WO2021114912A1 - 一种聚酰胺复合材料及其制备方法 - Google Patents

一种聚酰胺复合材料及其制备方法 Download PDF

Info

Publication number
WO2021114912A1
WO2021114912A1 PCT/CN2020/124016 CN2020124016W WO2021114912A1 WO 2021114912 A1 WO2021114912 A1 WO 2021114912A1 CN 2020124016 W CN2020124016 W CN 2020124016W WO 2021114912 A1 WO2021114912 A1 WO 2021114912A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
composite material
glass fiber
red phosphorus
polyamide composite
Prior art date
Application number
PCT/CN2020/124016
Other languages
English (en)
French (fr)
Inventor
戴剑
叶南飚
黄险波
丁超
郑一泉
金雪峰
王丰
胡泽宇
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Priority to JP2022534477A priority Critical patent/JP7443524B2/ja
Priority to US17/783,274 priority patent/US20230027263A1/en
Priority to EP20898821.2A priority patent/EP4053218A4/en
Publication of WO2021114912A1 publication Critical patent/WO2021114912A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a polyamide composite material and a preparation method thereof.
  • Polyamide is a polymer material with excellent comprehensive properties. Due to the strong hydrogen bond interaction between its molecular chains, polyamide exhibits excellent mechanical strength, especially for glass fiber reinforced polyamide materials. Excellent mechanical properties are widely used in automobiles, power tools, rail transit and other fields.
  • Irradiation cross-linking is a technical means of using various radiation to initiate the cross-linking reaction between polymer long chains.
  • the radiation source can be electron beam, gamma ray, neutron beam , Particle beam, etc.
  • the radiation source can be electron beam, gamma ray, neutron beam , Particle beam, etc.
  • simple irradiation treatment is difficult to initiate crosslinking of polyamide. Therefore, it is necessary to promote the crosslinking reaction of the system by introducing a crosslinking agent. Thus, the radiation cross-linked material is obtained.
  • the radiation crosslinking agents that can be used for polyamides are triallyl cyanurate (TAC), triallyl isocyanurate (TAIC), and methyl triallyl isocyanurate (TMAIC). .
  • Patent 02-196856A2 discloses a bromine-based flame-retardant radiation cross-linked polyamide composite material.
  • the material uses triallyl cyanurate (TAC) or triallyl isocyanurate (TAIC) as the crosslinking material.
  • TAC triallyl cyanurate
  • TAIC triallyl isocyanurate
  • the linking agent uses ion beam to irradiate the material, and finally obtains the irradiated cross-linked polyamide material.
  • the composite material is a bromine-based flame-retardant polyamide and the anti-leakage performance of TAC or TAIC as a crosslinking agent is insufficient, the tracking index and other properties all show certain disadvantages.
  • the purpose of the present invention is to provide a polyamide composite material, by adding TMAIC for radiation crosslinking treatment, and adding red phosphorus flame retardant at the same time, so that the polyamide composite material can not only meet the demand for flame retardancy, but also glow wire (GWIT ), Tracking Index (CTI) has been improved.
  • GWIT glow wire
  • CTI Tracking Index
  • Another object of the present invention is to provide a method for preparing polyamide composite materials.
  • a polyamide composite material including the following components:
  • the polyamide composite material has a cross-linked structure between polyamide molecules.
  • the ⁇ -carbon next to the amino group in the polyamide segment will break and form new chemical bonds with other molecular chains to form a cross-linked network structure.
  • m-cresol and methanol cannot be dissolved, and swelling occurs.
  • the polyamide resin that has not formed crosslinks can be almost completely dissolved.
  • the polyamide resin is selected from polyamide resins obtained by polycondensation of diamine units and dicarboxylic acid units, polyamide resins obtained by ring-opening polymerization of lactam units, and polyamide resins obtained by self-condensation of aminocarboxylic acid units A polyamide resin, or a polyamide copolymer resin obtained by copolymerization of at least two of the above-mentioned units constituting these polyamide resins.
