkyl group having 1 to 24 carbon atoms, an alkenyl group or an alkyleneoxyalkyl group having 2 to 24 carbon atoms, a branched alkyl group having 3 to 24 carbon atoms or an alicyclic hydrocarbon which may be substituted with Represents an aromatic hydrocarbon having 6 to 24 carbon atoms.
  • X represents a tetravalent organic group represented by the general formula (3).
  • N and m each independently represent an integer of 1 to 10.
  • R 9 and R 10 each independently represent a hydrogen atom, a linear alkyl group having 1 to 8 carbon atoms, and a branched alkyl group having 3 to 8 carbon atoms.
  • the method for producing a benzophenone derivative having a (meth) acrylamide group represented by the general formula (1) is not particularly limited as long as the target compound prescribed in the present disclosure can be obtained, but for example, (1) in a molecule.
  • the reactive group in the present disclosure includes a hydroxyl group, a thiol group, an amine group, an amino group, a carboxylic acid, an acid anhydride, a sulfonic acid, an isocyanate, an oxazoline group, a carbodiimide group, a glycidyl group, a halogen group, and an ethylenically unsaturated group. It is one or more selected from the group consisting of a quaternizing agent, an organic or inorganic acid and a base. Further, the reactive group of (3) can undergo an organic reaction or an inorganic reaction (neutralization, etc.) with the reactive groups of (1) and (2). As a result, (3) becomes a connecting portion of (1) and (2), and a benzophenone derivative having a (meth) acrylamide group is obtained.
  • the compound having one or more benzophenone derivatives and one or more reactive groups in the molecule is, for example, a compound having two or more hydroxyl groups as a reactive group (polypoly having a benzophenone derivative).
  • a manufacturing method thereof for example, the following method can be mentioned.
  • the method for producing a polyol having a benzophenone derivative is not limited to the following method. For example, in a batch or sequential reaction of a carboxylic acid having a benzophenone group, an epoxy group-containing compound and a hydroxyl group-containing compound, or a batch or sequential reaction of a carboxylic acid anhydride having a benzophenone group, an epoxy group-containing compound and a hydroxyl group-containing compound. Obtainable.
  • the production can be carried out according to known conditions.
  • the raw materials may be charged in a batch or by dropping one or more raw materials, and the reaction temperature is preferably room temperature to 90 ° C. Solvents, catalysts and other additives may be used, if desired.
  • Examples of the carboxylic acid or carboxylic acid anhydride having a benzophenone group include 3,3', 4,4'-benzophenone tetracarboxylic acid, 3- (3,4-carboxybenzoyl) -1,2-benzenedicarboxylic acid, and the like. 3,3'-carbonylbis (1,2-benzenedicarboxylic acid), 3,3', 4,4'-benzophenonetetracarboxylic acid dianhydride, 4,4'-carbonylbis (1,3-isobenzofrangione) ) Etc. can be mentioned.
  • 3,3', 4,4'-benzophenonetetracarboxylic acid and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride are preferable because they are industrially easily available.
  • carboxylic acid or carboxylic acid anhydride having a benzophenone group one type may be used alone, or two or more types may be used in combination.
  • Examples of the epoxy group-containing compound include a linear alkyl group having 1 to 24 carbon atoms which may be substituted with an ether group, a cyclic ether group, an ester group or a halogen group, an alkenyl group having 2 to 24 carbon atoms, or an alkyleneoxyalkyl group.
  • Examples thereof include an epoxy having a group, a branched alkyl group having 3 to 24 carbon atoms or an alicyclic hydrocarbon group, and an aromatic hydrocarbon group having 6 to 24 carbon atoms, and examples thereof include 1,2-butylene oxide, 1, 2-Epoxyhexane, 1,2-epoxidodecan, 1,2-epoxytetradecane, 1,2-epoxyhexadecan, 2- (2-methylpropyl) oxylane, 2- (2,5-dimethylhexyl) oxylane, 2- (5,7-diethyloctyl) oxylan, 2-ethoxyoxylan, 2- [2- (2-methoxyethoxy) ethoxy] oxylan, butyl glycidyl ether, glycidyl phenyl ether, 2-ethylhexyl glycidyl ether, dodecyl glycidyl ether, tridecyl Glysidyl ether, tetrade
  • the epoxy group-containing compound may be used alone or in combination of two or more.
  • both a monool having one hydroxyl group in the molecule and a polyol having two or more hydroxyl groups can be used.
  • the monool is not particularly limited as long as it is a compound having one hydroxyl group in the molecule.
  • a linear alkyl group having 1 to 24 carbon atoms which may be substituted with a halogen group, an alkenyl group or an alkyleneoxyalkyl group having 2 to 24 carbon atoms, a branched alkyl group or a fat having 3 to 24 carbon atoms.
  • Examples thereof include a cyclic hydrocarbon group and a monool having an aromatic hydrocarbon group having 6 to 24 carbon atoms.
  • Ethylene glycol monomethyl ether Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, trifluoroethanol, tetrafluoropropanol and the like.
  • methanol, ethanol, normal propanol, isopropanol, normal butanol, sec-butanol, and ter-butanol are preferable because they are industrially easily available.
  • the hydroxyl group-containing compound one type can be used alone, or two or more types can be used in combination.
  • the polyol is not particularly limited as long as it is a compound having two or more hydroxyl groups in the molecule, but may be substituted with a halogen group, a linear alkyl group having 1 to 24 carbon atoms or a hydroxyalkylene group, and a polyol having 2 to 2 carbon atoms.
  • a halogen group a linear alkyl group having 1 to 24 carbon atoms or a hydroxyalkylene group
  • a polyol having 2 to 2 carbon atoms examples thereof include a diol having 24 alkenyl groups or alkyleneoxyalkyl groups, a branched alkyl group having 3 to 24 carbon atoms or an alicyclic hydrocarbon group, and an aromatic hydrocarbon group having 6 to 24 carbon atoms.
  • ethylene glycol 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-Hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,24-tetracosandiol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptan, diethylene glycol, Examples thereof include dipropylene glycol, neopentyl glycol, 1,4-cycloheptanediol and 2,7-norbornanediol.
  • a solvent may be used when producing a compound having one or more benzophenone derivatives and one or more reactive groups in the molecule.
  • an organic solvent for example, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, methylene chloride, N, N'-dimethylformamide, 3-methoxy-N, N' -Dimethylpropionamide, 3-butoxy-N, N'-dimethylpropionamide, dimethylacetamide, dimethyl sulfoxide, 2-pyrrolidone, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone and the like.
  • a polymerizable (radical, cationic or anionic polymerization by light or heat) compound that does not react with the raw material and the product can also be used.
  • a polymerizable (radical, cationic or anionic polymerization by light or heat) compound that does not react with the raw material and the product.
  • various (meth) acrylic acid esters introduced with a chain and / or cyclic hydrocarbon group (1 to 22 carbon atoms) or an alkoxy group (1 to 22 carbon atoms) as a substituent, and various N-substituted (meth).
  • Acrylamide and N, N-di-substituted (meth) acrylamide, (meth) acryloylmorpholin and the like are examples of the like.
  • reaction catalyst used in producing a compound having one or more benzophenone derivatives and one or more reactive groups in the molecule for example, a quaternary ammonium salt, a tertiary phosphine derivative, a second.
  • a quaternary ammonium salt for example, tetrabutylammonium bromide, triethylbenzylammonium chloride, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide and the like.
  • tertiary phosphine examples include triarylphosphine such as triphenylphosphine, tribenzylphosphine and tritrylphosphine, tricycloalkylphosphine such as tricyclohexylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine and trioctylphosphine. Examples thereof include trialkylphosphine.
  • tertiary amine examples include trialkylamines such as triethylamine and tributylamine, dialkylarylamines such as dimethylbenzylamine and diethylbenzylamine, and triethanolamine.
  • any catalyst used for the ring-opening reaction of the epoxy group can be used.
  • metals such as zinc, tin, lead, zirconium, bismuth, cobalt, manganese, and iron and octenoic acid can be used.
  • Metal salts with organic acids such as naphthenic acid, dibutyltin dilaurate, dioctyltin dilaurate, tin 2-ethylhexanoate, dibutyltin diacetylacetonate, zirconium tetraacetylacetonate, titanium acetylacetonate, acetylacetone aluminum, acetylacetone
  • quaternary ammonium salts tertiary phosphine derivatives, tin-based, zirconium-based, and iron-based organometallic compounds having a high catalytic effect are more preferable.
  • the amount of the reaction catalyst used is not particularly limited, but is preferably 0.001 to 5.0% by mass with respect to the total mass of each raw material. When it is 0.001% or more, the reaction can proceed rapidly, and when it is 5.0% or less, coloring by the catalyst can be suppressed, which is preferable. Further, it is more preferably 0.01 to 1.0%.
  • the compound having one or more (meth) acrylamide groups and one or more reactive groups in the (1) molecule is not particularly limited.
  • a compound having one or more (meth) acrylamide groups in the molecule and having at least one structure selected from a hydroxyl group, an amino group, and a carboxyl group is preferable.
  • the (meth) acrylamide group-containing compound having a hydroxyl group can also be used as a monool or a polyol as long as it is a compound having one or more (meth) acrylamide groups and one or more hydroxyl groups.
  • N-hydroxyalkyl (1 to 22 carbon atoms) (meth) acrylamide such as N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, and N-hydroxypropyl (meth) acrylamide, N-methylhydroxy.
  • N, N-dihydroxyalkyl (1 to 22 carbon atoms) (meth) acrylamide such as acrylamide and N, N-dihydroxyethyl (meth) acrylamide.
  • These hydroxyl group-containing (meth) acrylamide group-containing compounds may be used alone or in combination of two or more.
  • the (meth) acrylamide group-containing compound having an amino group is not particularly limited as long as it is a compound having one or more (meth) acrylamide groups and one or more amino groups, and is, for example, N-aminoalkyl (carbon number). 1 to 22) (meth) acrylamide, N-aminoalkyl (1 to 22 carbon atoms) -N-alkyl (1 to 22 carbon atoms) (meth) acrylamide, N, N-diaminoalkyl (1 to 22 carbon atoms) ( Meta) Acrylamide and the like. These (meth) acrylamides having an amino group can be used alone or in combination of two or more.
  • the (meth) acrylamide group-containing compound having a carboxyl group is not particularly limited as long as it is a compound having one or more (meth) acrylamide groups and one or more amino groups, and is, for example, N-carboxyalkyl (carbon number). 1 to 22) (meth) acrylamide, N-carboxyalkyl (1 to 22 carbon atoms) -N-alkyl (1 to 22 carbon atoms) (meth) acrylamide, N, N-dicarboxyalkyl (1 to 22 carbon atoms) (Meta) acrylamide and the like can be mentioned. These carboxyl group-containing (meth) acrylamides can be used alone or in combination of two or more.
  • the compound having two or more reactive groups in the molecule (3) is not particularly limited as long as it is a compound capable of reacting with the compounds (1) and (2).
  • the reactive group contained in the compound can be appropriately selected according to the reactive groups in (1) and (2) above.
  • B described in the general formula (1) is preferably a divalent or higher organic group having a urethane group, a urea group, an ester group, an amide group or an imide group, and is a reactive group contained in the compound. Is preferably an isocyanate group, an amine group, an amino group, or a carboxylic acid group.
  • a urethane group, a urea group, an ester group, an amide group or an imide group can be introduced as a group, and the photopolymerization initiation property is improved.
  • the photopolymerization initiator obtained by reacting the above (1), (2) and (3) has a structure in which an ester group is directly bonded to a benzophenone group, the photopolymerization initiator of the benzophenone group is improved. Therefore, it is preferable. From the same viewpoint, it is more preferable to have the benzophenone tetraester structure represented by the general formula (2). Moreover, although the clear mechanism is unknown, when the benzophenone group, the four ester groups directly bonded to the benzophenone group, and the urethane bond are all contained in the same molecule, these functions are intermolecular and / or intramolecular.
  • the interaction of the groups increases the photopolymerization initiation property and at the same time improves the sensitivity to long-wavelength rays having a wavelength of 360 nm or more, which is particularly preferable.
  • the photopolymerization initiator having such a structure has high solubility in monomers, oligomers, organic solvents, etc. used in combination in the photocurable resin composition, and the viscosity of the photocurable resin composition can be adjusted according to the intended use. It is possible to obtain a cured product having good color resistance after photocuring.
  • a general-purpose polyisocyanate and a polyol can be used. It may be a polyisocyanate having a polyol skeleton obtained by the reaction.
  • a general-purpose polyisocyanate is a compound having two or more isocyanate groups in the molecule, and specifically, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 1,2-propylene diisocyanate, 1 , 2-butylene diisocyanate, 2,3-butyleneziosocyanate, 1,3-butylenediocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate and other aliphatic polyisocyanates, 1,3-phenylenediocyanate, 1,4-phenylenediocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-diphenylmethane diisocyanate, 1,3-xyli Aromatic poly
  • the polyol used for synthesizing a polyisocyanate having a polyol skeleton may be a compound having two or more hydroxyl groups in the molecule.
  • a polyether polyol having two or more hydroxyl groups in the molecule a polyester polyol, a polycarbonate polyol, a polyolefin polyol, and a silicone polyol can be mentioned. Further, these polyols may be used alone or in combination of two or more.
  • polyether polyol examples include straight-chain, branched, and cyclic polyalkylene glycols having 2 to 18 carbon atoms, and specific examples thereof include polyethylene glycol, glycerin tri (polyoxyethylene) ether, and trimethyl propantri (polyoxy).
  • Ethylene) ether pentaerythritol tetra (polyoxyethylene) ether, poly (oxy-1,3-propylene) glycol, glycerintri (polyoxy-1,3-propylene) ether, trimethyl propantri (polyoxy-1,3-propylene) Polyethylene) ether, pentaerythritol tetra (polyoxy-1,3-propylene) ether, poly (oxy-1,2-propylene) glycol, glycerintri (polyoxy-1,2-propylene) ether, trimethyl propantri (polyoxy-) 1,2-propylene) ether, pentaerythritol tetra (polyoxy-1,2-propylene) ether, poly (oxy-1,4-butylene) glycol, poly (oxy-1,5-pentylene) glycol, poly (oxy- Examples thereof include alkylene glycols such as 3-methyl-1,5-pentylene) glycol and poly
  • the polyester polyol is composed of a polycarboxylic acid and a polyol, and has a polyester skeleton in the molecule and a hydroxyl group at the end.
  • polycarboxylic acid components phthalic acid, tetrahydrophthalic acid, terephthalic acid, isophthalic acid, 1,2-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid , Succinic acid, maleic acid, fumaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, 1,2,4-butanetricarboxylic acid, hemimelitoic acid, trimellitic acid, trimesic acid, cyclohexanetricarboxylic acid, pyromellitic acid , Cyclohexanetetracarbox
  • -Pentanediol 1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,2-octanediol , 1,8-octanediol, 1,2-nonanediol, 1,9-nonanediol, isosorbide, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol and the like.
  • a polyester polyol composed of one or more of adipic acid, terephthalic acid, isophthalic acid, and sebacic acid is preferable as the polycarboxylic acid because it is industrially easily available.
  • Polycarbonate polyol is composed of a carbonyl component and a polyol, and has a hydroxyl group at the terminal only having a carbonate skeleton in the molecule.
  • the carbonyl component include phosgen, chlorogenic acid ester, dialkyl carbonate, diaryl carbonate and alkylene carbonate
  • the polyol component include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol and 1,2-butanediol.
  • 1,4-Butanediol 1,2-Pentanediol, 1,5-Pentanediol, 1,2-hexanediol, 1,6-Hexanediol, 1,4-Cyclohexanedimethanol, 3-Methyl-1, 5-Pentanediol, 1,2-octanediol, 1,8-octanediol, 1,2-nonanediol, 1,9-nonanediol, 1,10-decanediol, isosorbide, neopentyl glycol, glycerin, trimethylol Examples thereof include propane, pentaerythritol and dipentaerythritol. Of these, a polycarbonate polyol composed of one or more of phosgene, dimethyl carbonate, and diphenyl carbonate as the carbonyl component is preferable because it is industrially easily available.
  • Examples of the polyolefin polyol include hydrogenated polyalkaziene polyol and polyalkaziene polyol, and examples of the hydrogenated polyalkaziene polyol include 1,2-hydrogenated polybutadienediol, 1,4-hydrogenated polybutadienediol, and hydrogenated polyisoprene.
  • Examples thereof include polyols, and examples of polyalkaziene polyols include 1,2-polybutadienediol, 1,4-polybutadienediol, polyisoprene polyol and the like. Of these, 1,2-hydrogenated polybutadienediol, 1,4-hydrogenated polybutadienediol, and hydrogenated polyisoprene polyol are preferable because of their excellent weather resistance.
  • the silicone polyol has a silicone main chain skeleton in the molecule and has one or more hydroxyl groups at the end or side chain of the main chain skeleton.
  • both-terminal carbinol-modified polydimethylsiloxane, side-chain carbinol-modified polydimethylsiloxane, both-terminal hydroxyethoxyethyl-modified polypolydimethylsiloxane, side-chain hydroxyethoxyethyl-modified polypolydimethylsiloxane, both-terminal polyether-modified polypolydimethylsiloxane, Side chain polyether-modified polypolydimethylsiloxane and the like can be mentioned.
  • both-terminal carbinol-modified polydimethylsiloxane is preferable because gelation is unlikely to occur during urethane synthesis.
  • the photopolymerization initiator of the present disclosure preferably has an average number of benzophenone derivatives per molecule of 1 to 20.
  • the average number is 1 or more, sufficient photopolymerization initiator is exhibited as a photopolymerization initiator, and when the average number exceeds 20, the photopolymerization initiator is considerably high and is contained in the photocurable resin composition. Although it depends on the mass to be obtained, it may be difficult to control the photopolymerization reaction rate. From the same viewpoint, the average number is more preferably 1 to 10.
  • the photopolymerization initiator of the present disclosure preferably has an average number of urethane bonds per molecule of 1 to 40.
  • the average number is 1 or more, the effects derived from various urethane bonds as described above can be provided, and when the average number exceeds 40, the polarity of the photopolymerization initiator becomes high, and the combined use in the photocurable resin composition. Solubility to ingredients tends to decrease. From the same viewpoint, the average number is more preferably 2 to 30.
  • the photopolymerization initiator of the present disclosure can generate growth active species such as radicals, cations, or anions by irradiation with light.
  • the light source used for light irradiation include light energy rays such as visible light, electron beam, ultraviolet ray, infrared ray, X-ray, ⁇ ray, ⁇ ray, and ⁇ ray.
  • ultraviolet rays from the viewpoint of the balance between the active energy ray generator, the photopolymerization initiation rate and the safety.
  • ultraviolet sources include xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, UV-LED lamps, microwave excimer lamps, etc., which have high energy conversion efficiency to light and high output. It is more preferable to use a UV-LED lamp that is easy and does not use harmful mercury.
  • the irradiation energy required to generate growth active species such as radicals, cations, or anions by the light irradiation of the photopolymerization initiator of the present disclosure varies slightly depending on the application and the light source, but the irradiation energy (integrated light amount) is 5 to 50,000 mJ / cm. The range of 2 is preferable, and 10 to 20000 mJ / cm 2 is more preferable. When the irradiation energy is within this range, a growth active species having sufficient activity is generated from the photopolymerization initiator, which is preferable.
  • the photopolymerization initiator of the present disclosure can be used as an alternative to the conventional photopolymerization initiator by being contained in various photocurable resin compositions. Its content varies depending on the structure of the photopolymerization initiator and the composition of the photocurable resin composition, but when 0.1% by mass or more is added, photopolymerization can be started immediately, and the photocurable resin is irradiated with light. This is preferable because the composition is sufficiently cured. Further, since the photopolymerization initiator has an ethylenically unsaturated bond, even when the content is 100% by mass, it can be sufficiently cured in the same manner as the photocurable resin composition.
  • the content of the photopolymerization initiator is 0.5 with respect to the entire photocurable resin composition. It is more preferably from to 70% by mass, and most preferably from 1 to 50% by mass.
  • the unsaturated group-containing compound examples include monofunctional unsaturated compounds and polyfunctional unsaturated compounds.
  • the content of the unsaturated group-containing compound is preferably 0 to 99% by mass with respect to the entire photocurable resin composition. Further, in order to preferably adjust the physical characteristics of the cured product, the content of the unsaturated group-containing compound is more preferably 50 to 99% by mass.
  • Examples of the monofunctional unsaturated compound include compounds containing a (meth) acrylate group, a (meth) acrylamide group, a vinyl group, an allyl group, a styryl group, an acetylene group, etc., and these may be used alone. Alternatively, two or more types may be used in combination.
  • the content of the monofunctional unsaturated compound is preferably 0 to 90% by mass, more preferably 5 to 70% by mass, and 10 to 50% by mass with respect to the entire photocurable resin composition. Most preferably.
  • the monofunctional unsaturated compound usually has a low viscosity, and by appropriately containing it, effects such as lowering the viscosity of the photocurable resin composition and improving workability can be expected.
  • a monofunctional unsaturated compound excluding a photopolymerization initiator containing a (meth) acrylate group
  • (Meta) alkylcarboxylic acids acrylates such as carboxylic acid, ethylsuccinic acid (meth) acrylate, ethylphthalic acid (meth) acrylate, ethylhexahydrophthalic acid (meth) acrylate, linear chain having 1 to 22 carbon atoms, (Meta) alkyl sulfonic acids with branched and cyclic alkyl sulfonic acid groups, linear, branched and cyclic alkyl sulfonic acid groups with 1 to 22 carbon atoms (meth) alkyl acrylate groups introduced.
  • N-alkylamino (meth) acrylate introduced with an aminoalkyl group having 1 to 6 carbon atoms, and carbon number.
  • N-alkylaminoalkyl (meth) acrylates introduced with an N-alkylaminoalkyl group consisting of an aminoalkyl group having 1 to 6 carbon atoms and an alkyl group having 1 to 6 carbon atoms, and an aminoalkyl group having 1 to 6 carbon atoms.
  • N, N-dialkylaminoalkyl (meth) acrylates introduced with an N, N-dialkylaminoalkyl group consisting of an alkyl group having 1 to 6 carbon atoms, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, and di.
  • the monofunctional unsaturated compound (excluding the photopolymerization initiator) containing a (meth) acrylamide group include (meth) acrylamide, mono- or di-substituted (meth) acrylamide, and (meth) acroylmorpholin. Examples thereof include diacetone (meth) acrylamide, and examples of the mono or di-substituted (meth) acrylamide include N-alkyl (meth) having a linear, branched, or cyclic alkyl group having 1 to 22 carbon atoms introduced therein.
  • Alkoxyalkyl group consisting of an alkoxy group having 1 to 6 carbon atoms and an alkylene group having 1 to 6 carbon atoms, N-alkyl-N-alkoxyalkyl (meth) acrylamide having an alkyl group having 1 to 6 carbon atoms introduced, and carbon number of carbon atoms.
  • N-sulfoalkyl acrylamide with 1 to 6 alkyl sulfonic acid groups N-alkylamino (meth) acrylamide with 1 to 6 carbon atoms, aminoalkyl groups with 1 to 6 carbon atoms
  • Acrylamide and N- (1,1-dimethyl-3-oxobutyl) acrylamide are preferable, and among them, N, N-dimethylacrylamide, N, N-diethylacrylamide, and N-dimethylamino are preferable because they are liquid and have high workability. More preferred are propylacrylamide, N-hydroxyethylacrylamide and N-acryloylmorpholin.
  • a monofunctional unsaturated compound containing a vinyl group excluding a photopolymerization initiator
  • a carboxylic acid vinyl ester introduced with a carboxylic acid having 1 to 22 carbon atoms, directly having 1 to 22 carbon atoms.
  • Alkyl vinyl ether with chain, branched, or cyclic alkyl groups vinyl chloride, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinyloxazoline, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic acid anhydride, Maleic acid monoalkyl ester, maleic acid dialkyl ester, maleic acid monoalkylamide, maleic acid dialkylamide, maleic acid alkylimide, fumaric acid monoalkyl introduced with linear, branched, and cyclic alkyl groups having 1 to 22 carbon atoms.
  • a monofunctional unsaturated compound excluding a photopolymerization initiator
  • a carboxylic acid allyl ester in which a carboxylic acid having 1 to 22 carbon atoms is introduced, and a direct carboxylic acid having 1 to 22 carbon atoms.
  • alkylallyl ethers having a chain, branched or cyclic alkyl group introduced, phenylallyl ether, alkylphenylallyl ether, allylamine, branched or cyclic alkyl group-introduced mono or dialkylallylamine.
  • styrene As a monofunctional unsaturated compound containing a styryl group (excluding a photopolymerization initiator), styrene, ⁇ -alkylstyrene having an alkyl group having 1 to 22 carbon atoms introduced at the ⁇ -position, and ⁇ -methylstyrene.
  • styrene, ⁇ -alkylstyrene having an alkyl group having 1 to 22 carbon atoms introduced at the ⁇ -position examples thereof include dimers, o-alkylstyrene in which an alkyl group having 1 to 22 carbon atoms is introduced into a phenyl group, m-alkylstyrene, p-alkylstyrene, p-styrenesulfonic acid in which a sulfonic acid group is introduced, and the like.
  • polyfunctional unsaturated compound examples include compounds containing two or more unsaturated groups such as a (meth) acrylate group, a (meth) acrylamide group, a vinyl group, an allyl group, a styrene group and an acetylene group.
  • the unsaturated group may be a compound containing one type alone, or a compound containing two or more types in combination. Further, in order to obtain good curability, it is more preferable to use at least one (meth) acrylate group or (meth) acrylamide group as the unsaturated group.
  • the content of the polyfunctional unsaturated compound (excluding the photopolymerization initiator) is preferably 0 to 99% by mass, more preferably 1 to 70% by mass, based on the entire photocurable resin composition. Most preferably, it is 5 to 50% by mass.
  • the strength and hardness of the cured product obtained by appropriately containing the polyfunctional unsaturated compound are high, and excellent durability can be expected.
  • the polyfunctional unsaturated compound is at least selected from allyl (meth) acrylate, allyl (meth) acrylamide, diallylamine, alkyldiallylamine introduced with an alkyl group having 1 to 22 carbon atoms, known inorganic acid anion or organic acid anion.
  • Onium salts alkylene glycol di (meth) acrylates, polyalkylene glycol di (meth) acrylates, bisphenols composed of a combination of one type of anion and a dialkyldiallyl ammonium cation having an alkyl group having 1 to 22 carbon atoms introduced therein.
  • Examples of the trifunctional or higher functional polyfunctional unsaturated compound include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylpropantri (meth) acrylate, and dipentaerythritol tri (meth).
  • the number average molecular weight of the polyfunctional unsaturated compound is preferably 100 to 20000.
  • the number average molecular weight is 100 or more, the curing shrinkage of the obtained cured product can be suppressed to a low level, which is preferable.
  • the number average molecular weight is 20000 or less, the liquid viscosity of the photocurable resin composition can be controlled to be low and the operability is excellent, which is preferable. Further, it is more preferable that the number average molecular weight is 200 to 10000.
  • the photopolymerization initiator of the present disclosure has sufficient sensitivity without using other sensitizers, but the sensitizer is used for the purpose of further improving the sensitivity and the physical properties of the cured product after curing. It can be used in combination with other photopolymerization initiators.
