JP5790005B2 - ポリアミド樹脂組成物およびその製造方法 - Google Patents

ポリアミド樹脂組成物およびその製造方法 Download PDF

Info

Publication number
JP5790005B2
JP5790005B2 JP2011025619A JP2011025619A JP5790005B2 JP 5790005 B2 JP5790005 B2 JP 5790005B2 JP 2011025619 A JP2011025619 A JP 2011025619A JP 2011025619 A JP2011025619 A JP 2011025619A JP 5790005 B2 JP5790005 B2 JP 5790005B2
Authority
JP
Japan
Prior art keywords
resin
polyamide resin
acid
screw
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011025619A
Other languages
English (en)
Other versions
JP2011195814A (ja
JP2011195814A5 (ja
Inventor
秋田 大
大 秋田
斎藤 真希子
真希子 斎藤
松岡 英夫
英夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011025619A priority Critical patent/JP5790005B2/ja
Publication of JP2011195814A publication Critical patent/JP2011195814A/ja
Publication of JP2011195814A5 publication Critical patent/JP2011195814A5/ja
Application granted granted Critical
Publication of JP5790005B2 publication Critical patent/JP5790005B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリアミド樹脂組成物およびその製造方法に関するものである。更に詳しくは、流動性と機械特性のバランスに優れるポリアミド樹脂組成物およびその製造方法に関するものである。
熱可塑性樹脂、特に機械的特性、熱的性質に優れるエンジニアリングプラスチックはその優れた特性を活かして様々な用途において使用されている。エンジニアリングプラスチックの一種であるポリアミド樹脂は機械特性と靱性のバランスに優れることから射出成形用を中心として各種電気・電子部品、機械部品および自動車部品などの用途に使用され、ポリブチレンテレフタレート(以下PBTと称する)は、成形性、耐熱性、機械的性質および耐薬品性を活かして自動車や電気・電子機器のコネクター、リレー、スイッチなどの工業用成形品の材料として広く使用されている。しかしながら、近年では、自動車大型部品のモジュール化、軽量化に伴う成形品薄肉化に対応するため使用される材料として流動性の向上が求められている。
これに対し熱可塑性樹脂に液晶性樹脂を混合することで流動性が改良されることが知られており、これまでに様々な検討がなされてきた。特許文献1〜5には、ハイパーブランチポリマーを用いる樹脂組成物が記載されており、ある程度の流動性改良効果を有するものの、昨今の自動車大型部品のモジュール化、軽量化に伴う成形品薄肉化に対応し、かつ高レベルの機械物性を発現するためは更なる良流動化手法の開発が求められている。
国際公開第2005/75563号(請求項) 国際公開第2005/75565号(請求項) 国際公開第2006/42705号(請求項) 欧州特許出願公開第142360号明細書(請求項) 特開2008−069339号公報(請求項)
本発明は、流動性と機械特性のバランスに優れるポリアミド樹脂組成物およびその製造方法を提供することを課題とする。
本発明は、かかる課題を解決するために鋭意検討した結果、次のような手段を採用するものである。
すなわち、本発明は以下のとおりである。
1.ポリアミド樹脂を含む樹脂(A)100重量部に対して、芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲である樹状ポリエステル樹脂(B)0.01〜180重量部、および酸無水物(C)0.01〜30重量部を配合してなり、
ポリアミド樹脂を含む樹脂(A)がポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を配合してなり、ポリアミド樹脂を含む樹脂(A)を電子顕微鏡で観察して得られるモルホロジーにおいて、ポリアミド樹脂(A1)が連続相、反応性官能基を有する樹脂(A2)が分散相を形成し、かつ分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における前記微粒子の占める面積が20%以上であることを特徴とするポリアミド樹脂組成物。
