WO2021117436A1 - リアクトル - Google Patents

リアクトル Download PDF

Info

Publication number
WO2021117436A1
WO2021117436A1 PCT/JP2020/042959 JP2020042959W WO2021117436A1 WO 2021117436 A1 WO2021117436 A1 WO 2021117436A1 JP 2020042959 W JP2020042959 W JP 2020042959W WO 2021117436 A1 WO2021117436 A1 WO 2021117436A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
coil
case
reactor according
coil portion
Prior art date
Application number
PCT/JP2020/042959
Other languages
English (en)
French (fr)
Inventor
哲也 金川
好子 坂野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080080018.0A priority Critical patent/CN114730660A/zh
Priority to JP2021563817A priority patent/JP7296047B2/ja
Publication of WO2021117436A1 publication Critical patent/WO2021117436A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present invention relates to a reactor, and more particularly to a reactor in which a tubular coil conductor in which a conducting wire is wound and a magnetic core containing a magnetic material are provided, and these are housed in a case.
  • the reactor is a passive element that uses inductance, and has been installed in various electronic devices as an element of circuit elements in recent years.
  • an inverter mounted on a vehicle such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle incorporates a converter that boosts or lowers the battery voltage, and the reactor is used as a core component of the converter. Research and development of this type of reactor has been actively carried out.
  • the heat radiating table portion 105 is fixed to the case 103, and the coil 101 and the heat radiating table portion 105 are integrated via the resin mold portion 104 to dissipate the heat generated by the coil 101 to the heat radiating base portion 105. It propagates to and dissipates heat, thereby ensuring heat dissipation.
  • Patent Document 1 most of the magnetic flux passes through the core 102, but some of the magnetic flux leaks from the core 102 and becomes a leakage flux, and the leakage flux interlinks with the coil 101 and the case 103, and the coil Eddy currents are generated in 101 and case 103.
  • FIG. 32 is a cross-sectional view taken along the line aa of FIG. 31, and FIG. 33 is a cross-sectional view taken along the line bb of FIG. 31.
  • Patent Document 1 when a leakage flux is generated from the core 102 when energized, the leakage flux passes through the edge of the resin mold portion 104 and the coil 101 as shown by the arrow c in FIG. 32, and thus the leakage flux. Linkes with the coil 101 at the edge portion d, and there is a possibility that an eddy current may be generated in the vicinity of the edge of the coil 101 due to this linkage.
  • the leakage flux may be incident on the metal case 103 from the end edge portion f of the coil 101.
  • the leakage flux may enter the case 103 and interlink with the case 03, and an eddy current may be generated in the case 103 as described above.
  • the eddy current generated at the end edge of the coil 101 or the case 103 may cause an eddy current loss, which may lead to a temperature rise or deterioration of magnetic characteristics such as an increase in magnetic loss.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a compact and high-performance reactor having a large magnetic flux density with low magnetic loss and a large inductance by suppressing the generation of eddy currents. To do.
  • the reactor according to the present invention includes a coil conductor formed in a tubular shape and a magnetic core core containing a magnetic material, and the coil conductor and the magnetic core core are housed in a case.
  • the coil conductor has a coil portion around which a conducting wire is wound and a first non-magnetic material portion formed of a first non-magnetic resin material that covers the surface of the coil portion. It is characterized in that a protrusion made of a second non-magnetic resin material is formed on the surface of the first non-magnetic material portion and on the edge of the coil portion.
  • the protrusion made of the second non-magnetic resin material is formed on the surface of the first non-magnetic material portion and on the edge of the coil portion in this way, the magnetic core core is near the coil portion. Since the leakage flux from the magnetic core core passes through the protrusion, the leakage flux passing through the coil portion or incident on the case can be reduced. Therefore, it is possible to reduce the interlinkage between the coil portion or the case and the leakage magnetic flux, thereby suppressing the generation of eddy current at the edge portion of the coil portion or in the vicinity of the case, resulting in eddy current loss. Since it can be reduced, it is possible to obtain a high-performance reactor having a large inductance with a low magnetic loss and a large magnetic flux density.
  • the protrusion is formed in the central direction and the centrifugal direction with respect to the winding axis of the coil portion.
  • the reactor of the present invention has a plurality of protrusions formed in a direction parallel to the winding axis of the coil portion.
  • the plurality of protrusions are integrated to form a curved surface.
  • the coil conductor is preferably housed in the case so that the winding shaft of the coil portion is parallel to the horizontal plane, and the winding shaft of the coil portion is in the vertical direction. It is also preferable that the case is housed in the case.
  • the conducting wire is formed of a flat wire and the coil conductor is edgewise wound or flatwise wound.
  • the conducting wire By forming the conducting wire with a flat wire in this way, the space factor can be increased as compared with the round wire, and a smaller and larger reactor with a large magnetic flux density can be obtained.
  • the protrusion is in contact with the case.
  • the second non-magnetic material portion formed of the second non-magnetic resin material contains the protrusion and is in contact with at least one surface of the case.
  • the one surface is preferably the bottom surface portion or the side surface portion of the case.
  • the second non-magnetic portion includes the protrusion and comes into contact with at least one surface of the case (preferably the entire surface of the bottom surface or the side surface), so that the magnetic core is formed on the one surface of the case. Since it does not exist, the leakage flux can be reduced, the eddy current generated in the case is also reduced, and the occurrence of eddy current loss can be suppressed. Since the second non-magnetic material portion is in direct contact with at least one surface of the case, heat conduction from the coil conductor to the case can be promoted, heat dissipation is improved, and the temperature rise of the reactor is suppressed. be able to.
  • the first non-magnetic resin material is filled between the conducting wires forming the coil conductor.
  • the heat generated by the conducting wire can be dissipated more efficiently, and the temperature rise of the reactor can be suppressed more effectively.
  • the first and second non-magnetic resin materials contain a filler component and have a thermal conductivity of 5 W / mK or more.
  • first and second non-magnetic resin materials having a high thermal conductivity of 5 W / mK or more in this way, better heat dissipation can be ensured.
  • the non-magnetic resin material forming the non-magnetic material portion and the non-magnetic resin material forming the protrusion portion are the same material.
  • the magnetic core core contains a resin material.
  • the magnetic material is either a soft magnetic metal material or a ferrite material.
  • the coil is provided with a coil conductor formed in a tubular shape and a magnetic core containing a magnetic material, and the coil conductor and the magnetic core are housed in a case.
  • the conductor has a coil portion around which a conducting wire is wound and a first non-magnetic material portion formed of a first non-magnetic resin material that covers the surface of the coil portion, and has the first non-magnetic material portion. Since a protrusion made of a second non-magnetic resin material is formed on the surface of the magnetic material portion and on the edge of the coil portion, the magnetic core does not exist near the coil portion.
  • the leakage magnetic flux from the magnetic core core passes through the protrusion, it is possible to reduce the leakage magnetic flux that passes through the coil portion or is incident on the case. Therefore, it is possible to reduce the interlinkage between the coil portion or the case and the leakage magnetic flux, thereby suppressing the generation of eddy current at the edge portion of the coil portion or near the case, and reducing the eddy current loss. Therefore, it is possible to obtain a high-performance reactor having a large inductance with a low magnetic loss and a large magnetic flux density.
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 1 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 1 is a cross-sectional view taken along the line CC of FIG.
  • It is sectional drawing of the main part which shows the 1st modification of 1st Embodiment.
  • It is sectional drawing of the main part which shows the 2nd modification of 1st Embodiment.
  • FIG. 6 is an enlarged cross-sectional view of part D in FIG. It is sectional drawing of the main part which shows the 3rd modification of 1st Embodiment.
  • FIG. 10 is a cross-sectional view taken along the line EE of FIG. It is sectional drawing of the main part which shows the 1st modification of 2nd Embodiment. It is sectional drawing of the main part which shows the 2nd modification of 2nd Embodiment. It is the F part enlarged sectional view of FIG. It is sectional drawing of the main part which shows the 3rd modification of the 2nd Embodiment. It is sectional drawing of the main part which shows the 4th modification of the 2nd Embodiment.
  • FIG. 17 is a cross-sectional view taken along the line GG of FIG. It is sectional drawing of the main part which shows the 1st modification of 3rd Embodiment. It is sectional drawing of the main part which shows the 2nd modification of 3rd Embodiment. It is the H part enlarged sectional view of FIG. It is sectional drawing of the main part which shows the 3rd modification of 3rd Embodiment. It is sectional drawing of the main part which shows the 4th modification of 3rd Embodiment.
  • FIG. 5 is a plan sectional view schematically showing a fourth embodiment of the reactor according to the present invention.
  • FIG. 4 is a cross-sectional view taken along the line II of FIG. 24.
  • FIG. 5 is a plan sectional view schematically showing a fifth embodiment of the reactor according to the present invention.
  • FIG. 26 is a cross-sectional view taken along the line JJ in FIG. 26. It is sectional drawing of the main part which shows the modification of the 5th Embodiment. It is a top sectional view schematically showing the sixth embodiment of the reactor which concerns on this invention.
  • FIG. 9 is a cross-sectional view taken along the line KK of FIG. 29. It is a cross-sectional view of the main part of the reactor described in Patent Document 1.
  • FIG. 31 is a cross-sectional view taken along the line aa of FIG. 31.
  • FIG. 31 is a cross-sectional view taken along the line bb of FIG. 31.
  • FIG. 1 is a plan sectional view schematically showing an embodiment (first embodiment) of the reactor according to the present invention
  • FIG. 2 is a sectional view taken along the line AA of FIG. 1
  • FIG. 3 is a view.
  • 1 is a cross-sectional view taken along the line BB
  • FIG. 4 is a cross-sectional view taken along the line CC of FIG.
  • the protrusions described later are omitted.
  • this reactor includes a tubular coil conductor 1 and a magnetic core core 2 containing a magnetic material, and these coil conductors 1 and the magnetic core core 2 are housed in a case 3.
  • a leader wire for connecting an external terminal is formed on the upper surface of the coil conductor 1, but in the present embodiment, the leader wire is omitted for convenience of explanation.
  • the case 3 is formed in a square box shape, and has a bottom surface portion 4 and four side surface portions connected to the bottom surface portion 4, that is, first to fourth side surface portions 5a to 5d.
  • the coil conductor 1 is a first non-magnetic resin material formed of a coil portion 7 in which a conducting wire 6 is wound so as to have a tubular shape and a first non-magnetic resin material that covers the surface of the coil portion 7. It has a magnetic material portion 8.
  • the coil conductor 1 is housed in the case 3 so that the winding shaft 9 of the coil portion 7 is parallel to the horizontal plane (bottom surface portion 4).
  • protrusions 10a and 10b made of a second non-magnetic material are formed on the surface of the first non-magnetic material 8 and on the edge of the coil 7. Has been done.
  • the protrusion 10a is formed on the winding shaft 9 of the coil portion 7 in the central direction indicated by the arrow P in FIG. 2, and the protrusion 10b is formed on the winding shaft 9 of the coil portion 7. On the other hand, it is formed in the centrifugal direction indicated by the arrow Q.
  • the protrusions 10a and 10b may be formed in a protrusion shape, and the length t of the protrusions 10a and 10b in the central direction or the centrifugal direction is not particularly limited, but the leakage flux from the magnetic core core 2 is present. In order to effectively suppress the interlinkage with the coil portion 7, it is preferably formed to be, for example, 1.5 mm or more.
  • the first non-magnetic material portion 8 is molded with the first non-magnetic resin material so as to outer the tubular coil portion 7.
