WO2021115067A1 - 高导热电磁屏蔽复合材料及其制备方法 - Google Patents

高导热电磁屏蔽复合材料及其制备方法 Download PDF

Info

Publication number
WO2021115067A1
WO2021115067A1 PCT/CN2020/129542 CN2020129542W WO2021115067A1 WO 2021115067 A1 WO2021115067 A1 WO 2021115067A1 CN 2020129542 W CN2020129542 W CN 2020129542W WO 2021115067 A1 WO2021115067 A1 WO 2021115067A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
electromagnetic shielding
liquid metal
thermally conductive
conductive filler
Prior art date
Application number
PCT/CN2020/129542
Other languages
English (en)
French (fr)
Inventor
胡友根
许亚东
陈菲
赵涛
孙蓉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2021115067A1 publication Critical patent/WO2021115067A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic

Definitions

  • the invention relates to the field of functional composite materials, in particular to a layered structure composite material with both high thermal conductivity and electromagnetic shielding performance.
  • Conductive polymer composite materials have become an important research and development direction in the field of intelligent polymer materials in recent years because of their light weight, good processability, and adjustable performance.
  • 5G communication technology With the development of 5G communication technology, the requirements of electronic products for electronic materials tend to be lighter and thinner, multi-functional compatibility, high reliability and stability. Especially the comprehensive requirements for electromagnetic shielding performance and thermal conductivity. Therefore, it is very important to explore new high-efficiency and multi-functional high thermal conductivity electromagnetic shielding materials.
  • the invention aims to prepare a layered structure composite material with both high thermal conductivity and electromagnetic shielding performance.
  • thermally conductive electromagnetic shielding layered composite material which includes a thermally conductive filler and a polymer matrix.
  • the thermally conductive filler is a composite filler including a sheet-shaped thermally conductive filler and a liquid metal, and the thermally conductive filler has a vertical orientation structure.
  • Another aspect of the present invention provides a method for preparing the thermally conductive electromagnetic shielding layered composite material of the present invention, which includes the following steps:
  • thermally conductive filler is mixed with the high molecular polymer used to prepare the polymer matrix and its corresponding curing agent to form a film with a thickness of 0.5 mm or less. After the film is stacked, it is cured by heat and pressure to obtain a composite with a layered structure. material;
  • the polymer matrix is prepared from a high molecular polymer and its corresponding curing agent, and the high molecular polymer is selected from polydimethylsiloxane, polyterephthalene Glycol formate, polyethylene naphthalate, polymethyl methacrylate, polyvinyl chloride, polycarbonate, polyurethane, silicone rubber, natural rubber, thermoplastic silicone.
  • the sheet-shaped thermally conductive filler is selected from expanded graphite, graphite flakes, graphene, and metal foil.
  • the expanded graphite is selected from 10 mesh to 1000 mesh, preferably 50 to 200 mesh.
  • the liquid metal is preferably an alloy of one or more of gallium, bismuth, indium, tin and zinc, preferably tin-zinc alloy, bismuth indium tin alloy, bismuth indium tin zinc alloy , Gallium indium tin zinc alloy, gallium indium tin alloy or gallium tin zinc alloy.
  • the size of the liquid metal is 1 ⁇ m-100 ⁇ m.
  • the vertical orientation structure is formed by blending the thermally conductive filler and the polymer matrix into a thin sheet, and the multilayer sheet is stacked by heat and pressure curing, and finally a composite material with a vertical orientation structure is obtained by vertical cutting. .
  • the sheet-shaped thermally conductive filler accounts for 1 wt% to 80 wt% of the thermally conductive electromagnetic shielding layered composite material, preferably 20 wt% to 50 wt%.
  • the liquid metal accounts for 1 wt% to 90 wt% of the thermally conductive electromagnetic shielding layered composite material, preferably 20 wt% to 40 wt%.
  • the thickness of the film in step 2) is preferably 0.1 mm-0.5 mm, more preferably 0.1 mm-0.3 mm.
  • the number of layers of the film stack in step 2) is more than 10 layers.
  • the thickness of the electromagnetic shielding layered composite material is 0.5mm-5mm.
  • the vertical orientation refers to the arrangement in a direction perpendicular to or approximately perpendicular to the extension direction of the layered composite material. See Figure 1 for a schematic diagram.
  • the flow characteristics provided by the liquid metal effectively avoid the interface thermal resistance between the fillers and provide excellent Electrical conductivity
  • thermally conductive fillers provide a reliable guarantee for the construction and stability of electrical and thermally conductive networks.