2.ポリアミド樹脂を含む樹脂(A)100重量部に対して、芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲である樹状ポリエステル樹脂(B)0.01〜30重量部、および酸無水物(C)0.01〜5重量部を配合してなる1に記載のポリアミド樹脂組成物。
3.ポリアミド樹脂を含む樹脂(A)100重量部に対して、芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲である樹状ポリエステル樹脂(B)0.01〜2.5重量部、および酸無水物(C)0.01〜3重量部を配合してなる1または2に記載のポリアミド樹脂組成物。
4.反応性官能基を有する樹脂(A2)が、反応性官能基を有するゴム質重合体であることを特徴とする3に記載のポリアミド樹脂組成物。
5.反応性官能基を有する樹脂(A2)の反応性官能基が、アミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、オキサゾリン基から選ばれる少なくとも1種であることを特徴とする3または4に記載のポリアミド樹脂組成物。
6.ポリアミド樹脂を含む樹脂(A)が、引張速度V1、V2のときの引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)であることを特徴とする1〜5のいずれかに記載のポリアミド樹脂組成物。
7.ポリアミド樹脂を含む樹脂(A)が、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)であることを特徴とする1〜5のいずれかに記載のポリアミド樹脂組成物。
8.酸無水物(C)が無水フタル酸または無水コハク酸であることを特徴とする1〜7のいずれかに記載のポリアミド樹脂組成物。
9.酸無水物(C)が無水フタル酸であることを特徴とする1〜7のいずれかに記載のポリアミド樹脂組成物。
10.樹状ポリエステル樹脂(B)の芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)が、それぞれ下式(1)で表される構造単位であることを特徴とする1〜9のいずれかに記載のポリアミド樹脂組成物。
Figure 0005790005
(ここで、R1、R2およびR3は、それぞれ下式で表される構造単位から選ばれる少なくとも1種の構造単位である。)
Figure 0005790005
(ただし、式中Yは、水素原子、ハロゲン原子およびアルキル基から選ばれる少なくとも1種である。式中nは2〜8の整数である。)
11.樹状ポリエステル樹脂(B)が、下式(2)で示される基本骨格を含有することを特徴とする1〜10のいずれかに記載のポリアミド樹脂組成物。
Figure 0005790005
(ここで、Dは3官能化合物の有機残基であり、D−D間はエステル結合および/またはアミド結合により直接、あるいは、前記S、TおよびUから選ばれる構造単位を介して結合している。)
12.樹状ポリエステル樹脂(B)が、下式(3)で示される基本骨格を含有することを特徴とする1〜10のいずれかに記載のポリアミド樹脂組成物。
Figure 0005790005
(ここで、Dは4官能化合物の有機残基であり、D−D間はエステル結合および/またはアミド結合により直接、あるいは、前記S、TおよびUから選ばれる構造単位を介して結合している。)
13.樹状ポリエステル樹脂(B)のDで表される有機残基が芳香族化合物の有機残基であることを特徴とする1〜12のいずれかに記載のポリアミド樹脂組成物。
14.樹状ポリエステル樹脂(B)の有機残基Dが下式(4)で表される化合物の有機残基であることを特徴とする1〜11および13のいずれかに記載のポリアミド樹脂組成物。
Figure 0005790005
15.樹状ポリエステル樹脂(B)が、溶融液晶性を示すことを特徴とする1〜14のいずれかに記載のポリアミド樹脂組成物。
16.ポリアミド樹脂を含む樹脂(a1)100重量部に対して、樹状ポリエステル樹脂(B)0.06〜180重量部、および酸無水物(C)0.06〜30重量部を溶融混練した後、ポリアミド樹脂を含む樹脂(a2)を追加して溶融することを特徴とする2〜15のいずれかに記載のポリアミド樹脂組成物の製造方法。
17.ポリアミド樹脂を含む樹脂(a1)100重量部に対して、芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲である樹状ポリエステル樹脂(B)0.06〜180重量部、および酸無水物(C)0.06〜30重量部を配合してなるポリアミド樹脂組成物のマスターペレットと、ポリアミド樹脂を含む樹脂(a2)のペレットからなる混合ペレットであって、ポリアミド樹脂を含む樹脂(a2)がポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を配合してなり、ポリアミド樹脂を含む樹脂(a2)を電子顕微鏡で観察して得られるモルホロジーにおいて、ポリアミド樹脂(A1)が連続相、反応性官能基を有する樹脂(A2)が分散相を形成し、かつ分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における前記微粒子の占める面積が20%以上である混合ペレット