  • the molding method is not particularly limited, and for example, an injection molding method or a transfer molding method can be used.
  • the thickness of the first non-magnetic material portion 8 is not particularly limited, and is adjusted to, for example, about 0.1 to 3 mm.
  • the same material may be used for the first non-magnetic resin material and the second non-magnetic resin material, or different materials may be used.
  • the material types of the first and second non-magnetic resin materials are not particularly limited as long as they belong to the category, and for example, epoxy resin, silicone resin, polyphenylene sulfide and the like can be used. ..
  • the first and second non-magnetic resin materials contain a predetermined amount of a filler component such as alumina having high thermal conductivity. That is, a filler component having a high thermal conductivity represented by alumina is contained in the non-magnetic resin material, and the thermal conductivity of the first non-magnetic material portion 8 and the protrusions 10a and 10b is, for example, 5 W / mK or more.
  • a filler component having a high thermal conductivity represented by alumina is contained in the non-magnetic resin material, and the thermal conductivity of the first non-magnetic material portion 8 and the protrusions 10a and 10b is, for example, 5 W / mK or more.
  • the conducting wire 6 is formed of a covered flat wire having a flat cross section.
  • the conductor 6 has a core material formed of a metal material such as Cu, Al or alloys thereof, and the core material is coated with an insulating material such as an enamel material such as polyamide-imide.
  • an insulating material such as an enamel material such as polyamide-imide.
  • the corners of the inner peripheral surface and the corners of the outer peripheral surface are formed in an R (round) shape (curved surface shape).
  • a soft magnetic metal material or a ferrite material can be used as the magnetic material powder used for the magnetic core core 2, a soft magnetic metal material or a ferrite material.
  • the soft magnetic metal material is not particularly limited, and for example, Fe—Si alloys, Fe—Si—Cr alloys, Fe—Al alloys, Fe—Ni alloys, Fe—Co alloys, etc.
  • Various crystalline alloy powder materials, an amorphous material containing Fe as a main component and having excellent soft magnetic properties, or a nanocrystalline metal material in which an amorphous phase and a nanocrystalline phase are mixed can be used.
  • this soft magnetic metal material it is preferable to form a coating layer made of an insulating material such as a phosphate or a silicone resin on the surface of the metal powder from the viewpoint of ensuring the insulating property.
  • the ferrite material is not particularly limited, and various ferrite materials such as Ni-based, Cu-Zn-based, Ni-Zn-based, Mn-Zn-based, and Ni-Cu-Zn-based can be used. ..
  • the magnetic core core 2 usually contains a resin material such as an epoxy resin or a silicone resin as a binder in a volume ratio of 40 vol% or less.
  • the coil conductor 1 is formed of the coil portion 7 around which the lead wire 6 is wound and the first non-magnetic resin material that covers the surface of the coil portion 7.
  • the first non-magnetic material portion 8 is provided, the first non-magnetic material portion 8 and the coil portion 7 are housed in the case 3, and the surface of the first non-magnetic material portion 8 is a coil. Since the protrusions 10a and 10b made of the second non-magnetic resin material are formed on the edge of the portion 7 in the central direction and the centrifugal direction with respect to the winding shaft 9, the magnetic core core 2 is the coil portion 7.
  • a covered flat wire having a flat cross section is prepared as the conductor 6, and the conductor 6 is wound in a tubular shape so that the corners of the inner peripheral surface and the corners of the outer peripheral surface have an R (R) shape (curved surface shape). Turn to make the coil conductor 1.
  • a mold is prepared so that the first non-magnetic material portion 8 and the protrusions 10a and 10b are formed at predetermined positions. Then, after arranging the coil conductor 1 in the mold, a non-magnetic resin material is supplied to the cavity of the mold, the cavity is filled with the non-magnetic resin material, and the cavity is pressurized and heated to be cured. A molded body is produced. After that, the molded body is taken out from the mold, and the coil conductor 1 in which the protrusions 10a and 10b are formed on the edge and is covered with the first non-magnetic body portion 8 is manufactured.
  • a case 3 having a bottom surface portion 4 and first to fourth side surface portions 5a to 5d is filled with the core material, and the coil conductor 1 is arranged in the case 3 so that the winding shaft 9 of the coil portion 7 is parallel to the horizontal plane, and the coil conductor 1 is pressurized and heated to be cured.
  • the reactor of the embodiment is made.
  • the same material is used for the first non-magnetic resin material and the second non-magnetic resin material, and the first non-magnetic body portion 8 and the protrusions 10a and 10b are integrated.
  • the first non-magnetic material portion 8 and the protrusions 10a and 10b may be manufactured in separate steps.
  • the surface of the coil portion 7 is molded with the first non-magnetic resin material, and the coil portion 7 is exteriorized with the first non-magnetic material portion 8.
  • a protrusion member is produced using the second non-magnetic resin material, and the protrusion member is joined to the surface of the first non-magnetic body portion 8 on the edge of the coil portion 7 with an adhesive or the like.
  • the protrusions 10a and 10b can be formed.
  • the content of the filler component may be different between the first non-magnetic resin material and the second non-magnetic resin material.
  • FIG. 5 is a cross-sectional view of a main part showing a first modification of the first embodiment.
  • the protrusions 12a and 12b are formed in the direction parallel to the winding shaft 9 of the coil portion 7. Other than that, it is the same as that of the first embodiment.
  • the surface of the first non-magnetic material portion 8 and on the edge of the coil portion 7 are made of the second non-magnetic resin material in the direction parallel to the winding shaft 9.
  • the protruding portions 12a and 12b are formed. Therefore, as in the first embodiment, the leakage flux from the magnetic core core 2 passes through the protrusions 12a and 12b as shown in the arrow U direction and the arrow V direction without interlinking with the coil portion 7. Therefore, it is possible to reduce the leakage flux passing through the coil portion 7 and incident on the case 3, and it is possible to suppress the generation of eddy current due to the interlinkage. Therefore, as in the first embodiment, the eddy current loss can be reduced, and a high-performance reactor having a large magnetic flux density and a large inductance can be obtained with a low magnetic loss.
  • the coil conductor 1 of the first modification is also molded using a non-magnetic resin material so that the coil portion 7 is covered, whereby the first non-magnetic material is formed.
  • the protrusions 12a and 12b are made into the first non-magnetic parts. It can be manufactured by joining it on the edge of the body part 8.
  • FIG. 6 is a cross-sectional view of a main part showing a second modification of the first embodiment
  • FIG. 7 is an enlarged cross-sectional view of a part D of FIG.
  • the protrusion 14 is integrated with the protrusions 12a and the protrusions 12b facing each other in the first modification (FIG. 5). There is. Further, as shown in FIG. 7, the outer surface of the protrusion 14 is formed in a curved surface along the direction of the magnetic flux.
  • the surface of the first non-magnetic material portion 8 and the edge of the coil portion 7 are made of a second non-magnetic resin material in the direction parallel to the winding shaft 9.
  • the protrusion 14 is formed. Therefore, as in the first modification, the leakage flux from the magnetic core core 2 passes through the protrusion 14 without interlinking with the coil portion 7 as shown in the arrow W direction and the arrow Z direction. The generation of current can be suppressed.
  • the interface between the magnetic core core 2 and the protrusion 14 is along the direction of the magnetic flux, a large magnetic flux density can be obtained while reducing the magnetic flux incident on the coil portion 7. , A reactor with a large inductance can be obtained.
  • FIG. 8 is a cross-sectional view of a main part showing a third modification of the first embodiment.
  • the second non-magnetic material portion 15 is formed of the second non-magnetic resin material in a form that covers a part of the protrusion 14. Moreover, the second non-magnetic material portion 15 is in contact with the bottom surface portion 4 of the case 3. As described above, the second non-magnetic material portion 15 made of the second non-magnetic resin material contains a part of the protrusion 14 and comes into contact with the bottom surface portion 4 of the case 3, whereby the second deformation In addition to the effects obtained in the examples (see FIGS. 6 and 7), the heat generated in the coil conductor 1 can be propagated to the case 3 through the second non-magnetic material portion 15, thereby improving heat dissipation. Can be secured.
  • this third modification can be easily manufactured by integrally molding the second non-magnetic material portion 15, the protrusion portion 14, and the coil conductor 1.
  • FIG. 9 is a cross-sectional view of a main part showing a fourth modification of the first embodiment.
  • the gap between the conductor 6 and the conductor 6 is filled with the first non-magnetic resin material, whereby the first non-magnetic body portion 15 is formed.
  • the coil conductor 17 has a coil portion 16 in which the conductor 6 is wound in a tubular shape so that a gap is formed between the conductors 6, and the coil portion 16 is filled in the gap and the coil portion 16 is formed. It is formed of a first non-magnetic material portion 15 made of a first non-magnetic resin material having an exterior.
  • the first non-magnetic material portion 15, particularly the first non-magnetic material filled in the gap is filled.
  • the heat dissipation action of the resin material makes it possible to suppress the temperature rise more effectively.
  • the fourth modification can be manufactured in the same manner as the second modification, except that the conductor 6 is wound in a tubular shape so that a gap is formed between the conductors 6.
  • the first non-magnetic resin material which is an insulating material
  • the conductors 6 it is possible to omit the insulating material that covers the surface of the core material. Become.
  • the protrusion is the coil portion 7.
  • FIG. 10 is a plan sectional view schematically showing a second embodiment of the reactor according to the present invention
  • FIG. 11 is a sectional view taken along the line EE of FIG.
  • this second embodiment includes a tubular coil conductor 18 and a magnetic core core 2 containing a magnetic material, as shown in FIG. 10, and these coil conductors 18 are provided.
  • the magnetic core 2 is housed in a box-shaped case 3 having a bottom surface portion 4 and first to fourth side surface portions 5a to 5d.
  • the coil conductor 18 is a first non-magnetic material formed of a coil portion 20 around which a conducting wire 19 is wound and a first non-magnetic resin material covering the coil portion 20. It has a body portion 21 and.
  • the conductor 19 is formed of a flat covered flat wire, but the coil portion 20 is edgewise wound with the covered flat wire bent on the long side side of the cross section. Has been done. Further, the coil conductor 18 is housed in the case 3 so that the winding shaft 22 of the coil portion 20 is in the vertical direction with respect to the bottom surface portion 4.
  • the protrusions 23a and 23b made of the second non-magnetic resin material are on the surface of the first non-magnetic material portion 21 and on the edge of the coil portion 20. Is formed. That is, the protrusion 23a is formed with respect to the winding shaft 22 of the coil portion 20 in the central direction indicated by the arrow P, and the protrusion 23b is formed with respect to the winding shaft 22 of the coil portion 20 in the centrifugal direction indicated by the arrow Q. Has been done.
  • the winding shaft 22 is on the surface of the first non-magnetic material portion 21 and on the edge of the coil portion 20 as in the first embodiment. Since the protrusions 23a and 23b made of the second non-magnetic resin material are formed in the central direction and the centrifugal direction, the magnetic core core 2 does not exist near the coil portion 20 and is from the magnetic core core 2. The leakage magnetic flux passes through the protrusions 23a and 23b as shown in the direction of arrow X and the direction of arrow Y in FIG.
  • FIG. 12 is a cross-sectional view of a main part showing a first modification of the second embodiment.
  • the protrusions 24a and 24b are formed in the direction parallel to the winding shaft 22 of the coil portion 20.
  • the second non-magnetic resin material on the surface of the first non-magnetic material portion 21 and on the edge of the coil portion 20 in the direction parallel to the winding shaft 22.