  • the sensitizer that can be used in combination with the photopolymerization initiator of the present disclosure is not particularly limited, but for example, unsaturated ketones typified by benzophenones and anthracene derivatives, benzyl, camphorquinone and the like 1, Examples thereof include 2-diketone derivatives, benzoin derivatives, anthraquinone derivatives, thioxanthone derivatives, coumarin derivatives, tertiary amines, thiols and disulfides. These can be used in any ratio as needed, and one type may be used alone, or two or more types may be used in combination.
  • the photocurable resin composition does not contain an organic solvent and can be used. Further, in order to improve workability such as coatability, an organic solvent can be added as needed to adjust the liquid viscosity.
  • the added organic solvent may be removed and cured in advance at the time of photocuring, or may be cured while containing the organic solvent. Further, the organic solvent may be removed after curing, and can be appropriately selected depending on the method of use and purpose of the photocurable resin composition and the obtained cured product.
  • the amount of the organic solvent added is not particularly limited, but is preferably 80% by mass or less, preferably 50% by mass or less, based on the entire photocurable resin composition from the viewpoint of reducing the energy and time required for removing the organic solvent. The following is more preferable.
  • Organic solvents used in the photocurable resin composition include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethyl acetate, propyl acetate, butyl acetate, methyl lactate and lactic acid.
  • alcohols such as methanol, ethanol and isopropanol
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • ethyl acetate propyl acetate
  • butyl acetate methyl lactate and lactic acid.
  • Esters such as ethyl, alkylene glycols such as ethylene glycol and propylene glycol, polyalkylene glycols such as polyethylene glycol and polypropylene glycol, glycol ethers such as ethoxydiethylene glycol and methoxypropylene glycol, glycol esters such as propylene glycol acetate, Ethers such as tetrahydrofuran, methyl tetrahydrofuran, cyclopentylmethyl ether, methyltetrahydropyran, methyl tert-butyl ether toluene, aromatic hydrocarbons such as xylene, aliphatic hydrocarbons such as hexane and cyclohexane, N, N'-dimethylformamide.
  • alkylene glycols such as ethylene glycol and propylene glycol
  • polyalkylene glycols such as polyethylene glycol and polypropylene glycol
  • glycol ethers such as ethoxyd
  • Amides such as dimethylacetamide, amide ethers such as ⁇ -methoxy-N, N-dimethylpropionamide, ⁇ -butoxy-N, N-dimethylpropionamide, pyrrolidones such as 2-pyrrolidone and N-methylpyrrolidone, Piperidines such as N-methylpiperidin, halogenated hydrocarbons such as methylene chloride, chloroform, dichloroethane, etc., sulfoxides such as dimethylsulfoxide, imidazolidinones such as 1,3-dimethyl-2-imidazolidinone, etc. Can be mentioned. These organic solvents may be used alone or in combination of two or more.
  • the photopolymerization initiator of the present disclosure includes UV flexo ink, UV offset ink, UV screen ink, UV inkjet ink, photocurable nail cosmetic composition (gel nail), UV curable adhesive, UV curable adhesive, and the like.
  • photocurable nail cosmetic composition gel nail
  • UV curable adhesive UV curable adhesive
  • photo-curable sealants used for sealing materials and encapsulants
  • photo-curable coating agents used for paints and coating materials for automobiles, electrical appliances, furniture, etc., and surface coatings for automobiles and electrical appliances.
  • IR analysis Infrared absorption spectrum analysis (IR analysis) IR analysis was performed with the following equipment.
  • Nicolet iS50 manufactured by Thermo Fisher Scientific Co., Ltd.
  • LC-MS analysis Liquid chromatography-mass spectrometry (LC-MS analysis) LC-MS analysis was performed with the following equipment and conditions.
  • GPC analysis Gel permeation chromatography analysis was performed with the following equipment and conditions. Equipment: Temperature-I LC-2030C (manufactured by Shimadzu Corporation); Guard column: 1 piece of Polystyrene KF-G (manufactured by Showa Denko Co., Ltd.); Column: 1 piece of KF-806L of Shodex Co., Ltd. Column temperature: 40 ° C.; Mobile phase: Tetrahydrofuran (THF); Liquid delivery rate: 0.5 mL / min; Standard sample: Polystyrene
  • polyol (E) and isocyanate compound (F) used in Examples and Comparative Examples are shown below.
  • E-1 KF-6000 (manufactured by Shin-Etsu Chemical Co., Ltd., carbinol-modified silicone oil, diol type, number average molecular weight 1700)
  • E-2 Kuraray polyol P-1010 (manufactured by Kuraray, polyester polyol, diol type, number average molecular weight 1000)
  • E-3 UH-100 (manufactured by Ube Industries, Ltd., 1,6-HD polycarbonate diol, number average molecular weight 1000)
  • E-4 GI-1000 (manufactured by Nippon Soda, polybutadiene diol, number average molecular weight 1500)
  • E-5 Uniol D-1000 (manufactured by NOF, polypropylene glycol, number average molecular weight 1000)
  • E-6 Kuraray polyol P-5010 (manufactured
  • G photopolymerization initiators
  • H monofunctional unsaturated compounds
  • I polyfunctional unsaturated compounds
  • J other components used in Examples and Comparative Examples are shown below.
  • G-1 1-Hydroxycyclohexylphenyl ketone (Omnirad 184, manufactured by IGM Resins BV)
  • G-2 1- [4- (2-Hydroxyethyl) -phenyl] -2-hydroxy-methylpropanone (Omnirad 2959, manufactured by IGM Resins B.V.)
  • G-3 2-Hydroxy-1- (4- (4- (2-hydroxy-2-methylpropionyl) phenoxy) phenyl) -2-methylpropan-1-one (ESACURE KIP 160, manufactured by IGM Resins B.V.
  • Synthesis Example 1 Synthesis of photopolymerization initiator (C-1) having an unsaturated bond 60.0 g of trifluoromethanesulfonic acid (0.) In a 300 mL volumetric flask provided with a reflux condenser, a stirrer, a thermometer and a dropping funnel. 4 mol) and 7.2 g (0.4 mol) of water were slowly mixed while cooling to prepare a trifluoromethanesulfonic acid hydrate. A mixture of 10.6 g (0.2 mol) of acrylonitrile, 40.8 g (0.2 mol) of (G-1) and 0.1 g of phenothiazine was slowly added from the dropping funnel while maintaining at 40 ° C.
  • Synthesis Example 2 Synthesis of photopolymerization initiator (C-2) having an unsaturated bond Except for using 26.8 g of methacrylonitrile instead of acrylonitrile and 68.5 g of (G-3) instead of (G-1). was synthesized and analyzed by the same method as in Synthesis Example 1 to obtain a photopolymerization initiator (C-2) having a methacrylamide group as an unsaturated bond having a molecular weight of 477. The purity was 98.8% and the yield was 67%. The number ratio of the ethylenically unsaturated bond (methacrylamide group) to the photopolymerization-initiating functional group (radical intramolecular cleavage type) was 1/1.
  • Synthesis Example 3 Synthesis of photopolymerization initiator (C-3) having an unsaturated bond
  • C-3 photopolymerization initiator having an unsaturated bond
  • 100 g of cyclohexane, 0.1 g of phenothiazine and 0.1 g of dioctyltin oxide were added.
  • the reaction solution was heated to 80 ° C. with stirring, and further reacted at 80 ° C. for 12 hours.
  • the purity was 95.2% and the yield was 54%.
  • the number ratio of the ethylenically unsaturated bond (acrylate group and acrylamide group) to the photopolymerization-initiating functional group (radical-based intramolecular cleavage type) was 1/2.
  • Synthesis Example 4 Synthesis of photopolymerization initiator (C-4) having an unsaturated bond
  • C-4 photopolymerization initiator having an unsaturated bond
  • DBTDL 2-isocyanatoethyl acrylate and dibutyltin dilaurate.
  • 0.02 g of (DBTDL) and 50 g of methyl ethyl ketone (MEK) were added.
  • a mixture of 42.4 g (0.2 mol) of benzoin and 0.1 g of phenothiazine was slowly added from the dropping funnel while maintaining at 40 ° C. After completion of the dropping, stirring was continued at 70 ° C. for 2 hours.
  • the solvent was distilled off by a reduced pressure method and recrystallized to obtain a white solid.
  • IR analysis, LC-MS analysis and NMR analysis were carried out, and it was confirmed that the photopolymerization initiator (C-4) had an acrylate group as an unsaturated bond having a molecular weight of 353.
  • GC analysis was performed, and the purity of the product was 97.7% and the yield was 88%.
  • the number ratio of the ethylenically unsaturated bond (acrylate group) to the photopolymerization-initiating functional group (radical-based intramolecular cleavage type) was 1/1.
  • Synthesis Example 5 Synthesis of photopolymerization initiator (C-5) having an unsaturated bond 44.5 g of (F-2) instead of 2-isocyanatoethyl acrylate, as a photopolymerization initiator having a hydroxyl group (G-1)
  • the urethanization reaction was carried out in the same manner as in Synthesis Example 4 except that 40.9 g was used to obtain a compound having an isocyanate group as an intermediate.
  • 28.2 g (0.2 mol) of hydroxyethylmaleimide was slowly added from the dropping funnel into the solution of the intermediate while keeping it at 70 ° C. After completion of the dropping, stirring was continued at 70 ° C. for another 4 hours.
  • the solvent was distilled off by a reduced pressure method and recrystallized to obtain a white solid.
  • IR analysis, LC-MS analysis and NMR analysis were performed, and it was confirmed that the photopolymerization initiator (C-5) had a maleimide group as an unsaturated bond having a molecular weight of 528.
  • GC analysis was performed, and the purity of the product was 96.5% and the yield was 92%.
  • the number ratio of the ethylenically unsaturated bond (maleimide group) to the photopolymerization-initiating functional group was 1/1.
  • Synthesis Example 6 Synthesis of photopolymerization initiator (C-6) having an unsaturated bond 52.5 g of dicyclohexylmethane 4,4'-diisocyanate instead of 2-isocyanatoethyl acrylate, as a photopolymerization initiator having a hydroxyl group (G) -1)
  • a urethanization reaction was carried out in the same manner as in Synthesis Example 4 except that 40.8 g was used to obtain a compound having an isocyanate group as an intermediate.
  • 11.4 g (0.2 mol) of allylamine was slowly added from the dropping funnel into the solution of the intermediate while keeping it at 30 ° C. After completion of the dropping, stirring was continued at 40 ° C. for another 6 hours.
  • the solvent was distilled off by a reduced pressure method and recrystallized to obtain a white solid.
  • IR analysis, LC-MS analysis and NMR analysis were performed, and it was confirmed that the photopolymerization initiator (C-6) had an allyl group as an unsaturated bond having a molecular weight of 466.
  • GC analysis was performed, and the purity of the product was 93.8% and the yield was 94%.
  • the number ratio of the ethylenically unsaturated bond (allyl group) to the photopolymerization-initiating functional group (radical intramolecular cleavage type) was 1/1.
  • Synthesis Example 7 Synthesis of benzophenone group-containing compound (D-1)
  • BTDA 3,3', 4,4'-benzophenone tetracarboxylic dianhydride
  • 22.6 g of isopropyl alcohol, 46.6 g of 1,2-epoxyhexane, 62 g of ethyl acetate, and 17.1 g of triphenylphosphine (TPP) as a catalyst were added and reacted at 60 ° C. for 24 hours with stirring. After completion of the reaction, the mixture was washed with 5% sulfuric acid and saturated aqueous sodium hydrogen carbonate solution, and the organic layer was separated.
  • BTDA 3,3', 4,4'-benzophenone tetracarboxylic dianhydride
  • TPP triphenylphosphine
  • Synthesis Example 8 Synthesis of benzophenone group-containing compound (D-2)
  • BTDA BTDA
  • 33.7 g of carbitol 44.7 g of glycidyl butyrate
  • ethyltriphenylphosphonium bromide as a catalyst
  • 16.1 g of ETPPB 16.1 g of ETPPB
  • analysis, purification, identification and the like were carried out in the same manner as in Synthesis Example 7, and it was confirmed that 106.7 g of the obtained pale yellow viscous liquid was a benzophenone group-containing compound (D-2) having a target molecular weight of 879. did.
  • Synthesis Example 9 Synthesis of benzophenone group-containing compound (D-3)
  • BTDA BTDA
  • 28.2 g of trifluoroethanol 51 g of N, N-dimethylformamide (DMF)
  • DMF N, N-dimethylformamide
  • 3.41 g of 4-dimethylaminopyridine was added, and the mixture was reacted at 50 ° C. for 8 hours with stirring.
  • 45.5 g of tert-butyl glycidyl ether and 2.56 g of 4-dimethylaminopyridine as a catalyst were added to the solution, and the mixture was reacted at 70 ° C. for 16 hours with stirring.
  • Synthesis Example 10 Synthesis of benzophenone group-containing compound (D-4) In a flask similar to that used in Synthesis Example 1, 40.0 g of BTDA, 26.1 g of ethylene glycol monoacetate, 3-methoxy-N, N-dimethylpropanamide. 49 g (registered trademark "KJCMPA” manufactured by KJ Chemicals Co., Ltd.) and 8.00 g of tetrabutylammonium bromide as a catalyst were added, and the mixture was reacted at 100 ° C. for 1 hour with stirring.
  • KJCMPA registered trademark manufactured by KJ Chemicals Co., Ltd.
  • Synthesis Example 11 Synthesis of benzophenone group-containing compound (D-5) In a flask similar to that used in Synthesis Example 1, 23.0 g of BTDA, 47.1 g of docosanol, 33.2 g of 2-ethylhexyl glycidyl ether, 48 g of MEK, and tetramethyl as a catalyst. 3.85 g of ammonium bromide was added, and the mixture was reacted under reflux with MEK for 18 hours with stirring.
  • Synthesis Example 12 Synthesis of benzophenone group-containing compound (D-6) In a flask similar to that used in Synthesis Example 1, 25.0 g of BTDA, 7.2 g of ethanol, 63.0 g of 1,2-epoxide cosan, 24 g of DMF, and TPP7 as a catalyst. .82 g was added and reacted at 70 ° C. for 20 hours with stirring. After the reaction was completed, analysis, purification, identification, etc. were performed in the same manner as in Synthesis Example 7, and 92.4 g of the obtained pale yellow viscous liquid was found to be a benzophenone group-containing compound (D-6) having a target molecular weight of 1064. confirmed.
  • Synthesis Example 13 Synthesis of benzophenone group-containing compound (D-7)
  • 30.0 g of BTDA, 16.9 g of 1,2-butanediol, 35 g of ethyl acetate, and 6.91 g of ETPBPB as a catalyst were placed. It was added and reacted at 65 ° C. with stirring for 4 hours. Then, 75.6 g of 3-perfluorobutyl-1,2-epoxypropane and 5.18 g of ETPBPB as a catalyst were added to the solution, and the mixture was reacted at 90 ° C. for 16 hours with stirring. After completion of the reaction, analysis, purification, identification, etc. were performed in the same manner as in Synthesis Example 7, and it was confirmed that 101.7 g of the obtained pale yellow viscous liquid was a benzophenone group-containing compound (D-6) having a target molecular weight of 1152. did.
  • Synthesis Example 14 Synthesis of benzophenone group-containing compound (D-8) Similar to the apparatus used in Synthesis Example 1, 50.0 g of BTDA and 250 g of DMF were added to a 500 mL flask, and 24.5 g of propanolamine was slowly added from the dropping funnel. Added. After completion of the dropping, stirring was continued at 30 ° C. for 2 hours. Then, the solution was reacted at 145 ° C. for 10 hours with stirring. After completion of the reaction, the mixture was filtered and recrystallized to obtain 61.5 g of a pale yellow solid.
  • Synthesis Example 15 Synthesis of photopolymerization initiator (C-7) having an unsaturated bond
  • a flask similar to that used in Synthesis Example 1 37.4 g of (F-1) and 77.9 g of (D-1)
  • the reaction was carried out for 8 hours. After completion of the reaction, it was confirmed by IR analysis that the absorption peak of the isocyanate group disappeared.
  • the reaction mixture was concentrated, precipitated and purified with methanol, and then vacuum dried to obtain 128.7 g of a pale yellow solid.
  • the number average molecular weight of (C-7) was calculated to be 1700 by GPC analysis.
  • the number ratio of the ethylenically unsaturated bond (acrylamide group) to the photopolymerization-initiating functional group (benzophenone group) was 1/2.
  • Synthesis Example 17 Synthesis of photopolymerization initiator (C-9) having an unsaturated bond
  • (D-3) 80.1 g, (E-2) 25.6 g, (F-3) 26.8 g, hydroxypropyl methacrylamide 7.4 g, DBTDL 0.06 g, BHT 0.10 g, and "ACMO" 60 g were added.
  • the mixture was heated to 60 ° C. with stirring and then reacted at 60 ° C. for 12 hours to obtain 127.7 g of a pale yellow viscous liquid.
  • Synthesis Example 18 Synthesis of photopolymerization initiator (C-10) having an unsaturated bond
  • a flask similar to that used in Synthesis Example 1 12.1 g of "HEAA”, 58.1 g of (F-4), (E). -3) 26.2 g, (D-4) 43.5 g, acetylacetone zinc 0.06 g and BHT 0.10 g as a catalyst, and "KJCMPA" 60 g as a solvent were added. The temperature of the mixed solution was raised to 80 ° C. with stirring, and then the reaction was carried out at 80 ° C. for 6 hours.
  • Synthesis Example 19 Synthesis of photopolymerization initiator (C-11) having an unsaturated bond
  • (D-7) 47.0 g, (E-4) 40.8 g, (F-3) 35.5 g, NMAA 16.5 g, and 1,4-diazabicyclo [2.2.2] octane 0.06 g, BHT 0.10 g, and DMF 60 g were added as catalysts.
  • the mixture was heated to 70 ° C. with stirring, reacted at 70 ° C. for 7 hours, and then analyzed, purified, identified, etc. in the same manner as in Synthesis Example 15, and 126.8 g of the obtained pale yellow viscous liquid was not the desired substance.
  • the photopolymerization initiator (C-11) had an acrylamide group as a saturated bond. Further, by GPC analysis, the number average molecular weight of (C-11) was calculated to be 5100. The number ratio of the ethylenically unsaturated bond (acrylamide group) to the photopolymerization-initiating functional group (benzophenone group) was 4/1.
  • Synthesis Example 20 Synthesis of photopolymerization initiator (C-12) having an unsaturated bond
  • (D-2) 75.9 g, (E-5) 33.7 g, (F-2) 28.8 g, NMAA 1.5 g, DBTDL 0.06 g, BHT 0.10 g, and MEK 60 g were added.
  • the temperature of the mixed solution was raised to 60 ° C. with stirring, and then the reaction was carried out at 60 ° C. for 12 hours.
  • Synthesis Example 21 Synthesis of photopolymerization initiator (C-13) having an unsaturated bond Using the same apparatus as in Synthesis Example 1, 3.8 g of (D-5) and 129.0 g of (E-6) were placed in a flask. 7.0 g of (F-2), 0.8 g of N (2-hydroxyethyl) maleimide, 0.06 g of zinc acetylacetone and 0.10 g of BHT were added as catalysts. The temperature of the mixture was raised to 75 ° C. with stirring, and stirring was continued at 75 ° C. for another 8 hours. After that, analysis, purification, identification, etc.
  • Synthesis Example 22 Synthesis of photopolymerization initiator (C-14) having an unsaturated bond Using the same equipment as in Synthesis Example 1, 69.3 g of (D-6) and 43.4 g of (E-3) were placed in a flask. 60 g of "KJCMPA" and 0.10 g of BHT were added. The temperature was raised to 70 ° C. and mixed well. Then, 22.7 g of (F-3) and 0.04 g of tin 2-ethylhexanoate as a catalyst were added to the solution, and the mixture was reacted at 70 ° C. for 4 hours with stirring, and IR analysis was performed. It was confirmed that the decrease of was stopped.
  • Synthesis Example 23 Synthesis of photopolymerization initiator (C-15) having an unsaturated bond Using the same equipment as in Synthesis Example 1, 47.2 g of adipic acid, 3-methyl-1,5-pentanediol 15. Add 3 g, (D-2) 113.4 g, and BHT 0.10 g, raise the temperature to 190 ° C while passing nitrogen under normal pressure, add 0.04 g of zinc oxide as a catalyst to the mixture, and condense at a temperature of 195 ° C. The reaction was carried out while distilling water. After completion of the reaction, it was confirmed that the acid value was 43 mgKOH / g (JIS K0070: 1992 compliant).
  • the number average molecular weight was calculated to be 4600 by GPC analysis of the obtained photopolymerization initiator (C-15) having a methacrylamide group as an unsaturated bond.
  • the number ratio of the ethylenically unsaturated bond (methacrylamide group) to the photopolymerization-initiating functional group (benzophenone group) was 1/1.
  • Synthesis Example 24 Synthesis of photopolymerization initiator (C-16) having an unsaturated bond Using the same equipment as in Synthesis Example 23, 87.6 g of adipate dichloride, 41.7 g of hexamethylenediamine, and N-methyl- After adding 30 g of 2-pyrrolidone (NMP) and 0.10 g of BHT, the mixture was mixed well, and the reaction was carried out for 1 hour while keeping the temperature at 0 ° C. After completion of the reaction, 17.5 g of (D-2) was added and the reaction was carried out for 1 hour. Then, 23.1 g of "HEAA” was added to the solution, and the mixture was reacted for 1 hour.
  • NMP 2-pyrrolidone
  • BHT 2-pyrrolidone
  • Synthesis Example 25 Synthesis of photopolymerization initiator (C-17) having an unsaturated bond Using the same equipment as in Synthesis Example 23, 78.3 g of pyromellitic anhydride and 106.4 g of (F-2) in a 500 mL flask. , NMP 30 g, triethylene diamine 2.85 g, and BHT 0.10 g were added, the temperature was raised to 120 ° C. over 2 hours, and the reaction was carried out for 5 hours. After completion of the reaction, the temperature was lowered to 70 ° C., 17.5 g of (D-2) was added, and the reaction was carried out for 3 hours.
  • Synthesis Example 26 Synthesis of photopolymerization initiator (C-18) having an unsaturated bond
  • 31.2 g of (D-7), 42.9 g of (E-8), (F-3) 37.4 g, HEAA 8.3 g, 0.06 g of acetylacetone iron, 0.10 g of BHT, and 80 g of DMF were added as catalysts.
  • the temperature of the mixed solution was raised to 70 ° C. with stirring, and the reaction was carried out at 70 ° C. for 11 hours.
  • Examples 1 to 24 and Comparative Examples 1 to 8 Photopolymerization initiators (C-1) to (C-18) having unsaturated bonds, known photopolymerization initiators (G), and benzophenone-containing light having no ethylenically unsaturated bond obtained in each synthesis example.
  • a polymerization initiator (K-1) a mixture of urethane acrylamide group oligomer and benzophenone (K-2), monofunctional unsaturated compound (H) and polyfunctional unsaturated compound shown in Tables 1 to 3 in proportion.
  • (I) and the other component (J) were weighed and mixed at 25 ° C. for 30 minutes to prepare a photocurable resin composition.
  • the obtained photocurable resin composition is coated with a 100 ⁇ m-thick PET film (“Cosmo Shine A-4100” manufactured by Toyobo) using a bar coater on the easy-adhesion-treated surface so that the film thickness is 20 ⁇ m.
  • the coating film was cured by irradiating it with ultraviolet rays, and the cumulative amount of light that eliminated the tack when it came into contact with the cured product was determined, and the curability was evaluated in four stages.
  • the following three types of ultraviolet irradiation lamps 1) to 3) were used. Further, the lower the integrated light amount required to eliminate the tack, the higher the curability.
  • Tack disappears when the integrated light intensity is less than 1000 mJ / cm 2.
  • the integrated quantity of light 1000 mJ / cm 2 or more, tack is eliminated less than 3000 mJ / cm 2.
  • integrated light quantity 3000 mJ / cm 2 or more, tack is eliminated less than 20000 mJ / cm 2.
  • X Tack remains even when the integrated light intensity is 20000 mJ / cm 2.
  • Photopolymerization initiators (C-1) to (C-18) having unsaturated bonds obtained in each synthesis example known photopolymerization initiators (G), benzophenone-containing photopolymerization initiators (K-1), Using a benzophenone-added photopolymerization initiator (K-2), the monofunctional unsaturated compound (H), the polyfunctional unsaturated compound (I) and other components (J) were weighed in proportion as shown in Table 4. The mixture was mixed at 25 ° C. for 30 minutes to prepare a resin composition for a photocurable hard coat. The adhesion, pencil hardness, yellowing resistance, weather resistance, and corrosion resistance of the obtained photocurable hard coat resin composition were evaluated by the following methods, and the results are shown in Table 4.
  • Pencil hardness As in the evaluation of adhesion, a cured film is formed on a polycarbonate test piece, and the surface of the cured film is scratched with a pencil (45 ° angle, about 10 mm) in accordance with JIS K 5600. The hardest pencil that does not scratch the surface of the cured film was used as the pencil hardness, and the evaluation was performed in four stages.
  • Pencil hardness is 2H or more.
  • Pencil hardness is HB to H.
  • Pencil hardness is 3B to B.
  • X Pencil hardness is 4B or less.
  • the obtained resin composition for photocurable hard coat is applied to a 100 ⁇ m-thick PET film (“Cosmo Shine A-4100” manufactured by Toyobo) using a bar coater on the easy-adhesion-treated surface to achieve a dry film thickness.
  • a bar coater on the easy-adhesion-treated surface to achieve a dry film thickness.
  • Wavelength 385 nm, integrated light quantity by UVLED lamp output 100 mW / cm 2 performs irradiation so that the 3000 mJ / cm 2, to prepare a cured film, the temperature 23 ° C., in an atmosphere of 50% relative humidity, 24 hours standing did.
  • the transmission spectrum of the cured film was measured with a transmission color measurement dedicated machine (TZ-6000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) and used as the initial b value.
  • a transmission color measurement dedicated machine TZ-6000, manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the mixture was allowed to stand in a constant temperature and humidity chamber set at 85 ° C. and a relative humidity of 85% for 500 hours to perform an accelerated test of yellowing resistance.
  • the cured film after the test was allowed to stand for 24 hours in an atmosphere of a temperature of 23 ° C. and a relative humidity of 50%, and then the transmission spectrum of the cured film was measured with a similar transmission color measurement dedicated machine to obtain the b value after moist heat.
  • a cured film was prepared on the PET film in the same manner as in the evaluation of weather resistance and yellowing resistance, and an accelerated test was carried out for 250 hours using a sunshine weather meter (manufactured by Suga Test Instruments Co., Ltd.).
  • the rate of change in glossiness before and after the test was calculated with a gloss meter (“VG7000” manufactured by Nippon Denshoku Kogyo Co., Ltd.) and evaluated in two stages.
  • VG7000 manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the rate of change in glossiness is 20% or more.
  • the photopolymerization initiator having an unsaturated bond of the present invention (Examples 1 to 24) is used with general-purpose monofunctional unsaturated compounds and polyfunctional unsaturated compounds.
  • the compatibility was good, and the curability to various light rays from short wavelength to long wavelength was high.
  • a known photopolymerization initiator (Comparative Examples 1 to 8)
  • the compatibility of the obtained photocurable resin composition was insufficient, and the curability against long wavelength light was low. It is considered that the different physical properties of these Examples and Comparative Examples are due to the interaction between the hydrophobic photopolymerization initiator functional group having an unsaturated bond in the molecule and the hydrophilic unsaturated bond.
  • the compositions containing the photopolymerization initiator having an unsaturated bond (Examples 25 to 29) have high curability even when irradiated with long wavelength light, and the obtained cured film has good adhesion and high surface. Has hardness. In addition, it has high yellowing resistance, weather resistance, and corrosion resistance, which is considered to be because undecomposed products remaining in the cured film after photocuring and low-molecular decomposition products produced by decomposition do not occur. ..
  • the compositions containing known photopolymerization initiators (Comparative Examples 9 to 11) had low curability with respect to long-wavelength light, so that the adhesiveness, surface hardness, yellowing resistance, and weather resistance of the cured film were improved. Corrosion resistance was low. Therefore, the composition containing the photopolymerization initiator having an unsaturated bond of the present invention can be suitably used as a photocurable hard coat agent.
  • the photopolymerization initiator having an unsaturated bond of the present invention has high photoinitiability and photocurability, and photopolymerization using a wide variety of light sources from metal halide lamps to UVLED lamps having a wavelength of 405 nm.
  • the photocuring reaction can be carried out.
  • the type and number of photopolymerization-initiating functional groups and ethylenically unsaturated bonds in the molecule can be arbitrarily adjusted by structural design, and no residual photopolymerization initiator or odor due to decomposition products is generated. A good cured product can be obtained.
  • the photopolymerization initiator having an unsaturated bond of the present invention can produce a photocurable resin composition corresponding to various uses by combining with various unsaturated group-containing compounds, and has high adhesion and surface hardness. It is possible to impart various physical properties such as yellowing resistance, weather resistance, and corrosion resistance, and it is possible to impart various physical properties such as photocurable ink composition, photocurable inkjet ink composition, photocurable nail cosmetic composition, and photocurable.
  • Adhesive adhesive composition photocurable adhesive composition, photocurable sealant composition, photocurable coating agent composition, resin composition for photocurable decorative sheet, resin for photocurable self-healing material It can be suitably used as a composition, a photocurable elastomer composition, a photocurable resin composition for three-dimensional modeling, a photocurable coating agent composition for vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polymerisation Methods In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Polyamides (AREA)