  • the orientation structure design of the fillers is further carried out, and finally the construction and structure control of stable multi-form electrical and thermally conductive networks in a flexible matrix are achieved, which overcomes the traditional electromagnetic Shield the defect that high electrical conductivity and high thermal conductivity in composite materials are incompatible.
  • the vertical orientation structure design is realized to realize the unification of high thermal conductivity and high shielding effectiveness of the composite material.
  • the invention realizes the preparation of composite materials with high thermal conductivity and electromagnetic shielding performance by selecting different forms of conductive and thermally conductive functional fillers and combining with oriented structure design.
  • the selected liquid metal has excellent electrical conductivity and thermal conductivity, but its stability is poor.
  • the ultrasonic process is used to realize the dropletization of the liquid metal, and then it is combined with the expanded graphite metal ultrasonically and stirred to obtain stable high performance Composite filler.
  • it is blended with polydimethylsiloxane and coated to obtain a composite sheet, which is stacked through multiple layers of composite sheets, and is molded and thermally cured to obtain a composite material with a layered structure.
  • a composite material with a vertical orientation structure is obtained by vertical cutting.
  • the composite material of the present invention can obtain a composite material with both high thermal conductivity and electromagnetic shielding performance. By adjusting the proportion of the composite filler, the thermal conductivity and electromagnetic shielding performance of the composite material can be controlled.
  • Figure 1 is a schematic diagram of the structure of the prepared expanded graphite/liquid metal high thermal conductivity electromagnetic shielding composite material.
  • Figure 2 is a scanning electron micrograph of the prepared expanded graphite/liquid metal composite filler.
  • the flakes are expanded graphite flakes, and the spherical shape is liquid metal.
  • the preparation method of expanded graphite/liquid metal high thermal conductivity electromagnetic shielding composite material includes the following steps:
  • the liquid metal is added to ethanol, and the liquid metal dispersion droplets are obtained through the ultrasonic dispersion process; then, the expanded graphite is added to the liquid metal dispersion, and the ultrasonic dispersion, magnetic stirring, vacuum filtration, and drying are continued to obtain composite fillers. powder.
  • the obtained composite powder, polydimethylsiloxane and curing agent are blended and stirred uniformly, a composite film is obtained by a coater or a roll press, and the film is cut into square sheets and stacked in multiple layers. Put it into a mold and heat it to solidify to obtain a polydimethylsiloxane/expanded graphite/liquid metal composite material with a layered structure. Further, the composite material is cut vertically to obtain a composite material with a vertical orientation structure.
  • the size of expanded graphite is 10 mesh to 1000 mesh
  • the content of expanded graphite is 1 wt% to 70 wt%
  • the content of liquid metal is 1 wt% to 90 wt%.
  • the matrix is selected from polydimethylsiloxane, silicone rubber, natural rubber, and other thermoplastic polymers.
  • polydimethylsiloxane is used.
  • Embodiment 1 The preparation method of expanded graphite/liquid metal high thermal conductivity electromagnetic shielding composite material includes the following steps:
  • the obtained composite powder, polydimethylsiloxane and curing agent are blended and stirred uniformly in a mass ratio of 7:2.7:0.3.
  • a film with a thickness of 0.2mm is obtained by a coater, and the film is cut into 4cm ⁇ 4cm square flakes, stacked in multiple layers (200 layers), put in a mold, hot pressed, and cured (5MPa, 90°C, 2h) to obtain a layered structure of polydimethylsiloxane/expanded graphite/liquid Metal composite materials. Further, the composite material is cut vertically to obtain a composite material with a thickness of 2 mm and a vertical orientation structure.
  • Embodiment 2 The preparation method of expanded graphite/liquid metal high thermal conductivity electromagnetic shielding composite material includes the following steps:
  • liquid metal weigh 5g of liquid metal, add it to 500mL of ethanol, and disperse it by ultrasonic for 1h to obtain a liquid metal dispersion; add 5g of expanded graphite to the liquid metal dispersion, continue ultrasonic dispersion for 30min, magnetic stirring for 1h, and vacuum filtration.
  • the composite filler powder is obtained by drying.
  • the obtained composite powder, polydimethylsiloxane and curing agent are blended and stirred uniformly in a mass ratio of 7:2.7:0.3.