  • the red phosphorus flame retardant is selected from red phosphorus powder or red phosphorus flame retardant masterbatch.
  • the red phosphorus flame-retardant masterbatch contains 10%-15% of the total weight.
  • the red phosphorus flame-retardant masterbatch is covered by a coating material selected from inorganic hydroxides, phenolic resins, and cyclic resins. At least one of oxygen resin and melamine formaldehyde resin.
  • the glass fiber is selected from at least one of E glass fiber, H glass fiber, R, S glass fiber, D glass fiber, C glass fiber, and quartz glass fiber.
  • the glass fiber is selected from E glass fiber.
  • the diameter of the glass fiber is 7-18 microns
  • the diameter of the glass fiber is 9-15 microns.
  • auxiliary agent is selected from at least one of coloring agents, toughening agents, and antioxidants.
  • the coloring agent is not limited to the following materials. Examples include: dyes such as aniline black, pigments such as titanium oxide and carbon black; metals such as aluminum, colored aluminum, nickel, tin, copper, gold, silver, platinum, iron oxide, stainless steel, and titanium Particles; metallic pigments such as mica pearlescent pigments, colored graphite, colored glass fibers, colored glass flakes, etc. Specifically, it can be PE-based carbon black masterbatch.
  • Antioxidant selected from hindered phenolic antioxidants, selected from but not limited to the following substances, for example: 3-(3',5'-and tert-butyl-4'-hydroxyphenyl)propionic acid n-octadecanoic acid Alkyl ester, 3-(3'-methyl-5-tert-butyl-4'-hydroxyphenyl) n-octadecyl propionate, 3-(3',5'-di-tert-butyl-4 '-Hydroxyphenyl) n-tetradecyl propionate, 1,6-hexanediol bis(3-(3,5-and tert-butyl-4-hydroxyphenyl) propionate), tetrakis Methyl-3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propionate)methane, 3,9-bis(2-(3-(3-tert-butyl-4
  • Toughening agent specifically: ethylene, acrylate and glycidyl methacrylate terpolymer, ethylene and butyl acrylate copolymer, ethylene and methyl acrylate copolymer, ethylene, n-butyl acrylate and methyl acrylate Copolymer of glycidyl acrylate, copolymer of ethylene and maleic anhydride, copolymer of ethylene/propylene/diene grafted with maleic anhydride, copolymer of styrene/maleimide grafted with maleic anhydride Materials, styrene/ethylene/butene/styrene copolymer modified with maleic anhydride, styrene/acrylonitrile copolymer grafted with maleic anhydride, acrylonitrile/butadiene grafted with maleic anhydride /Styrene copolymers, and their hydrogenated forms.
  • the preparation method of the above polyamide composite material includes the following steps: weigh the polyamide resin, red phosphorus flame retardant, methyl triallyl isocyanurate, and additives according to the proportions, and perform pre-mixing in a high-mixer
  • the premix is obtained, and then the premix is put into a twin-screw extruder for melting and mixing (if there is glass fiber, then side-feeding is added), and extruding and granulating to obtain a product; among them, the twin-screw extruder
  • the screw length-to-diameter ratio is 40 ⁇ 48:1, the barrel temperature is 240 ⁇ 300°C, the screw speed is 200 ⁇ 550rpm; the extruded and granulated polyamide composite material is injection moulded, and the injection temperature is 270 ⁇ 300°C.
  • the pressure is 55-100 MPa; the workpiece is subjected to radiation cross-linking treatment, and electron beam is used as the radiation source during the treatment process, and the radiation dose is 15-25
  • the prepared polyamide composite material by selecting methyl triallyl isocyanurate (TMAIC) as the radiation crosslinking aid, and by selecting red phosphorus flame retardant, the prepared polyamide composite material not only has excellent flame retardant effect, but also And has excellent electrical properties (glow wire (GWIT), tracking index (CTI) have been improved).