Abstract

【要約】 【課題】併用モノマーとの相溶性が高く、臭気やブリードアウト問題を抑制し、かつ長波長光線に対する感度が高い光重合開始剤を提供することを課題とする。 【解決手段】分子内に一つ以上のエチレン性不飽和結合と一つ以上の光重合開始性官能基を有する光重合開始剤を見出し、本発明に至ったものである。エチレン性不飽和結合としてアクリルアミド基、アクリレート基、ビニル基、アリル基、マレイミド基等から選択される1種以上を好適に用いることが出来、光重合開始性官能基として特定の構造を有するベンゾフェノン化合物を好適に用いることが出来る。 【選択図】なし

Description

光重合開始剤
本発明は、不飽和結合を有する光重合開始剤及びそれを含有する光硬化性樹脂組成物に関する。
紫外線(UV)等の活性エネルギー線を用いた光硬化反応は、一般に光重合開始剤を添加した組成物に光照射することによりラジカル(ラジカル系)やイオン(カチオン系又はアニオン系)を発生させ、不飽和基やエポキシ基等を有する原料を重合させ、液体の組成物を短時間に固形化(硬化)するものであり、塗料やコーティング材、粘着材や接着剤、エラストマー系の材料、インクジェットインク、シーリング用材料や封止材、歯科衛生材料、光学材料等幅広い分野に使用されている。特に任意の場所や形状で硬化可能な点から、ジェルネイル等の爪化粧料としての利用や、三次元光造形用の材料として3Dプリンタでの活用が広がっている。
中でもラジカル系光重合開始剤を用いた光硬化性樹脂組成物は硬化性が高く、汎用の単官能や多官能の(メタ)アクリルモノマーや(メタ)アクリル基を導入したオリゴマーやポリマー等を組みあわせることで、幅広い物性を実現できることから広く用いられている。又、近年において、UV硬化性インクや塗料等の普及に連れ、UV硬化装置の大型化と共に、300nm以下の光線が一切出せない等、光源に対する安全性強化の要求が高まってきて、水銀フリーランプ、LEDランプやブラックライト等の光源が提案されてきた。しかし、これらの光源の主な出力光線は365nm(ブラックライト)、375nm(UV-LED)と405nm(LEDランプ)であり、光線の安全性を確保できたとしても、汎用の光重合開始剤の吸収波長は長くても350nm前後で、375nm以上の吸収は殆ど見られず、不完全硬化や必要な硬化時間が長く、不均一硬化による硬化物の物性が満足できない問題が新たに発生した。
ラジカル系光重合開始剤は、光照射によりラジカル活性種を発生する分子内開裂型と水素引抜き型が挙げられる。分子内開裂型光重合開始は光重合の開始効率が高いが、熱に対する安定性が低いため、開始剤及びそれを配合した樹脂組成物の保存安定性に問題がある。又、未反応の開始剤や反応(分子内開裂)後の残基が低分子化合物として硬化物中に残存し、それらが硬化物から経時的にブリードアウトするため、硬化物の物性低下、耐久性低下、臭気発生等の原因となり、特に安全性について問題視されてきた。
後者の水素引抜き型光重合開始剤はベンゾフェノンのようなジアリールケトン構造を有し、水素供与体から水素を引抜き、ラジカル活性種を発生するため、反応後の残基問題が改善でき、近年、注目度が高まっている。しかしながら、この型の開始剤は、熱に対する安定性が高い反面、光重合開始の効率が低く、添加剤としてアミン等の水素供与体や光増感剤、硬化促進剤と併用する必要があり、未反応の添加剤や反応後の残基、分解物等も低分子化合物であり、これらが硬化物中残存することによって、同様に硬化物の物性低下、耐久性の低下、臭気の発生及び経時的着色等の問題が発生しうる。
水素引抜き型のベンゾフェノン類光重合開始剤の課題であるラジカル活性種の発生効率を向上させるため、特許文献1は、高感度の光重合開始剤として分子中に多数の過酸エステル構造を有するベンゾフェノン誘導体を合成した。しかし、過酸エステル構造の導入により感度を高めることができたが、過酸エステル構造自体は光や熱により分解しやすいことが知られており、光照射による重合反応後に残渣として低分子化合物が発生してしまう課題があった。
又、特許文献2は光活性部分としてベンゾフェノン基及び、共開始剤として作用するアミン官能基や第3アミノ基を有する高分子光開始剤を提案した。特許文献2によるとアミノ基を含むことで酸素による阻害が減少され、硬化速度が向上することができる。しかし、アミンもアミノ基も一般的にアミン臭を有する官能基として認識され、又、光照射によりこれらの官能基が非常に着色しやすいことが知られている。更に、特許文献2の光重合開始剤は高分子量であるため、低い移動性を示し、一般にラジカル生成の効率も光重合の反応性(硬化速度)も低下するという問題がある。
特開2000-159827号公報 特開2013-500303号公報
本発明は、光照射によりラジカル、カチオン、又はアニオンといった成長活性種を発生し、光硬化性組成物を硬化させると共に、分子中の不飽和結合を利用して光硬化性組成物の構成成分として光硬化反応により硬化物に組み込まれることが可能な光硬化性を有する光重合開始剤を提供することを課題とする。
本発明者らは、鋭意研究を重ねた結果、分子内に一つ以上のエチレン性不飽和結合と一つ以上の光重合開始性官能基を有する光重合開始剤が、前記課題を解決できることを見出し本発明に至った。該光重合開始剤は、光重合開始性官能基と光重合性官能基を併せ持ち、且つ、波長300nm以上の長波長光線に対する感度が高く、汎用モノマーやオリゴマーに対して良好な溶解性を有する。該光重合開始剤は、光硬化性樹脂の構成成分として硬化後の硬化物の一部となり、又成長活性種発生時に低分子分解物が副生せず、低臭気、高安全性の硬化物を取得できる。更に、エチレン性不飽和結合として、(メタ)アクリルアミド基を分子内に一つ以上を有する場合、波長360nm以上の高安全性光線に対する感度が高く、光硬化性が良く、良好な強度や伸度、耐久性、耐加水分解性を有する硬化物を取得することができる。
すなわち、本発明は、
(1)分子内に一つ以上のエチレン性不飽和結合と一つ以上の光重合開始性官能基を有する光重合開始剤、
(2)エチレン性不飽和結合は(メタ)アクリルアミド基、(メタ)アクリレート基、ビニル基、ビニルエーテル基、アルキルビニルエーテル基、アリル基、(メタ)アリルエーテル基とマレイミド基からなる群より選択される1種又は2種以上の結合である前記(1)に記載の光重合開始剤、
(3)エチレン性不飽和結合として(メタ)アクリルアミド基を一つ以上有することを特徴とする前記(1)又は(2)に記載の光重合開始剤、
(4)光照射によりラジカル、カチオン、アニオンのいずれか1種以上の成長活性種を発生することを特徴とする前記(1)~(3)のいずれか一項に記載の光重合開始剤、
(5)光照射によりラジカル及び、カチオン或いはアニオンの成長活性種を発生することを特徴とする前記(1)~(4)のいずれか一項に記載の光重合開始剤、
(6)分子内及び/又は分子間で生じる水素引抜き反応によりラジカルを発生する光重合開始性官能基を有する前記(1)~(5)のずれか一項に記載の光重合開始剤、
(7)分子内に光重合開始性官能基の個数とエチレン性不飽和結合の個数の比は1/10~10/1であることを特徴とする前記(1)~(6)のいずれか一項に記載の光重合開始剤、
(8)分子内に光重合開始性官能基として一つ以上のベンゾフェノン構造を有する前記(1)~(7)のいずれか一項に記載の光重合開始剤、
(9)分子内に、一つ以上のウレタン結合を有する前記(8)に記載の光重合開始剤、
(10)一般式(1)で表される前記(1)~(9)のいずれか一項に記載の光重合開始剤、
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子又はメチル基を表し、Rは炭素数1~24の直鎖状のアルキル基或いはヒドロキシアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表し、Rは炭素数1~24の直鎖状のアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキレン基、炭素数3~36の分岐状のアルキレン基、炭素数6~24の芳香族炭化水素を表し、Rはエチレン性不飽和結合で置換されてもよい炭素数1~24の直鎖状のアルキル基或いはヒドロキシアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。又、R中のエチレン性不飽和結合は(メタ)アクリルアミド基、(メタ)アクリレート基、ビニル基、ビニルエーテル基、アルキルビニルエーテル基、アリル基、(メタ)アリルエーテル基とマレイミド基からなる群より選択される1種又は2種以上の結合である。Aは一般式(2)で表されるベンゾフェノン誘導体を表し、Bはウレタン基、ウレア基、エステル基、アミド基又はイミド基を有する二価以上の有機基を表し、iは1~25の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、RとRは各々独立にエーテル基、環状エーテル基、エステル基或いはハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。RとRは各々独立にハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。Xは一般式(3)で示される四価の有機基を表す。n、mは各々独立に1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R、R10は各々独立に水素原子、炭素数1~8の直鎖状のアルキル基、炭素数3~8の分岐状アルキル基表す。)
(11)前記一般式(1)に記載の光重合開始剤は、Bがウレタン基を1個以上有する二価以上の有機基であって、数平均分子量が1000~100000であることを特徴とする前記(10)に記載の光重合開始剤、
(12)波長300~450nmの光に対する重合開始性を有する前記(1)~(11)のいずれか一項に記載の光重合開始剤、
(13)前記(1)~(12)のいずれか一項に記載の光重合開始剤を含有する光重合性樹脂組成物
を提供するものである。
本発明によれば、不飽和結合を有する光重合開始剤は、光照射により成長活性種を発生し、光硬化性樹脂組成物を硬化させると共に、該光重合開始剤も光硬化反応により硬化物中に構成成分として組み込まれ、低臭気且つ高安全性の硬化物を取得することができる。又、本発明の光重合開始剤は不飽和結合として(メタ)アクリルアミドを用いた場合、波長300nm以上の長波長光線に対する感度が向上され、汎用モノマーやオリゴマーに対する溶解性が改善され、更に得られる硬化物の強度、伸度や耐久性、耐加水分解性等も良好であった。これらの特異効果は、平面構造単位を有する低極性の光重合開始機能を有する官能基と、高極性且つ不飽和結合を有する(メタ)アクリルアミド基とのコラボレーションによるものと発明者らは推測している。多くの光重合開始機能を有する官能基は芳香族の平面構造単位を有し、かつ電子吸引性を示すものが多い。そこに強力な電子供与性のアミド基を導入することにより電子の共役領域が広がり、長波長光線に対する吸収感度が高くなり、硬化性も向上されたと考えている。
特に、本発明の一実施形態である、分子内に一つ以上の(メタ)アクリルアミド基と一つ以上のウレタン結合とを有するベンゾフェノン誘導体を含有する光重合開始剤は、優れる光重合開始機能と光硬化性を有するため、硬化性を向上させるアミン系水素供与体やチオキサントン系増感剤等の併用は不要である。これは、ウレタン基がベンゾフェノンテトラエステル構造近傍にあること及び/又は分子内に(メタ)アクリルアミド基を含むことにより、光重合開始剤の分子内及び/又は分子間における効率的な水素引抜きが実現可能になっているからと発明者らは推測している。更に、ベンゾフェノンテトラエステル構造の近傍にウレタン結合を有する場合、波長360nm以上の長波長光線から波長450nm程度の可視光に対する感度が向上され、特別な光照射装置を用いなくても光重合開始剤として好適に使用することができる。
以下に、本実施形態を詳細に説明する。
本開示の光重合開始剤は、分子内に一つ以上のエチレン性不飽和結合と一つ以上の光重合開始性官能基を有する。又、長波長光線に対する光重合開始性と光硬化性を向上する観点、及び光重合開始後に確実に共有結合を介して硬化物中に入り込める観点から、分子内のエチレン性不飽和結合を二つ以上有することが好ましい。更に、分子内のエチレン性不飽和結合と光重合開始性官能基の個数の比は1/10~10/1であることが好ましく、1/8~8/1がより好ましく、1/5~5/1が特に好ましい。この個数の比は0.1(1/10)未満である場合、光重合開始剤が光重合反応(硬化)終了しても、共有結合を介して硬化物中に構造単位として固定されず、その結果、光重合開始剤の分子量にもよるが、低分子量の光重合開始剤がフリーの低分子として硬化物中に存在し、硬化物の臭気問題や経時的着色しやすい問題が十分に解決できない恐れがある。一方、この個数の比は10.0(10/1)を超える場合、光硬化性樹脂組成物中の光重合開始剤の含有量にもよるが、光硬化性樹脂組成物の光重合速度が著しく向上し、重合熱により温度が急激に上昇し、プラスチック基材向けの粘着剤、接着剤、光学部材用封止材としても、ジェルネイル等の爪用化粧料としても、使用されにくい欠点がある。
本開示の光重合開始剤が有するエチレン性不飽和結合は、(メタ)アクリルアミド基、(メタ)アクリレート基、ビニル基、ビニルエーテル基、メチルビニルエーテル基、アリル基、(メタ)アリルエーテル基とマレイミド基からなる群より選択される1種又は2種以上の結合である。又、光重合開始剤がエチレン性不飽和結合を二つ以上有する場合、それらは同一であっても、異なってもよい。更に、エチレン性不飽和結合として(メタ)アクリルアミド基を少なくとも一つ有することが好ましい。ラジカル系光重合開始剤においては、(メタ)アクリルアミド基の含有により光の吸収波長が長波長側にシフトし、高エネルギーで危険性の高い短波長光線を使用しなくてもよいため光硬化反応の安全性が高くなり、又、(メタ)アクリルアミド基の重合性が高いため、それを含有する樹脂組成物の光硬化性が高くなる。カチオン系光重合開始剤とアニオン系光重合開始剤においては、(メタ)アクリルアミド基が酸性条件下でも、塩基性条件下でも、優れる耐加水分解性を有するため、硬化前の組成物の安定性も硬化後の硬化物の耐久性も良好となる。
光重合開始剤において、光照射により成長活性種としてラジカルを発生させるものは光ラジカル重合開始剤、光照射により成長活性種として酸(カチオン)を発生させるものは光カチオン重合開始剤、光照射により成長活性種として塩基(アニオン)を発生させるものは光アニオン重合開始剤である。本開示の光重合開始剤に用いられる光重合開始性官能基は光照射によりラジカル、カチオン、アニオンのいずれか1種以上の成長活性種を発生するものである。又、同じ波長の光に対して、異なる種の成長活性種を発生するものや、異なる波長の光に対して、同じ種又は異なる種の成長活性種を発生するものがある。中でも、ラジカル系は古くから汎用されたため、成長活性種としてラジカルを発生することが好ましい。更に、ラジカル系に特有の酸素による重合阻害を改善できる観点から、ラジカルとカチオンを同時発生すること、又は、ラジカルとアニオンを同時発生するハイブリッド式のものがより好ましい。本開示の光重合開始剤は熱重合開始剤を併用するデュアル式に用いることもできる。光重合と熱重合は同時に或いは前後任意の順番でも行うことができるが、光重合は速度が速い反面残存モノマーが多いことから、先に光重合を行い、その後熱重合により重合反応や架橋反応を完結させることが好ましい。
本開示の光重合開始剤に用いられる光ラジカル重合開始性官能基は、光照射により活性ラジカルを発生させるであれば、特に限定されない。例えば、光吸収後分子内開裂によりラジカルを発生する分子内開裂型、水素や電子のやり取りによりラジカルを発生する水素引抜き型と電子供与型の光ラジカル重合開始性官能基が挙げられる。又、光重合反応後、硬化物中に共有結合を介して構造単位として存在できる観点及び工業的に入手、製造しやすい観点から、光重合開始剤は水素引抜き型光ラジカル重合開始性官能基を有することが好ましい。これらの光重合開始性官能基は1種又は2種以上を組み合わせて用いることができる。
本開示の光重合開始剤に用いられる光ラジカル重合開始性官能基が分子内開裂型の光重合開始性官能基として、ベンゾイン誘導体、ベンジルケタール、α-ヒドロキシアセトフェノン、α-アミノアセトフェノン、アシルフォスフィンオキサイド、チタノセン類とo-アシルオキシム型が挙げられる。これらの光重合開始性官能基は1種又は2種以上を組み合わせて用いることができる。
本開示の光重合開始剤に用いられる光ラジカル重合開始性官能基は、水素引抜き型の光重合開始性官能基として、ベンゾフェノン、アルキルジアミノベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のジアリールケトン骨格を有するベンゾフェノン誘導体、2-ヒドロキシチオキサントン等のチオキサントン骨格を有するチオキサントン誘導体が挙げられる。又、高い光重合開始性と良好な耐着色性が両立できる観点から、ベンゾフェノン誘導体が好ましい。これらの光重合開始性官能基は1種又は2種以上を組み合わせて用いることができる。
本開示の光重合開始剤に用いられる光カチオン重合開始性官能基は、光の照射によって酸(カチオン)を生成し、これらの酸によって本開示の光重合開始剤が有するエチレン性不飽和結合、例えば、ビニルエーテル基の二重結合等が開裂し、重合する。又、これらの酸によってエポキシ基やオキセタン基も開裂させることができ、これらの官能基を含有する化合物が光硬化性樹脂組成物の構成成分として併用される場合、光重合開始剤による光カチオン重合の開始や、光ラジカル重合と光カチオン重合の同時進行を行うことができる。光カチオン重合開始性官能基として、ジアゾニウム塩、ヨードニウム塩、トリアリールスルホニウム塩等のスルホニウム塩、ホスホニウム塩などのオニウム塩系の化合物が挙げられる。これらの化合物は1種又は2種以上を組み合わせて用いることができる。
本開示の光重合開始剤に用いられる光アニオン重合開始性官能基は、光の照射によって、塩基(アニオン)を生成し、これらの塩基によって本開示の光重合開始剤が有するエチレン性不飽和結合、例えば、ビニル基等の重合を促進する。又、これらの塩基によってエポキシ基やチオール基の光重合反応やシラノールの縮合反応を開始、促進させることができ、これらの官能基を含有する化合物が光硬化性樹脂組成物の構成成分として併用される場合、光重合開始剤による光アニオン重合の開始や、光ラジカル重合と光アニオン重合の同時進行を行うことができる。光アニオン重合開始性官能基として、o-ニトロベンジルカルバメート誘導体、o-アシルオキシル誘導体、o-カルバモイルオキシムアミジン誘導体、カルバミン酸塩、アルキルグアニジウム塩、グアニジン塩等が挙げられる。これらの化合物は1種又は2種以上を組み合わせて用いることができる。
本開示の光重合開始剤に各種の光重合性官能基を導入する方法は特に限定しないが、例えば、汎用の水酸基を有する光重合開始剤と不飽和結合を有するカルボン酸やエポキシ、イソシアネート、アルコール等との反応や、汎用のアミノ基を有する光重合開始剤と不飽和結合を有するカルボン酸による中和反応や不飽和結合を有する四級化剤による四級化反応等が挙げられる。又、原料である、各種の光重合性官能基及び不飽和結合を有する各種反応性化合物の構造、分子量を適宜に選定、組み合わせることにより、光重合開始剤の極性、溶解性、分子量等を任意に調整することができる。
本開示の光重合開始剤は、前記の各種原料(光重合開始剤や光重合開始性官能基を有する化合物、不飽和結合を有する各種反応性化合物等)を用いて公知の方法により製造することができる。その製造方法は限定されないが、例えば、(1)水酸基を有する光重合開始剤と、エチレン性不飽和結合を有するカルボン酸や酸無水物、カルボン酸ハロゲン化物、エポキシ化合物と反応させ、エステル構造を有する光重合開始剤を得る方法;(2)水酸基を有する光重合開始剤と、エチレン性不飽和結合を有するアルコールと反応させ、エーテル構造を有する光重合開始剤を得る方法;(3)水酸基を有する光重合開始剤と、エチレン性不飽和結合を有するイソシアネートと反応させ、ウレタン構造を有する光重合開始剤を得る方法;(4)水酸基を有する光重合開始剤と、複数のエチレン性不飽和結合を有する化合物と反応させ、マイケル付加体構造を有する光重合開始剤を得る方法;(5)アミノ基を有する光重合開始剤と、エチレン性不飽和結合を有するカルボン酸や酸無水物、カルボン酸ハロゲン化物と反応させ、アミド構造を有する光重合開始剤を得る方法;(6)アミノ基を有する光重合開始剤と、エチレン性不飽和結合を有するエポキシ化合物と反応させ、アミノ基と水酸基を有する光重合開始剤を得る方法;(7)アミノ基を有する光重合開始剤と、エチレン性不飽和結合を有するイソシアネートと反応させ、ウレア構造を有する光重合開始剤を得る方法;(8)アミノ基を有する光重合開始剤と、複数のエチレン性不飽和結合を有する化合物と反応させ、マイケル付加体構造を有する光重合開始剤を得る方法;(9)アミノ基を有する光重合開始剤と、エチレン性不飽和結合を有するエステル化合物と反応させ、アミド構造を有する光重合開始剤を得る方法;(10)アミノ基を有する光重合開始剤と、エチレン性不飽和結合を有するカルボン酸、スルホン酸等の有機酸と中和反応させ、中和塩構造を有する光重合開始剤を得る方法;(11)第三級アミンのアミノ基を有する光重合開始剤と、エチレン性不飽和結合を有する四級化剤と反応させ、第四級塩構造を有する光重合開始剤を得る方法;並びに(12)カルボキシル基、スルホ基等の有機酸官能基、チオール基、フェノール基、オキサゾリン基等の反応性基を有する光重合開始剤と、エチレン性不飽和結合を有する、これらの反応性基と反応できる化合物と反応させ、様々な構造を有する光重合開始剤を得る方法が挙げられる。
本開示の光重合開始剤の分子量は、前記各原料の分子量を組み合わせることで任意に調整することができるが、数平均で200~100000が好ましい。数平均分子量が200以上であれば、1分子の光重合開始剤が1個以上のエチレン性不飽和結合を有することが可能であり、又、数平均分子量が100000以下であれば、得られる光重合開始剤の極性(親水性と疎水性のバランス)を調整しやすく、光硬化性樹脂組成物に用いる各成分に対する溶解性が高く、光重合開始剤を溶解した組成物の粘度を塗布、噴射、押出等の各種作業に適した範囲内に制御することが可能となり、光硬化性樹脂組成物の透明性も確保できる。更に、本発明の光重合開始剤は分子量によって、低分子量のモノマータイプ(数平均分子量が200~1000未満)、中分子量のオリゴマータイプ光重合開始剤(数平均分子量が1,000~10000未満)と高分子量のポリマータイプ(数平均分子量が10000~100000)と分類することができる。モノマータイプの光重合開始剤は主に光重合開始官能基とエチレン性不飽和結合を有するものであり、オリゴマータイプの光重合開始剤は主にポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格、ポリオレフィン骨格、ポリアクリル骨格から選択される一種以上の骨格、光重合開始官能基及びエチレン性不飽和結合を有するものであり、又ポリマータイプの光重合開始剤は主にポリカーボネート骨格、ポリオレフィン骨格、ポリアクリル骨格から選択される一種以上の骨格、光重合開始官能基及びエチレン性不飽和結合を有し、且つこれらの成分が繰り返して含有するものである。中でも、オリゴマータイプの光重合開始剤は、光硬化性樹脂組成物に用いられる各種汎用な有機溶媒、ラジカル系、カチオン系とアニオン系重合性モノマーと重合性オリゴマーに対する溶解性が良く、光硬化性樹脂組成物の粘度を適宜に調整することができ、優れる作業性を有しながら、光に対する重合開始性、特に300~450nmの長波長光線に対する感度が高いため、特に好ましい。
本開示の光重合開始剤が水素引抜き型の光ラジカル重合開始性官能基である場合、水素供与基となりうる官能基を分子内に有することが好ましい。水素供与基となりうる官能基としては特に限定されないが、例えば、アミド基、ウレタン基、ウレア基、水酸基、チオール基、カルボン酸等が挙げられる。中でも、耐着色性に優れるウレタン基を有することがより好ましい。また、水素供与基となりうる官能基は光重合開始性官能基に直接結合していても良く、その他の官能基を介して結合することは、水素引抜きは分子間でも分子内でもでき、波長360nmからの高安全性の長波長光に対しても十分な重合開始性を示すため、特に好ましい。
本開示の光重合開始剤は、分子内に一つ以上のエチレン性不飽和結合と一つ以上の光重合開始性官能基を有すれば、その構造は特に限定されないが、一般式(1)で表される(メタ)アクリルアミド基を有するベンゾフェノン誘導体は、光重合開始性、光硬化性、光硬化性樹脂組成物を構成する他の成分との溶解性、及び得られる光硬化物の性能を容易に調整することができ、特に好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは水素原子又はメチル基を表し、Rは炭素数1~24の直鎖状のアルキル基或いはヒドロキシアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或いは脂環式炭化水素、炭素数6~24の芳香族炭化水素を表し、Rは炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~36の分岐状のアルキレン基、炭素数6~24の芳香族炭化水素を表し、Rはエチレン性不飽和結合で置換されてもよい炭素数1~24の直鎖状のアルキル基或いはヒドロキシアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或いは脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。又、R中のエチレン性不飽和結合は(メタ)アクリルアミド基、(メタ)アクリレート基、ビニル基、ビニルエーテル基、アルキルビニルエーテル基、アリル基、(メタ)アリルエーテル基とマレイミド基からなる群より選択される1種又は2種以上の結合である。Aは一般式(2)で表されるベンゾフェノン誘導体を表し、Bはウレタン基、ウレア基、エステル基、アミド基又はイミド基を有する二価以上の有機基を表し、iは1~25の整数を表す。)
Figure JPOXMLDOC01-appb-C000008
(式中、RとRは各々独立にエーテル基、環状エーテル基、エステル基或いはハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。RとRは各々独立にハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。Xは一般式(3)で示される四価の有機基を表す。n、mは各々独立に1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000009