  • the protrusions 24a and 24b made of the above are formed. Therefore, since the leakage flux from the magnetic core core 2 passes through the protrusions 24a and 24b as shown in the arrow U direction and the arrow V direction without interlinking with the coil portion 20, the leakage flux passes through the coil portion 20. It is possible to reduce the leakage or incident on the case 3, and it is possible to suppress the generation of eddy currents due to linkage. As a result, as in the above embodiment, the eddy current loss can be reduced, and a high-performance reactor having a large magnetic flux density with a low magnetic loss and a large inductance can be obtained.
  • FIG. 13 is a cross-sectional view of a main part showing a second modification of the second embodiment
  • FIG. 14 is an enlarged cross-sectional view of a part F of FIG.
  • the protrusion 25 is integrally formed with the protrusion 24a and the protrusion 24b facing each other in the first modification (see FIG. 12). Has been transformed. As shown in FIG. 14, the outer surface of the protrusion 25 is formed in a curved surface along the direction of the magnetic flux.
  • the leakage flux from the magnetic core core 2 passes through the protrusion 25 without interlinking with the coil portion 20 as shown in the arrow W direction and the arrow Z direction in FIG.
  • the generation of eddy current can be suppressed.
  • the interface between the magnetic core core 2 and the protrusion 25 is along the direction of the magnetic flux, a large magnetic flux density can be obtained while reducing the magnetic flux incident on the coil portion 20, and a reactor having a large inductance can be obtained. Obtainable.
  • FIG. 15 is a cross-sectional view of a main part showing a third modification of the second embodiment.
  • the protrusion 25 shown in the second modification is in contact with the first and second side surface portions 5a and 5b of the case 3, and the first non-magnetic portion is used.
  • the body portion 21 is also in contact with the first and second side surface portions 5a and 5b.
  • the heat generated in the coil portion 20 causes the first non-magnetic material portion 21 and the protrusion 25 to be generated. It is propagated to the case 3 via the case 3, whereby heat dissipation can be ensured.
  • FIG. 16 is a cross-sectional view of a main part showing a fourth modification of the second embodiment.
  • the gap between the conductor 19 and the conductor 19 is filled with the first non-magnetic resin material, whereby the first non-magnetic body portion 27 is formed. That is, in this fourth modification, the coil conductor 19 has a coil portion 28 in which the conductor wire 19 is wound in a tubular shape so that a gap is formed between the conductor wires 19, and the coil portion 28 is filled in the gap and the coil portion 28. It is formed of a first non-magnetic material portion 27 made of a first non-magnetic resin material for exteriorizing the above.
  • the temperature rise can be effectively suppressed by the heat dissipation effect of the first non-magnetic resin material.
  • FIG. 17 is a plan view schematically showing a third embodiment of the reactor according to the present invention
  • FIG. 18 is a cross-sectional view taken along the line GG of FIG.
  • the third embodiment includes a tubular coil conductor 30 and a magnetic core core 2 containing a magnetic material, as shown in FIG.
  • the coil conductor 30 and the magnetic core core 2 are housed in a box-shaped case 3 having a bottom surface portion 4 and first to fourth side surface portions 5a to 5d.
  • the coil conductor 30 also has a first non-magnetic material formed of a coil portion 32 around which a conducting wire 31 is wound and a first non-magnetic resin material covering the coil portion 32. It has a body portion 33.
  • the conducting wire 31 is formed of a flat coated flat wire, but the coil portion 32 is a flatwise winding in which the winding direction of the coated flat wire is bent on the short side side of the cross section.
  • the coil conductor 30 is housed in the case 3 so that the winding shaft 34 of the coil portion 32 is in the vertical direction with respect to the bottom surface portion 4.
  • the protrusions 35a and 35b made of the second non-magnetic material are on the surface of the first non-magnetic material 33 and on the edge of the coil portion 32. Is formed. That is, the protrusion 35a is formed with respect to the winding shaft 34 of the coil portion 32 in the central direction indicated by the arrow P, and the protrusion 35b is formed with respect to the winding shaft 34 of the coil portion 32 in the centrifugal direction indicated by the arrow Q. Has been done.
  • the surface of the first non-magnetic material portion 33 and on the edge of the coil portion 32 are Since the protrusions 35a and 35 made of the second non-magnetic resin material are formed in the central direction and the centrifugal direction with respect to the winding shaft 34, the leakage flux from the magnetic core core 2 does not interlink with the coil portion 32. As shown in the direction of arrow X and the direction of arrow Y in FIG. 18, the coil passes through the protrusions 35a and 35b. Therefore, it is possible to reduce the leakage flux passing through the coil portion 32 or incident on the case 3, and it is possible to suppress the generation of eddy current due to the interlinkage. That is, the eddy current loss can be reduced, and a high-performance reactor having a large magnetic flux density with a low magnetic loss and a large inductance can be obtained.
  • FIG. 19 is a cross-sectional view of a main part showing a first modification of the third embodiment.
  • the protrusions 36a and 36b are formed in the direction parallel to the winding shaft 34 of the coil portion 32.
  • the protrusions 36a and 36b made of the above are formed. Therefore, the leakage flux from the magnetic core core 2 passes through the protrusions 36a and 36b as shown in the arrow X direction and the arrow Y direction in FIG. 19 without interlinking with the coil portion 32, so that the leakage flux flows through the coil portion. It is possible to reduce the possibility of passing through 32 or incident on the case 3, and it is possible to suppress the generation of eddy currents due to linkage. Therefore, as in the first embodiment, the eddy current loss can be reduced, and a high-performance reactor having a large magnetic flux density and a large inductance can be obtained with a low magnetic loss.
  • FIG. 20 is a cross-sectional view of a main part showing a second modification of the third embodiment
  • FIG. 21 is an enlarged cross-sectional view of the H part of FIG.
  • the protrusion 37 is integrated with the protrusion 36a and the protrusion 36b facing each other in the first modification (see FIG. 19). Has been done.
  • the outer surface of the protrusion 37 is formed in a curved surface along the direction of the magnetic flux.
  • the leakage flux from the magnetic core core 2 does not interlink with the coil portion 32, and the arrow in FIG. 20 Since it passes through the protrusion 37 as shown in the W direction and the arrow Z direction and the interface between the magnetic core core 2 and the protrusion 37 is along the direction of the magnetic flux, the magnetic flux incident on the coil portion 32 is reduced.
  • a large magnetic flux density can be obtained, and a reactor having a large inductance can be obtained.
  • FIG. 22 is a cross-sectional view of a main part showing a third modification of the third embodiment.
  • FIG. 23 is a cross-sectional view of a main part showing a fourth modification of the third embodiment.
  • the gap between the conductor 31 and the conductor 31 is filled with the first non-magnetic resin material, whereby the first non-magnetic body portion 39 is formed.
  • the coil conductor 41 has a coil portion 40 in which the conductor wire 31 is wound in a tubular shape so that a gap is formed between the conductor wires 31, and a coil portion 40 filled in the gap and the coil portion 40. It is formed of a first non-magnetic material portion 39 made of a first non-magnetic resin material for exteriorizing.
  • the temperature rise can be effectively suppressed by the heat dissipation effect of the first non-magnetic resin material.
  • the present invention by forming a protrusion on the surface of the first non-magnetic material portion and on the edge of the coil portion. Even when the coil conductor is arranged so that the winding axis of the coil part is parallel to the horizontal plane or in the vertical direction, the leakage magnetic flux does not depend on the winding direction of the conducting wire, and the leakage magnetic flux is the coil. It is possible to reduce the amount of light incident on a part or case, suppress the generation of eddy currents, suppress the magnetic loss caused by eddy current loss, and obtain a highly conductive reactor with a desired magnetic flux density. it can. Furthermore, good heat dissipation can be ensured by bringing the protrusions into contact with the case or interposing a non-magnetic material in the gaps between the conductors.
  • FIG. 24 is a plan sectional view schematically showing a fourth embodiment of the reactor according to the present invention
  • FIG. 25 is a sectional view taken along the line II of FIG. 24.
  • the fourth embodiment covers a part of the protrusion 14 as shown in FIG. 25.
  • the non-magnetic material portion 42 of 2 is formed, and the second non-magnetic material portion 42 is in contact with the entire surface of the case 3.
  • the second non-magnetic material portion 42 covers the protrusion 14 located on the bottom surface portion 4 side of the winding shaft 9 and comes into contact with the entire bottom surface portion 4. Is formed.
  • the leakage magnetic flux itself can be reduced, and the eddy current generated in the case 3 can be reduced. Therefore, the magnetic loss caused by the eddy current loss can be suppressed, and a reactor having a large magnetic flux density and a large inductance can be obtained.
  • FIG. 26 is a plan sectional view schematically showing a fifth embodiment of the reactor according to the present invention
  • FIG. 27 is a sectional view taken along the line JJ of FIG. 26.
  • the second non-magnetic material portions 43a and 43b are protrusions. It is formed so as to cover 25 and is in contact with at least one surface of the case 3.
  • the second non-magnetic material portions 43a and 43b cover the protrusions 25 and cover the entire first and second side surface portions 5a and 5b, and
  • the magnetic core core 44 is formed between the second non-magnetic material portions 43a and 43b so as to be in contact with the third and fourth side surface portions 5c, 5d and further the bottom surface portion 4.
  • the second non-magnetic material portions 43a and 43b are in contact with the first and second side surface portions 5a and 5b of the case 3, the third and fourth side surface portions 5c and 5d, the coil.
  • the heat transfer from the part 20 can be effectively promoted, good heat dissipation can be obtained, and the temperature rise of the reactor can be suppressed.
  • FIG. 28 is a cross-sectional view of a main part showing a modified example of the fifth embodiment.
  • the second non-magnetic material portions 43a and 43b are also in contact with a part of the third and fourth side surface portions 5c and 5d.
  • the boundary between the non-magnetic material portions 51a and 51b and the magnetic core core 52 is formed in a tapered shape, and the second non-magnetic material portions 51a and 51b come into contact with the entire areas of the first and second side surface portions 5a and 5b.
  • a reactor having a large inductance can be obtained as in the fifth embodiment, and the second non-magnetic material portions 51a and 51b are the third and fourth side surface portions 5c.
  • FIG. 29 is a plan sectional view schematically showing a sixth embodiment of the reactor according to the present invention
  • FIG. 30 is a sectional view taken along the line KK of FIG. 29.
  • the second non-magnetic material portions 45a and 45b cover the protrusion 37. It is formed and is in contact with the entire surface of the case 3.
  • the second non-magnetic material portions 45a and 45b cover the protrusions 37 and cover the entire first and second side surface portions 5a and 5b, and the third and fourth side surfaces.
  • the magnetic core core 46 is formed between the second non-magnetic material portions 45a and 45b so as to be in contact with the portions 5c, 5d and a part of the bottom surface portion 4.
  • the second non-magnetic material portions 45a and 45b are in contact with the entire first and second side surface portions 5a and 5b of the case 3 and a part of the bottom surface portion 4, heat is transferred from the coil portion 32. Can be effectively promoted, good heat dissipation can be obtained, and the temperature rise of the reactor can be suppressed.
  • the sixth embodiment can also be modified as shown in FIG. 28 described above.
  • the conducting wires 6, 19 and 31 are formed of covered flat wires, but a round wire or a U-shaped foil-shaped conductor may be used.
  • foil-like conductors after winding the foil-like conductors so that they overlap each other, the corners of the overlapping foil-like conductors are crimped together to be integrated, or each foil-like conductor is connected via vias.
  • a tubular coil conductor can be manufactured by laminating and electrically connecting and integrating the foil-shaped conductors with each other.
  • the coil portion may have a cylindrical shape, a square tubular shape, an elliptical tubular shape, or the like as long as it is tubular, and the case 3 may also have a circular box shape instead of a square box shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Insulating Of Coils (AREA)