18.17記載の混合ペレットを溶融成形してなる2〜15のいずれかに記載のポリアミド樹脂組成物からなる成形品。
19.1〜15のいずれかに記載のポリアミド樹脂組成物を溶融成形してなる成形品。
20.成形品がフィルム、シートおよび繊維から選ばれる1種であることを特徴とする18または19に記載の成形品。
21.成形品が、自動車部品、電機・電子部品、電子機器筐体、建材、スポーツ用品から選ばれる1種であることを特徴とする18〜20のいずれかに記載の成形品。
本発明によれば、流動性と機械特性のバランスに優れるポリアミド樹脂組成物を提供することができる。本発明の熱可塑性樹脂組成物は、通常の射出成形、射出圧縮成形、圧縮成形、押出成形、プレス成形などの成形方法によって、優れた表面外観(色調)、機械的性質を有する成形品、シート、パイプ、フィルム、繊維などに加工することが可能である。
切り欠き型ミキシングスクリューの例を示す図である。
本発明のポリアミド樹脂組成物は、ポリアミド樹脂を含む樹脂(A)、樹状ポリエステル樹脂(B)、酸無水物(C)を配合してなるものである。
本発明で用いるポリアミド樹脂を含む樹脂(A)、(a1)および(a2)とは、(A)、(a1)および(a2)を100重量%としたときに10〜100重量%ポリアミド樹脂を含むものである。
本発明でいうポリアミド樹脂とは、アミド結合を有する高分子からなる樹脂のことであり、アミノ酸、ラクタムあるいはジアミンとジカルボン酸を主たる原料とするものである。その原料の代表例としては、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε−カプロラクタム、ω−ラウロラクタムなどのラクタム、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミン、メタキシレンジアミン、パラキシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、芳香族のジアミン、およびアジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられ、本発明においては、これらの原料から誘導されるポリアミドホモポリマーまたはコポリマーを各々単独または混合物の形で用いることができる。
本発明において、特に有用なポリアミド樹脂の具体的な例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリペンタメチレンアジパミド(ナイロン56)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリペンタメチレンセバカミド(ナイロン510)、ポリテトラメチレンセバカミド(ナイロン410)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ナイロン66/6I/6)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリキシリレンアジパミド(ナイロンXD6)、ポリヘキサメチレンテレフタルアミド/ポリ−2−メチルペンタメチレンテレフタルアミドコポリマー(ナイロン6T/M5T)、ポリヘキサメチレンテレフタルアミド/ポリペンタメチレンテレフタルアミドコポリマー(ナイロン6T/5T)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)およびこれらの混合物ないし共重合体などが挙げられる。
とりわけ好ましいものとしては、ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12、ナイロン6/66、ナイロン66/6T、ナイロン6T/6Iコポリマーなどの例を挙げることができる。更にこれらのポリアミド樹脂を成形性、耐熱性、靱性、表面性などの必要特性に応じて混合物として用いることも実用上好適であるが、これらの中でナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12が最も好ましい。
これらポリアミド樹脂の重合度には特に制限がなく、サンプル濃度0.01g/mlの98%濃硫酸溶液中、25℃で測定した相対粘度として、1.5〜7.0の範囲が好ましく、特に1.8〜6.0の範囲のポリアミド樹脂が好ましい。
これらポリアミド樹脂のアミノ末端基濃度には特に制限はないが、10×10−5mol/g以下が好ましく、8×10−5mol/g以下がより好ましく、6×10−5mol/g以下が特に好ましい。
本発明で用いるポリアミド樹脂を含む樹脂(A)、(a1)および(a2)中のポリアミド樹脂以外の成分としては、ポリアミド樹脂以外の熱可塑性樹脂類、ゴム類を挙げることができる。
例えば、ポリアミド樹脂以外の熱可塑性樹脂類としては、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリアセタール樹脂、ポリスルホン樹脂、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂やABS樹脂等のスチレン系樹脂、ポリアルキレンオキサイド樹脂等が好ましい例として挙げられる。かかる熱可塑性樹脂類は2種類以上併用することも可能である。