(式中、R、R10は各々独立に水素原子、炭素数1~8の直鎖状のアルキル基、炭素数3~8の分岐状アルキル基表す。)
前記一般式(1)で表される(メタ)アクリルアミド基を有するベンゾフェノン誘導体の製造方法は、本開示所定の目的化合物を取得できれば、特に限定されるものではないが、例えば、(1)分子中に1個以上の(メタ)アクリルアミド基と1個以上の反応性基を有する化合物と、(2)分子中に1個以上のベンゾフェノン誘導体と1個以上の反応性基を有する化合物と、(3)分子中に2個以上の反応性基を有する化合物とを反応させることで得ることが可能である。本開示における反応性基とは、水酸基、チオール基、アミン基、アミノ基、カルボン酸、酸無水物、スルホン酸、イソシアネート、オキサゾリン基、カルボジイミド基、グリシジル基、ハロゲン基、エチレン性不飽和基、四級化剤、有機や無機の酸と塩基からなる群より選択される1種以上である。又、(3)の反応性基は(1)及び(2)の反応性基と、有機反応或いは無機反応(中和等)することができる。結果として、(3)は(1)と(2)の連結部分となり、(メタ)アクリルアミド基を有するベンゾフェノン誘導体が取得される。
前記(2)分子中に1個以上のベンゾフェノン誘導体と1個以上の反応性基を有する化合物は、例えば、反応性基として2個以上の水酸基を有する化合物(ベンゾフェノン誘導体を有するポリオール)である場合、その製造方法としては例えば下記の方法が挙げられる。なお、ベンゾフェノン誘導体を有するポリオールの製造方法は下記方法に限定することはない。例えば、ベンゾフェノン基を有するカルボン酸とエポキシ基含有化合物と水酸基含有化合物との一括又は逐次の反応やベンゾフェノン基を有するカルボン酸無水物とエポキシ基含有化合物と水酸基含有化合物との一括又は逐次の反応で得ることができる。製造は公知の条件に準じて行うことができる。原料は一括仕込みでも一つ以上の原料の滴下仕込みでもよく、反応温度は室温から90℃であることが好ましい。必要に応じて、溶剤、触媒、その他添加剤を使用してもよい。原料及び生成物が有するベンゾフェノン基やベンゾフェノン基誘導体の光照射による成長活性種の発生を抑制するために、それらを吸収する波長の光を遮断した環境下で反応することが好ましい。具体的には遮光下、又は紫外線を主に吸収する場合は、紫外線を照射しない蛍光灯下や赤色の暗室用セーフライト下等で反応を行うことが好ましい。
ベンゾフェノン基を有するカルボン酸又はカルボン酸無水物としては、例えば、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3-(3,4-カルボキシベンゾイル)-1,2-ベンゼンジカルボン酸、3,3’-カルボニルビス(1,2-ベンゼンジカルボン酸)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-カルボニルビス(1,3-イソベンゾフランジオン)等が挙げられる。中でも、工業的に入手容易なことから、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物が好ましい。ベンゾフェノン基を有するカルボン酸又はカルボン酸無水物は、1種を単独、又は2種以上を組み合わせて用いることができる。
エポキシ基含有化合物としては、エーテル基、環状エーテル基、エステル基或いはハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素基、炭素数6~24の芳香族炭化水素基を有するエポキシが挙げられ、例えば、1,2-ブチレンオキシド、1,2-エポキシヘキサン、1,2-エポキシドデカン、1,2-エポキシテトラデカン、1,2-エポキシヘキサデカン、2-(2-メチルプロピル)オキシラン、2-(2,5-ジメチルヘキシル)オキシラン、2-(5,7-ジエチルオクチル)オキシラン、2-エトキシオキシラン、2-[2-(2-メトキシエトキシ)エトキシ]オキシラン、ブチルグリシジルエーテル、グリシジルフェニルエーテル、2-エチルヘキシルグリシジルエーテル、ドデシルグリシジルエーテル、トリデシルグリシジルエーテル、テトラデシルグリシジルエーテル、2-[(ブトキシメトキシ)メチル]オキシラン、1,2-エポキシシクロヘキサン、2-(2-フェニルブチル)オキシラン、2-(2-シクロプロピルプロピル)オキシラン、オキシラン-2-エタノール、1,2-エポキシ-4-ブチル-4-オクタノール、オキシラン-2-ペンタノール、1-(2-オキシラニル)-2-プロパノン、5-ヒドロキシ-1-(2-オキシラニル)-2-ペンタノン、3-メチル-4-(2-オキシラニル)-2-ブタノン、オキシラン-2-カルボン酸メチル、4-(オキシラン-2-イル)ブタン酸メチル、1-(オキシラン-2-イル)プロパン-2-オン、3-(オキシラン-2-イル)-2-オキソプロパン酸メチル、ネオデカン酸オキシラニルメチル等が挙げられる。中でも、得られるベンゾフェノン誘導体を有するポリオールの溶解性が良好な1,2-ブチレンオキシド、ブチルグリシジルエーテル、グリシジルフェニルエーテル、2-エチルヘキシルグリシジルエーテル、ドデシルグリシジルエーテル、トリデシルグリシジルエーテル、テトラデシルグリシジルエーテル、2-[(ブトキシメトキシ)メチル]オキシラン、1,2-エポキシドデカン、1,2-エポキシテトラデカン、1,2-エポキシヘキサデカンが好ましい。エポキシ基含有化合物は、1種を単独、又は2種以上を組み合わせて用いることができる。
水酸基含有化合物は分子内に1個の水酸基を有するモノオールと2個以上の水酸基を有するポリオールの両方が使用できる。モノオールは分子内に1個の水酸基を有する化合物であれば特に限定されない。例えば、ハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或いは脂環式炭化水素基、炭素数6~24の芳香族炭化水素基を有するモノオールが挙げられる。具体的には、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、ノルマルブタノール、sec-ブタノール、ter-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、ラウリルアルコール、ステアリルアルコール、シクロヘキサノール、シクロヘキサンメタノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、トリフルオロエタノール、テトラフルオロプロパノール等が挙げられる。中でも、工業的に入手容易なことから、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、ノルマルブタノール、sec-ブタノール、ter-ブタノールが好ましい。水酸基含有化合物は、1種を単独、又は2種以上を組み合わせて用いることができる。
ポリオールは分子内に2個以上の水酸基を有する化合物であれば特に限定されないが、ハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基或いはヒドロキシアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或いは脂環式炭化水素基、炭素数6~24の芳香族炭化水素基を有するジオールが挙げられる。具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,24-テトラコサンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,4-シクロヘプタンジオール、2,7-ノルボルナンジオール等が挙げられる。
前記(2)分子中に1個以上のベンゾフェノン誘導体と1個以上の反応性基を有する化合物を製造する際には溶媒を用いてもよい。溶媒として有機溶剤を使用する場合、例としてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、塩化メチレン、N,N’-ジメチルホルムアミド、3-メトキシ-N,N’-ジメチルプロピオンアミド、3-ブトキシ-N,N’-ジメチルプロピオンアミド、ジメチルアセトアミド、ジメチルスルホキシド、2-ピロリドン、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等が挙げる。溶媒として原料及び生成物と反応しない重合性(光又は熱によるラジカル系、カチオン系或いはアニオン系重合)化合物を用いることもできる。例えば、鎖状及び/又は環状炭化水素基(炭素数1~22)或いはアルコキシ基(炭素数1~22)を置換基として導入した各種の(メタ)アクリル酸エステル、各種のN-置換(メタ)アクリルアミドとN,N-ジ置換(メタ)アクリルアミド、(メタ)アクリロイルモルフォリン等が挙げられる。
前記(2)分子中に1個以上のベンゾフェノン誘導体と1個以上の反応性基を有する化合物を製造する際に用いられる反応触媒として、例えば、第4級アンモニウム塩、第3級ホスフィン誘導体、第3級アミン誘導体、有機金属化合物等が挙げられる。第4級アンモニウム塩としては、例えば、テトラブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、テトラブチルホスホニウムブロマイド、テトラフェニルホスホニムブロマイド等が挙げられる。第3級ホスフィンとしては、例えば、トリフェニルホスフィン、トリベンジルホスフィン、トリトリルホスフィン等のトリアリールホスフィン、トリシクロヘキシルホスフィン等のトリシクロアルキルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン等トリアルキルホスフィン等が挙げられる。第3級アミンとしては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、ジメチルベンジルアミン、ジエチルベンジルアミン等のジアルキルアリールアミン、トリエタノールアミン等が挙げられる。有機金属化合物としては、エポキシ基の開環反応に用いられる触媒であればいずれも使用することができ、例えば、亜鉛、錫、鉛、ジルコニウム、ビスマス、コバルト、マンガン、鉄等の金属とオクテン酸、ナフテン酸等の有機酸との金属塩等、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、錫2-エチルヘキサノエート、ジブチル錫ジアセチルアセトナート、ジルコニウムテトラアセチルアセトナート、チタンアセチルアセトナート、アセチルアセトンアルミニウム、アセチルアセトンコバルト、アセチルアセトン鉄、アセチルアセトン銅、アセチルアセトン亜鉛の金属キレート化合物等、アルキルホスホン酸のカリウムもしくはナトリウム塩等、炭素数8~20の脂肪酸のナトリウム、カリウム塩等が挙げられる。又、これらは単独で又は2種以上組み合わせて使用することができる。中でも、触媒効果の高い第4級アンモニウム塩、第3級ホスフィン誘導体、錫系、ジルコニウム系、鉄系の有機金属化合物がより好ましい。
前記反応触媒使用量は特に制限されるものではないが、各原料の全質量に対して質量比で0.001~5.0%であることが好ましい。0.001%以上であれば、反応が速やかに進行でき、5.0%以下の場合、触媒による着色が抑制できるため好ましい。更に0.01~1.0%であることがより好ましい。
前記(1)分子中に1個以上の(メタ)アクリルアミド基と1個以上の反応性基を有する化合物は、特に限定されるものではない。分子内に1個以上の(メタ)アクリルアミド基を有し、又水酸基、アミノ基、カルボキシル基から選択されるいずれか1種以上の構造を有する化合物が好ましい。
水酸基を有する(メタ)アクリルアミド基含有化合物は、一つ以上の(メタ)アクリルアミド基と一つ以上の水酸基を有する化合物であれば、モノオール或いはポリオールとしても使用できる。例えば、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド等のN-ヒドロキシアルキル(炭素数1~22)(メタ)アクリルアミド、N-メチルヒドロキシエチル(メタ)アクリルアミド、N-エチルヒドロキシプロピル(メタ)アクリルアミド等のN-アルキル(炭素数1~22)ヒドロキシアルキル(炭素数1~22)(メタ)アクリルアミド、N,N-ジヒドロキシメチル(メタ)アクリルアミド、N,N-ジヒドロキシエチル(メタ)アクリルアミド等のN,N-ジヒドロキシアルキル(炭素数1~22)(メタ)アクリルアミド等が挙げられる。特に、N-ヒドロキシエチル(メタ)アクリルアミドが、高屈折率(1.502)を有するため優れた透明性を提供でき、皮膚刺激性(PII=0)が低いため安全性が高くて取り扱い易く、又高純度な工業品を安易に入手できるため好ましい。これらの水酸基を有する(メタ)アクリルアミド基含有化合物は1種を単独でも、又は2種以上を組み合わせて用いることができる。
アミノ基を有する(メタ)アクリルアミド基含有化合物としては、一つ以上の(メタ)アクリルアミド基と一つ以上のアミノ基を有する化合物であれば特に限定されないが、例えば、N-アミノアルキル(炭素数1~22)(メタ)アクリルアミド、N-アミノアルキル(炭素数1~22)-N-アルキル(炭素数1~22)(メタ)アクリルアミド、N,N-ジアミノアルキル(炭素数1~22)(メタ)アクリルアミド等が挙げられる。これらアミノ基を有する(メタ)アクリルアミドは1種を単独でも、又は2種以上を組み合わせて用いることができる。
カルボキシル基を有する(メタ)アクリルアミド基含有化合物としては、一つ以上の(メタ)アクリルアミド基と一つ以上のアミノ基を有する化合物であれば特に限定されないが、例えば、N-カルボキシアルキル(炭素数1~22)(メタ)アクリルアミド、N-カルボキシアルキル(炭素数1~22)-N-アルキル(炭素数1~22)(メタ)アクリルアミド、N,N-ジカルボキシアルキル(炭素数1~22)(メタ)アクリルアミド等が挙げられる。これらカルボキシル基を有する(メタ)アクリルアミドは1種を単独でも、又は2種以上を組み合わせて用いることができる。
前記(3)分子中に2個以上反応性基を有する化合物は、前記(1)及び(2)と反応できる化合物であればよく、特に限定されるものではない。該化合物が有する反応性基は、前記(1)及び(2)の反応性基の応じて適宜に選定することができる。又、前記一般式(1)に記載のBはウレタン基、ウレア基、エステル基、アミド基又はイミド基を有する二価以上の有機基であることが好ましい観点から、該化合物に有する反応性基は、イソシアネート基、アミン基、アミノ基、カルボン酸基であることが好ましい。これらの反応性基と前記(1)及び(2)の反応性基である水酸基、アミン基、カルボン酸無水物等と反応することによって、本開示の光重合開始剤の分子内に水素供与官能基としてウレタン基、ウレア基、エステル基、アミド基又はイミド基を導入することができ、光重合開始性が向上される。
前記(1)、(2)と(3)を反応して得られる光重合開始剤は、ベンゾフェノン基にエステル基が直接結合される構造を有する場合、ベンゾフェノン基の光重合開始性が向上されるため、好ましい。同様な観点で、一般式(2)に示すベンゾフェノンテトラエステル構造を有することがより好ましい。又、明確なメカニズムは不明であるが、ベンゾフェノン基、ベンゾフェノン基に直接結合している4つのエステル基及びウレタン結合を同一分子内に全て含有する場合、分子間及び/又は分子内におけるこれらの官能基の相互作用により、光重合開始性が高くなると同時に、360nm以上の波長を有する長波長光線に対する感度も向上され、特に好ましい。更に、このような構造を有する光重合開始剤は、光硬化性樹脂組成物中に併用するモノマーやオリゴマー、有機溶剤等に対する溶解性が高く、光硬化性樹脂組成物の粘度を目的用途に応じて適宜に調整することができ、光硬化後耐着色性のよい硬化物を取得することができる。
前記(3)分子中に2個以上の反応性基を有する化合物は、反応性基として2個以上のイソシアネート基を有する場合は、汎用のポリイソシアネートであっても、汎用のポリイソシアネートとポリオールを反応して得られる、ポリオール骨格を有するポリイソシアネートであってもよい。
汎用のポリイソシアネートは、分子内に二つ以上のイソシアネート基を有する化合物であり、具体的には、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソンアネート、1,3-ブチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-ジフェニルメタンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート等の芳香族ポリイソシアネート、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,3-水添キシリレンジイソシアネート、1,4-水添キシリレンジイソシアネート、2,5-ノルボルナンジイソシアネート、2,6-ノルボルナンジイソシアネート等の脂環式ポリイソシアネート、又は、これらのポリイソシアネートのアダクトタイプ、イソシアヌレートタイプ、ビュレットタイプ等の多量体が挙げられる。これらのポリイソシアネートは1種類単独で使用してもよいし、又2種類以上併用してもよい。
ポリオール骨格を有するポリイソシアネートの合成に使用されるポリオールは、分子内に2個以上の水酸基を有する化合物であればよい。例えば、分子中に2個以上の水酸基を有するポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール、シリコーンポリオールが挙げられる。又、これらのポリオールは1種類単独で使用してもよいし、又2種類以上併用してもよい。
ポリエーテルポリオールとしては、炭素数2~18の直鎖、分岐、環状のポリアルキレングリコールが挙げられ、具体的には、ポリエチレングリコール、グリセリントリ(ポリオキシエチレン)エーテル、トリメチロールプロパントリ(ポリオキシエチレン)エーテル、ペンタエリスリトールテトラ(ポリオキシエチレン)エーテル、ポリ(オキシ-1,3-プロピレン)グリコール、グリセリントリ(ポリオキシ-1,3-プロピレン)エーテル、トリメチロールプロパントリ(ポリオキシ-1,3-プロピレン)エーテル、ペンタエリスリトールテトラ(ポリオキシ-1,3-プロピレン)エーテル、ポリ(オキシ-1,2-プロピレン)グリコール、グリセリントリ(ポリオキシ-1,2-プロピレン)エーテル、トリメチロールプロパントリ(ポリオキシ-1,2-プロピレン)エーテル、ペンタエリスリトールテトラ(ポリオキシ-1,2-プロピレン)エーテル、ポリ(オキシ-1,4-ブチレン)グリコール、ポリ(オキシ-1,5-ペンチレン)グリコール、ポリ(オキシ-3-メチル-1,5-ペンチレン)グリコール、ポリ(オキシ-1,6-ヘキシレン)グリコール等のアルキレングリコール類が挙げられる。中でも、工業的に入手容易なことから、ポリエチレングリコール、ポリ(オキシ-1,2-プロピレン)グリコール、ポリ(オキシ-1,4-ブチレン)グリコールが好ましい。
ポリエステルポリオールとしては、ポリカルボン酸とポリオールからなり、分子中にポリエステル骨格を含み末端に水酸基を有するものである。ポリカルボン酸成分として、フタル酸、テトラヒドロフタル酸、テレフタル酸、イソフタル酸、1,2-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、コハク酸、マレイン酸、フマル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、1,2,4-ブタントリカルボン酸、ヘミメリト酸、トリメリット酸、トリメシン酸、シクロヘキサントリカルボン酸、ピロメリット酸、シクロヘキサンテトラカルボン酸、等が挙げられ、ポリオール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,2-ノナンジオール、1,9-ノナンジオール、イソソルビド、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。中でも、工業的に入手容易なことから、ポリカルボン酸としてアジピン酸、テレフタル酸、イソフタル酸、セバシン酸の内一つ以上のポリカルボン酸からなるポリエステルポリオールが好ましい。
ポリカーボネートポリオールはカルボニル成分とポリオールからなり、分子中にカーボネート骨格を含むみ末端に水酸基を有するものである。カルボニル成分としてホスゲン、クロロギ酸エステル、ジアルキルカーボネート、ジアリールカーボネート及びアルキレンカーボネート等が挙げられ、ポリオール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,2-ノナンジオール、1,9-ノナンジオール、1,10-デカンジオール、イソソルビド、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。中でも、工業的に入手容易なことから、カルボニル成分としてホスゲン、ジメチルカーボネート、ジフェニルカーボネートの内一つ以上のカルボニル成分からなるポリカーボネートポリオールが好ましい。
ポリオレフィンポリオールとしては水素添加ポリアルカジエンポリオール、ポリアルカジエンポリオールが挙げられ、水素添加ポリアルカジエンポリオールとしては、1,2-水添ポリブタジエンジオール、1,4-水添ポリブタジエンジオール、水添ポリイソプレンポリオール等が挙げられ、ポリアルカジエンポリオールとしては、1,2-ポリブタジエンジオール、1,4-ポリブタジエンジオール、ポリイソプレンポリオール等が挙げられる。中でも、耐候性に優れることから、1,2-水添ポリブタジエンジオール、1,4-水添ポリブタジエンジオール、水添ポリイソプレンポリオールが好ましい。
シリコーンポリオールとしては、分子中にシリコーン主鎖骨格を有し、かつ主鎖骨格の末端又は側鎖に1個以上の水酸基を有するものである。具体的には両末端カルビノール変性ポリジメチルシロキサン、側鎖カルビノール変性ポリジメチルシロキサン、両末端ヒドロキシエトキシエチル変性ポリポリジメチルシロキサン、側鎖ヒドロキシエトキシエチル変性ポリポリジメチルシロキサン両末端ポリエーテル変性ポリポリジメチルシロキサン、側鎖ポリエーテル変性ポリポリジメチルシロキサン等が挙げられる。中でも、ウレタン合成中にゲル化を生じにくいことから、両末端カルビノール変性ポリジメチルシロキサンが好ましい。
本開示の光重合開始剤は、1分子あたりのベンゾフェノン誘導体の平均個数が1~20であることが好ましい。平均個数が1以上であれば、光重合開始剤として十分な光重合開始性を示し、又平均個数が20を超えると、光重合開始性がかなり高くなり、光硬化性樹脂組成物中に含有される質量にもよるが、光重合反応速度が制御しにくくなる恐れがある。同様な観点で、平均個数は1~10であることがより好ましい。
本開示の光重合開始剤は、1分子あたりのウレタン結合の平均個数が1~40であることが好ましい。平均個数が1以上であれば、前記とおりの各種ウレタン結合由来の効果が提供でき、又平均個数が40を超えると、光重合開始剤の極性が高くなり、光硬化性樹脂組成物中の併用成分に対する溶解性が低下する傾向がある。同様な観点で、平均個数は2~30であることがより好ましい。
本開示の光重合開始剤は光照射によりラジカル、カチオン、又はアニオンといった成長活性種を発生させることができる。光照射に用いられる光源としては、可視光、電子線、紫外線、赤外線、X線、α線、β線、γ線等の光エネルギー線が上げられる。中でも活性エネルギー線の発生装置、光重合開始速度及び安全性のバランスから紫外線を使用することが好ましい。又、紫外線源としては、キセノンランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、UV-LEDランプ、マイクロ波方式エキシマランプ等が挙げられ、エネルギーの光への変換効率が高く、高出力化も容易であり、更に有害な水銀を使用していないUV-LEDランプの使用がより好ましい。
本開示の光重合開始剤の光照射によりラジカル、カチオン、又はアニオンといった成長活性種の発生に必要な照射エネルギーは、用途や光源によって多少異なるが、照射エネルギー(積算光量)は5~50000mJ/cmの範囲が好ましく、10~20000mJ/cmがより好ましい。照射エネルギーがこの範囲内であれば、光重合開始剤から十分な活性を有する成長活性種が発生するため好ましい。
本開示の光重合開始剤は、様々な光硬化性樹脂組成物中に含有することで従来の光重合開始剤の代替として使用できる。その含有量は光重合開始剤の構造や光硬化性樹脂組成物の組成によって異なるが、0.1質量%以上を添加すると、光重合が直ちに開始することができ、光照射により光硬化性樹脂組成物が十分に硬化するため、好ましい。又、光重合開始剤はエチレン性不飽和結合を有するため、含有量が100質量%の場合でも、光硬化性樹脂組成物と同様に十分に硬化できる。硬化物の物性を好適に調整するため、他の不飽和基含有化合物と併用することができ、その場合、光硬化性樹脂組成物全体に対して、光重合開始剤の含有量は0.5~70質量%であることがより好ましく、1~50質量%であることが最も好ましい。
不飽和基含有化合物として単官能性不飽和化合物や多官能性不飽和化合物が挙げられる。不飽和基含有化合物の含有量は、光硬化性樹脂組成物全体に対して0~99質量%であることが好ましい。又、硬化物の物性を好適に調整するため、不飽和基含有化合物の含有量は50~99質量%であることがより好ましい。
単官能性不飽和化合物としては、(メタ)アクリレート基、(メタ)アクリルアミド基、ビニル基、アリル基、スチリル基及びアセチレン基等を含有する化合物が挙げられ、これらは1種類単独で使用してもよいし、又2種類以上併用してもよい。単官能性不飽和化合物の含有量は、光硬化性樹脂組成物全体に対して0~90質量%であることが好ましく、5~70質量%であることがより好ましく、10~50質量%であることが最も好ましい。単官能性不飽和化合物は通常低粘度であり、それを適宜に含有することにより光硬化性樹脂組成物の低粘度化、作業性向上等の効果が期待できる。