  • TMAIC methyl triallyl isocyanurate
  • CTI tracking index
  • the sources of the raw materials used in the present invention are as follows:
  • Polyamide A Type 66 polyamide, grade PA66EP-158;
  • Polyamide B Type 6 polyamide, grade PA6HY2800A;
  • Red Phosphorus Flame Retardant A Red Phosphorus Powder, MM-F1, Suzhou Meimao New Material Co., Ltd.;
  • Red phosphorus flame retardant B red phosphorus flame retardant masterbatch, red phosphorus content is 13%, the coating resin is phenolic resin;
  • Red phosphorus flame retardant C red phosphorus flame retardant masterbatch, red phosphorus content 9%, coating resin is phenolic resin;
  • TMAIC Methyl Triene Methyl Triallyl Isocyanurate
  • flame retardants A aluminum diethylphosphinate, with a phosphorus content of 23-24%, Clariant;
  • flame retardant B Melamine cyanurate, Shouguang Weidong Chemical Co., Ltd.;
  • Antioxidant hindered phenol, brand IRGANOX 1098, BASF;
  • Colorant Brand UN2005, PE-based carbon black masterbatch, Cabot Corporation;
  • Toughening agent brand Elvaloy AC resin 1125, EMA type toughening agent, DuPont;
  • Chopped glass fiber A ECS11-4.5-560A, E glass fiber, Chinese monolith, 11 microns in diameter;
  • Chopped glass fiber B S-1 TM435HM-10-3.0, S glass fiber, China Taishan Glass Fiber Co., Ltd., diameter 10 microns;
  • Example and Comparative Example 2-5 Preparation method of polyamide composite material: Weigh polyamide resin, red phosphorus flame retardant, methyl triallyl isocyanurate, and additives according to the proportions, and put them in a high-mixer Perform pre-mixing to obtain a pre-mix, and then put the pre-mix into a twin-screw extruder for melt mixing, and extrude and pelletize to obtain a product; wherein the screw length-to-diameter ratio of the twin-screw extruder is 40:1 (Glass fiber is fed on the side of the screw 5-6 section), the barrel temperature is 240 ⁇ 300°C, the screw speed is 300rpm; the extruded and pelletized flame-retardant polyamide composite material is injection molded, and the injection temperature is 280°C.
  • the pressure is 70MPa; the workpiece is subjected to irradiation cross-linking treatment, and electron beam is used as the radiation source during the treatment process, and the irradiation dose
  • Comparative Example 1 Preparation method of polyamide composite material: The preparation method is the same as the preparation method of the embodiment except that the irradiation crosslinking treatment is not performed.
  • Flame-retardant performance The flame-retardant performance test of the sample is carried out according to the relevant UL 94 standard, and the thickness of the sample is 0.8mm;
  • CTI The highest voltage value at which the surface of the material can withstand 50 drops of electrolyte (0.1% ammonium chloride aqueous solution) without forming a trace of leakage, and the unit is V.
  • the CTI performance test is carried out according to the relevant regulations in the standard IEC-60112, and the thickness of the sample shall not be less than 3mm.
  • GWIT The lowest temperature at which the material ignites and the burning time exceeds 5s when the heating element is in contact with the sample, the unit is °C.
  • the GWIT test is carried out according to the relevant regulations in IEC-60335, and the sample thickness is 1.5mm.
  • the CTI performance is of great significance to the anti-leakage performance. It is very difficult and meaningful to increase only 25V.
  • Example 3/4 It can be seen from Example 3/4 that the red phosphorus content of the preferred red phosphorus flame-retardant masterbatch is within the preferred range, and the GWIT performance is better.
  • Example 2/5 It can be seen from Example 2/5 that the preferred glass fiber has better anti-leakage performance and GWIT.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种聚酰胺复合材料,包括以下组分:聚酰胺树脂20-80份;红磷阻燃剂1-30份;甲基三烯丙基异氰脲酸酯0.01-10份;所述的聚酰胺复合材料中聚酰胺分子间具有交联结构。通过加入甲基三烯丙基异氰脲酸酯(TMAIC)进行辐照交联处理,并且通过红磷阻燃剂,不仅能够满足阻燃的需求,而且灼热丝(GWIT)、漏电起痕指数(CTI)得到提升。