Abstract

筒状に形成されたコイル導体1と、磁性体材料を含有した磁心コア2とを備え、コイル導体1及び磁心コア2ケースに収容されている。コイル導体1は、導線6が巻回されたコイル部7と、該コイル部7の表面を被覆する第1の非磁性系樹脂材料で形成された第1の非磁性体部8とを有し、第1の非磁性体部8の表面であってコイル部7の端縁上には、第2の非磁性系樹脂材料からなる突起部10a、10bが形成されている。突起部10aは、コイル部7の巻線軸9に対し、矢印Pで示す中心方向に形成され、突起部10bは、コイル部7の巻線軸9に対し、矢印Qで示す遠心方向に形成されている。これにより渦電流の発生を抑制し低磁気損失で大きな磁束密度を有し、インダクタンスの大きな小型で高性能のリアクトルを実現する。

Description

リアクトル
 本発明は、リアクトルに関し、より詳しくは導線が巻回された筒状のコイル導体と磁性体材料を含有した磁心コアとを備え、これらがケースに収容されたリアクトルに関する。
 リアクトルはインダクタンスを利用した受動素子であり、近年、回路素子の一要素として様々な電子機器に搭載されている。
 例えば、電気自動車やハイブリッド自動車、燃料電池自動車等の車両に搭載されるインバータには、バッテリ電圧を昇圧又は降圧させるコンバータが組み込まれており、リアクトルはコンバータの基幹部品として使用されている。この種のリアクトルについては、従来より、盛んに研究・開発が行われている。
 例えば、特許文献1には、図31に示すように、筒状のコイル101と、 前記コイル101の内外に配置されて閉磁路を形成するコア102(内側コア102a及び外側コア102b)と、前記コイル101と磁心コア102を収納するケース103とを有し、 磁心コア102の少なくとも一部は、磁性体粉末と樹脂とを含む複合材料から構成され、前記コイル101の表面を覆って、その形状を保持する樹脂モールド部104と、 樹脂モールド部104を介してコイル101と一体に保持され、ケース103の少なくとも一部を構成する非磁性金属材料からなる放熱台部105とを備えたリアクトルが提案されている。
 特許文献1では、ケース103に放熱台部105を固定させると共に、樹脂モールド部104を介してコイル101と放熱台部105とを一体化させることにより、コイル101で発生した熱を放熱台部105に伝搬させて放熱させ、これにより放熱性を確保しようとしている。
特開2013-93548号公報(請求項1、段落[0011]~[0013]、[0040]、図1等)
 しかしながら、特許文献1では、大部分の磁束はコア102内を通過するが、一部の磁束はコア102から漏れて漏れ磁束となり、該漏れ磁束がコイル101やケース103と鎖交し、該コイル101やケース103で渦電流が発生する。
 図32は、図31のa-a矢視断面図であり、図33は、図31のb-b矢視断面図である。
 特許文献1では、通電時にコア102からの漏れ磁束が生じると、該漏れ磁束は、図32の矢印cに示すように、樹脂モールド部104やコイル101の端縁を通過することから、漏れ磁束は、端縁部dでコイル101と鎖交し、この鎖交が原因でコイル101の端縁近傍で渦電流が発生するおそれがある。
 また、前記漏れ磁束は、図33の矢印eに示すように、コイル101の端縁部fから金属製のケース103に入射するおそれがある。この場合、漏れ磁束は、図中、gに示すように、ケース103に入射して該ケース03と鎖交し、上述と同様、ケース103に渦電流が発生するおそれがある。
 そして、コイル101の端縁部やケース103で発生する渦電流は、渦電流損となって温度上昇を招いたり、磁気損失の増大などの磁気特性の劣化を招くおそれがある。
 本発明はこのような事情に鑑みなされたものであって、渦電流の発生を抑制し低磁気損失で大きな磁束密度を有し、インダクタンスの大きな小型で高性能のリアクトルを提供することを目的とする。
 上記目的を達成するために本発明に係るリアクトルは、筒状に形成されたコイル導体と、磁性体材料を含有した磁心コアとを備え、前記コイル導体及び前記磁心コアがケースに収容されたリアクトルであって、前記コイル導体は、導線が巻回されたコイル部と、該コイル部の表面を被覆する第1の非磁性系樹脂材料で形成された第1の非磁性体部とを有し、前記第1の非磁性体部の表面であって前記コイル部の端縁上には、第2の非磁性系樹脂材料からなる突起部が形成されていることを特徴としている。
 このように第2の非磁性系樹脂材料からなる突起部が、第1の非磁性体部の表面であって前記コイル部の端縁上に形成されているので、磁心コアはコイル部の近くには存在せず、磁心コアからの漏れ磁束は突起部を通過することから、コイル部を通過したりケースに入射する漏れ磁束を低減することができる。したがって、コイル部やケースと漏れ磁束とが鎖交するのを低減することができ、これによりコイル部の端縁部やケース近傍での渦電流の発生を抑制することができ、渦電流損を低減できることから、低磁気損失で大きな磁束密度を有するインダクタンスの大きな高性能のリアクトルを得ることができる。
 また、本発明のリアクトルは、前記突起部が、前記コイル部の巻線軸に対し中心方向及び遠心方向に形成されているのが好ましい。
 この場合は、磁心コアからの漏れ磁束は、コイル部の巻線軸に対し中心方向及び遠心方向に形成された突起部を通過することから、コイル部やケースと漏れ磁束との鎖交を効果的に低減することができ、これにより渦電流が発生するのを抑制できる。
 また、本発明のリアクトルは、前記突起部が、前記コイル部の巻線軸に対し平行方向に複数形成されているにも好ましい。
 この場合は、磁心コアからの漏れ磁束は、コイル部の巻線軸に対し平行方向に形成された突起部を通過することから、上述と同様、コイル部やケースと漏れ磁束との鎖交を効果的に低減することができ、これにより渦電流が発生するのを抑制できる。
 さらに、本発明のリアクトルは、前記複数の突起部が一体化され、曲面状に形成されているのも好ましい。
 この場合は、磁心コアと突起部との界面が磁束の流れに沿ったものとなることから、漏れ磁束とコイル部との鎖交を低減しつつ、より大きなインダクタンスを有するリアクトルの実現が可能となる。
 また、本発明のリアクトルは、前記コイル導体が、前記コイル部の巻線軸が水平面に対し平行となるように前記ケースに収容されているのが好ましく、また、前記コイル部の巻線軸が鉛直方向となるように前記ケースに収容されているのも好ましい。
 このようにケース内のコイル導体の配置状態の如何に拘わらず、漏れ磁束のコイル部やケースへの入射を低減することができ、したがって漏れ磁束とコイル部及びケースとの間で生じる鎖交を低減することができ、渦電流損を効果的に抑制することができる。
 また、本発明のリアクトルは、前記導線は平角線で形成されると共に、前記コイル導体はエッジワイズ巻き又はフラットワイズ巻きとされるのが好ましい。
 このように導線を平角線で形成することにより丸線に比べて占積率を大きくすることができ、より小型で大きな磁束密度を有するインダクタンスの大きなリアクトルを得ることができる。
 また、本発明のリアクトルは、前記突起部が、前記ケースと接触しているのが好ましい。
 このように突起部をケースと接触させることにより、コイル導体で発生した熱は突起部を介してケースに伝搬されて放熱されることから、漏れ磁束とコイル部やケースとの鎖交を低減しつつ放熱性を確保することができる。
 また、本発明のリアクトルは、前記第2の非磁性系樹脂材料で形成された第2の非磁性体部が、前記突起部を内包し、かつ前記ケースの少なくとも一面全域と接触しているのも好ましく、この場合、前記一面は、前記ケースの底面部又は側面部であるのが好ましい。
 このように第2の非磁性部が、突起部を内包し、かつ前記ケースの少なくとも一面全域(好ましくは底面部又は側面部の全域)と接触することにより、ケースの上記一面には磁心コアが存在せず、漏れ磁束を低減することができ、ケースで発生する渦電流も小さくなり、渦電流損の発生を抑制することができる。そして、第2の非磁性体部がケースの少なくとも一面で直接接触しているので、コイル導体からケースへの熱伝導を促進することができ、放熱性が向上し、リアクトルの温度上昇を抑制することができる。
 また、本発明のリアクトルは、前記コイル導体を形成する前記導線間に前記第1の非磁性樹脂材料が充填されているのが好ましい。
 この場合は、導線で発生した熱を更に効率よく放熱させることができ、リアクトルの温度上昇をより効果的に抑制することができる。
 また、本発明のリアクトルは、前記第1及び第2の非磁性系樹脂材料は、フィラー成分を含有し、熱伝導率が5W/mK以上であるのが好ましい。
 このように熱伝導率が5W/mK以上の高熱伝導率を有する第1及び第2の非磁性系樹脂材料を使用することにより、より良好な放熱性を確保することができる。
 さらに、本発明のリアクトルは、前記非磁性体部を形成する非磁性系樹脂材料と前記突起部を形成する非磁性系樹脂材料とは同一材料であるのが好ましい。
 これにより非磁性体部と突起部とを一体的にモールド成形することが容易に可能となり、生産性の良好なリアクトルを得ることができる。
 また、本発明のリアクトルは、前記磁心コアは樹脂材料を含有しているのが好ましい。
 また、本発明のリアクトルは、前記磁性体材料が、軟磁性金属材料及びフェライト材料のうちのいずれかであるのが好ましい。
 本発明のリアクトルによれば、筒状に形成されたコイル導体と、磁性体材料を含有した磁心コアとを備え、前記コイル導体及び前記磁心コアがケースに収容されたリアクトルであって、前記コイル導体は、導線が巻回されたコイル部と、該コイル部の表面を被覆する第1の非磁性系樹脂材料で形成された第1の非磁性体部とを有し、前記第1の非磁性体部の表面であって前記コイル部の端縁上には、第2の非磁性系樹脂材料からなる突起部が形成されているので、磁心コアはコイル部の近くには存在せず、磁心コアからの漏れ磁束は突起部を通過することから、コイル部を通過したりケースに入射する漏れ磁束を低減することができる。したがって、コイル部やケースと漏れ磁束との鎖交を低減することができ、これによりコイル部の端縁部やケース近傍での渦電流の発生を抑制することができ、渦電流損を低減できることから、低磁気損失で大きな磁束密度を有するインダクタンスの大きな高性能のリアクトルを得ることができる。