かかる熱可塑性樹脂類は、ポリアミド樹脂との親和性の観点から、ポリアミド樹脂中に存在する官能基と互いに反応する反応性官能基を有することが好ましい。反応性官能基としては、アミノ基、カルボキシル基、カルボキシル金属塩、水酸基、酸無水物基、エポキシ基、イソシアネート基、メルカプト基、オキサゾリン基、スルホン酸基等から選ばれる少なくとも1種が挙げられる。この中でもアミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、オキサゾリン基は反応性が高く、しかも分解、架橋などの副反応が少ないため、より好ましく用いられる。またポリアミド樹脂との親和性を高めるために相溶化剤を含ませることも好ましい。
本発明で用いるポリアミド樹脂を含む樹脂(A)、(a1)および(a2)中のポリアミド樹脂以外の成分として添加可能なゴム類としては、例えばポリブタジエン、ポリイソプレン、スチレン−ブタジエンのランダム共重合体およびブロック共重合体、該ブロック共重合体の水素添加物、アクリロニトリル−ブタジエン共重合体、ブタジエン−イソプレン共重合体などのジエン系ゴム、エチレン−プロピレンのランダム共重合体およびブロック共重合体、エチレン−ブテンのランダム共重合体およびブロック共重合体、エチレンとα−オレフィンとの共重合体、エチレン−アクリル酸、エチレン−メタクリル酸などのエチレン−不飽和カルボン酸共重合体、エチレン−アクリル酸エステル、エチレン−メタクリル酸エステルなどのエチレン−不飽和カルボン酸エステル共重合体、不飽和カルボン酸の一部が金属塩である、エチレン−アクリル酸−アクリル酸金属塩、エチレン−メタクリル酸−メタクリル酸金属塩などのエチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体、アクリル酸エステル−ブタジエン共重合体、例えばブチルアクリレート−ブタジエン共重合体などのアクリル系弾性重合体、エチレン−酢酸ビニルなどのエチレンと脂肪酸ビニルとの共重合体、エチレン−プロピレン−エチリデンノルボルネン共重合体、エチレン−プロピレン−ヘキサジエン共重合体などのエチレン−プロピレン非共役ジエン3元共重合体、ブチレン−イソプレン共重合体、塩素化ポリエチレン、ポリアミドエラストマー、ポリエステルエラストマーなどの熱可塑性エラストマーなどが好ましい例として挙げられる。
これらの中でもポリアミド樹脂との親和性の観点から、エチレン−不飽和カルボン酸エステル共重合体、エチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体が好ましく用いられる。エチレン−不飽和カルボン酸エステル共重合体における不飽和カルボン酸エステルとは、(メタ)アクリル酸エステル好ましくは(メタ)アクリル酸とアルコールとのエステルである。不飽和カルボン酸エステルの具体的な例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸エステルが挙げられる。共重合体中のエチレン成分と不飽和カルボン酸エステル成分の重量比は特に制限はないが、好ましくは90/10〜10/90、より好ましくは85/15〜15/85の範囲である。エチレン−不飽和カルボン酸エステル共重合体の数平均分子量は特に制限されないが、流動性、機械的特性の観点から1000〜70000の範囲が好ましい。
エチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体における不飽和カルボン酸の具体的な例としては、(メタ)アクリル酸などが挙げられる。不飽和カルボン酸金属塩としては、(メタ)アクリル酸金属塩などが挙げられる。不飽和カルボン酸金属塩の金属は、特に限定されないが、好ましくは、ナトリウムなどのアルカリ金属やマグネシウムなどのアルカリ土類金属、亜鉛などが挙げられる。エチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体中の不飽和カルボン酸成分と不飽和カルボン酸金属塩成分の重量比は特に制限されないが、好ましくは95/5〜5/95、より好ましくは90/10〜10/90の範囲である。エチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体の数平均分子量は特に制限されないが、流動性、機械的特性の観点から1000〜70000の範囲が好ましい。
かかるゴム類は、ポリアミド樹脂との親和性の観点から、ポリアミド樹脂中に存在する官能基と互いに反応する反応性官能基を有することが好ましい。反応性官能基としては、アミノ基、カルボキシル基、カルボキシル金属塩、水酸基、酸無水物基、エポキシ基、イソシアネート基、メルカプト基、オキサゾリン基、スルホン酸基等から選ばれる少なくとも1種が挙げられる。この中でもアミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、オキサゾリン基は反応性が高く、しかも分解、架橋などの副反応が少ないため、より好ましく用いられる。