Description

一种聚酰胺复合材料及其制备方法 技术领域
本发明涉及高分子材料技术领域,特别是涉及一种聚酰胺复合材料及其制备方法。
背景技术
聚酰胺是一种综合性能优异的聚合物材料,由于其分子链间具有较强的氢键相互作用,使得聚酰胺表现出较为优异的力学强度,尤其对于玻纤增强的聚酰胺材料,以其优异的力学性能而被广泛地应用于汽车、电动工具、轨道交通等领域。
辐照交联是一种利用各种辐射引发聚合物高分子长链之间的交联反应的技术手段,根据聚合物类别和性能需求,辐照源可以选择电子束、γ射线、中子束、粒子束等。对于聚酰胺材料而言,由于分子链间存在较强的氢键作用,简单的辐照处理难于引发聚酰胺的交联,因此,需要通过引入助交联剂的方式促进体系的交联反应,从而得到辐照交联材料。
一般聚酰胺能够使用的辐照交联剂有三聚氰酸三烯丙酯(TAC)、三烯丙基异氰脲酸酯(TAIC)、甲基三烯丙基异氰脲酸酯(TMAIC)。
专利02-196856A2公开了一种溴系阻燃辐照交联聚酰胺复合材料,该材料采用三聚氰酸三烯丙酯(TAC)或者三烯丙基异氰脲酸酯(TAIC)作为交联剂,采用离子束对材料进行辐照处理,最终得到辐照交联聚酰胺材料。但是,由于该复合材料为溴系阻燃聚酰胺并且TAC或TAIC作为交联剂的防漏电性能不足,漏电起痕指数等性能均呈现出一定的劣势。
总体而言,辐照交联聚酰胺材料已经逐步地应用于电子电气等领域,但是该类材料的发展及应用仍然处于初级阶段,材料种类较少,现存的阻燃辐照交联聚酰胺材料仍存在一定缺陷,在应用端存在一定风险。除此之外,被广泛应用于辐照交联聚酰胺材料中的助交联剂TAIC热稳定性不足,在较高的加工温度下易于发生分解从而导致辐照过程中的交联反应不够充分,最终导致材料综合性能的提升十分有限。
发明内容
本发明的目的在于,提供一种聚酰胺复合材料,通过加入TMAIC进行辐照交联处理,同时加入红磷阻燃剂,使得聚酰胺复合材料不仅能够满足阻燃的需求,而且灼热丝(GWIT)、漏电起痕指数(CTI)得到提升。
本发明的另一目的在于,提供聚酰胺复合材料的制备方法。
本发明是通过以下技术方案实现的:
一种聚酰胺复合材料,包括以下组分:
聚酰胺树脂                  20-80份;
红磷阻燃剂                  1-30份;
甲基三烯丙基异氰脲酸酯      0.01-10份;
所述的聚酰胺复合材料中聚酰胺分子间具有交联结构。
交联结构的表征:
精确称量0.3g不同剂量的聚酰胺复合材料辐照样品,并将其放入索氏提取器。用间甲酚萃取48小时,用甲醇萃取24小时后,有聚酰胺残余物剩余,则聚酰胺复合材料中的聚酰胺分子间具有交联结构。
通过辐照交联处理后,聚酰胺链段中氨基旁的α-碳会断链,与其他分子链形成新的化学键,进而形成交联网络结构。形成交联结构后,间甲酚、甲醇无法溶解,会发生溶胀。但是,没有形成交联的聚酰胺树脂几乎可以完全溶解。
所述的聚酰胺树脂选自通过二元胺单元和二元羧酸单元缩聚得到的聚酰胺树脂、通过内酰胺单元的开环聚合得到的聚酰胺树脂、通过氨基羧酸单元的自缩合得到的聚酰胺树脂、或通过至少两种上述构成这些聚酰胺树脂的单元的共聚而得到的聚酰胺共聚树脂。
所述的红磷阻燃剂选自红磷粉或者红磷阻燃母粒。
所述的红磷阻燃母粒中红磷占总重量的10%-15%,红磷阻燃母粒被包覆材料所包覆,包覆材料选自无机氢氧化物、酚醛树脂、环氧树脂、三聚氰胺甲醛树脂中的至少一种。
还包括0-50份的玻璃纤维;所述的玻璃纤维选自E玻璃纤维、H玻璃纤维、R,S玻璃纤维、D玻璃纤维、C玻璃纤维、石英玻璃纤维中的至少一种。
优选的,所述玻璃纤维选自E玻璃纤维。
所述玻璃纤维的直径为7-18微米;
优选的,玻璃纤维的直径为9-15微米。
按重量份计,还包括0-10份的助剂;所述的助剂选自着色剂、增韧剂、抗氧剂中的至少一种。
着色剂,不限于以下物质,可以列举例如:苯胺黑等染料、氧化钛和炭黑等颜料;铝、着色铝、镍、锡、铜、金、银、铂、氧化铁、不锈钢和钛等金属粒子;云母制珠光颜料、彩色石墨、彩色玻璃纤维和彩色玻璃鳞片等金属颜料等。具体的可以是PE基炭黑母粒。
抗氧剂,选自受阻酚类抗氧化剂,选自但不限于以下物质,可以列举例如:3-(3’,5’-而叔丁基-4’-羟基苯基)丙酸正十八烷基酯、3-(3’-甲基-5-叔丁基-4’-羟基苯基)丙酸正十八烷基酯、3-(3’,5’-二叔丁基-4’-羟基苯基)丙酸正十四烷基酯、1,6-己二醇双(3- (3,5-而叔丁基-4-羟基苯基)丙酸酯)、四(亚甲基-3-(3’,5’-二叔丁基-4’-羟基苯基)丙酸酯)甲烷、3,9-双(2-(3-(3-叔丁基-4-羟基-5-甲基苯基)丙酰氧基)-1,1-二甲基乙基)-2,4,8,10-四氧杂螺(5,5)十一烷等。