本発明に係るリアクトルの一実施の形態(第1の実施の形態)を模式的に示す平面断面図である。 図1のA-A矢視断面図である。 図1のB-B矢視断面図である。 図1のC-C矢視断面図である。 第1の実施の形態の第1の変形例を示す要部断面図である。 第1の実施の形態の第2の変形例を示す要部断面図である。 図6のD部拡大断面図である。 第1の実施の形態の第3の変形例を示す要部断面図である。 第1の実施の形態の第4の変形例を示す要部断面図である。 本発明に係るリアクトルの第2の実施の形態を模式的に示す平面断面図である。 図10のE-E矢視断面図である。 第2の実施の形態の第1の変形例を示す要部断面図である。 第2の実施の形態の第2の変形例を示す要部断面図である。 図13のF部拡大断面図である。 第2の実施の形態の第3の変形例を示す要部断面図である。 第2の実施の形態の第4の変形例を示す要部断面図である。 本発明に係るリアクトルの第3の実施の形態を模式的に示す平面断面図である。 図17のG-G矢視断面図である。 第3の実施の形態の第1の変形例を示す要部断面図である。 第3の実施の形態の第2の変形例を示す要部断面図である。 図20のH部拡大断面図である。 第3の実施の形態の第3の変形例を示す要部断面図である。 第3の実施の形態の第4の変形例を示す要部断面図である。 本発明に係るリアクトルの第4の実施の形態を模式的に示す平面断面図である。 図24のI-I矢視断面図である。 本発明に係るリアクトルの第5の実施の形態を模式的に示す平面断面図である。 図26のJ-J矢視断面図である。 第5の実施の形態の変形例を示す要部断面図である。 本発明に係るリアクトルの第6の実施の形態を模式的に示す平面断面図である。 図29のK-K矢視断面図である。 特許文献1に記載されたリアクトルの要部断面図である。 図31のa-a矢視断面図である。 図31のb-b矢視断面図である。
 次に、本発明の実施の形態を詳説する。
(第1の実施の形態)
 図1は本発明に係るリアクトルの一実施の形態(第1の実施の形態)を模式的に示す平面断面図であり、図2は図1のA-A矢視断面図、図3は図1のB-B矢視断面図、図4は図1のC-C矢視断面図である。尚、図1では、後述する突起部を省略して図示している。
 本リアクトルは、図1に示すように、筒状のコイル導体1と、磁性体材料を含有した磁心コア2とを備え、これらコイル導体1及び磁心コア2がケース3に収容されている。尚、通常は、コイル導体1の上面には外部端子接続用の引出線が形成されているが、本実施の形態では、説明の都合上、引出線を省略している。
 ケース3は、方形箱状に形成されており、底面部4と該底面部4に連接された4個の側面部、すなわち第1~第4の側面部5a~5dを有している。
 また、コイル導体1は、筒状となるように導線6が巻回されたコイル部7と、該コイル部7の表面を被覆する第1の非磁性系樹脂材料で形成された第1の非磁性体部8とを有している。本第1の実施の形態では、コイル導体1は、図2に示すように、コイル部7の巻線軸9が水平面(底面部4)と平行となるようにケース3に収容されている。
 第1の非磁性体部8の表面であってコイル部7の端縁上には、図2及び図3に示すように、第2の非磁性体材料からからなる突起部10a、10bが形成されている。
 本第1の実施の形態では、突起部10aは、コイル部7の巻線軸9に対し、図2の矢印Pで示す中心方向に形成され、突起部10bは、コイル部7の巻線軸9に対し、矢印Qで示す遠心方向に形成されている。
 突起部10a、10bは突起状に形成されていればよく、突起部10a、10bの中心方向又は遠心方向の長さtは、特に限定されるものではないが、磁心コア2からの漏れ磁束がコイル部7と鎖交するのを効果的に抑制するためには、例えば1.5mm以上に形成するのが好ましい。
 そして、第1の非磁性体部8は、図4に示すように、筒状のコイル部7を外装するように、前記第1の非磁性系樹脂材料でモールド成形されている。モールド成形の方法としては、特に限定されるものではなく、例えば、射出成形法やトランスファー成形法を使用することができる。また、第1の非磁性体部8の厚みは特に限定されるものではなく、例えば0.1~3mm程度に調整される。
 第1の非磁性系樹脂材料及び第2の非磁性系樹脂材料は、同一の材料を使用してもよいし、異なる材料を使用することもできる。これら第1及び第2の非磁性系樹脂材料の材料種としては、その範疇に属するものであれば特に限定されるものではなく、例えばエポキシ樹脂、シリコーン樹脂、ポリフェニレンスルフィド等を使用することができる。
 また、第1及び第2の非磁性系樹脂材料中には高熱伝導率を有するアルミナ等のフィラー成分を所定量含有させるのも好ましい。すなわち、アルミナに代表される熱伝導率の高いフィラー成分を非磁性系樹脂材料中に含有させ、第1の非磁性体部8や突起部10a、10bの熱伝導率を例えば5W/mK以上の高熱伝導率とすることにより、コイル導体1で発生する熱をケース3に効率良く伝搬させることができ、良好な放熱性を確保することができる。
 尚、導線6は、本第1の実施の形態では、断面が扁平状の被覆平角線で形成されている。導線6は、具体的には、芯材がCu、Al或いはこれらの合金類等の金属材料で形成されると共に、該芯材がポリアミドイミドなどのエナメル材料等、絶縁材料で被覆されている。コイル部7は、内周面の隅部及び外周面の角部がR(アール)状(曲面状)に形成されている。
 磁心コア2に使用される磁性体粉末としては、軟磁性金属材料やフェライト材料を使用することができる。軟磁性金属材料としては、特に限定されるものではなく、例えば、Fe-Si系合金、Fe-Si-Cr系合金、Fe-Al系合金、Fe-Ni系合金、Fe-Co系合金等の各種結晶質の合金粉末材料や、Feを主成分とした軟磁性特性に優れた非晶質材料、或いは非晶質相とナノ結晶相とが混在したナノ結晶金属材料を使用することができる。この軟磁性金属材料を使用する場合は、絶縁性を確保する観点から金属粉末の表面にリン酸塩やシリコーン樹脂等の絶縁性材料からなる塗布層を形成するのが好ましい。
 また、フェライト材料についても、特に限定されるものではなく、Ni系、Cu-Zn系、Ni-Zn系、Mn-Zn系、Ni-Cu-Zn系等の各種フェライト材料を使用することができる。
 尚、磁心コア2には、通常、結合剤としてエポキシ樹脂やシリコーン樹脂等の樹脂材料が、例えば体積比率で40vol%以下の割合で含有されている。
 このように本第1の実施の形態のリアクトルでは、コイル導体1は、導線6が巻回されたコイル部7と、該コイル部7の表面を被覆する第1の非磁性系樹脂材料で形成された第1の非磁性体部8とを有し、第1の非磁性体部8及びコイル部7がケース3に収容されると共に、第1の非磁性体部8の表面であってコイル部7の端縁上には、巻線軸9に対し中心方向及び遠心方向に第2の非磁性系樹脂材料からなる突起部10a、10bが形成されているので、磁心コア2はコイル部7の近くには存在せず、磁心コア2からの漏れ磁束は図2の矢印X方向及び矢印Y方向に示すように突起部10a、10b中を通過する。したがって、漏れ磁束がコイル部7を通過したりケース3に入射するのを低減することができることから、磁心コア2からの漏れ磁束がコイル部7やケース3と鎖交するのを抑制することができ、鎖交に起因した渦電流の発生を抑制することができる。そして、このように渦電流損を低減することができることから、低磁気損失で大きな磁束密度を有するインダクタンスの大きな高性能のリアクトルを得ることができる。
 次に、第1の非磁性体部8及び突起部10a、10bを同一の非磁性系樹脂材料を使用した場合について、上記リアクトルの製造方法を詳述する。
 まず、導線6として断面が扁平状の被覆平角線を用意し、内周面の隅部及び外周面の角部がR(アール)形状(曲面状)となるように導線6を筒状に巻回し、コイル導体1を作製する。
 次に、磁性体粉末と樹脂材料とが所定比率に配合されたコア材料を用意する。次いで、第1の非磁性体部8及び突起部10a、10bが所定位置に形成されるような金型を用意する。そして、金型内にコイル導体1を配した後、該金型のキャビティに非磁性系樹脂材料を供給し、該キャビティに非磁性系樹脂材料を充填し、加圧・加熱して硬化させ、成形体を作製する。その後、金型から成形体を取り出し、端縁上に突起部10a、10bが形成されかつ第1の非磁性体部8で外装されたコイル導体1を作製する。
 次に、底面部4及び第1~第4の側面部5a~5dを有するケース3を用意する。そして、コア材料をケース3に充填すると共に、コイル部7の巻線軸9が水平面と平行となるようにコイル導体1をケース3に配し、加圧・加熱させて硬化させ、これにより第1の実施の形態のリアクトルが作製される。
 尚、上記実施の形態では、第1の非磁性系樹脂材料と第2の非磁性系樹脂材料について同一の材料を使用し、第1の非磁性体部8と突起部10a、10bとを一体的にモールド成形しているが、第1の非磁性体部8と突起部10a、10bとを別工程で作製してもよい。この場合は、まず、コイル部7の表面を第1の非磁性系樹脂材料でモールド成形してコイル部7を第1の非磁性体部8で外装する。次いで、第2の非磁性体樹脂材料を使用して突起部材を作製し、第1の非磁性体部8の表面であってコイル部7の端縁上に突起部材を接着剤等で接合し、これにより突起部10a、10bを形成することができる。この場合、例えば第1の非磁性系樹脂材料と第2の非磁性系樹脂材料とでフィラー成分の含有量を異ならせてもよい。
 図5は、第1の実施の形態の第1の変形例を示す要部断面図である。
 この第1の変形例では、突起部12a、12bがコイル部7の巻線軸9と平行方向に形成されている。それ以外は上記第1の実施の形態と同様である。
 すなわち、本第1の変形例では、第1の非磁性体部8の表面であってコイル部7の端縁上には、巻線軸9に対し平行方向に第2の非磁性系樹脂材料からなる突起部12a、12bが形成されている。したがって、上記第1の実施の形態と同様、磁心コア2からの漏れ磁束は、コイル部7と鎖交することなく矢印U方向及び矢印V方向に示すように突起部12a、12b中を通過することから、漏れ磁束がコイル部7を通過したりケース3に入射するのを低減することができ、鎖交に起因した渦電流の発生を抑制することができる。したがって、上記第1の実施の形態と同様、渦電流損を低減することができ、低磁気損失で大きな磁束密度を有するインダクタンスの大きな高性能のリアクトルを得ることができる。
 尚、この第1の変形例のコイル導体1も上記実施の形態と同様、コイル部7が外装されるように非磁性系樹脂材料を使用してモールド成形し、これにより第1の非磁性体部8及び突起部12a、12bを作製し、或いはコイル部7が外装されるように上記モールド成形により第1の非磁性体部8を作製した後、突起部12a、12bを第1の非磁性体部8の端縁上に接合することにより、作製することができる。