  • a film with a thickness of 0.5mm is obtained by a coater, and the film is cut into 4cm ⁇ 4cm square flakes, stacked in multiple layers (40 layers), placed in a mold, hot pressed, and cured (5MPa, 90°C, 3h) to obtain a layered structure of polydimethylsiloxane/expanded graphite/liquid Metal composite materials. Further, the composite material is cut vertically to obtain a composite material with a thickness of 2 mm and a vertical orientation structure.
  • Embodiment 3 The preparation method of expanded graphite/liquid metal high thermal conductivity electromagnetic shielding composite material includes the following steps:
  • liquid metal weigh 5g of liquid metal, add it to 500mL of ethanol, and disperse it by ultrasonic for 1h to obtain a liquid metal dispersion; add 5g of expanded graphite to the liquid metal dispersion, continue ultrasonic dispersion for 30min, magnetic stirring for 1h, and vacuum filtration.
  • the composite filler powder is obtained by drying.
  • the obtained composite powder, polydimethylsiloxane and curing agent were blended and stirred uniformly in a ratio of 5:4.5:0.5.
  • a film with a thickness of 0.5mm was obtained by a coater, and the film was cut into 4cm ⁇ 4cm square flakes, multi-layer stacking (40 layers), put into a mold, hot press, and solidify (5MPa, 90°C, 2h) to obtain a layered structure of polydimethylsiloxane/expanded graphite/liquid metal composite material. Further, the composite material is cut vertically to obtain a composite material with a thickness of 2 mm and a vertical orientation structure.
  • Embodiment 4 The preparation method of expanded graphite/liquid metal high thermal conductivity electromagnetic shielding composite material includes the following steps:
  • liquid metal weigh 5g of liquid metal, add it to 500mL of ethanol, and disperse it by ultrasonic for 1h to obtain a liquid metal dispersion; add 5g of expanded graphite to the liquid metal dispersion, continue ultrasonic dispersion for 30min, magnetic stirring for 1h, and vacuum filtration.
  • the composite filler powder is obtained by drying.
  • the obtained composite powder, polydimethylsiloxane and curing agent were blended and stirred uniformly in a ratio of 4:5.3:0.6.
  • a film with a thickness of 0.5mm was obtained by a coater, and the film was cut into 4cm ⁇ 4cm square flakes, multi-layer stacking (40 layers), put into a mold, hot press, and solidify (5MPa, 90°C, 2h) to obtain a layered structure of polydimethylsiloxane/expanded graphite/liquid metal composite material. Further, the composite material is cut vertically to obtain a composite material with a thickness of 2 mm and a vertical orientation structure.
  • Preparation of polydimethylsiloxane/expanded graphite composite material including:
  • the expanded graphite, polydimethylsiloxane and curing agent are blended and stirred uniformly in a mass ratio of 7:2.7:0.3.
  • a film with a thickness of 0.2mm is obtained by a coater, and the film is cut into 4cm ⁇ 4cm square flakes, multi-layer stacking (200 layers), put in a mold, hot press, and solidify (5MPa, 90°C, 2h) to obtain a layered structure of polydimethylsiloxane/expanded graphite/liquid metal composite material. Further, the composite material is cut vertically to obtain a composite material with a thickness of 2 mm and a vertical orientation structure.
  • the obtained composite powder, polydimethylsiloxane and curing agent are blended and stirred uniformly in a mass ratio of 7:2.7:0.3.