(メタ)アクリレート基を含有する単官能性不飽和化合物(光重合開始剤を除く)として具体的には、炭素数が1~22の直鎖、分岐、環状のアルキル基を導入したアルキル(メタ)アクリレート類、炭素数が1~22の直鎖、分岐、環状のヒドロキシアルキル基を導入したヒドロキシアルキル(メタ)アクリレート類、(メタ)アクリル酸とヒドロキシアルキルカルボン酸類からなる(メタ)アクリル酸エチルカルボン酸、(メタ)アクリル酸エチルコハク酸、(メタ)アクリル酸エチルフタル酸、(メタ)アクリル酸エチルヘキサヒドロフタル酸等の(メタ)アクリル酸アルキルカルボン酸類、炭素数が1~22の直鎖、分岐、環状のアルキルスルホン酸基を導入した(メタ)アクリル酸アルキルスルホン酸類、炭素数が1~22の直鎖、分岐、環状のアルキルリン酸基を導入した(メタ)アクリル酸アルキルリン酸類、炭素数が1~22のアルキル基と炭素数1~4のアルキレングリコール基からなる官能基を導入したアルコキシアルキレングリコール(メタ)アクリレート類、アルコキシジアルキレングリコール(メタ)アクリレート類、アルコキシトリアルキレングリコール(メタ)アクリレート類、アルコキシポリアルキレングリコール(メタ)アクリレート類や、フェノキシ基と炭素数1~4のアルキレングリコール基からなる官能基を導入したフェノキシアルキレングリコール(メタ)アクリレート類、フェノキシジアルキレングリコール(メタ)アクリレート類、フェノキシトリアルキレングリコール(メタ)アクリレート類、フェノキシポリアルキレングリコール(メタ)アクリレートや、炭素数が1~6のアミノアルキル基を導入したN-アルキルアミノ(メタ)アクリレート類や、炭素数が1~6のアミノアルキル基と炭素数1~6のアルキル基からなるN-アルキルアミノアルキル基を導入したN-アルキルアミノアルキル(メタ)アクリレート類や、炭素数が1~6のアミノアルキル基と炭素数1~6のアルキル基からなるN,N-ジアルキルアミノアルキル基を導入したN,N-ジアルキルアミノアルキル(メタ)アクリレート類や、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート等の環状構造を導入した(メタ)アクリレート類、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等のエポキシ基を導入した(メタ)アクリレート類が挙げられる。中でも、硬化物の諸物性のバランスがとりやすいことから、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-t-ブチルシクロヘキシル(メタ)アクリレートが好ましい。
(メタ)アクリルアミド基を含有する単官能性不飽和化合物(光重合開始剤を除く)として具体的には、(メタ)アクリルアミド、モノ又はジ置換(メタ)アクリルアミド、(メタ)アクロイルモルフォリン、ダイアセトン(メタ)アクリルアミド等が挙げられ、又、モノ又はジ置換(メタ)アクリルアミドとしては、例えば、炭素数1~22の直鎖、分岐、環状のアルキル基を導入したN-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、炭素数が1~6のヒドロキシアルキル基を導入したN-ヒロドキシアルキル(メタ)アクリルアミド、N,N-ジ(ヒロドキシアルキル)(メタ)アクリルアミド、N-ヒドロキシアルキル-N-(4-ヒドロキシフェニル)(メタ)アクリルアミド、炭素数が1~6のヒドロキシアルキル基及び炭素数1~6のアルキル基を導入したN-アルキル-N-ヒロドキシアルキル(メタ)アクリルアミド、N-アルキル-N-(4-ヒドロキシフェニル)(メタ)アクリルアミドや、4-ヒドロキシフェニル(メタ)アクリルアミド、N,N-ジ(4-ヒドロキシフェニル)(メタ)アクリルアミド、炭素数が1~6のアルコキシ基と炭素数1~6のアルキレン基からなるアルコキシアルキル基を導入したN-アルコキシアルキル(メタ)アクリルアミド、N,N-ジ(アルコキシアルキル)(メタ)アクリルアミド、炭素数が1~6のアルコキシ基と炭素数1~6のアルキレン基からなるアルコキシアルキル基、炭素数が1~6のアルキル基を導入したN-アルキル-N-アルコキシアルキル(メタ)アクリルアミド、炭素数が1~6のアルキルスルホン酸基を導入したN-スルホアルキルアクリルアミド、炭素数が1~6のアミノアルキル基を導入したN-アルキルアミノ(メタ)アクリルアミド、炭素数が1~6のアミノアルキル基と炭素数1~6のアルキル基からなるN-アルキルアミノアルキル基を導入したN-アルキルアミノアルキル(メタ)アクリルアミド、炭素数が1~6のアミノアルキル基と炭素数1~6のアルキル基からなるN,N-ジアルキルアミノアルキル基を導入したN,N-ジアルキルアミノアルキル(メタ)アクリルアミド等が挙げられる。中でも、工業的に入手容易なことから、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N-ジメチルアミノプロピルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-アクリロイルモルフォリン、ダイアセトンアクリルアミド、N-(1,1-ジメチル-3-オキソブチル)アクリルアミドが好ましく、中でも、液体であり作業性が高いことから、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-ジメチルアミノプロピルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-アクリロイルモルフォリンがより好ましい。
ビニル基を含有する単官能性不飽和化合物(光重合開始剤を除く)として具体的には、炭素数が1~22のカルボン酸を導入したカルボン酸ビニルエステル、炭素数が1~22の直鎖、分岐、環状のアルキル基を導入したアルキルビニルエーテル、ビニルクロライド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルオキサゾリン、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、イタコン酸無水物、炭素数が1~22の直鎖、分岐、環状のアルキル基を導入したマレイン酸モノアルキルエステル、マレイン酸ジアルキルエステル、マレイン酸モノアルキルアミド、マレイン酸ジアルキルアミド、マレイン酸アルキルイミド、フマル酸モノアルキルエステル、フマル酸ジアルキルエステル、フマル酸モノアルキルアミド、フマル酸ジアルキルアミド、イタコン酸モノアルキルエステル、イタコン酸ジアルキルエステル、イタコン酸モノアルキルアミド、イタコン酸ジアルキルアミド、イタコン酸アルキルイミド、ビニルカルボン酸、ビニルスルホン酸、ビニルリン酸等が挙げられる。中でも、工業的に入手容易なことから、N-ビニルピロリドン、N-ビニルカプロラクタム、無水マレイン酸等が好ましい。
アリル基を含有する単官能性不飽和化合物(光重合開始剤を除く)として具体的には、炭素数が1~22のカルボン酸を導入したカルボン酸アリルエステル、炭素数が1~22の直鎖、分岐、環状のアルキル基を導入したアルキルアリルエーテル類、フェニルアリルエーテル、アルキルフェニルアリルエーテル、アリルアミン、分岐、環状のアルキル基を導入したモノ又はジアルキルアリルアミン等が挙げられる。
スチリル基を含有する単官能性不飽和化合物(光重合開始剤を除く)として具体的には、スチレン、炭素数1~22のアルキル基をα位に導入したα-アルキルスチレン、α-メチルスチレンダイマー、炭素数1~22のアルキル基をフェニル基に導入したo-アルキルスチレン、m-アルキルスチレン、p-アルキルスチレン、スルホン酸基を導入したp-スチレンスルホン酸等が挙げられる。中でも、工業的に入手容易なことから、スチレンやα-メチルスチレン、αメチルスチレンダイマーが好ましい。
多官能性不飽和化合物としては、(メタ)アクリレート基、(メタ)アクリルアミド基、ビニル基、アリル基、スチレン基及びアセチレン基等の不飽和基を2個以上含有する化合物が挙げられ、これらの不飽和基は1種類単独を含有した化合物でもよいし、又2種類以上を複合して含有した化合物でもよい。又、良好な硬化性を得るため、不飽和基として少なくとも1個以上の(メタ)アクリレート基或いは(メタ)アクリルアミド基を用いることがより好ましい。多官能性不飽和化合物(光重合開始剤を除く)の含有量は光硬化性樹脂組成物全体に対して0~99質量%であることが好ましく、1~70質量%であることがより好ましく、5~50質量%であることが最も好ましい。多官能性不飽和化合物を適宜に含有することにより得られる硬化物の強度や硬度が高く、優れる耐久性が期待できる。
多官能性不飽和化合物としては、アリル(メタ)アクリレート、アリル(メタ)アクリルアミド、ジアリルアミン、炭素数1~22のアルキル基を導入したアルキルジアリルアミン、公知の無機酸アニオン又は有機酸アニオンから選ばれる少なくとも1種のアニオンと炭素数1~22のアルキル基を導入したジアルキルジアリルアンモニウムカチオンを組み合わせることで構成されるオニウム塩類、アルキレングリコールジ(メタ)アクリレート類、ポリアルキレングリコールジ(メタ)アクリレート類、ビスフェノールAジグリシジルエーテルアクリル酸付加物類、アルコキシル化ビスフェノールAジアクリレート類、ポリエステルジ(メタ)アクリレート類、ポリカーボネートジ(メタ)アクリレート類、ポリウレタンジ(メタ)アクリレート類、ポリウレタンジ(メタ)アクリルアミド類が挙げられ、又、3官能以上の多官能性不飽和化合物としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、コハク酸変性ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。これらの多官能性不飽和化合物は1種類単独で使用してもよいし、又2種類以上併用してもよい。
多官能性不飽和化合物の数平均分子量が100~20000であることが好ましい。数平均分子量が100以上である場合には、得られた硬化物の硬化収縮を低く抑えることがき、好ましい。又、数平均分子量が20000以下であれば、光硬化性樹脂組成物の液粘度を低めに制御でき、操作性に優れるため好ましい。更に、数平均分子量が200~10000であることがより好ましい。
又、本開示の光重合開始剤は他の増感剤を用いなくとも十分な感度を有しているが、更に感度の向上や硬化後の硬化物の物性を向上させる目的で、増感剤や他の光重合開始剤と併用することが可能である。
本開示の光重合開始剤と併用可能な増感剤としては、特に限定されないが、例えば、ベンゾフェノン類、アントラセン誘導体等に代表される不飽和ケトン類、ベンジルやカンファーキノン等に代表される1,2-ジケトン誘導体、ベンゾイン誘導体、アントラキノン誘導体、チオキサントン誘導体、クマリン誘導体、第3級アミン類、チオール類、ジスルフィド類等が挙げられる。これらは必要に応じて任意の比率で使用でき、1種類単独で使用してもよいし、又2種以上併用してもかまわない。
本開示の光重合開始剤と併用可能な他の重合開始剤としては、ベンゾイン、ベンゾインアルキルエーテル類等のベンゾイン類、アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のアセトフェノン類、アントラキノン類、チオキサントン類、ケタール類、ベンゾフェノン類、アミノアセトフェノン類、キサントン類等が挙げられるが、これらに限定されるものではなく、これらは必要に応じて任意の比率で使用でき、1種類単独で使用してもよいし、又2種以上併用してもかまわない。
光硬化性樹脂組成物は有機溶剤を含まず、用いることができる。又、塗布性等の作業性を向上させるため、必要に応じて有機溶剤を添加して液粘度を調製することができる。添加した有機溶剤は光硬化の際に、あらかじめ除去して硬化してもよいし、有機溶剤を含有したまま硬化してもよい。更に硬化後に有機溶剤を除去してもよく、光硬化性樹脂組成物及び得られる硬化物の使用方法、目的に応じて適宜選択することができる。有機溶剤の添加量は特に制限はないが、有機溶剤の除去に必要なエネルギーや時間を低減できる点から光硬化性樹脂組成物全体に対して80質量%以下であることが好ましく、50質量%以下であることがより好ましい。
光硬化性樹脂組成物に用いられる有機溶剤としてはメタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸プロピル、酢酸ブチル、乳酸メチル、乳酸エチル等のエステル類、エチレングリコール、プロピレングリコール等のアルキレングリコール類、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール類、エトキシジエチレングリコール、メトキシプロピレングリコール等のグリコールエーテル類、プロピレングリコールアセテート等のグリコールエステル類、テトラヒドロフラン、メチルテトラヒドロフラン、シクロペンチルメチルエーテル、メチルテトラヒドロピラン、メチルtert-ブチルエーテルトルエン等のエーテル類、キシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン等の脂肪族炭化水素類、N,N’-ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、β-メトキシ-N,N-ジメチルプロピオンアミド、β-ブトキシ-N,N-ジメチルプロピオンアミド等のアミドエーテル類、2-ピロリドン、N-メチルピロリドン等のピロリドン類、N-メチルピペリジン等のピペリジン類、塩化メチレン、クロロホルム、ジクロロエタン等のハロゲン化炭化水素類等、ジメチルスルホキシド等のスルホキシド類、1,3-ジメチル-2-イミダゾリジノン等のイミダゾリジノン類等が挙げられる。これらの有機溶剤は1種類単独で使用してもよいし、又2種類以上併用してもよい。
本開示の光重合開始剤は、UVフレキソインキ、UVオフセットインキ、UVスクリーンインキ、UVインクジェットインキ、光硬化性爪化粧料組成物(ジェルネイル)、UV硬化型粘着剤、UV硬化型接着剤、シーリング用材料や封止材等に用いられる光硬化性封止剤、自動車、電化製品、家具等の塗料やコート材等に用いられる光硬化性コート剤や、自動車、電化製品の表面コート等に使用される加飾シートに用いられる光硬化性加飾シート用樹脂組成物、自己修復性を有したコート剤、立体造形物、爪装飾材、自動車外装保護、加飾フィルム等の機能部材、デバイス等に用いられる光硬化性自己修復材料用樹脂組成物、透明粘着シートや、緩衝材、パッキン、防振材、吸音材、印刷版、シーリング材、研磨剤等に用いられるエラストマー向けの材料に用いられる光硬化性エラストマー組成物、3Dプリンタ用モデル材やサポート材といった光硬化性立体造形用樹脂組成物、自動車用塗料等光硬化性車両用コート材組成物等に好適に使用できる。
以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。又、以下において「部」及び「%」は特記しない限りすべて質量基準である。
(1)赤外吸収スペクトル分析(IR分析)
IR分析は下記の装置で行った。
Nicolet iS50(サーモフィッシャーサイエンティフィック株式会社製)
(2)液体クロマトグラフィー質量分析(LC-MS分析)
LC-MS分析は下記の装置と条件で行った。
カラム:XBridge C18、4.6mm×150mm、3.5μm(日本ウォーターズ株式会社製);溶離液条件:水/メタノール/1%ギ酸水溶液=60/30/10;測定波長:258nm;カラムオーブン:40℃
(3)核磁気共鳴スペクトル分析(NMR分析)
NMR分析は、日本電子株式会社製400MHzの装置で行った。
(4)ガスクロマトグラフィー分析(GC分析)
GC分析はGC-2025(島津製作所株式会社製)とカラム(DB-1、アジレント・テクノロジー株式会社株式会社製)で行った。
(5)ゲル浸透クロマトグラフィー分析(GPC分析)
GPC分析は下記の装置と条件で行った。
装置:Prominence-I LC-2030C(島津製作所株式会社製);ガードカラム:ShodexのKF-G 1本(昭和電工株式会社製);カラム:ShodexのKF-806L 1本(昭和電工株式会社製);カラム温度:40℃;移動相:テトラヒドロフラン(THF);送液速度:0.5mL/min;標準サンプル:ポリスチレン
実施例及び比較例に用いられるポリオール(E)、イソシアネート化合物(F)を以下に示す。
(1)ポリオール(E)
E-1:KF-6000(信越化学工業製、カルビノール変性シリコーンオイル、ジオール型、数平均分子量1700)
E-2:クラレポリオールP-1010(クラレ製、ポリエステルポリオール、ジオール型、数平均分子量1000)
E-3:UH-100(宇部興産製、1,6-HDのポリカーボネートジオール、数平均分子量1000)
E-4:GI-1000(日本曹達製、ポリブタジエンジオール、数平均分子量1500)
E-5:ユニオールD-1000(日油製、ポリプロピレングリコール、数平均分子量1000)
E-6:クラレポリオールP-5010(クラレ製、ポリエステルポリオール、ジオール型、数平均分子量5000)
E-7:ユニオールD-400(日油製、ポリプロピレングリコール、数平均分子量400)
(2)イソシアネート化合物(F)
F-1:1,5-ペンタメチレンジイソシアネート
F-2:イソホロンジイソシアネート(IPDI)
F-3:トルエンジイソシアネート(TDI)
F-4:IPDIの三量体(ヌレート)(エボニック社製、VESTANAT T1890/100)
実施例及び比較例に用いられる市販の光重合開始剤(G)、単官能性不飽和化合物(H)、多官能性不飽和化合物(I)、その他成分(J)を以下に示す。
(1)市販の光重合開始剤(G)
G-1:1-ヒドロキシシクロヘキシルフェニルケトン(Omnirad 184、IGM ResinsB.V.製)
G-2:1-[4-(2-ヒドロキシエチル)-フェニル]-2-ヒドロキシ-メチルプロパノン(Omnirad 2959、IGM ResinsB.V.製)
G-3:2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)フェノキシ)フェニル)-2-メチルプロパン-1-オン(ESACURE KIP 160、IGM ResinsB.V.製)
G-4:ベンゾフェノン
G-5:4,4’-ビス(ジメチルアミノ)ベンゾフェノン
(2)単官能性不飽和化合物(H)
H-1:ジメチルアクリルアミド(KJケミカルズ株式会社製、登録商標「Kohshylmer」「DMAA」)
H-2:イソボルニルアクリレート
H-3:アクリロイルモルフォリン(KJケミカルズ株式会社製、登録商標「Kohshylmer」「ACMO」)
H-4:4-t-ブチルシクロヘキシルアクリレート(KJケミカルズ株式会社製、登録商標「Kohshylmer」)
(3)多官能性不飽和化合物(I)
I-1:A-400(新中村化学工業製、ポリエチレングリコール400ジアクリレート)
I-2:EBECRYL270(ダイセル・オルネクス製、脂肪族2官能ウレタンアクリレート、平均分子量1500)
I-3:ヘキサンジオールジアクリレート(共栄社化学製、ライトアクリレート1,6HX-A)
I-4:ジペンタエリスリトールヘキサアクリレート(共栄社化学製、ライトアクリレートDPE-6A)
(4)その他成分(J)
J-1:TEGO Rad2100(エボニック社製、シリコンアクリレート)
J-2:ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工製)
J-3:MEK-ST-40(日産化学製、コロイダイシリカ分散液)
合成例1 不飽和結合を有する光重合開始剤(C-1)の合成
還流冷却管、撹拌機、温度計と滴下ロートを設けた300mL容量のフラスコに、トリフルオロメタンスルホン酸60.0g(0.4mol)と水7.2g(0.4mol)を冷却しながらゆっくりと混合し、トリフルオロメタンスルホン酸水和物を調製した。40℃に保ちながら、アクリロニトリル10.6g(0.2mol)、(G-1)40.8g(0.2mol)とフェノチアジン0.1gの混合物を滴下ロートからゆっくりと加えた。滴下終了後、70℃で2時間撹拌を続けた。反応終了後、反応液に水50gとトルエン50gを加え、抽出を行った。得られた有機層を濃縮し、再結晶することにより白色固形物31.8gを得た。IR分析とLC-MS分析とNMR分析を行い、得られた固形物は分子量が257である不飽和結合としてアクリルアミド基を有する光重合開始剤(C-1)であることを確認した。又、GC分析を行い、生成物の純度は98.5%、収率は62%であった。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ラジカル系の分子内開裂型)の個数比は1/1であった。
合成例2 不飽和結合を有する光重合開始剤(C-2)の合成
アクリロニトリルの代わりにメタクリロニトリル26.8g、(G-1)の代わりに(G-3)68.5gを用いた以外は合成例1と同様な方法にて合成・分析を行い、分子量が477である不飽和結合としてメタクリルアミド基を有する光重合開始剤(C-2)を得た。純度は98.8%、収率は67%であった。なお、エチレン性不飽和結合(メタクリルアミド基)と光重合開始性官能基(ラジカル系の分子内開裂型)の個数比は1/1であった。
合成例3 不飽和結合を有する光重合開始剤(C-3)の合成
合成例1で用いたものと同様のフラスコに、アクリル酸メチル20.8g(0.24mol)、(G-2)18.9g(0.22mol)、シクロヘキサン100g、フェノチアジン0.1gとジオクチルスズオキシド0.1g加えた。撹拌しながら反応液を80℃に昇温し、更に80℃で12時間反応させた。反応終了後、生成したメタノールとシクロヘキサンとの共沸物を留出させた後、未反応のアクリル酸メチルとシクロヘキサンとの共沸物を留出させ、4-(2-アクリロイルオキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトンを得た。これを用いて、合成例1と同様な方法にてアクリロニトリルを反応させ、合成例1と同様な方法にて分析を行い分子量が331である不飽和結合としてアクリレート基とアクリルアミド基を有する淡黄色透明の粘稠液体である光重合開始剤(C-3)を得た。純度は95.2%、収率は54%であった。なお、エチレン性不飽和結合(アクリレート基及びアクリルアミド基)と光重合開始性官能基(ラジカル系の分子内開裂型)の個数比は2/1であった。
合成例4 不飽和結合を有する光重合開始剤(C-4)の合成
合成例1で用いたものと同様のフラスコに、2-イソシアナトエチルアクリレート28.2g(0.2mol)、ジブチル錫ジラウレート(DBTDL)0.02gとメチルエチルケトン(MEK)50gを加えた。40℃に保ちながら、ベンゾイン42.4g(0.2mol)とフェノチアジン0.1gの混合物を滴下ロートからゆっくりと加えた。滴下終了後、70℃で2時間撹拌を続けた。反応終了後、減圧法により溶剤を留去し、再結晶することにより白色固形物を得た。IR分析とLC-MS分析とNMR分析を行い、分子量が353である不飽和結合としてアクリレート基を有する光重合開始剤(C-4)であることを確認した。又、GC分析を行い、生成物の純度は97.7%、収率は88%であった。なお、エチレン性不飽和結合(アクリレート基)と光重合開始性官能基(ラジカル系の分子内開裂型)の個数比は1/1であった。
合成例5 不飽和結合を有する光重合開始剤(C-5)の合成
2-イソシアナトエチルアクリレートの代わりに(F-2)44.5g、水酸基を有する光重合開始剤として(G-1)40.9gを用いた以外は合成例4と同様な方法にてウレタン化反応を行い、中間体としてイソシアネート基を有する化合物を得た。該中間体の溶液中に、70℃に保ちながら、ヒドロキシエチルマレイミド28.2g(0.2mol)を滴下ロートからゆっくりと加えた。滴下終了後、70℃で更に4時間撹拌を続けた。反応終了後、減圧法により溶剤を留去し、再結晶することにより白色固形物を得た。IR分析とLC-MS分析とNMR分析を行い、分子量が528である不飽和結合としてマレイミド基を有する光重合開始剤(C-5)であることを確認した。又、GC分析を行い、生成物の純度は96.5%、収率は92%であった。なお、エチレン性不飽和結合(マレイミド基)と光重合開始性官能基(ラジカル系の分子内開裂型)の個数比は1/1であった。
合成例6 不飽和結合を有する光重合開始剤(C-6)の合成
2-イソシアナトエチルアクリレートの代わりにジシクロヘキシルメタン4,4'-ジイソシアネート52.5g、水酸基を有する光重合開始剤として(G-1)40.8gを用いた以外は合成例4と同様な方法にてウレタン化反応を行い、中間体としてイソシアネート基を有する化合物を得た。該中間体の溶液中に、30℃に保ちながら、アリルアミン11.4g(0.2mol)を滴下ロートからゆっくりと加えた。滴下終了後、40℃で更に6時間撹拌を続けた。反応終了後、減圧法により溶剤を留去し、再結晶することにより白色固形物を得た。IR分析とLC-MS分析とNMR分析を行い、分子量466である不飽和結合としてアリル基を有する光重合開始剤(C-6)であることを確認した。又、GC分析を行い、生成物の純度は93.8%、収率は94%であった。なお、エチレン性不飽和結合(アリル基)と光重合開始性官能基(ラジカル系の分子内開裂型)の個数比は1/1であった。
合成例7 ベンゾフェノン基含有化合物(D-1)の合成
合成例1に用いたものと同様のフラスコに3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)60.0g、イソプロピルアルコール22.6g、1,2-エポキシヘキサン46.6g、酢酸エチル62g、触媒としてトリフェニルホスフィン(TPP)17.1gを添加し、60℃で撹拌しながら24時間反応させた。反応終了後、5%硫酸、飽和炭酸水素ナトリウム水溶液で洗浄し、有機層を分取した。これを無水硫酸ナトリウムで乾燥後、乾燥剤をろ別し、減圧濃縮し淡黄色粘性液体108.2gを得た。得られた粘性液体のIR分析により、エステル由来のカルボニル基のC=O伸縮振動による吸収(1725cm-1)が検出され、BTDA由来のカルボニル基のC=O伸縮振動による吸収(1770cm-1、1851cm-1)が検出されなかった。LC-MS分析により得られたマススペクトラムの分子イオンピークと、計算によって得られる分子量(643)との一致をもって、目的のベンゾフェノン基含有化合物(D-1)の生成を確認した。
合成例8 ベンゾフェノン基含有化合物(D-2)の合成
合成例1に用いたものと同様のフラスコにBTDA40.0g、カルビトール33.7g、酪酸グリシジル44.7g、触媒としてエチルトリフェニルホスホニウムブロミド(ETPPB)16.1gを添加し、90℃で撹拌しながら12時間反応させた。反応終了後、合成例7と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体106.7gが目的の分子量879であるベンゾフェノン基含有化合物(D-2)であることを確認した。
合成例9 ベンゾフェノン基含有化合物(D-3)の合成