 図6は、第1の実施の形態の第2の変形例を示す要部断面図であり、図7は、図6のD部拡大断面図である。
 この第2の変形例では、突起部14は、図6に示すように、第1の変形例(図5)において対向している突起部12aと突起部12bとが接合され、一体化されている。さらに、突起部14の外表面は、図7に示すように、磁束の向きに沿うように曲面状に形成されている。
 本第2の変形例においても、第1の非磁性体部8の表面であってコイル部7の端縁上には、巻線軸9に対し平行方向に第2の非磁性系樹脂材料からなる突起部14が形成されている。したがって、上記第1の変形例と同様、磁心コア2からの漏れ磁束は矢印W方向及び矢印Z方向に示すようにコイル部7と鎖交することなく突起部14中を通過することから、渦電流の発生を抑制することができる。しかも、本第2変形例では、磁心コア2と突起部14との界面が磁束の向きに沿っていることから、コイル部7に入射する磁束を低減しつつ、大きな磁束密度を得ることができ、インダクタンスの大きなリアクトルを得ることができる。
 図8は、第1の実施の形態の第3の変形例を示す要部断面図である。
 この第3の変形例では、上記第2の変形例に加え、前記突起部14の一部を覆うような形態で第2の非磁性系樹脂材料で第2の非磁性体部15を形成し、かつ該第2の非磁性体部15がケース3の底面部4と接触している。このように第2の非磁性系樹脂材料からなる第2の非磁性体部15が前記突起部14の一部を内包すると共にケース3の底面部4と接触することにより、上記第2の変形例(図6及び図7参照)で得られる効果に加え、コイル導体1で発生した熱を、第2の非磁性体部15を介してケース3に伝搬することができ、これにより放熱性を確保することができる。
 尚、この第3の変形例は、第2の非磁性体部15、突起部14、及びコイル導体1を一体的にモールド成形することにより容易に作製することができる。
 図9は、第1の実施の形態の第4の変形例を示す要部断面図である。
 この第4の変形例では、導線6と導線6との間隙に第1の非磁性系樹脂材料が充填され、これにより第1の非磁性体部15が形成されている。すなわち、この第4の変形例は、コイル導体17が、導線6間に間隙が形成されるように導線6が筒状に巻回されたコイル部16と、前記間隙に充填されかつコイル部16を外装した第1の非磁性系樹脂材料からなる第1の非磁性体部15とで形成されている。
 この第4の変形例では、上記第2の変形例(図6及び図7参照)で得られる効果に加え、第1の非磁性体部15、特に前記間隙に充填された第1の非磁性系樹脂材料の放熱作用により、温度上昇をより効果的に抑制することが可能となる。
 本第4の変形例は、導線6間に間隙が生じるように導線6を筒状に巻回する以外は、上記第2の変形例と同様にして製造することができる。
 尚、本第4の変形例では、絶縁材料である第1の非磁性系樹脂材料が導線6間に充填されていることから、芯材の表面を被覆する絶縁材料を省略することが可能となる。
 このように本第1の実施の形態では、第1の非磁性体部8の表面であってコイル部7の端縁上に突起部が形成されているのであれば、突起部がコイル部7の巻線軸9に対し中心方向、遠心方向、又は平行方向のいずれにおいても、上述した作用効果を奏することができ、所期の課題を解決することができる。また、第3及び第4の変形例のような形態とすることにより、上記効果に加えて良好な放熱性を確保することが可能となる。
(第2の実施の形態)
 図10は、本発明に係るリアクトルの第2の実施の形態を模式的に示す平面断面図であり、図11は、図10のE-E矢視断面図である。
 この第2の実施の形態は、第1の実施の形態と同様、図10に示すように、筒状のコイル導体18と、磁性体材料を含有した磁心コア2とを備え、これらコイル導体18及び磁心コア2が底面部4と第1~第4の側面部5a~5dを有する箱状のケース3に収容されている。また、コイル導体18は、図11に示すように、導線19が巻回されたコイル部20と、該コイル部20を被覆する第1の非磁性系樹脂材料で形成された第1の非磁性体部21とを有している。
 本第2の実施の形態では、導線19は、扁平状の被覆平角線で形成されているが、コイル部20は、被覆平角線の巻き方向が断面の長辺側を曲げたエッジワイズ巻きとされている。また、コイル導体18は、コイル部20の巻線軸22が底面部4に対し鉛直方向となるようにケース3に収容されている。
 そして、本第2の実施の形態においても、第1の非磁性体部21の表面であってコイル部20の端縁上には、第2の非磁性系樹脂材料からなる突起部23a、23bが形成されている。すなわち、突起部23aは、コイル部20の巻線軸22に対し、矢印Pで示す中心方向に形成され、突起部23bは、コイル部20の巻線軸22に対し、矢印Qで示す遠心方向に形成されている。
 このように本第2の実施の形態のリアクトルにおいても、第1の実施の形態と同様、第1の非磁性体部21の表面であってコイル部20の端縁上には、巻線軸22に対し中心方向及び遠心方向に第2の非磁性系樹脂材料からなる突起部23a、23bが形成されているので、磁心コア2はコイル部20の近くには存在せず、磁心コア2からの漏れ磁束は図11の矢印X方向及び矢印Y方向に示すように突起部23a、23b中を通過する。したがって、漏れ磁束がコイル部20を通過したりケース3に入射するのを低減することができることから、磁心コア2からの漏れ磁束がコイル部20やケース3と鎖交するのを抑制することができ、鎖交に起因した渦電流の発生を抑制することができる。そしてこれにより渦電流損を低減することができ、低磁気損失で大きな磁束密度を有するインダクタンスの大きな高性能のリアクトルを得ることができる。
 図12は第2の実施の形態の第1の変形例を示す要部断面図である。
 この第1の変形例では、突起部24a、24bがコイル部20の巻線軸22と平行方向に形成されている。
 すなわち、本第1の変形例においても、第1の非磁性体部21の表面であってコイル部20の端縁上には、巻線軸22に対し平行方向に第2の非磁性系樹脂材料からなる突起部24a、24bが形成されている。したがって、磁心コア2からの漏れ磁束はコイル部20と鎖交することなく矢印U方向及び矢印V方向に示すように突起部24a、24b中を通過することから、漏れ磁束がコイル部20を通過したりケース3に入射するのを低減することができ、鎖交に起因した渦電流の発生を抑制することができる。そしてこれにより、上記実施の形態と同様、渦電流損を低減することができ、低磁気損失で大きな磁束密度を有するインダクタンスの大きな高性能のリアクトルを得ることができる。
 図13は第2の実施の形態の第2の変形例を示す要部断面図であり、図14は図13のF部拡大断面図である。
 この第2の変形例では、突起部25は、図13に示すように、上記第1の変形例(図12参照)において対向している前記突起部24aと突起部24bとが接合され、一体化されている。そして、突起部25の外表面は、図14に示すように、磁束の向きに沿うように曲面状に形成されている。
 本第2の変形例においても、磁心コア2からの漏れ磁束は図13の矢印W方向及び矢印Z方向に示すようにコイル部20と鎖交することなく突起部25中を通過することから、渦電流の発生を抑制することができる。しかも、磁心コア2と突起部25との界面が磁束の向きに沿っていることから、コイル部20に入射する磁束を低減しつつ、大きな磁束密度を得ることができ、大きなインダクタンスを有するリアクトルを得ることができる。
 図15は、第2の実施の形態の第3の変形例を示す要部断面図である。
 この第3の変形例では、上記第2の変形例(図13参照)に示した突起部25がケース3の第1及び第2の側面部5a、5bと接触し、かつ第1の非磁性体部21も前記第1及び第2の側面部5a、5bと接触している。
 したがって、この第3の変形例では、上記第2の変形例(図13参照)で得られる効果に加え、コイル部20で発生した熱が、第1の非磁性体部21及び突起部25を介してケース3に伝搬され、これにより放熱性を確保することができる。
 図16は、第2の実施の形態の第4の変形例を示す要部断面図である。
 この第4の変形例では、導線19と導線19との間隙に第1の非磁性系樹脂材料が充填され、これにより第1の非磁性体部27が形成されている。すなわち、この第4の変形例は、コイル導体19が、導線19間に間隙が形成されるように導線19が筒状に巻回されたコイル部28と、前記間隙に充填されかつコイル部28を外装する第1の非磁性系樹脂材料からなる第1の非磁性体部27とで形成されている。
 これにより上記第2の変形例(図13参照)で得られる効果に加え、第1の非磁性系樹脂材料の放熱効果により、温度上昇を効果的に抑制することが可能である。
(第3の実施の形態)
 図17は、本発明に係るリアクトルの第3の実施の形態を模式的に示す平面図であり、図18は、図17のG-G矢視断面図である。
 この第3の実施の形態は、第1及び第2の実施の形態と同様、図17に示すように、筒状のコイル導体30と、磁性体材料を含有した磁心コア2とを備え、これらコイル導体30及び磁心コア2が底面部4と第1~第4の側面部5a~5dを有する箱状のケース3に収容されている。また、コイル導体30も、図18に示すように、導線31が巻回されたコイル部32と、該コイル部32を被覆する第1の非磁性系樹脂材料で形成された第1の非磁性体部33とを有している。
 本第3の実施の形態では、導線31は、扁平状の被覆平角線で形成されているが、コイル部32が、被覆平角線の巻き方向が断面の短辺側を曲げたフラットワイズ巻きとされており、コイル導体30は、コイル部32の巻線軸34が底面部4に対し鉛直方向となるようにケース3に収容されている。
 そして、本第3の実施の形態においても、第1の非磁性体部33の表面であってコイル部32の端縁上には、第2の非磁性体材料からからなる突起部35a、35bが形成されている。すなわち、突起部35aは、コイル部32の巻線軸34に対し、矢印Pで示す中心方向に形成され、突起部35bは、コイル部32の巻線軸34に対し、矢印Qで示す遠心方向に形成されている。