增韧剂,具体可以是:乙烯、丙烯酸酯和甲基丙烯酸缩水甘油酯的三聚物,乙烯和丙烯酸丁酯的共聚物,乙烯和丙烯酸甲酯的共聚物、乙烯、丙烯酸正丁酯和甲基丙烯酸缩水甘油酯的共聚物,乙烯和马来酸酐的共聚物,用马来酸酐接枝的乙烯/丙烯/二烯烃共聚物,用马来酸酐接枝的苯乙烯/马来酰亚胺共聚物,用马来酸酐改性的苯乙烯/乙烯/丁烯/苯乙烯共聚物,用马来酸酐接枝的苯乙烯/丙烯腈共聚物,用马来酸酐接枝的丙烯腈/丁二烯/苯乙烯共聚物,以及它们的氢化形式。
上述聚酰胺复合材料的制备方法,包括以下步骤:按照比例称取聚酰胺树脂、红磷阻燃剂、甲基三烯丙基异氰脲酸酯、助剂,在高混机中进行预混合得到预混物,然后将预混物投入双螺杆挤出机中进行熔融混合(如有玻璃纤维,则侧喂加入),并挤出造粒,得到制件;其中,双螺杆挤出机的螺杆长径比为40~48:1,螺筒温度为240~300℃,螺杆转速为200~550rpm;将挤出造粒的聚酰胺复合材料进行注塑成型,注塑温度为270~300℃,注塑压力为55~100MPa;将制件进行辐照交联处理,处理过程中采用电子束作为辐射源,辐照剂量为15-25Mrad,得到聚酰胺复合材料。
本发明具有如下有益效果
本发明通过选择甲基三烯丙基异氰脲酸酯(TMAIC)作为辐照交联助剂,并且通过选用红磷阻燃剂使制备得到的聚酰胺复合材料不仅具有优良的阻燃效果,并且具有优秀的电性能(灼热丝(GWIT)、漏电起痕指数(CTI)都得到了提升)。
具体实施方式
下面结合具体实施例和对比实施例来进一步说明本发明,以下具体实施例均为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制,特别并不局限于下述具体实施例中所使用的各组分原料的型号。
本发明所用原料来源如下:
聚酰胺A:66型聚酰胺,牌号PA66EP-158;
聚酰胺B:6型聚酰胺,牌号PA6HY2800A;
红磷阻燃剂A:红磷粉,MM-F1,苏州美茂新材料有限公司;
红磷阻燃剂B:红磷阻燃母粒,红磷含量13%,包覆树脂为酚醛树脂;
红磷阻燃剂C:红磷阻燃母粒,红磷含量9%,包覆树脂为酚醛树脂;
甲基三烯甲基三烯丙基异氰脲酸酯(TMAIC):牌号FARIDA H-2,方锐达化学品有限公司;
其他阻燃剂A:二乙基次膦酸铝,磷含量23~24%,Clariant公司;
其他阻燃剂B:氰尿酸三聚氰胺,寿光卫东化工有限公司;
其他阻燃剂C:缩合磷酸铝,石家庄鑫盛化工有限公司;
抗氧剂:受阻酚类,牌号IRGANOX 1098,BASF;
着色剂:牌号UN2005,PE基炭黑母粒,卡博特公司;
增韧剂:牌号Elvaloy AC resin 1125,EMA型增韧剂,DuPont;
短切玻璃纤维A:ECS11-4.5-560A,E玻璃纤维,中国巨石,直径11微米;
短切玻璃纤维B:S-1 TM435HM-10-3.0,S玻璃纤维,中国泰山玻璃纤维有限公司,直径10微米;
TAC:赢创德固赛投资有限公司;
TAIC:赢创德固赛投资有限公司;
实施例和对比例2-5聚酰胺复合材料的制备方法:按照比例称取聚酰胺树脂、红磷阻燃剂、甲基三烯丙基异氰脲酸酯、助剂,在高混机中进行预混合得到预混物,然后将预混物投入双螺杆挤出机中进行熔融混合,并挤出造粒,得到制件;其中,双螺杆挤出机的螺杆长径比为40:1(在螺杆5-6段侧喂玻璃纤维),螺筒温度为240~300℃,螺杆转速为300rpm;将挤出造粒的阻燃聚酰胺复合材料进行注塑成型,注塑温度为280℃,注塑压力为70MPa;将制件进行辐照交联处理,处理过程中采用电子束作为辐射源,辐照剂量为20Mrad,得到聚酰胺复合材料。
对比例1聚酰胺复合材料的制备方法:制备方法除了不进行辐照交联处理,其他与实施例的制备方法相同。
各项性能测试方法:
(1)阻燃性能:根据UL 94的相关标准对样条进行阻燃性能测试,样品厚度为0.8mm;
(2)CTI:材料表面能经受住50滴电解液(0.1%氯化铵水溶液)而没有形成漏电痕迹的最高电压值,单位为V。根据标准IEC-60112中的相关规定进行CTI性能测试,样品厚度不得小于3mm。
(3)GWIT:加热元件与样片接触时材料起燃且燃烧时间超过5s的最低温度,单位是℃。根据IEC-60335中的相关规定进行GWIT测试,样品厚度为1.5mm。
表1:实施例和对比例1聚酰胺复合材料的组分配比及各项性测试结果
Figure PCTCN2020124016-appb-000001
表2:对比例2-聚酰胺复合材料的组分配比及各项性测试结果
Figure PCTCN2020124016-appb-000002
CTI性能对于防漏电性能的意义重大,如仅提升25V也是非常困难及有意义的。
从实施例3/4可以看出,优选的红磷阻燃母粒的红磷含量在优选的范围内,GWIT性能更好。
从实施例2/5可以看出,优选的玻璃纤维,防漏电性能、GWIT更好。
从对比例1可以看出,不进行辐照交联,除了阻燃性能,CTI和GWIT性能都较差。
从对比例2-4可以看出,TMAIC必须复配红磷阻燃剂才能提升防漏电性能。
从对比例5-6可以看出,传统的TAC、TAIC,其CT、GWIT性能较差。