合成例1に用いたものと同様のフラスコにBTDA45.0g、トリフルオロエタノール28.2g、N,N-ジメチルホルムアミド(DMF)51g、触媒として4-ジメチルアミノピリジン3.41gを添加し、50℃で撹拌しながら8時間反応させた。その後、溶液にtert-ブチルグリシジルエーテル45.5g、触媒として4-ジメチルアミノピリジン2.56gを添加し、70℃で撹拌しながら16時間反応させた。反応終了後、合成例7と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体198.5gが目的の分子量783であるベンゾフェノン基含有化合物(D-3)であることを確認した。
合成例10 ベンゾフェノン基含有化合物(D-4)の合成
合成例1に用いたものと同様のフラスコにBTDA40.0g、エチレングリコールモノアセタート26.1g、3-メトキシ-N,N-ジメチルプロパンアミド(KJケミカルズ株式会社製、登録商標「KJCMPA」)49g、触媒としてテトラブチルアンモニウムブロミド8.00gを添加し、100℃で撹拌しながら1時間反応させた。その後、溶液に1,2-エポキシヘキサン49.7g、触媒としてテトラブチルアンモニウムブロミド9.60gを添加し、100℃で撹拌しながら12時間反応させた。反応終了後、合成例7と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体92.4gが目的の分子量831であるベンゾフェノン基含有化合物(D-4)であることを確認した。
合成例11 ベンゾフェノン基含有化合物(D-5)の合成
合成例1に用いたものと同様のフラスコにBTDA23.0g、ドコサノール47.1g、2-エチルヘキシルグリシジルエーテル33.2g、MEK48g、触媒としてテトラメチルアンモニウムブロミド3.85gを添加し、MEK還流下、撹拌しながら18時間反応させた。反応終了後、合成例7と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体94.2gが目的の分子量1348であるベンゾフェノン基含有化合物(D-5)であることを確認した。
合成例12 ベンゾフェノン基含有化合物(D-6)の合成
合成例1に用いたものと同様のフラスコにBTDA25.0g、エタノール7.2g、1,2-エポキシドコサン63.0g、DMF24g、触媒としてTPP7.82gを添加し、70℃で撹拌しながら20時間反応させた。そ反応終了後、合成例7と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体92.4gが目的の分子量1064であるベンゾフェノン基含有化合物(D-6)であることを確認した。
合成例13 ベンゾフェノン基含有化合物(D-7)の合成
合成例1に用いたものと同様のフラスコにBTDA30.0g、1,2-ブタンジオール16.9g、酢酸エチル35g、触媒としてETPPB6.91gを添加し、65℃で撹拌しながら4時間反応させた。その後、溶液に3-ペルフルオロブチル-1,2-エポキシプロパン75.6g、触媒としてETPPB5.18gを添加し、90℃で撹拌しながら16時間反応させた。反応終了後、合成例7と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体101.7gが目的の分子量1152であるベンゾフェノン基含有化合物(D-6)であることを確認した。
合成例14 ベンゾフェノン基含有化合物(D-8)の合成
合成例1に用いた装置と同様に、500mLのフラスコにBTDA 50.0g、DMF 250gを添加し、プロパノールアミン24.5gを滴下ロートからゆっくりと加えた。滴下終了後、30℃で2時間撹拌を続けた。その後、溶液を145℃で撹拌しながら10時間反応させた。反応終了後、ろ別し、再結晶することにより淡黄色固形物61.5gを得た。得られた淡黄色固形物のIR分析により、イミド基のC=O伸縮振動による吸収(1725cm-1、1775cm-1 )、C-N-C伸縮振動による吸収(1375cm-1)が検出され、BTDA由来のカルボニル基のC=O伸縮振動による吸収が検出されなかった。LC-MS分析により得られたマススペクトラムの分子イオンピークと、計算によって得られる分子量(436)との一致をもって、目的のベンゾフェノン基含有化合物(D-8)の生成を確認した。
合成例15 不飽和結合を有する光重合開始剤(C-7)の合成
合成例1に用いたものと同様のフラスコに、(F-1)37.4g、(D-1)77.9g、N-メチロールアクリルアミド(NMAA)24.6g、触媒として錫2-エチルヘキサノエート0.06g、重合禁止剤としてジブチルヒドロキシトルエン(BHT)0.10gと溶媒として酢酸エチル60gを加え、70℃で攪拌しながら8時間反応を行った。反応終了後、IR分析によりイソシアネート基の吸収ピークが消失したことを確認した。反応液を濃縮し、メタノールにより沈殿精製を行い、その後真空乾燥を行うことで淡黄色固形物128.7gを得た。得られた固形物のIR分析により、ウレタン結合のN-H変角振動による吸収(1532cm-1)が検出され、(D-1)由来のケトン基のC=O伸縮振動による吸収(1650cm-1)が検出され、目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-7)の生成を確認した。またGPC分析により(C-7)の数平均分子量は1700と算出した。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は1/2であった。
合成例16 不飽和結合を有する光重合開始剤(C-8)の合成
合成例1に用いたものと同様のフラスコに、(D-2)68.9g、(E-1)78.4g、(F-2)43.5g、N-ヒドロキシエチルアクリルアミド(KJケミカルズ株式会社製、登録商標「Kohshylmer」、「HEAA」)9.1g、触媒としてアセチルアセトン鉄0.06g、BHT0.10gを加えた。混合物を攪拌しながら70℃まで昇温し、その後70℃で10時間反応した。合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体189.9gが目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-8)であることを確認した。また、GPC分析により、(C-8)の数平均分子量は7500と算出された。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は1/1であった。
合成例17 不飽和結合を有する光重合開始剤(C-9)の合成
合成例1に用いたものと同様のフラスコに、(D-3)80.1g、(E-2)25.6g、(F-3)26.8g、ヒドロキシプロピルメタクリルアミド7.4g、DBTDL0.06g、BHT0.10g、「ACMO」60gを加えた。混合物を攪拌しながら60℃まで昇温し、その後60℃で12時間反応し、淡黄色粘性液体127.7gを得た。合成例15と同様にIR分析により同定等を行い、得られた淡黄色粘性液体が目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-9)の「ACMO」溶液であることを確認した。また、GPC分析により、(C-9)の数平均分子量は8200と算出された。なお、(C-9)において、エチレン性不飽和結合(メタクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は1/2であった。
合成例18 不飽和結合を有する光重合開始剤(C-10)の合成
合成例1に用いたものと同様のフラスコに、「HEAA」12.1g、(F-4)58.1g、(E-3)26.2g、(D-4)43.5g、触媒としてアセチルアセトン亜鉛0.06g、BHT0.10g、溶媒として「KJCMPA」60gを加えた。混合液を撹拌しながら80℃まで昇温し、その後80℃で6時間反応を行った。反応終了後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体124.3gが目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-10)であることを確認した。また、GPC分析により、(C-10)の数平均分子量は24100と算出された。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は2/1であった。
合成例19 不飽和結合を有する光重合開始剤(C-11)の合成
合成例1に用いたものと同様のフラスコに、(D-7)47.0g、(E-4)40.8g、(F-3)35.5g、NMAA16.5g、触媒として1,4-ジアザビシクロ[2.2.2]オクタン0.06g、BHT0.10g、DMF60gを加えた。混合物を攪拌しながら70℃まで昇温し、70℃で7時間反応した後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体126.8gが目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-11)であることを確認した。また、GPC分析により、(C-11)の数平均分子量は5100と算出された。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は4/1であった。
合成例20 不飽和結合を有する光重合開始剤(C-12)の合成
合成例1に用いた装置と同様のフラスコに、(D-2)75.9g、(E-5)33.7g、(F-2)28.8g、NMAA1.5g、DBTDL0.06g、BHT0.10g、MEK60gを加えた。混合液を撹拌しながら60℃まで昇温し、その後60℃で12時間反応を行った。反応終了後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体129.1gが目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-12)であることを確認した。また、GPC分析により、(C-12)の数平均分子量は29100と算出された。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は1/6であった。
合成例21 不飽和結合を有する光重合開始剤(C-13)の合成
合成例1と同様の装置を用いて、フラスコに(D-5)3.8g、(E-6)129.0g、(F-2)7.0g、N(2-ヒドロキシエチル)マレイミド0.8g、触媒としてアセチルアセトン亜鉛0.06g、BHT0.10gを加えた。混合液を撹拌しながら75℃まで昇温し、75℃で更に8時間攪拌し続けた。その後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体128.9gが目的の不飽和結合としてマレイミド基を有する光重合開始剤(C-13)であることを確認した。また、GPC分析により、(C-13)の数平均分子量は73600と算出された。なお、エチレン性不飽和結合(マレイミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は2/1であった。
合成例22 不飽和結合を有する光重合開始剤(C-14)の合成
合成例1と同様の装置を用いて、フラスコに(D-6)69.3g、(E-3)43.4g、「KJCMPA」60g、BHT0.10gを加えた。70℃まで昇温しよく混合した。その後、溶液に(F-3)22.7g、触媒として錫2-エチルヘキサノエート0.04gを添加し、70℃で攪拌しながら4時間反応し、IR分析を行い、イソシアネート基の吸収ピークの減少が停止したことを確認した。その後、溶液にエチレングリコールモノアリルエーテル4.5gと錫2-エチルヘキサノエート0.02gを添加し、70℃で攪拌しながら6時間反応した。反応終了後、IR分析によりイソシアネート基の吸収ピークが消失したことを確認した。その後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体123.2gが目的の不飽和結合としてアリル基を有する光重合開始剤(C-14)であることを確認した。また、GPC分析により、(C-14)の数平均分子量は9700と算出された。なお、エチレン性不飽和結合(アリル基)と光重合開始性官能基(ベンゾフェノン基)の個数比は1/1.5であった。
合成例23 不飽和結合を有する光重合開始剤(C-15)の合成
合成例1と同様の装置を用いて、フラスコにアジピン酸47.2g、3-メチル-1,5-ペンタンジオール15.3g、(D-2)113.4g、BHT0.10g加え、常圧、窒素を通しながら190℃まで昇温し、混合液に触媒として酸化亜鉛0.04gを添加し、195℃の温度で縮合水を留出させながら、反応を行った。反応終了後、酸価43mgKOH/gであることを確認した(JIS K0070:1992準拠)。その後、還流冷却器をDean-Stark型共沸分留装置に変え、反応液に(6-ヒドロキシヘキシル)メタクリルアミド24.0g、濃硫酸2gを加え、125℃で生成する水をトルエンと共に反応系外に共沸分離した。その後、反応液にメタノールを加え、沈殿精製を行い、真空乾燥により淡黄色粘性液体185.2gを得た。合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体が(C-15)であることを確認した。得られた不飽和結合としてメタクリルアミド基を有する光重合開始剤(C-15)のGPC分析により、数平均分子量は4600と算出した。なお、エチレン性不飽和結合(メタクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は1/1であった。
合成例24 不飽和結合を有する光重合開始剤(C-16)の合成
合成例23と同様の装置を用いて、フラスコにアジピン酸ジクロリド87.6g、ヘキサメチレンジアミン41.7g、N-メチル-2-ピロリドン(NMP)30g、BHT0.10gを添加してからよく混合し、0℃に保ちながら1時間反応を行った。反応終了後、(D-2)17.5gを加え、1時間反応を行った。その後、溶液に「HEAA」23.1gを加え、1時間反応した。反応終了後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体158.2gが目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-16)であることを確認した。また、GPC分析により、(C-16)の数平均分子量は9200と算出された。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は10/1であった。
合成例25 不飽和結合を有する光重合開始剤(C-17)の合成
合成例23と同様の装置を用いて、500mLのフラスコに無水ピロメリット酸78.3g、(F-2)106.4g、NMP30g、トリエチレンジアミン2.85g、BHT0.10gを添加してから2時間かけて120℃まで昇温し、5時間反応させた。反応終了後、70℃まで降温し、(D-2)17.5gを加え、3時間反応を行った。その後、溶液に「HEAA」23.1g、DBTDL0.04gを加え、2時間反応した。反応終了後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体158.2gが目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-17)であることを確認した。また、GPC分析により、(C-17)の数平均分子量は11200と算出された。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は10/1であった。
合成例26 不飽和結合を有する光重合開始剤(C-18)の合成
合成例1に用いたものと同様のフラスコに、(D-7)31.2g、(E-8)42.9g、(F-3)37.4g、HEAA8.3g、触媒としてアセチルアセトン鉄0.06g、BHT0.10g、DMF80gを加えた。混合液を撹拌しながら70℃まで昇温し、70℃で11時間反応した。反応終了後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体106.9gが目的の不飽和結合としてアクリルアミド基を有する光重合開始剤(C-18)であることを確認した。また、GPC分析により、(C-18)の数平均分子量は5000と算出された。なお、エチレン性不飽和結合(アクリルアミド基)と光重合開始性官能基(ベンゾフェノン基)の個数比は1/1であった。
比較合成例1 エチレン性不飽和結合を有さないベンゾフェノン含有光重合開始剤(K-1)の合成
合成例1に用いたものと同様のフラスコに、(D-1)18.3g、(E-5)85.6g、(F-1)31.7g、n-ブタノール4.3g、触媒として錫2-エチルヘキサノエート0.06g、BHT0.10g、DMF60gを加えた。混合液を撹拌しながら80℃まで昇温し、80℃で10時間反応した。反応終了後、合成例15と同様に分析、精製、同定等を行い、得られた淡黄色粘性液体106.7gがエチレン性不飽和結合を有さないベンゾフェノン含有光重合開始剤(K-1)であることを確認した。また、GPC分析により、(K-1)の数平均分子量は7500と算出された。
比較合成例2 ウレタンアクリルアミド基オリゴマーとベンゾフェノンの混合物(K-2)の調製
合成例1に用いた装置と同様に、500mLのフラスコに(E-5)105.3g、(F-2)29.2g、NMAA5.4g、錫2-エチルヘキサノエート0.06g、BHT0.10g、酢酸エチル60gを加え、70℃で攪拌しながら12時間反応を行った。反応終了後、合成例15と同様に分析、精製、同定等を行い、ウレタンアクリルアミド基オリゴマーを得たことを確認した。その後、ベンゾフェノン26.0gを得られたオリゴマー中加えてよく混合し、淡黄色粘性液体(108.1g)としてウレタンアクリルアミド基オリゴマーとベンゾフェノンの混合物(K-2)を得た。GPC分析により、ウレタンアクリルアミド基オリゴマーの数平均分子量は8000と算出された。
実施例1~24と比較例1~8
各合成例で得られた不飽和結合を有する光重合開始剤(C-1)~(C-18)と公知の光重合開始剤(G)、エチレン性不飽和結合を有さないベンゾフェノン含有光重合開始剤(K-1)、ウレタンアクリルアミド基オリゴマーとベンゾフェノンの混合物(K-2)を用い、表1~表3に示す比例で単官能性不飽和化合物(H)、多官能性不飽和化合物(I)及びその他の成分(J)を計量し、25℃で30分間混合し、光硬化性樹脂組成物を調製した。得られた光硬化性樹脂組成物に用いられた各成分の相溶性及び異なる波長の光線に対する硬化性を下記方法により評価し、その結果を表1~3に示す。
(1)相溶性
調製した光硬化性樹脂組成物の状態を目視により観察し、各成分の相溶性を3段階に分けて評価した。
○:沈殿物や濁りがなく、完全に溶解した透明な状態である。
△:僅かに濁りがある。
×:沈殿物や濁りがある。
(2)硬化性
得られた光硬化性樹脂組成物を厚さ100μmのPETフィルム(「コスモシャインA-4100」東洋紡製)易接着処理面上にバーコーターを用い、膜厚が20μmとなるように塗布した後、紫外線を照射して塗膜を硬化させ、硬化物に触れた際のタックがなくなる積算光量を求め、硬化性を4段階に分けて評価した。なお、紫外線照射用ランプは下記1)~3)の3種類を用いた。また、タックがなくなるまでに必要の積算光量が低い程、硬化性が高い。
1)メタルハライドランプ:波長200~450nm、出力100mW/cm
2)UVLEDランプ:波長385nm、出力100mW/cm
3)UVLEDランプ:波長405nm、出力100mW/cm
◎:積算光量1000mJ/cm未満でタックがなくなる。
○:積算光量1000mJ/cm以上、3000mJ/cm未満でタックがなくなる。
△:積算光量3000mJ/cm以上、20000mJ/cm未満でタックがなくなる。
×:積算光量20000mJ/cmでもタックが残留する。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
実施例25~29と比較例9~11
各合成例で得られた不飽和結合を有する光重合開始剤(C-1)~(C-18)と公知の光重合開始剤(G)、ベンゾフェノン含有光重合開始剤(K-1)、ベンゾフェノン添加光重合開始剤(K-2)を用い、表4に示す比例で単官能性不飽和化合物(H)、多官能性不飽和化合物(I)及びその他の成分(J)を計量し、25℃で30分間混合し、光硬化性ハードコート用樹脂組成物を調製した。得られた光硬化性ハードコート用樹脂組成物の密着性、鉛筆硬度、耐黄変性、耐候性、耐腐食性を下記方法により評価し、結果を表4に示す。
(3)密着性
得られた光硬化性ハードコート用樹脂組成物をポリカーボネート(「PC1600」タキロンシーアイ製)、ガラス(「イーグルXG」コーニングジャパン製)、SUS304の各テストピース上にバーコーターを用い、乾燥膜厚が5μmとなるように塗布し、80℃の恒温槽で2分間乾燥した。波長385nm、出力100mW/cmのUVLEDランプにより積算光量が3000mJ/cmとなるように照射を行い、硬化膜を作製した。得られた硬化膜を用いて、JIS K 5600に準拠し、カッターナイフで1mm四方の碁盤目を100個作製し、市販のセロハンテープを貼りあわせた後に剥離した際のテストピース上に残った碁盤目の個数を4段階に分けて評価した。テストピース上に残る碁番目の個数が多い程、密着性が高い。
◎:残存した碁盤目の個数が100個である。
○:残存した碁盤目の個数が90~99個である。
△:残存した碁盤目の個数が60~89個である。
×:残存した碁盤目の個数が60個未満である。
(4)鉛筆硬度
密着性の評価と同様にポリカーボネートのテストピース上に硬化膜を作製し、JIS K 5600に準拠して硬化膜の表面を鉛筆で(45°の角度、10mm程度)引っ掻いた後、硬化膜表面に傷の付かない最も硬い鉛筆を鉛筆硬度とし、4段階に分けて評価した。
◎:鉛筆硬度が2H以上である。
○:鉛筆硬度がHB~Hである。
△:鉛筆硬度が3B~Bである。
×:鉛筆硬度が4B以下である。
(5)耐黄変性
得られた光硬化性ハードコート用樹脂組成物を厚さ100μmのPETフィルム(「コスモシャインA-4100」東洋紡製)易接着処理面上にバーコーターを用い、乾燥膜厚が5μmとなるように塗布し、80℃の恒温槽で2分間乾燥した。波長385nm、出力100mW/cmのUVLEDランプにより積算光量が3000mJ/cmとなるように照射を行い、硬化膜を作製し、温度23℃、相対湿度50%の雰囲気下で、24時間静置した。その後、硬化膜の透過スペクトルを透過色測定専用機(TZ-6000、日本電色工業製)により測定し、初期b値とした。硬化膜を用いて、85℃、相対湿度85%に設定した恒温恒湿機に500時間を静置し、耐黄変性の加速試験を行った。試験後の硬化膜を温度23℃、相対湿度50%の雰囲気下で24時間静置した後、硬化膜の透過スペクトルを同様の透過色測定専用機で測定し、湿熱後b値とした。湿熱後b値と初期b値の差は変化値Δbとした(Δb=湿熱後b値-初期b値)。耐黄変性は下記通り3段階に分けて評価した。
○:初期b値、湿熱後b値は共に0.5以下であり、かつ、Δbは0.2以下である。
△:初期b値、湿熱後b値は何れか一つまたは共に0.5を超えるが、共に1.0以下であり、かつ、Δbは0.3以下である。
×:初期b値、湿熱後b値は何れか一つまたは共に1.0を超え、或いは、Δbは0.3を超える。
(6)耐候性
耐黄変性評価と同様にPETフィルム上に硬化膜を作製し、サンシャインウェザオメーター(スガ試験機製)により250時間の促進試験を実施した。光沢計(「VG7000」日本電色工業製)にて試験前後の光沢度の変化率を算出し、2段階に分けて評価した。
○:光沢度の変化率が20%未満である。
×:光沢度の変化率が20%以上である。
(7)耐腐食性
得られた光硬化性ハードコート用樹脂組成物を銅のテストピース上にバーコーターを用い、乾燥膜厚が5μmとなるように塗布し、80℃の恒温槽で2分間乾燥した。波長385nm、出力100mW/cmのUVLEDランプにより積算光量が3000mJ/cmとなるように照射を行い、硬化膜を作製し、温度60℃、相対湿度95%に設定した恒温恒湿機に168時間静置した。その後、硬化膜をテストピースから剥がして、目視でテストピースの表面を観察し、4段階に分けて耐腐食性を評価した。
◎:腐食なし
○:僅かに腐食
△:少し腐食
×:著しい腐食
Figure JPOXMLDOC01-appb-T000013
表1~表4の結果から明らかなように、本発明の不飽和結合を有する光重合開始剤(実施例1~24)は汎用の単官能性不飽和化合物や多官能性不飽和化合物との相溶性が良好であり、短波長から長波長まで、様々の光線に対する硬化性が高かった。一方、公知の光重合開始剤を用いた場合(比較例1~8)、得られた光硬化性樹脂組成物の相溶性が不十分であり、長波長光線に対する硬化性が低かった。これらの実施例と比較例の異なる物性は、不飽和結合を有する光重合開始剤が分子内に有する疎水性の光重合開始官能基と親水性の不飽和結合との相互作用によるものと考えられる。また、不飽和結合を有する光重合開始剤を含む組成物(実施例25~29)は、長波長光線照射においても高い硬化性を有し、得られた硬化膜が良好な密着性や高い表面硬度を有する。また、耐黄変性や耐候性、耐腐食性も高く、これは光硬化後に硬化膜中に残存する未分解物や、分解で副生した低分子の分解物が発生しないためであると考えられる。これに対して、公知の光重合開始剤を含む組成物(比較例9~11)は、長波長光線に対する硬化性が低かったため、硬化膜の密着性や表面硬度、耐黄変性、耐候性、耐腐食性が低かった。従って、本発明の不飽和結合を有する光重合開始剤を含有する組成物が光硬化性ハードコート剤として好適に使用できる。
産業上利用可能性
以上説明してきたように、本発明の不飽和結合を有する光重合開始剤は高い光開始性と光硬化性を有し、メタルハライドランプから波長405nmのUVLEDランプまで多種多様な光源を用いて光重合の開始、光硬化反応を行うことができる。また、分子内の光重合開始性官能基とエチレン性不飽和結合の種類と官能基数を構造設計により任意に調整することができ、光重合開始剤の残存や分解物による臭気等が生じず、良好な硬化物が得られる。本発明の不飽和結合を有する光重合開始剤は種々の不飽和基含有化合物と組み合わせることにより様々な用途に対応する光硬化性樹脂組成物を製造することができ、高い密着性や表面硬度、耐黄変性、耐候性、耐腐食性等の種々の物性を付与することが可能であり、光硬化性インキ組成物、光硬化性インクジェットインク組成物、光硬化性爪化粧料組成物、光硬化性粘着剤組成物、光硬化性接着剤組成物、光硬化性封止剤組成物、光硬化性コート剤組成物、光硬化性加飾シート用樹脂組成物、光硬化性自己修復材料用樹脂組成物、光硬化性エラストマー組成物、光硬化性立体造形用樹脂組成物、光硬化性車両用コート剤組成物等として好適に使用できる。
 