 このように本第3の実施の形態のリアクトルにおいても、第1及び第2の実施の形態と同様、第1の非磁性体部33の表面であってコイル部32の端縁上には、巻線軸34に対し中心方向及び遠心方向に第2の非磁性系樹脂材料からなる突起部35a、35が形成されているので、磁心コア2からの漏れ磁束はコイル部32と鎖交することなく図18の矢印X方向及び矢印Y方向に示すように突起部35a、35b中を通過する。したがって漏れ磁束がコイル部32を通過したりケース3に入射するのを低減することができ、鎖交に起因した渦電流の発生を抑制することができる。すなわち、渦電流損を低減することができ、低磁気損失で大きな磁束密度を有するインダクタンスの大きな高性能のリアクトルを得ることができる。
 図19は第3の実施の形態の第1の変形例を示す要部断面図である。
 この第1の変形例では、突起部36a、36bがコイル部32の巻線軸34と平行方向に形成されている。
 すなわち、本第1の変形例においても、第1の非磁性体部33の表面であってコイル部32の端縁上には、巻線軸34に対し平行方向に第2の非磁性系樹脂材料からなる突起部36a、36bが形成されている。したがって、磁心コア2からの漏れ磁束はコイル部32と鎖交することなく図19の矢印X方向及び矢印Y方向に示すように突起部36a、36b中を通過することから、漏れ磁束がコイル部32を通過したりケース3に入射するのを低減することができ、鎖交に起因した渦電流の発生を抑制することができる。したがって、上記第1の実施の形態と同様、渦電流損を低減することができ、低磁気損失で大きな磁束密度を有するインダクタンスの大きな高性能のリアクトルを得ることができる。
 図20は第3の実施の形態の第2の変形例を示す要部断面図であり、図21は図20のH部拡大断面図である。
 この第2の変形例では、図20に示すように、突起部37は、上記第1の変形例(図19参照)において対向している突起部36aと突起部36bとが接合され、一体化されている。そして、突起部37の外表面は、図21に示すように、磁束の向きに沿うように曲面状に形成されている。
 すなわち、本第2の変形例では、図6及び図7や図13及び図14で示した変形例と同様、磁心コア2からの漏れ磁束はコイル部32と鎖交することなく図20の矢印W方向及び矢印Z方向に示すように突起部37中を通過し、かつ磁心コア2と突起部37との界面が磁束の向きに沿っていることから、コイル部32に入射する磁束を低減しつつ、大きな磁束密度を得ることができ、大きなインダクタンスを有するリアクトルを得ることができる。
 図22は、第3の実施の形態の第3の変形例を示す要部断面図である。
 この第3の変形例では、一方の突起部37がケース3の底面部4と接触している。したがって、この第3の変形例では、上記第2の変形例(図20参照)で得られる効果に加え、コイル部32で発生した熱が、前記一方の突起部37を介してケース3に伝搬され、これにより放熱性を確保することができる。
 図23は、第3の実施の形態の第4の変形例を示す要部断面図である。
 この第4の変形例では、導線31と導線31との間に間隙に第1の非磁性系樹脂材料が充填され、これにより第1の非磁性体部39が形成されている。すなわち、この第4の変形例は、コイル導体41が、導線31間に間隙が形成されるように導線31が筒状に巻回されたコイル部40と、前記間隙に充填されかつコイル部40を外装する第1の非磁性系樹脂材料からなる第1の非磁性体部39とで形成されている。
 これにより上記第2の変形例(図20参照)で得られる効果に加え、第1の非磁性系樹脂材料の放熱効果により、温度上昇を効果的に抑制することが可能である。
 そして、このように本発明は、第1乃至第3の実施の形態に示したように、第1の非磁性体部の表面であってコイル部の端縁上に突起部を形成することにより、コイル導体をコイル部の巻線軸が水平面と平行方向となるように配したり鉛直方向となるように配した場合であっても、導線の巻き方向に依存することもなく、漏れ磁束がコイル部やケースに入射するのを低減することができ、渦電流が発生するのを抑制でき、渦電流損に起因する磁気損失を抑制でき、所望の磁束密度を有するインダクタンスの大きなリアクトルを得ることができる。更に加えて突起部をケースに接触させたり、導線間の間隙に非磁性体材料を介在させることにより、良好な放熱性を確保することが可能となる。
(第4の実施の形態)
 図24は、本発明に係るリアクトルの第4の実施の形態を模式的に示す平面断面図であり、図25は図24のI-I矢視断面図である。
 この第4の実施の形態は、上述した第1の実施の形態の第2の変形例(図6参照)において、図25に示すように、突起部14の一部を覆うような形態で第2の非磁性体部42が形成され、かつ第2の非磁性体部42がケース3の一面全域と接触している。
 すなわち、本第4の実施の形態では、巻線軸9よりも底面部4側に位置する突起部14を覆いかつ該底面部4の全域と接触するような形態で第2の非磁性体部42が形成されている。そして、これによりケース3の近傍には磁束の通過に影響を与えるような磁心コア50が存在しないことから、漏れ磁束自体が低減され、ケース3に発生する渦電流を小さくすることができ、これにより渦電流損に起因した磁気損失を抑制することができ、磁束密度が大きく、大きなインダクタンスを有するリアクトルを得ることができる。
 しかも、第2の非磁性体部42はケース3の底面部4全域と接触していることから、コイル部7からの熱伝達を促進することができ、良好な放熱性を得ることができ、リアクトルの温度上昇を抑制することができる。
(第5の実施の形態)
 図26は、本発明に係るリアクトルの第5の実施の形態を模式的に示す平面断面図であり、図27は図26のJ-J矢視断面図である。
 この第5の実施の形態は、図26に示すように、上述した第2の実施の形態の第2の変形例(図13参照)において、第2の非磁性体部43a、43bが突起部25を覆うような形態で形成され、かつ少なくともケース3の一面全域と接触している。
 すなわち、本第5の実施の形態では、図27に示すように、第2の非磁性体部43a、43bが、突起部25を覆いかつ第1及び第2の側面部5a、5b全域、及び第3及び第4の側面部5c、5d更には底面部4の一部に接するような形態で形成され、第2の非磁性体部43a、43b間に磁心コア44が存在している。そして、これによりケース3の近傍には磁束の通過に影響を与えるような磁心コア44が存在せず、したがって漏れ磁束自体が低減されることから、ケース3に発生する渦電流を小さくすることができ、渦電流損に起因した磁気損失を抑制することができ、磁束密度が大きく、大きなインダクタンスを有するリアクトルを得ることができる。
 しかも、第2の非磁性体部43a、43bはケース3の第1及び第2の側面部5a、5b全域更には第3及び第4の側面部5c、5dと接触していることから、コイル部20からの熱伝達を効果的に促進することができ、良好な放熱性を得ることができ、リアクトルの温度上昇を抑制することができる。
 図28は、第5の実施の形態の変形例を示す要部断面図である。
 上記第5の実施の形態では、第2の非磁性体部43a、43bが、第3及び第4の側面部5c、5dの一部にも接しているが、この変形例では、第2の非磁性体部51a、51bと磁心コア52との境界がテーパ状に形成され、前記第2の非磁性体部51a、51bは第1及び第2の側面部5a、5bの全域と接触している。この変形例においても、上記第5の実施の形態と同様、大きなインダクタンスを有するリアクトルを得ることができ、また、第2の非磁性体部51a、51bは、第3及び第4の側面部5c、5dと接触していないものの第1及び第2の側面部5a、5b全域と接触していることから、コイル部20からの熱伝達を十分に促進することができ、良好な放熱性を確保することが可能である。
(第6の実施の形態) 
 図29は、本発明に係るリアクトルの第6の実施の形態を模式的に示す平面断面図であり、図30は図29のK-K矢視断面図である。
 この第6の実施の形態は、上述した第3の実施の形態の第2の変形例(図20参照)において、第2の非磁性体部45a、45bが突起部37を覆うような形態で形成され、かつケース3の一面全域と接触している。
 すなわち、本第6の実施の形態では、第2の非磁性体部45a、45bが、突起部37を覆いかつ第1及び第2の側面部5a、5b全域、及び第3及び第4の側面部5c、5d更には底面部4の一部に接するような形態で形成され、第2の非磁性体部45a、45b間に磁心コア46が存在している。そして、これによりケース3の近傍には磁束の通過に影響を与えるような磁心コア46が存在せず、したがって漏れ磁束自体が低減され、ケース3に発生する渦電流を小さくすることができることから、渦電流損に起因した磁気損失を抑制することができ、磁束密度が大きく、大きなインダクタンスを有するリアクトルを得ることができる。
 しかも、第2の非磁性体部45a、45bはケース3の第1及び第2の側面部5a、5b全域及び底面部4の一部と接触していることから、コイル部32からの熱伝達を効果的に促進することができ、良好な放熱性を得ることができ、リアクトルの温度上昇を抑制することができる。
 この第6の実施の形態についても、上述した図28のような変形例が可能であるのはいうまでもない。
 尚、本発明は、上記実施の形態に限定されるものではない。上記実施の形態では種々の変形例を例示したが、これら各実施の形態は相互に単一の一般的発明概念を形成するように連関した技術的関係を有するものであり、本発明の要旨を逸脱するものではない。
 また、上記各実施の形態では導線6、19、31を被覆平角線で形成しているが、丸線やコ字状の箔状導体を使用してもよい。箔状導体を使用する場合は、箔状導体が互いに重なり合うように巻回した後、重なり合っている箔状導体の角部同士を圧着して一体化したり、或いはビアを介して各箔状導体を積層し、これにより箔状導体同士を電気的に接続して一体化することにより、筒状のコイル導体を作製することができる。
 また、コイル部は、筒状であれば円筒状、角筒状、楕円筒状等でもよく、またケース3についても方形箱状でなくても円形箱状であってもよい。
 渦電流損を抑制でき放熱性が良好でより一層の小型化が可能なリアクトルを実現することができる。
1、17、18、30、41 コイル導体
2、44、46 50、52 磁心コア
3 ケース 
4 底面部
5a~5d 第1~第4の側面部(側面部)
6、19、31 導線
7、16、20、28、32、40 コイル部
8、15、21、27、33、39 第1の非磁性体部
9、22、34 巻線軸
10a、10b、12a、12b、14、23a、23b、24a、24b、25、35a、35b、37 突起部
15、38、42、43a、43b、45a、45b、51a、51b 第2の非磁性体部