  • a film with a thickness of 0.2mm is obtained by a coater, and the film is cut into 4cm ⁇ 4cm square sheets, stacked in multiple layers (10 layers), placed in a mold, hot pressed, and cured (5MPa, 90°C, 2h) to obtain a composite material with a thickness of 2mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及高导热电磁屏蔽复合材料及其制备方法,一种导热的电磁屏蔽层状复合材料,其包含导热填料以及聚合物基体,所述导热填料为包括片状导热填料和液态金属的复合填料,导热填料具有垂直取向结构。所述的垂直取向结构是通过将导热填料与聚合物基体共混制成薄片,将多层薄片堆叠热压固化,最终通过垂直切割获得具有垂直取向结构的复合材料。本发明的复合材料实现了垂直取向结构设计,来实现复合材料在高导热和高屏蔽效能的统一。

Description

高导热电磁屏蔽复合材料及其制备方法 技术领域
本发明涉及功能复合材料领域,具体为一种兼具高导热和电磁屏蔽性能的层状结构复合材料。
背景技术
导电聚合物复合材料因其质轻、良好的可加工成型性、性能可调等优点,成为近年来智能高分子材料领域重要的研究发展方向。随着5G通讯技术的发展,电子产品对于电子材料的要求越来越倾向于轻薄化、多功能兼容和高可靠性以及稳定性。尤其是对电磁屏蔽性能以及导热性能的综合需求。因此,探索新型高效多功能的高导热电磁屏蔽材料至关重要。
目前研究表明,通过提高屏蔽材料的电导率是实现高屏蔽性能屏蔽材料的有效策略。例如:二维过渡金属碳化物(MXenes)已被研究者作为一种有前景的石墨烯替代品,用于实现屏蔽材料卓越的电磁干扰屏蔽效能。因为其具有超高电导率(5.8×10 4S/m),使得相应的复合材料屏蔽效能在X波段可以超过70dB(F.Shahzad,et al.,Science 353(2016)1137-1140.)。然而,目前的大多数电磁屏蔽复合材料并不具有优异的导热性能。因此,如何在电磁屏蔽材料体系内部构筑高质量稳定的导电以及导热网络是制备兼具电磁屏蔽以及导热功能复合材料的关键。
发明内容
本发明旨在制备一种兼具高导热和电磁屏蔽性能的层状结构复合材料。
本发明一个方面提供了一种导热的电磁屏蔽层状复合材料,其包含导热填料以及聚合物基体,所述导热填料为包括片状导热填料和液态金属的复合填料,导热填料具有垂直取向结构。
本发明另一个方面提供了本发明的导热的电磁屏蔽层状复合材料的制备方法,其包括如下步骤:
1)制备导热填料,将液态金属分散在溶剂中,获得液态金属分散液;将片状导热填料加入到液态金属分散液中,超声分散后干燥获得导热填料;
2)将导热填料与制备聚合物基体的高分子聚合物及其对应的固化剂进行混合,并制成厚度在0.5mm以下的薄膜,将薄膜堆叠后热压固化,获得具有层状结构的复合材料;
3)沿着具有层状结构的复合材料延展方向的垂直方向切割成片状,获得导热的电磁屏蔽 层状复合材料。
在本发明的技术方案中,所述的聚合物基体由高分子聚合物及其对应的固化剂制备而得,所述的高分子聚合物选自聚二甲基硅氧烷,聚对苯二甲酸乙二醇脂、聚萘二甲酸乙二醇脂、聚甲基丙烯酸甲酯、聚氯乙烯、聚碳酸酯、聚氨酯、硅橡胶、天然橡胶、热塑性硅胶。
在本发明的技术方案中,片状导热填料选自膨胀石墨、石墨片、石墨烯、金属箔。
在本发明的技术方案中,膨胀石墨选自10目~1000目,优选50-200目。
在本发明的技术方案中,所述的液态金属优选为镓、铋、铟、锡和锌中的一种或多种的合金,优选为锡锌合金、铋铟锡合金、铋铟锡锌合金、镓铟锡锌合金、镓铟锡合金或镓锡锌合金。
在本发明的技术方案中,液态金属尺寸在1μm~100μm。
在本发明的技术方案中,所述的垂直取向结构是通过将导热填料与聚合物基体共混制成薄片,将多层薄片堆叠热压固化,最终通过垂直切割获得具有垂直取向结构的复合材料。
在本发明的技术方案中,片状导热填料占导热的电磁屏蔽层状复合材料的1wt%~80wt%,优选为20wt%~50wt%。
在本发明的技术方案中,液态金属占导热的电磁屏蔽层状复合材料的1wt%~90wt%,优选为20wt%~40wt%。
在本发明的技术方案中,步骤2)中薄膜厚度优选为0.1mm-0.5mm,更优选为0.1mm-0.3mm。
在本发明的技术方案中,步骤2)中薄膜堆叠的层数多于10层。
在本发明的技术方案中,电磁屏蔽层状复合材料的厚度为0.5mm-5mm。
在本发明的技术方案中,所述垂直取向是指相对于层状复合材料的延展方向相垂直的,或者近似垂直的方向设置。示意图可参见图1。