酸無水物基をゴム類に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば、無水マレイン酸、無水イタコン酸、無水エンディック酸、無水シトラコン酸、1−ブテン−3,4−ジカルボン酸無水物等の酸無水物とゴム質重合体の原料である単量体とを共重合する方法、酸無水物をゴム質重合体にグラフトさせる方法などを用いることができる。
また、エポキシ基をゴム類に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジルなどのα,β−不飽和酸のグリシジルエステル化合物等のエポキシ基を有するビニル系単量体を、ゴム質重合体の原料である単量体と共重合する方法、前記官能基を有する重合開始剤または連鎖移動剤を用いてゴム質重合体を重合する方法、エポキシ化合物をゴム質重合体にグラフトさせる方法などを用いることができる。
また、オキサゾリン基をゴム類に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリン、2−スチリル−オキサゾリンなどのオキサゾリン基を有するビニル系単量体をゴム質重合体の原料である単量体と共重合する方法などを用いることができる。
本発明で用いるポリアミド樹脂を含む樹脂(A)および(a2)は、ポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を配合してなり、電子顕微鏡で観察されるモルホロジーにおいて、ポリアミド樹脂(A1)が連続相、反応性官能基を有する樹脂(A2)が分散相を形成し、かつ分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における前記微粒子の占める面積が20%以上であることが好ましい。
ここで反応性官能基を有する樹脂(A2)とは、反応性官能基を分子鎖中に有する樹脂のことであり、ベースとなる樹脂に反応性官能基を導入したものである。
本発明の反応性官能基を有する樹脂(A2)のベースとなる樹脂としては、ポリアミド樹脂(A1)とは異なる熱可塑性樹脂であれば特に制限されないが、好ましくはポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリアセタール樹脂、ポリスルホン樹脂、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂やABS樹脂等のスチレン系樹脂、ゴム質重合体、ポリアルキレンオキサイド樹脂等から、前述のポリアミド樹脂(A1)とは異なるように選ばれる少なくとも1種の樹脂を用いることができる。中でも反応性官能基を有する樹脂(A2)のベースとなる樹脂は、反応性官能基の導入の容易さから、ポリエチレン樹脂、ポリプロピレン樹脂、スチレン系樹脂、ゴム質重合体がより好ましく、さらに耐衝撃性付与の観点から、ゴム質重合体がさらに好ましい。
本発明において、ゴム質重合体は、一般的にガラス転移温度が室温より低い重合体を含有し、分子間の一部が共有結合・イオン結合・ファンデルワールス力・絡み合い等により、互いに拘束されている重合体である。ゴム質重合体は、例えばポリブタジエン、ポリイソプレン、スチレン−ブタジエンのランダム共重合体およびブロック共重合体、該ブロック共重合体の水素添加物、アクリロニトリル−ブタジエン共重合体、ブタジエン−イソプレン共重合体などのジエン系ゴム、エチレン−プロピレンのランダム共重合体およびブロック共重合体、エチレン−ブテンのランダム共重合体およびブロック共重合体、エチレンとα−オレフィンとの共重合体、エチレン−アクリル酸、エチレン−メタクリル酸などのエチレン−不飽和カルボン酸共重合体、エチレン−アクリル酸エステル、エチレン−メタクリル酸エステルなどのエチレン−不飽和カルボン酸エステル共重合体、不飽和カルボン酸の一部が金属塩である、エチレン−アクリル酸−アクリル酸金属塩、エチレン−メタクリル酸−メタクリル酸金属塩などのエチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体、アクリル酸エステル−ブタジエン共重合体、例えばブチルアクリレート−ブタジエン共重合体などのアクリル系弾性重合体、エチレン−酢酸ビニルなどのエチレンと脂肪酸ビニルとの共重合体、エチレン−プロピレン−エチリデンノルボルネン共重合体、エチレン−プロピレン−ヘキサジエン共重合体などのエチレン−プロピレン非共役ジエン3元共重合体、ブチレン−イソプレン共重合体、塩素化ポリエチレン、ポリアミドエラストマー、ポリエステルエラストマーなどの熱可塑性エラストマーなどが好ましい例として挙げられる。これらの中でもポリアミド樹脂(A1)との相溶性の観点から、エチレン−不飽和カルボン酸エステル共重合体、エチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体が好ましく用いられる。