Claims (13)

  1. 分子内に一つ以上のエチレン性不飽和結合と一つ以上の光重合開始性官能基を有する光重合開始剤。
  2. エチレン性不飽和結合は(メタ)アクリルアミド基、(メタ)アクリレート基、ビニル基、ビニルエーテル基、アルキルビニルエーテル基、アリル基、(メタ)アリルエーテル基とマレイミド基からなる群より選択される1種又は2種以上の結合である請求項1に記載の光重合開始剤。
  3. エチレン性不飽和結合として(メタ)アクリルアミド基を一つ以上有することを特徴とする請求項1又は2に記載の光重合開始剤。
  4. 光照射によりラジカル、カチオン、アニオンのいずれか1種以上の成長活性種を発生することを特徴とする請求項1~3のいずれか一項に記載の光重合開始剤。
  5. 光照射によりラジカル及び、カチオン或いはアニオンの成長活性種を発生することを特徴とする請求項1~4のいずれか一項に記載の光重合開始剤。
  6. 分子内及び/又は分子間で生じる水素引抜き反応によりラジカルを発生する光重合開始性官能基を有する請求項1~5のずれか一項に記載の光重合開始剤。
  7. 分子内に光重合開始性官能基の個数とエチレン性不飽和結合の個数の比は1/10~10/1であることを特徴とする請求項1~6のいずれか一項に記載の光重合開始剤。
  8. 分子内に光重合開始性官能基として一つ以上のベンゾフェノン構造を有する請求項1~7のいずれか一項に記載の光重合開始剤。
  9. 分子内に、一つ以上のウレタン結合を有する請求項8に記載の光重合開始剤。
  10. 一般式(1)で表される請求項1~9のいずれか一項に記載の光重合開始剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又はメチル基を表し、Rは炭素数1~24の直鎖状のアルキル基或いはヒドロキシアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表し、Rは炭素数1~24の直鎖状のアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキレン基、炭素数3~36の分岐状のアルキレン基、炭素数6~24の芳香族炭化水素を表し、Rはエチレン性不飽和結合で置換されてもよい炭素数1~24の直鎖状のアルキル基或いはヒドロキシアルキレン基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。又、R中のエチレン性不飽和結合は(メタ)アクリルアミド基、(メタ)アクリレート基、ビニル基、ビニルエーテル基、アルキルビニルエーテル基、アリル基、(メタ)アリルエーテル基とマレイミド基からなる群より選択される1種又は2種以上の結合である。Aは一般式(2)で表されるベンゾフェノン誘導体を表し、Bはウレタン基、ウレア基、エステル基、アミド基又はイミド基を有する二価以上の有機基を表し、iは1~25の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、RとRは各々独立にエーテル基、環状エーテル基、エステル基或いはハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。RとRは各々独立にハロゲン基で置換されてもよい炭素数1~24の直鎖状のアルキル基、炭素数2~24のアルケニル基或いはアルキレンオキシアルキル基、炭素数3~24の分岐状のアルキル基或脂環式炭化水素、炭素数6~24の芳香族炭化水素を表す。Xは一般式(3)で示される四価の有機基を表す。n、mは各々独立に1~10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、R10は各々独立に水素原子、炭素数1~8の直鎖状のアルキル基、炭素数3~8の分岐状アルキル基表す。)
  11. 前記一般式(1)に記載の光重合開始剤は、Bがウレタン基を1個以上有する二価以上の有機基であって、数平均分子量が1000~100000であることを特徴とする請求項10に記載の光重合開始剤。
  12. 波長300~450nmの光に対する重合開始性を有する請求項1~11のいずれか一項に記載の光重合開始剤。
  13. 請求項1~12のいずれか一項に記載の光重合開始剤を含有する光重合性樹脂組成物。
     