在本发明中,利用具有不同维度优势的导热填料和液态金属在网络构筑过程中所表现出的协同效应,液态金属所提供的流动特性有效避免了填料之间的界面热阻,同时提供优异的导电性,而导热填料为导电、导热网络的搭建以及稳定性提供可靠保障,进一步进行填料的取向结构设计,最终实现在柔性基体中稳定多形态导电、导热网络的构筑与结构控制,克服传统电磁屏蔽复合材料中高导电与高导热性能不能兼容的缺陷。同时,结合层状结构设计(参见图1),实现了垂直取向结构设计,来实现复合材料在高导热和高屏蔽效能的统一。
本发明通过选取不同形态的导电导热功能填料,结合取向结构设计来实现兼具高导热和电磁屏蔽性能的复合材料的制备。首先,选取的液态金属具有优异的导电性能以及导热性能, 但其稳定性较差,通过超声工艺,实现液态金属的微滴化,进而与膨胀石墨金属超声,搅拌复合,得到了稳定的高性能复合填料。进而与聚二甲基硅氧烷进行共混,涂布,获得复合薄片,经多层复合薄片堆叠,模压热固化,获得具有层状结构的复合材料。最终,通过垂直切割获得具有垂直取向结构的复合材料。
本发明所述的复合材料,能够获得兼具高导热和电磁屏蔽性能的复合材料,通过调节复合填料的比例,能够实现复合材料的导热性能,电磁屏蔽性能的调控。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为所制备膨胀石墨/液态金属高导热电磁屏蔽复合材料的结构示意图。
图2为所制备的膨胀石墨/液态金属复合填料的扫描电镜图。片层为膨胀石墨片,球状为液态金属。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
膨胀石墨/液态金属高导热电磁屏蔽复合材料的制备方法,包括以下步骤:
(1)膨胀石墨/液态金属复合填料的制备,包括:
将液态金属,加入到乙醇中,通过超声分散工艺,获得液态金属分散液滴;继而,将膨胀石墨加入到液态金属分散液中,继续进行超声分散,磁力搅拌,真空抽滤,干燥获得复合填料粉末。
(2)聚二甲基硅氧烷/膨胀石墨/液态金属复合材料的制备,包括:
将获得的复合粉末与聚二甲基硅氧烷以及固化剂,进行共混搅拌均匀,通过涂布机或辊压机获得复合薄膜,将上述薄膜切割为正方形片状,进行多层堆叠,放入模具中热压,固化获得具有层状结构的聚二甲基硅氧烷/膨胀石墨/液态金属复合材料。进一步,将复合材料进行垂直切割,获得具有垂直取向结构的复合材料。
优选的,膨胀石墨的尺寸为10目~1000目,膨胀石墨的含量为1wt%~70wt%,液态金 属的含量为1wt%~90wt%。
具体的,所述基体选自聚二甲基硅氧烷、硅橡胶、天然橡胶,以及其他热塑性聚合物。优选的采用聚二甲基硅氧烷。
下面结合附图对本发明的技术方案进行详细的说明。
实施例1膨胀石墨/液态金属高导热电磁屏蔽复合材料的制备方法,包括以下步骤:
(1)膨胀石墨/液态金属复合填料的制备,包括:
称取5g的液态金属,加入到500mL乙醇中,通过超声分散1h,获得液态金属分散液;将10g膨胀石墨加入到液态金属分散液中,继续进行超声分散30min,磁力搅拌1h,真空抽滤,干燥获得复合填料粉末。
(2)聚二甲基硅氧烷/膨胀石墨/液态金属复合材料的制备,包括:
将获得的复合粉末与聚二甲基硅氧烷以及固化剂,按照质量比7:2.7:0.3的比例进行共混搅拌均匀,通过涂布机获得厚度为0.2mm的薄膜,将上述薄膜切割为4cm×4cm正方形片状,进行多层堆叠(200层),放入模具中热压,固化(5MPa,90℃,2h)获得具有层状结构的聚二甲基硅氧烷/膨胀石墨/液态金属复合材料。进一步,将复合材料进行垂直切割,获得厚度为2mm,具有垂直取向结构的复合材料。
实施例2膨胀石墨/液态金属高导热电磁屏蔽复合材料的制备方法,包括以下步骤:
(1)膨胀石墨/液态金属复合填料的制备,包括:
称取5g的液态金属,加入到500mL乙醇中,通过超声分散1h,获得液态金属分散液;将5g膨胀石墨加入到液态金属分散液中,继续进行超声分散30min,磁力搅拌1h,真空抽滤,干燥获得复合填料粉末。
(2)聚二甲基硅氧烷/膨胀石墨/液态金属复合材料的制备,包括:
将获得的复合粉末与聚二甲基硅氧烷以及固化剂,按照质量比7:2.7:0.3的比例进行共混搅拌均匀,通过涂布机获得厚度为0.5mm的薄膜,将上述薄膜切割为4cm×4cm正方形片状,进行多层堆叠(40层),放入模具中热压,固化(5MPa,90℃,3h)获得具有层状结构的聚二甲基硅氧烷/膨胀石墨/液态金属复合材料。进一步,将复合材料进行垂直切割,获得厚度为2mm,具有垂直取向结构的复合材料。
实施例3膨胀石墨/液态金属高导热电磁屏蔽复合材料的制备方法,包括以下步骤:
(1)膨胀石墨/液态金属复合填料的制备,包括:
称取5g的液态金属,加入到500mL乙醇中,通过超声分散1h,获得液态金属分散液;将5g膨胀石墨加入到液态金属分散液中,继续进行超声分散30min,磁力搅拌1h,真空抽 滤,干燥获得复合填料粉末。
(2)聚二甲基硅氧烷/膨胀石墨/液态金属复合材料的制备,包括:
将获得的复合粉末与聚二甲基硅氧烷以及固化剂,按照5:4.5:0.5的比例进行共混搅拌均匀,通过涂布机获得厚度为0.5mm的薄膜,将上述薄膜切割为4cm×4cm正方形片状,进行多层堆叠(40层),放入模具中热压,固化(5MPa,90℃,2h)获得具有层状结构的聚二甲基硅氧烷/膨胀石墨/液态金属复合材料。进一步,将复合材料进行垂直切割,获得厚度为2mm,具有垂直取向结构的复合材料。
实施例4膨胀石墨/液态金属高导热电磁屏蔽复合材料的制备方法,包括以下步骤:
(1)膨胀石墨/液态金属复合填料的制备,包括:
称取5g的液态金属,加入到500mL乙醇中,通过超声分散1h,获得液态金属分散液;将5g膨胀石墨加入到液态金属分散液中,继续进行超声分散30min,磁力搅拌1h,真空抽滤,干燥获得复合填料粉末。
(2)聚二甲基硅氧烷/膨胀石墨/液态金属复合材料的制备,包括:
将获得的复合粉末与聚二甲基硅氧烷以及固化剂,按照4:5.3:0.6的比例进行共混搅拌均匀,通过涂布机获得厚度为0.5mm的薄膜,将上述薄膜切割为4cm×4cm正方形片状,进行多层堆叠(40层),放入模具中热压,固化(5MPa,90℃,2h)获得具有层状结构的聚二甲基硅氧烷/膨胀石墨/液态金属复合材料。进一步,将复合材料进行垂直切割,获得厚度为2mm,具有垂直取向结构的复合材料。
对比例1
聚二甲基硅氧烷/膨胀石墨复合材料的制备,包括:
将膨胀石墨与聚二甲基硅氧烷以及固化剂,按照质量比7:2.7:0.3的比例进行共混搅拌均匀,通过涂布机获得厚度为0.2mm的薄膜,将上述薄膜切割为4cm×4cm正方形片状,进行多层堆叠(200层),放入模具中热压,固化(5MPa,90℃,2h)获得具有层状结构的聚二甲基硅氧烷/膨胀石墨/液态金属复合材料。进一步,将复合材料进行垂直切割,获得厚度为2mm,具有垂直取向结构的复合材料。
对比例2
(1)膨胀石墨/液态金属复合填料的制备,包括:
称取5g的液态金属,加入到500mL乙醇中,通过超声分散1h,获得液态金属分散液;将10g膨胀石墨加入到液态金属分散液中,继续进行超声分散30min,磁力搅拌1h,真空抽滤,干燥获得复合填料粉末。
(2)聚二甲基硅氧烷/膨胀石墨/液态金属复合材料的制备,包括:
将获得的复合粉末与聚二甲基硅氧烷以及固化剂,按照质量比7:2.7:0.3的比例进行共混搅拌均匀,通过涂布机获得厚度为0.2mm的薄膜,将上述薄膜切割为4cm×4cm正方形片状,进行多层堆叠(10层),放入模具中热压,固化(5MPa,90℃,2h)获得厚度为2mm的复合材料。
表1实施例1至实施例4所制样品的电磁屏蔽性能
Figure PCTCN2020129542-appb-000001
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种导热的电磁屏蔽复合材料,其包含导热填料以及聚合物基体,所述导热填料为包括片状导热填料和液态金属的复合填料,导热填料具有垂直取向结构。
  2. 根据权利要求1所述的电磁屏蔽复合材料,垂直取向结构是通过将导热填料与聚合物基体共混制成薄片,将多层薄片堆叠热压固化,最终通过垂直切割获得具有垂直取向结构的复合材料。
  3. 一种导热的电磁屏蔽复合材料的制备方法,其包括如下步骤:
    1)制备导热填料,将液态金属分散在溶剂中,获得液态金属分散液;将片状导热填料加入到液态金属分散液中,超声分散后干燥获得导热填料;
    2)将导热填料与制备聚合物基体的高分子聚合物及其对应的固化剂进行混合,并制成厚度在0.5mm以下的薄膜,将薄膜堆叠后热压固化,获得具有层状结构的复合材料;
    3)沿着具有层状结构的复合材料延展方向的垂直方向切割成片状,获得导热的电磁屏蔽复合材料。
  4. 根据权利要求1或2所述的电磁屏蔽复合材料或权利要求3所述的制备方法,聚合物基体由高分子聚合物及其对应的固化剂制备而得,所述的高分子聚合物选自聚二甲基硅氧烷,聚对苯二甲酸乙二醇脂、聚萘二甲酸乙二醇脂、聚甲基丙烯酸甲酯、聚氯乙烯、聚碳酸酯、聚氨酯、硅橡胶、天然橡胶、热塑性硅胶。
  5. 根据权利要求1或2所述的电磁屏蔽复合材料或权利要求3所述的制备方法,片状导热填料选自膨胀石墨、石墨片、石墨烯、金属箔,优选地,片状导热填料占导热的电磁屏蔽层状复合材料的1wt%~70wt%。
  6. 根据权利要求1或2所述的电磁屏蔽复合材料或权利要求3所述的制备方法,所述的液态金属优选为镓、铋、铟、锡和锌中的一种或多种的合金,优选为锡锌合金、铋铟锡合金、铋铟锡锌合金、镓铟锡锌合金、镓铟锡合金或镓锡锌合金。
  7. 根据权利要求1或2所述的电磁屏蔽复合材料或权利要求3所述的制备方法,液态金属占导热的电磁屏蔽层状复合材料的1wt%~90wt%,优选液态金属尺寸在1μm~100μm。
  8. 根据权利要求3所述的制备方法,步骤2)中薄膜厚度优选为0.1mm-0.5mm,更优选为0.1mm-0.3mm。
  9. 根据权利要求1或2所述的电磁屏蔽复合材料或根据权利要求3所述的制备方法,电磁屏蔽复合材料的厚度为0.5mm-5mm。
  10. 根据权利要求3-9任一项所述的制备方法制备获得的电磁屏蔽复合材料。