エチレン−不飽和カルボン酸エステル共重合体における不飽和カルボン酸エステルとは、(メタ)アクリル酸エステル好ましくは(メタ)アクリル酸とアルコールとのエステルである。不飽和カルボン酸エステルの具体的な例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸エステルが挙げられる。共重合体中のエチレン成分と不飽和カルボン酸エステル成分の重量比は特に制限はないが、好ましくは90/10〜10/90、より好ましくは85/15〜15/85の範囲である。エチレン−不飽和カルボン酸エステル共重合体の数平均分子量は特に制限されないが、流動性、機械的特性の観点から1000〜70000の範囲が好ましい。
エチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体における不飽和カルボン酸の具体的な例としては、(メタ)アクリル酸などが挙げられる。不飽和カルボン酸金属塩としては、(メタ)アクリル酸金属塩などが挙げられる。不飽和カルボン酸金属塩の金属は、特に限定されないが、好ましくは、ナトリウムなどのアルカリ金属やマグネシウムなどのアルカリ土類金属、亜鉛などが挙げられる。エチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体中の不飽和カルボン酸成分と不飽和カルボン酸金属塩成分の重量比は特に制限されないが、好ましくは95/5〜5/95、より好ましくは90/10〜10/90の範囲である。エチレン−不飽和カルボン酸−不飽和カルボン酸金属塩共重合体の数平均分子量は特に制限されないが、流動性、機械的特性の観点から1000〜70000の範囲が好ましい。
反応性官能基を有する樹脂(A2)が含有する反応性官能基は、ポリアミド樹脂(A1)中に存在する官能基と互いに反応するものであれば特に制限されないが、好ましくは、アミノ基、カルボキシル基、カルボキシル金属塩、水酸基、酸無水物基、エポキシ基、イソシアネート基、メルカプト基、オキサゾリン基、スルホン酸基等から選ばれる少なくとも1種が挙げられる。この中でもアミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、オキサゾリン基は反応性が高く、しかも分解、架橋などの副反応が少ないため、より好ましく用いられる。
酸無水物基をゴム質重合体に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば、無水マレイン酸、無水イタコン酸、無水エンディック酸、無水シトラコン酸、1−ブテン−3,4−ジカルボン酸無水物等の酸無水物とゴム質重合体の原料である単量体とを共重合する方法、酸無水物をゴム質重合体にグラフトさせる方法などを用いることができる。
また、エポキシ基をゴム質重合体に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジルなどのα,β−不飽和酸のグリシジルエステル化合物等のエポキシ基を有するビニル系単量体を、ゴム質重合体の原料である単量体と共重合する方法、前記官能基を有する重合開始剤または連鎖移動剤を用いてゴム質重合体を重合する方法、エポキシ化合物をゴム質重合体にグラフトさせる方法などを用いることができる。
また、オキサゾリン基をゴム質重合体に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリン、2−スチリル−オキサゾリンなどのオキサゾリン基を有するビニル系単量体をゴム質重合体の原料である単量体と共重合する方法などを用いることができる。
反応性官能基を有する樹脂(A2)における、一分子鎖当りの官能基の数については、特に制限はないが通常1〜10個が好ましく、架橋等の副反応を少なくする為に1〜5個が好ましい。また、官能基を全く有さない分子が含まれていても構わないが、その割合は少ない程好ましい。
本発明で用いるポリアミド樹脂を含む樹脂(A)および(a2)は、電子顕微鏡で観察されるモルホロジーにおいて、ポリアミド樹脂(A1)が連続相、反応性官能基を有する樹脂(A2)が分散相を形成し、かつ分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における前記微粒子の占める面積が20%以上であることが好ましい。また前記微粒子の最大粒子径は300nm以下であることが、耐衝撃性発現の面から好ましい。ここでモルホロジー観察方法は公知の技術が適用でき、例えば、射出成形により得られたJIS−5Aダンベル型試験片の断面方向中心部を1〜2mm角に切削し、四酸化ルテニウムで反応性官能基を有する樹脂(A2)を染色後、0.1μm以下(約80nm)の超薄切片をウルトラミクロトームにより−196℃で切削し、3万5千倍に拡大して透過型電子顕微鏡で観察する方法が挙げられる。得られた画像について、基本構造および分散相(A2)内の1〜100nmの微粒子の有無を確認し、更に分散相中における微粒子の占める面積は、Scion Corporation社製画像解析ソフト「Scion Image」を使用し算出する。