Claims (9)

  1. 一种聚酰胺复合材料,其特征在于,包括以下组分:
    聚酰胺树脂                  20-80份;
    红磷阻燃剂                  1-30份;
    甲基三烯丙基异氰脲酸酯      0.01-10份;
    所述的聚酰胺复合材料中聚酰胺分子间具有交联结构。
  2. 根据权利要求1所述的聚酰胺复合材料,其特征在于,所述的聚酰胺树脂选自通过二元胺单元和二元羧酸单元缩聚得到的聚酰胺树脂、通过内酰胺单元的开环聚合得到的聚酰胺树脂、通过氨基羧酸单元的自缩合得到的聚酰胺树脂、或通过至少两种上述构成这些聚酰胺树脂的单元的共聚而得到的聚酰胺共聚树脂。
  3. 根据权利要求1所述的聚酰胺复合材料,其特征在于,所述的红磷阻燃剂选自红磷粉或者红磷阻燃母粒。
  4. 根据权利要求3所述的聚酰胺复合材料,其特征在于,所述的红磷阻燃母粒中红磷占总重量的10%-15%,红磷阻燃母粒被包覆材料所包覆,包覆材料选自无机氢氧化物、酚醛树脂、环氧树脂、三聚氰胺甲醛树脂中的至少一种。
  5. 根据权利要求1所述的聚酰胺复合材料,其特征在于,按重量份计,还包括0-50份的玻璃纤维;所述的玻璃纤维选自E玻璃纤维、H玻璃纤维、R,S玻璃纤维、D玻璃纤维、C玻璃纤维、石英玻璃纤维中的至少一种。
  6. 根据权利要求5所述的聚酰胺复合材料,其特征在于,所述玻璃纤维选自E玻璃纤维。
  7. 根据权利要求5或6所述的聚酰胺复合材料,其特征在于,所述玻璃纤维的直径为7-18微米;优选的,玻璃纤维的直径为9-15微米。
  8. 根据权利要求1所述的聚酰胺复合材料,其特征在于,按重量份计,还包括0-10份的助剂;所述的助剂选自着色剂、增韧剂、抗氧剂中的至少一种。
  9. 权利要求8所述的聚酰胺复合材料的制备方法,其特征在于,包括以下步骤:按照比例称取聚酰胺树脂、红磷阻燃剂、甲基三烯丙基异氰脲酸酯、助剂,在高混机中进行预混合得到预混物,然后将预混物投入双螺杆挤出机中进行熔融混合,并挤出造粒,得到制件;其中,双螺杆挤出机的螺杆长径比为40~48:1,螺筒温度为240~300℃,螺杆转速为200~550rpm;将挤出造粒的聚酰胺复合材料进行注塑成型,注塑温度为270~300℃,注塑压力为55~100MPa;将制件进行辐照交联处理,处理过程中采用电子束作为辐射源,辐照剂量为15-25Mrad,得到聚酰胺复合材料。
PCT/CN2020/124016 2019-12-12 2020-10-27 一种聚酰胺复合材料及其制备方法 WO2021114912A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022534477A JP7443524B2 (ja) 2019-12-12 2020-10-27 ポリアミド複合材料及びその製造方法
US17/783,274 US20230027263A1 (en) 2019-12-12 2020-10-27 Polyamide composite and preparation method thereof
EP20898821.2A EP4053218A4 (en) 2019-12-12 2020-10-27 POLYAMIDE COMPOSITE MATERIAL AND METHOD FOR PREPARING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911273761.3 2019-12-12
CN201911273761.3A CN111138850B (zh) 2019-12-12 2019-12-12 一种聚酰胺复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021114912A1 true WO2021114912A1 (zh) 2021-06-17

Family

ID=70518093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124016 WO2021114912A1 (zh) 2019-12-12 2020-10-27 一种聚酰胺复合材料及其制备方法

Country Status (5)