PCT/CN2020/129542 2019-12-10 2020-11-17 高导热电磁屏蔽复合材料及其制备方法 WO2021115067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911261088.1 2019-12-10
CN201911261088.1A CN111070833B (zh) 2019-12-10 2019-12-10 高导热电磁屏蔽复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021115067A1 true WO2021115067A1 (zh) 2021-06-17

Family

ID=70313838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129542 WO2021115067A1 (zh) 2019-12-10 2020-11-17 高导热电磁屏蔽复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111070833B (zh)
WO (1) WO2021115067A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113524823A (zh) * 2021-08-09 2021-10-22 西安电子科技大学 具有高电磁屏蔽性能的柔性复合材料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111070833B (zh) * 2019-12-10 2021-07-23 深圳先进技术研究院 高导热电磁屏蔽复合材料及其制备方法
CN112477356A (zh) * 2020-10-26 2021-03-12 武汉汉烯科技有限公司 基于垂直高分子薄膜阵列的高导热复合材料及其制备方法
CN115322556A (zh) * 2021-05-10 2022-11-11 上海交通大学 具有三维低熔点金属基填料网络的高导热/导电的聚合物基复合材料及其制备
CN113265121A (zh) * 2021-05-18 2021-08-17 吉林大学 一种基于温度变化的变刚度复合材料及其制备方法
CN113524741A (zh) * 2021-07-29 2021-10-22 哈尔滨工业大学(威海) 一种竖直排列的氮化硼纳米片高分子复合材料导热薄片及其制备方法
CN113853106B (zh) * 2021-10-26 2024-03-26 浙江工业大学 一种电磁屏蔽泡沫的制备方法
CN114525002B (zh) * 2022-01-19 2023-09-22 中国科学院合肥物质科学研究院 一种液态金属功能复合薄膜及其制备方法
CN115725185B (zh) * 2022-12-20 2024-03-15 深圳先进电子材料国际创新研究院 基于液态金属桥接铝粉的热界面材料及其制备方法
CN116041811B (zh) * 2023-01-13 2023-09-15 四川大学 基于液态金属强化导电功能的复合膜、制备方法及应用
CN116234280B (zh) * 2023-01-13 2023-09-08 彗晶新材料科技(杭州)有限公司 液态金属复合薄膜材料及电子设备
CN115838511A (zh) * 2023-02-23 2023-03-24 四川大学 一种高压电缆半导电屏蔽料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945472A1 (en) * 2014-05-16 2015-11-18 Panasonic Intellectual Property Management Co., Ltd. Heat conducting material having an electromagnetic shielding effect and an enclosure including the same
CN108504016A (zh) * 2016-06-14 2018-09-07 络派模切(北京)有限公司 一种导热垫片及其制备方法
CN108912683A (zh) * 2018-06-13 2018-11-30 中国科学院金属研究所 基于低熔点金属\导热粒子复合导热网络的热界面材料及其制备方法
CN110283461A (zh) * 2019-07-18 2019-09-27 深圳前海量子翼纳米碳科技有限公司 一种基于液态金属的可调谐电磁吸波材料及其制备方法