本発明で用いるポリアミド樹脂を含む樹脂(A)および(a2)を製造する方法としては、溶融状態での製造や溶液状態での製造等が使用できるが、反応性向上の点から、溶融状態での製造が好ましく使用できる。溶融状態での製造については、押出機による溶融混練やニーダーによる溶融混練等が使用できるが、生産性の点から、連続的に製造可能な押出機による溶融混練が好ましく使用できる。押出機による溶融混練については、単軸押出機、二軸押出機、四軸押出機等の多軸押出機、二軸単軸複合押出機等の押出機を1台以上で使用できるが、混練性、反応性、生産性の向上の点から、二軸押出機、四軸押出機等の多軸押出機が好ましく使用でき、二軸押出機を用いた溶融混練による方法が最も好ましい。
特にポリアミド樹脂を含む樹脂(A)および(a2)が、電子顕微鏡で観察されるモルホロジーにおいて、ポリアミド樹脂(A1)が連続相、反応性官能基を有する樹脂(A2)が分散相を形成し、かつ分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における前記微粒子の占める面積が20%以上である樹脂である場合は、その製造方法としては、以下の方法が有効である。
本発明のポリアミド樹脂を含む樹脂(A)および(a2)の製造方法の一つ目としては、ポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を、スクリュー長さLとスクリュー直径Dの比L/Dが50以上で複数箇所のフルフライトゾーンおよびニーディングゾーンを有する二軸押出機に投入し、スクリュー中のニーディングゾーンの樹脂圧力のうち最大の樹脂圧力をPkmax(MPa)、スクリュー中のフルフライトゾーンの樹脂圧力のうち最小の樹脂圧力をPfmin(MPa)としたときに、
Pkmax≧Pfmin+0.3
を満たす条件で溶融混練して製造する方法が挙げられる。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、特に制限はないが、混練性、反応性の向上の点から、L/Dの値は、60〜200がより好ましく、中でも80〜200の範囲であればさらに好ましい。またL/Dが50未満の二軸押出機を使用する場合でも、複数回混練することにより、熱可塑性樹脂組成物が通過するL/Dを50以上とすることが好ましい。かかるL/Dとは、スクリュー長さLを、スクリュー直径Dで割った値のことである。スクリュー長さとは、スクリュー根元の原料が供給される位置(フィード口)にあるスクリューセグメントの上流側の端部から、スクリュー先端部までの長さである。ここで原料とは、ポリアミド樹脂(A1)、反応性官能基を有する樹脂(A2)、その他の成分として添加する充填剤、熱可塑性樹脂類、ゴム類、各種添加剤類等の成分全てを示す。二軸押出機のスクリューは、フルフライト、ニーディングディスクなどの長さや形状的特徴が異なるスクリューセグメントが組み合わされて構成されている。また、押出機において、原材料が供給される側を上流、溶融樹脂が吐出される側を下流ということがある。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、混練性、反応性の向上の点から、二軸押出機のスクリューが複数ヶ所のフルフライトゾーンおよびニーディングゾーンを有していることが好ましい。フルフライトゾーンは1個以上のフルフライトより構成され、ニーディングゾーンは1個以上のニーディングディスクより構成される。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、複数ヶ所のニーディングゾーンに設置された樹脂圧力計が示す樹脂圧力のうち、最大となるニーディングゾーンの樹脂圧力をPkmax(MPa)、複数ヶ所のフルフライトゾーンに設置された樹脂圧力計が示す樹脂圧力のうち、最小となるフルフライトゾーンの樹脂圧力をPfmin(MPa)とすると、Pkmaxの値が(Pfmin+0.3)以上の条件で製造することが好ましく、(Pfmin+0.5)以上の条件で製造することがより好ましい。
1個以上のニーディングディスクから構成されるニーディングゾーンは、1個以上のフルフライトから構成されるフルフライトゾーンより、溶融樹脂の混練性および反応性に優れる。ニーディングゾーンに溶融樹脂を充満することにより、混練性および反応性が飛躍的に向上する。溶融樹脂の充満状態を示す一つの指標として、樹脂圧力の値があり、樹脂圧力が大きいほど、溶融樹脂が充満している一つの目安となる。すなわち二軸押出機を使用する場合、ニーディングゾーンの樹脂圧力を、フルフライトゾーンの樹脂圧力より、ある範囲で高めることにより、反応を効果的に促進させることが可能となる。