PCT/JP2020/046328 2019-12-13 2020-12-11 光重合開始剤 WO2021117880A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP20897762.9A EP4074736A4 (en) 2019-12-13 2020-12-11 PHOTOPOLYMERIZATION INITIATOR
CN202410114348.7A CN118005827A (zh) 2019-12-13 2020-12-11 光聚合起始剂
JP2021539560A JP7016199B2 (ja) 2019-12-13 2020-12-11 光重合開始剤
KR1020227023677A KR20220117266A (ko) 2019-12-13 2020-12-11 광중합 개시제
US17/783,060 US11787884B2 (en) 2019-12-13 2020-12-11 Photopolymerization initiator
CN202080086263.2A CN114929757B (zh) 2019-12-13 2020-12-11 光聚合起始剂
JP2022005723A JP7262722B2 (ja) 2019-12-13 2022-01-18 光重合開始剤
JP2022005722A JP7236773B2 (ja) 2019-12-13 2022-01-18 光硬化性ハードコート用樹脂組成物
JP2022082956A JP2022113706A (ja) 2019-12-13 2022-05-20 光重合開始剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019225693 2019-12-13
JP2019-225693 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021117880A1 true WO2021117880A1 (ja) 2021-06-17

Family

ID=76330045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046328 WO2021117880A1 (ja) 2019-12-13 2020-12-11 光重合開始剤

Country Status (7)

Country Link
US (1) US11787884B2 (ja)
EP (1) EP4074736A4 (ja)
JP (4) JP7016199B2 (ja)
KR (1) KR20220117266A (ja)
CN (2) CN118005827A (ja)
TW (1) TW202132363A (ja)
WO (1) WO2021117880A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022040291A (ja) * 2019-12-13 2022-03-10 Kjケミカルズ株式会社 光硬化性ハードコート用樹脂組成物
JP7177297B1 (ja) 2022-08-30 2022-11-22 サカタインクス株式会社 光硬化型インクジェット用インク組成物
WO2023074620A1 (ja) * 2021-10-25 2023-05-04 Kjケミカルズ株式会社 活性エネルギー線硬化性組成物
WO2023120275A1 (ja) * 2021-12-20 2023-06-29 富士フイルム株式会社 電子線硬化用インクジェットインク、インクセット、及び画像記録方法
WO2023176795A1 (ja) * 2022-03-14 2023-09-21 積水化学工業株式会社 光湿気硬化性樹脂組成物、電子部品用接着剤及び表示素子用接着剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174390B1 (ja) 2022-08-02 2022-11-17 Kjケミカルズ株式会社 光硬化型インクジェット用インク組成物
CN115974724B (zh) * 2022-12-12 2024-04-02 湖南汇田高分子科技有限公司 一种紫外光引发剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270844A (ja) * 1988-12-31 1990-11-05 Basf Ag エチレン性不飽和の共重合可能な感放射線性有機化合物およびその製造法
JPH1180285A (ja) * 1997-09-17 1999-03-26 Sakata Corp ポリウレタン樹脂系光硬化性組成物
JP2000159827A (ja) 1998-11-30 2000-06-13 Chisso Corp 光重合開始剤および光重合性開始剤組成物
JP2006188687A (ja) * 2004-12-29 2006-07-20 Natl Starch & Chem Investment Holding Corp 感圧接着剤用の光開始剤及びuv架橋性アクリルポリマー
JP2013500303A (ja) 2009-07-30 2013-01-07 ビーエーエスエフ ソシエタス・ヨーロピア 高分子光開始剤
JP2020138990A (ja) * 2019-02-26 2020-09-03 株式会社リコー 活性エネルギー線重合性開始剤、活性エネルギー線重合性組成物、活性エネルギー線重合性インク、インク収容容器、画像形成方法および画像形成装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104914A (ja) * 1981-12-18 1983-06-22 Matsushita Electric Works Ltd 光硬化性不飽和ポリエステル樹脂組成物
JPS5930809A (ja) * 1982-08-11 1984-02-18 Asahi Chem Ind Co Ltd 光硬化性材料
US5248805A (en) * 1988-12-31 1993-09-28 Basf Aktiengesellschaft Radiation-senstive, ethylenically unsaturated, copolymerizable compounds and their preparation
JP2744051B2 (ja) * 1989-03-09 1998-04-28 積水化学工業株式会社 アクリル系粘着剤、及びアクリル系粘着テープもしくはシートの製造方法
DE4007318A1 (de) * 1990-03-08 1991-09-12 Basf Ag Ethylenisch ungesaettigte verbindungen
JPH05241138A (ja) * 1991-12-06 1993-09-21 Canon Inc 液晶光学素子
US5506279A (en) 1993-10-13 1996-04-09 Minnesota Mining And Manufacturing Company Acrylamido functional disubstituted acetyl aryl ketone photoinitiators
EP0772656B1 (en) * 1994-07-29 2001-03-21 Minnesota Mining And Manufacturing Company Acrylic syrup curable to a crosslinked viscoelastomeric material
DE69607620T2 (de) * 1995-07-28 2000-10-26 Minnesota Mining & Mfg Acrylamid-derivate als chromophore lichtvernetzbare verbindungen
JPH09115900A (ja) * 1995-10-20 1997-05-02 Toray Ind Inc 半導体素子
US5900472A (en) * 1996-12-23 1999-05-04 Sartomer Technology Copolymerizable benzophenone photoinitiators
UA84862C2 (en) * 2003-03-03 2008-12-10 Месье-Бугатти Substrate
WO2012121319A1 (ja) * 2011-03-09 2012-09-13 シャープ株式会社 液晶組成物、液晶表示装置及び液晶表示装置の製造方法
CN103048883B (zh) * 2012-12-05 2014-08-13 北京化工大学常州先进材料研究院 一种含有可聚合光引发剂的感光性组合物
JP2016113518A (ja) * 2014-12-12 2016-06-23 Kjケミカルズ株式会社 (メタ)アクリルアミド系ウレタンオリゴマーを有する活性エネルギー線硬化性樹脂組成物
KR101924553B1 (ko) * 2015-09-15 2018-12-03 케이제이 케미칼즈 가부시키가이샤 우레탄변성 (메타)아크릴아미드 화합물 및 이를 함유하는 활성에너지선 경화성 수지 조성물
CN110407719A (zh) 2018-04-27 2019-11-05 北京化工大学常州先进材料研究院 一种可聚合单组分夺氢型光引发剂及其制备方法
CN118005827A (zh) 2019-12-13 2024-05-10 科巨希化学股份有限公司 光聚合起始剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270844A (ja) * 1988-12-31 1990-11-05 Basf Ag エチレン性不飽和の共重合可能な感放射線性有機化合物およびその製造法
JPH1180285A (ja) * 1997-09-17 1999-03-26 Sakata Corp ポリウレタン樹脂系光硬化性組成物
JP2000159827A (ja) 1998-11-30 2000-06-13 Chisso Corp 光重合開始剤および光重合性開始剤組成物
JP2006188687A (ja) * 2004-12-29 2006-07-20 Natl Starch & Chem Investment Holding Corp 感圧接着剤用の光開始剤及びuv架橋性アクリルポリマー
JP2013500303A (ja) 2009-07-30 2013-01-07 ビーエーエスエフ ソシエタス・ヨーロピア 高分子光開始剤
JP2020138990A (ja) * 2019-02-26 2020-09-03 株式会社リコー 活性エネルギー線重合性開始剤、活性エネルギー線重合性組成物、活性エネルギー線重合性インク、インク収容容器、画像形成方法および画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4074736A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022040291A (ja) * 2019-12-13 2022-03-10 Kjケミカルズ株式会社 光硬化性ハードコート用樹脂組成物
JP7236773B2 (ja) 2019-12-13 2023-03-10 Kjケミカルズ株式会社 光硬化性ハードコート用樹脂組成物
WO2023074620A1 (ja) * 2021-10-25 2023-05-04 Kjケミカルズ株式会社 活性エネルギー線硬化性組成物
WO2023120275A1 (ja) * 2021-12-20 2023-06-29 富士フイルム株式会社 電子線硬化用インクジェットインク、インクセット、及び画像記録方法
WO2023176795A1 (ja) * 2022-03-14 2023-09-21 積水化学工業株式会社 光湿気硬化性樹脂組成物、電子部品用接着剤及び表示素子用接着剤
JP7177297B1 (ja) 2022-08-30 2022-11-22 サカタインクス株式会社 光硬化型インクジェット用インク組成物
WO2024047976A1 (ja) * 2022-08-30 2024-03-07 サカタインクス株式会社 光硬化型インクジェット用インク組成物
JP2024033318A (ja) * 2022-08-30 2024-03-13 サカタインクス株式会社 光硬化型インクジェット用インク組成物

Also Published As

Publication number Publication date
JP2022113706A (ja) 2022-08-04
CN114929757B (zh) 2024-02-20
US11787884B2 (en) 2023-10-17
JP7262722B2 (ja) 2023-04-24
JP2022040292A (ja) 2022-03-10
KR20220117266A (ko) 2022-08-23
JP7016199B2 (ja) 2022-02-04
CN114929757A (zh) 2022-08-19
JP2022040291A (ja) 2022-03-10
US20230037488A1 (en) 2023-02-09
CN118005827A (zh) 2024-05-10
JPWO2021117880A1 (ja) 2021-12-09
TW202132363A (zh) 2021-09-01
JP7236773B2 (ja) 2023-03-10
EP4074736A1 (en) 2022-10-19
EP4074736A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
JP7016199B2 (ja) 光重合開始剤
KR102051917B1 (ko) 층간 충전용 활성 에너지선 경화성 조성물
TWI472547B (zh) 硬化塗膜之製造方法、光學薄膜、及薄膜成形體之製造方法
TW200927794A (en) Curing type composition containing alkoxysilane condensation compound
JP7391364B2 (ja) 光重合開始性n-置換(メタ)アクリルアミド
JP2004155893A (ja) 紫外線硬化型樹脂組成物
WO2018021352A1 (ja) 硬化型組成物
JP6844105B2 (ja) 硬化型組成物
US8017718B2 (en) Vinyl ethers and compositions containing them
JP6755986B2 (ja) エネルギー線硬化性樹脂組成物及び制振シート
WO2018169031A1 (ja) ウレタン(メタ)アクリレート重合体
WO2022225041A1 (ja) 硬化型組成物、活性エネルギー線硬化型組成物及び活性エネルギー線硬化型コーティング剤組成物
JP2014231591A (ja) ウレタン(メタ)アクリレートオリゴマー、硬化性樹脂組成物、硬化物及び積層体
WO2019182155A1 (ja) 硬化性組成物、硬化物、硬化物の製造方法、硬化物の傷の修復方法
TWI667312B (zh) 層間塡充用硬化性樹脂組成物
JP7235697B2 (ja) 反応性紫外線吸収剤及びその製造方法、並びに紫外線・電子線硬化性コーティング剤
KR102319908B1 (ko) 내후성이 개선된 pcm용 광경화형 투명 도료 조성물
JP6705165B2 (ja) ウレタン(メタ)アクリレートオリゴマー
WO2024085227A1 (ja) 光重合開始剤
JP2006182868A (ja) 活性エネルギー線硬化型水性樹脂組成物
JPWO2005021602A1 (ja) ポリアルケニルエーテル
JP2006182869A (ja) 活性エネルギー線硬化型水性樹脂組成物
JP2006182871A (ja) 活性エネルギー線硬化型水性樹脂組成物
JP2000006322A (ja) プラスチック成型品及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021539560

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227023677

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897762

Country of ref document: EP

Effective date: 20220713