CN111070833A (zh) * 2019-12-10 2020-04-28 深圳先进技术研究院 高导热电磁屏蔽复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945472A1 (en) * 2014-05-16 2015-11-18 Panasonic Intellectual Property Management Co., Ltd. Heat conducting material having an electromagnetic shielding effect and an enclosure including the same
CN108504016A (zh) * 2016-06-14 2018-09-07 络派模切(北京)有限公司 一种导热垫片及其制备方法
CN108912683A (zh) * 2018-06-13 2018-11-30 中国科学院金属研究所 基于低熔点金属\导热粒子复合导热网络的热界面材料及其制备方法
CN110283461A (zh) * 2019-07-18 2019-09-27 深圳前海量子翼纳米碳科技有限公司 一种基于液态金属的可调谐电磁吸波材料及其制备方法
CN111070833A (zh) * 2019-12-10 2020-04-28 深圳先进技术研究院 高导热电磁屏蔽复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113524823A (zh) * 2021-08-09 2021-10-22 西安电子科技大学 具有高电磁屏蔽性能的柔性复合材料及其制备方法
CN113524823B (zh) * 2021-08-09 2022-08-09 西安电子科技大学 具有高电磁屏蔽性能的柔性复合材料及其制备方法

Also Published As

Publication number Publication date
CN111070833B (zh) 2021-07-23
CN111070833A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2021115067A1 (zh) 高导热电磁屏蔽复合材料及其制备方法
CN111267434B (zh) 一种取向结构的导热电磁屏蔽材料及其制备方法
Yang et al. Layered structural PBAT composite foams for efficient electromagnetic interference shielding
CN108129685B (zh) 多层复合导热薄膜及其制备方法
CN111809439A (zh) 柔性高强MXene基电磁屏蔽复合薄膜及其制备方法
CN103746131B (zh) 一种pem燃料电池复合双极板及其制备方法
CN104693897A (zh) 一种基于石墨烯复合材料的导电油墨及其制备方法
CN105551830A (zh) 一种活性石墨烯/活性炭复合电极片的制备方法
TW201138575A (en) Conductor pattern and method for forming the same
Guo et al. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating
KR102651934B1 (ko) 연료전지 세퍼레이터용 전구체 시트 및 연료전지 세퍼레이터
CN108521683B (zh) 纳米纤维素氧化石墨烯电热材料及其制备方法
CN110241613B (zh) 一种柔性超薄高导热电磁屏蔽薄膜及其制备方法
CN113707362A (zh) 一种高导电铜浆、制备方法、柔性高导电铜膜及其应用
CN111463296A (zh) 一种Mxenes-PEDOT:PSS复合柔性电极及太阳能电池器件
CN112105248B (zh) 一种电磁屏蔽膜及其制备方法
CN108383112A (zh) 一种高热量石墨烯发热膜及其制备方法
CN107189103B (zh) 一种导电填料、其制备方法及用途
CN104681781B (zh) 一种基于浆料涂覆法制备薄型热电池正极和电解质组合极片的方法
KR102128067B1 (ko) 전자파 차폐용 그래핀-금속-고분자 다층 구조 시트
CN113025283B (zh) 相变材料及其制备方法、电子元器件
CN108274837A (zh) 新型复合膜
CN205030030U (zh) 一种超薄纳米散热膜材料
CN114605870B (zh) 一种碳纳米管/液态金属导电油墨及其制备方法和应用
CN109535463A (zh) 一种tpu导电薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899661

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/01/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 20899661

Country of ref document: EP

Kind code of ref document: A1