Claims (17)

  1.  筒状に形成されたコイル導体と、磁性体材料を含有した磁心コアとを備え、前記コイル導体及び前記磁心コアがケースに収容されたリアクトルであって、
     前記コイル導体は、導線が巻回されたコイル部と、該コイル部の表面を被覆する第1の非磁性系樹脂材料で形成された第1の非磁性体部とを有し、
     前記第1の非磁性体部の表面であって前記コイル部の端縁上には、第2の非磁性系樹脂材料からなる突起部が形成されていることを特徴とするリアクトル。
  2.  前記突起部は、前記コイル部の巻線軸に対し中心方向及び遠心方向に形成されていること特徴とする請求項1記載のリアクトル。
  3.  前記突起部は、前記コイル部の巻線軸に対し平行方向に複数形成されていることを特徴とする請求項1又は請求項2記載のリアクトル。
  4.  前記複数の突起部が一体化され、曲面状に形成されていることを特徴とする請求項3記載のリアクトル。
  5.  前記コイル導体は、前記コイル部の巻線軸が水平面に対し平行となるように前記ケースに収容されていることを特徴とする請求項1乃至請求項4のいずれかに記載のリアクトル。
  6.  前記コイル導体は、前記コイル部の巻線軸が鉛直方向となるように前記ケースに収容されていることを特徴とする請求項1乃至請求項4のいずれかに記載のリアクトル。
  7.  前記導線は平角線で形成されると共に、前記コイル導体はエッジワイズ巻きとされていることを特徴とする請求項1乃至請求項6のいずれかに記載のリアクトル。
  8.  前記導線は平角線で形成されると共に、前記コイル導体はフラットワイズ巻きとされていることを特徴とする請求項1乃至請求項6のいずれかに記載のリアクトル。
  9.  前記突起部が、前記ケースと接触していることを特徴とする請求項1乃至請求項8のいずれかに記載のリアクトル。
  10.  前記第2の非磁性系樹脂材料で形成された第2の非磁性体部が、前記突起部を内包し、かつ前記ケースの少なくとも一面全域と接触していることを特徴とする請求項1乃至請求項8のいずれかに記載のリアクトル。
  11.  前記一面は、前記ケースの底面部であることを特徴とする請求項10記載のリアクトル。
  12.  前記一面は、前記ケースの側面部であることを特徴とする請求項10又は請求項11記載のリアクトル。
  13.  前記コイル導体を形成する前記導線間には前記第1の非磁性樹脂材料が充填されていることを特徴とする請求項1乃至請求項12のいずれかに記載のリアクトル。
  14.  前記第1及び第2の非磁性系樹脂材料は、フィラー成分を含有し、熱伝導率が5W/mK以上であることを特徴とする請求項1乃至請求項13のいずれかに記載のリアクトル。
  15.  前記第1の非磁性系樹脂材料と前記第2の非磁性系樹脂材料とは同一材料であることを特徴とする請求項1乃至請求項14のいずれかに記載のリアクトル。
  16.  前記磁心コアは樹脂材料を含有していることを特徴とする請求項1乃至請求項15のいずれかに記載のリアクトル。
  17.  前記磁性体材料は、軟磁性金属材料及びフェライト材料のうちのいずれかであることを特徴とする請求項1乃至請求項16のいずれかに記載のリアクトル。
PCT/JP2020/042959 2019-12-12 2020-11-18 リアクトル WO2021117436A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080080018.0A CN114730660A (zh) 2019-12-12 2020-11-18 电抗器
JP2021563817A JP7296047B2 (ja) 2019-12-12 2020-11-18 リアクトル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-224327 2019-12-12
JP2019224327 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021117436A1 true WO2021117436A1 (ja) 2021-06-17

Family

ID=76329797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042959 WO2021117436A1 (ja) 2019-12-12 2020-11-18 リアクトル

Country Status (3)

Country Link
JP (1) JP7296047B2 (ja)
CN (1) CN114730660A (ja)
WO (1) WO2021117436A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245154A (ja) * 2009-04-02 2010-10-28 Denso Corp リアクトル
JP2012004511A (ja) * 2010-06-21 2012-01-05 Denso Corp リアクトル
JP2013093548A (ja) * 2011-10-06 2013-05-16 Sumitomo Electric Ind Ltd リアクトル、リアクトル用コイル部品、コンバータ、及び電力変換装置
JP2014082358A (ja) * 2012-10-17 2014-05-08 Nec Tokin Corp コイル部品
JP2014090069A (ja) * 2012-10-30 2014-05-15 Nec Tokin Corp リアクトル
JP2015188022A (ja) * 2014-03-27 2015-10-29 株式会社デンソー リアクトル放熱構造
JP2015225899A (ja) * 2014-05-26 2015-12-14 トヨタ自動車株式会社 リアクトル
JP2018098380A (ja) * 2016-12-14 2018-06-21 株式会社トーキン コイル部品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514031B2 (ja) * 2003-06-12 2010-07-28 株式会社デンソー コイル部品及びコイル部品製造方法
JP2008210976A (ja) * 2007-02-26 2008-09-11 Toyota Industries Corp リアクトル装置
JP5321531B2 (ja) * 2010-04-26 2013-10-23 株式会社デンソー リアクトル装置
JP2013093469A (ja) * 2011-10-26 2013-05-16 Sumitomo Electric Ind Ltd リアクトル、リアクトルの固定構造、コンバータ、及び電力変換装置
JP6359244B2 (ja) * 2013-05-22 2018-07-18 株式会社トーキン リアクトル
CN104282410B (zh) * 2013-07-12 2016-10-26 Tdk株式会社 感应线圈
JP2016119398A (ja) * 2014-12-22 2016-06-30 トヨタ自動車株式会社 リアクトル構造
JP6211028B2 (ja) * 2015-03-11 2017-10-11 三菱電機株式会社 リアクトル装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245154A (ja) * 2009-04-02 2010-10-28 Denso Corp リアクトル
JP2012004511A (ja) * 2010-06-21 2012-01-05 Denso Corp リアクトル
JP2013093548A (ja) * 2011-10-06 2013-05-16 Sumitomo Electric Ind Ltd リアクトル、リアクトル用コイル部品、コンバータ、及び電力変換装置
JP2014082358A (ja) * 2012-10-17 2014-05-08 Nec Tokin Corp コイル部品
JP2014090069A (ja) * 2012-10-30 2014-05-15 Nec Tokin Corp リアクトル
JP2015188022A (ja) * 2014-03-27 2015-10-29 株式会社デンソー リアクトル放熱構造
JP2015225899A (ja) * 2014-05-26 2015-12-14 トヨタ自動車株式会社 リアクトル
JP2018098380A (ja) * 2016-12-14 2018-06-21 株式会社トーキン コイル部品

Also Published As

Publication number Publication date
JPWO2021117436A1 (ja) 2021-06-17
CN114730660A (zh) 2022-07-08
JP7296047B2 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
US11398338B2 (en) Reactor
US20180122551A1 (en) Reactor
JP6784275B2 (ja) 表面実装インダクタおよびその製造方法
US20230335327A1 (en) Magnetic component structure with thermal conductive filler and method of fabricating the same
JP2017092219A (ja) コイル部品
JP2007201203A (ja) リアクトル
JP2017069460A (ja) コイル部品及びその製造方法
TWI451455B (zh) Inductor and its manufacturing method
JP2018133500A (ja) リアクトルおよびその製造方法
JP2018074127A (ja) コイル構造体
JP6520187B2 (ja) コイル部品
JP2011142193A (ja) リアクトル
WO2016208441A1 (ja) リアクトル、及びリアクトルの製造方法
US11417455B2 (en) Reactor and magnetic core for reactor
JP2022034593A (ja) コイル部品
WO2021117436A1 (ja) リアクトル
JP7255153B2 (ja) リアクトルおよびその製造方法
US11462354B2 (en) Reactor
JP6851257B2 (ja) リアクトル
JP6757658B2 (ja) コイル部品
WO2021100420A1 (ja) リアクトル
JP6409765B2 (ja) 表面実装インダクタ
WO2017115603A1 (ja) 表面実装インダクタ及びその製造方法
WO2022024535A1 (ja) リアクトルおよびリアクトルの製造方法
WO2022024536A1 (ja) リアクトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899915

Country of ref document: EP

Kind code of ref document: A1