Country Link
US (1) US20230027263A1 (zh)
EP (1) EP4053218A4 (zh)
JP (1) JP7443524B2 (zh)
CN (1) CN111138850B (zh)
WO (1) WO2021114912A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716819A (zh) * 2022-02-17 2022-07-08 江苏金发科技新材料有限公司 一种聚酰胺复合材料及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138850B (zh) * 2019-12-12 2021-08-13 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法
CN112143221B (zh) * 2020-08-17 2021-11-12 金发科技股份有限公司 一种无卤阻燃聚酰胺复合材料及其制备方法和应用
CN112266606A (zh) * 2020-09-29 2021-01-26 金发科技股份有限公司 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用
CN114437405B (zh) * 2020-11-06 2024-06-04 中国石油化工股份有限公司 Sbs热塑性弹性体及其制备方法和非对称型抗氧剂组合物及其应用
CN112662170B (zh) * 2020-11-11 2022-06-21 中广核俊尔(浙江)新材料有限公司 一种低压电器用阻燃耐高温聚酰胺材料及其制备方法
CN112745675B (zh) * 2020-12-29 2022-10-04 金发科技股份有限公司 一种无卤阻燃聚酰胺复合材料及其制备方法与应用
CN114316580A (zh) * 2021-12-07 2022-04-12 中广核俊尔(浙江)新材料有限公司 一种辐照交联用阻燃增强聚酰胺复合材料的制备方法及应用
CN115850964B (zh) * 2022-12-14 2023-11-03 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646835A1 (de) * 1976-10-16 1978-04-20 Bayer Ag Mikrogekapselter roter phosphor als brandschutzmittel fuer polyamid-formmassen
JPH02196856A (ja) 1989-01-26 1990-08-03 Sumitomo Electric Ind Ltd 架橋難燃ポリアミド樹脂組成物およびその成形品
JPH10204212A (ja) * 1997-01-16 1998-08-04 Chisso Corp 難燃剤およびそれを含有した熱可塑性樹脂組成物
WO2003037968A1 (fr) * 2001-10-30 2003-05-08 Toyo Boseki Kabushiki Kaisha Resine thermoplastique cristalline moulee
US20060183835A1 (en) * 2004-08-12 2006-08-17 Clariant Gmbh Flame-retardant polymers with glow-wire resistance
JP2007246637A (ja) * 2006-03-15 2007-09-27 Fuji Electric Holdings Co Ltd 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
CN103492488A (zh) * 2011-04-28 2014-01-01 巴斯夫欧洲公司 阻燃性模塑组合物
DE102014215370A1 (de) * 2013-09-05 2015-03-05 Basf Se Langfaserverstärkte flammgeschützte Polyamide
CN105504797A (zh) * 2016-01-06 2016-04-20 中广核俊尔新材料有限公司 一种多色红磷阻燃尼龙组合物及其制备方法
CN107873040A (zh) * 2015-07-06 2018-04-03 沙特基础工业全球技术公司 高疲劳热塑性配方
CN111138850A (zh) * 2019-12-12 2020-05-12 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762034B2 (ja) 2006-04-11 2011-08-31 富士電機株式会社 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
JP5577630B2 (ja) 2009-06-11 2014-08-27 東洋紡株式会社 架橋熱可塑性樹脂組成物
JP5790005B2 (ja) 2010-02-26 2015-10-07 東レ株式会社 ポリアミド樹脂組成物およびその製造方法
DE102010028062A1 (de) 2010-04-22 2011-10-27 Evonik Degussa Gmbh Verfahren zur Herstellung vernetzter organischer Polymere
CN102702734B (zh) * 2012-01-19 2014-11-19 五行材料科技(江苏)有限公司 一种高灼热丝红磷阻燃增强pa66与ppe合金材料及其制备方法
CN103319885A (zh) * 2013-07-23 2013-09-25 广东顺德顺炎新材料有限公司 高灼热丝、高cti值阻燃非增强尼龙及制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646835A1 (de) * 1976-10-16 1978-04-20 Bayer Ag Mikrogekapselter roter phosphor als brandschutzmittel fuer polyamid-formmassen
JPH02196856A (ja) 1989-01-26 1990-08-03 Sumitomo Electric Ind Ltd 架橋難燃ポリアミド樹脂組成物およびその成形品
JPH10204212A (ja) * 1997-01-16 1998-08-04 Chisso Corp 難燃剤およびそれを含有した熱可塑性樹脂組成物
WO2003037968A1 (fr) * 2001-10-30 2003-05-08 Toyo Boseki Kabushiki Kaisha Resine thermoplastique cristalline moulee
US20060183835A1 (en) * 2004-08-12 2006-08-17 Clariant Gmbh Flame-retardant polymers with glow-wire resistance
JP2007246637A (ja) * 2006-03-15 2007-09-27 Fuji Electric Holdings Co Ltd 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
CN103492488A (zh) * 2011-04-28 2014-01-01 巴斯夫欧洲公司 阻燃性模塑组合物
DE102014215370A1 (de) * 2013-09-05 2015-03-05 Basf Se Langfaserverstärkte flammgeschützte Polyamide
CN107873040A (zh) * 2015-07-06 2018-04-03 沙特基础工业全球技术公司 高疲劳热塑性配方
CN105504797A (zh) * 2016-01-06 2016-04-20 中广核俊尔新材料有限公司 一种多色红磷阻燃尼龙组合物及其制备方法
CN111138850A (zh) * 2019-12-12 2020-05-12 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BALABANOVICH A.I., LEVCHIK G.F., LEVCHIK S.V., SCHNABEL W.: "Fire retardance in polyamide-6. The effects of red phosphorus and radiation-induced cross-links", FIRE AND MATERIALS, NEW YORK, NY, US, vol. 25, no. 5, 1 September 2001 (2001-09-01), US, pages 179 - 184, XP055820314, ISSN: 0308-0501, DOI: 10.1002/fam.768 *
BALABANOVICH ALEXANDR I., SCHNABEL WOLFRAM: "Fire Retardance in Polyamide-6,6. The Effects of Red Phosphorus and Radiation-Induced Cross-Links", MACROMOLECULAR MATERIALS AND ENGINEERING, vol. 287, no. 3, 1 March 2002 (2002-03-01), DE , pages 187 - 194, XP055931456, ISSN: 1438-7492, DOI: 10.1002/1439-2054(20020301)287:3<187::AID-MAME187>3.0.CO;2-1 *
See also references of EP4053218A4
ZHU SHIFENG, SHI MEIWU, ZHU MEIFANG: "Thermal and anti-dripping properties of γ-irradiated PA6 fiber with the presence of sensitizers", MATERIALS LETTERS, vol. 99, 1 May 2013 (2013-05-01), AMSTERDAM, NL , pages 28 - 30, XP055931459, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2012.10.052 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716819A (zh) * 2022-02-17 2022-07-08 江苏金发科技新材料有限公司 一种聚酰胺复合材料及其制备方法和应用
CN114716819B (zh) * 2022-02-17 2024-04-19 江苏金发科技新材料有限公司 一种聚酰胺复合材料及其制备方法和应用

Also Published As

Publication number Publication date
JP2023506153A (ja) 2023-02-15
CN111138850A (zh) 2020-05-12
US20230027263A1 (en) 2023-01-26
EP4053218A1 (en) 2022-09-07
EP4053218A4 (en) 2022-12-28
CN111138850B (zh) 2021-08-13
JP7443524B2 (ja) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2021114912A1 (zh) 一种聚酰胺复合材料及其制备方法
CN111004489B (zh) 高耐候、耐水解及抗静电pc/abs合金及其制备方法
US7026388B2 (en) Conductive resin composition and process for producing the same
CN109804001B (zh) 金属接合用树脂组合物及其与金属接合成型品和制造方法
WO2022036986A1 (zh) 一种无卤阻燃聚酰胺复合材料及其制备方法和应用
US20090069479A1 (en) Flame-retardant polyamide composition
CN114133732B (zh) 一种辐照交联用聚酰胺母粒及其制备方法和应用
CN110804135B (zh) 一种高熔体强度聚丙烯及其制备方法
CN112608595B (zh) 一种红磷阻燃聚酰胺组合物及其制备方法和应用
CN112266606A (zh) 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用
WO2023279985A1 (zh) 一种耐循环注塑的pbt组合物及其制备方法和制品
CN108276664B (zh) 墙壁开关用阻燃连续长玻纤增强pp材料及其制备方法
CN114316580A (zh) 一种辐照交联用阻燃增强聚酰胺复合材料的制备方法及应用
CN112745640B (zh) 一种高cti有卤阻燃增强pbt复合材料及其制备方法和应用
CN112745675B (zh) 一种无卤阻燃聚酰胺复合材料及其制备方法与应用
CN113039244B (zh) 聚苯硫醚树脂组合物及其成型品
CN114591567B (zh) 一种玻璃纤维增强的阻燃聚丙烯复合材料及其制备方法和应用
CN102702660B (zh) 一种无卤阻燃acs/pc合金
CN104845339A (zh) 一种改性pc/ptt/碳纤维的复合材料
CN114752178A (zh) 一种基于耐电子束辐照高分子材料改性的动力电池外壳
CN111057358B (zh) 一种高耐热抗冲击聚碳酸酯组合物及其制备方法
CN114369343A (zh) 一种pet复合材料及其制备方法和应用
CN113574104B (zh) 热塑性树脂的耐电痕性改善方法
CN114196203B (zh) 一种红磷阻燃复合物及其制备方法和应用
CN103319872A (zh) Abs改性的聚碳酸酯合金材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534477

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020898821

Country of ref document: EP

Effective date: 20220602

NENP Non-entry into the national phase

Ref country code: DE