ニーディングゾーンにおける樹脂圧力を高める方法として、特に制限はないが、ニーディングゾーンの間やニーディングゾーンの下流側に、溶融樹脂を上流側に押し戻す効果のある逆スクリューゾーンや溶融樹脂を溜める効果のあるシールリングゾーン等を導入する方法など好ましく使用できる。逆スクリューゾーンやシールリングゾーンは、1個以上の逆スクリューや1個以上のシールリングからなり、それらを組み合わせることも可能である。例えば、ニーディングゾーンの間やニーディングゾーンの下流側に逆スクリューゾーンを導入する場合、逆スクリューゾーンのそれぞれの長さをLrとすると、全ての逆スクリューゾーンが、Lr/D=0.1〜10の長さを有していることが、混練性、反応性の観点から好ましい。各逆スクリューゾーンの長さLr/Dは、より好ましくは0.2〜8、さらに好ましくは0.3〜6である。なお、逆スクリューゾーンの長さLrは、その逆スクリューゾーンを構成する最も上流の逆スクリューの上流端部からスクリュー軸中心線への垂線と、最も下流の逆スクリューの下流端部からスクリュー軸中心線への垂線との間の距離とする。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、押出量がスクリュー回転数1rpm当たり0.01kg/h以上であることが好ましく、より好ましくは0.05kg/h〜1kg/h、さらに好ましくは0.08〜0.5kg/h、最も好ましくは、0.1〜0.3kg/hである。ここで押出量とは、押出機から吐出されるポリアミド樹脂を含む樹脂(A)の押出速度のことであり、1時間当たりに押出される重量(kg)のことである。
なお、前記二軸押出機における押出量に関わる好ましい数値範囲は、スクリュー直径41mmの二軸押出機の押出量を基準とするものである。スクリュー直径が大幅に異なる場合、例えば直径30mm未満、または直径が50mmを超える二軸押出機を使用する場合、押出量は、スケールダウンあるいはスケールアップ前後のスクリュー直径比に対して、好ましくは2.5乗則あるいは3乗則、より好ましくは2.5乗則に従って、低下・増大するものとして、読み替えることができるものとする。
例えば、スクリュー直径が20mmの二軸押出機を使用する場合、押出量がスケールダウン前後のスクリュー直径比の2.5乗則に従うものとすると、ポリアミド樹脂を含む樹脂(A)の押出量は、スクリュー回転数1rpm当たり、好ましくは0.0017kg/h以上、より好ましくは0.0083〜0.17kg/h、さらに好ましくは0.013〜0.083kg/h、最も好ましくは、0.017〜0.050kg/hである。
また、スクリュー直径が100mmの二軸押出機を使用する場合、押出量がスケールアップ前後のスクリュー直径比の2.5乗則に従うものとすると、ポリアミド樹脂を含む樹脂(A)の押出量は、スクリュー回転数1rpm当たり、好ましくは0.093kg/h以上、より好ましくは0.46〜9.29kg/h、さらに好ましくは0.74〜4.65kg/h、最も好ましくは0.93〜2.79kg/hである。
また、スクリューの回転速度としては、特に制限はないが、通常10rpm以上、好ましくは15rpm以上、さらに好ましくは20rpm以上である。また、押出量としては、特に制限はないが、通常0.1kg/h以上、好ましくは0.15kg/h以上、さらに好ましくは0.2kg/h以上である。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、二軸押出機中での滞留時間が1〜30分であることが好ましく、より好ましくは1.5〜25分である。かかる滞留時間とは、二軸押出機に原材料を供給してから吐出するまでの滞留時間の平均であり、無着色のポリアミド樹脂を含む樹脂(A)が所定の押出量に調節された定常的な溶融混練状態において、原料が供給されるスクリュー根本の位置から、原料と共に、着色剤を通常1g程度投入し、着色剤等を投入した時点から押出機の吐出口より押出され、その押出物への着色剤による着色度が最大となる時点までの時間とする。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、二軸押出機のスクリューとしては、特に制限はなく、完全噛み合い型、不完全噛み合い型、非噛み合い型等のスクリューが使用できるが、混練性、反応性の観点から、完全噛み合い型スクリューが好ましい。また、スクリューの回転方向としては、同方向、異方向どちらでも良いが、混練性、反応性の観点から、同方向回転が好ましい。本発明で二軸押出機を使用する場合、スクリューとしては、同方向回転完全噛み合い型が最も好ましい。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、二軸押出機のスクリュー構成としては、フルフライトおよび/またはニーディングディスクを組み合わせて使用するが、溶融状態の熱可塑性樹脂組成物へ効果的に剪断場を付与するスクリュー構成が好ましい。そのため、前記の通り、二軸押出機のスクリューが、1個以上のニーディングディスクから構成されるニーディングゾーンを、長手方向に複数箇所所有していることが好ましく、これらのニーディングゾーンの合計長さが、スクリューの全長の好ましくは5〜50%、より好ましくは10〜40%、さらに好ましくは、15〜30%の範囲である。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、二軸押出機のスクリューにおけるニーディングゾーンのそれぞれの長さをLkとすると、全てのニーディングゾーンが、Lk/D=0.2〜10の長さを有していることが、混練性、反応性の観点から好ましい。各ニーディングゾーンの長さLk/Dは、より好ましくは0.3〜9、さらに好ましくは0.5〜8である。なお、ニーディングゾーンの長さLkは、そのニーディングゾーンを構成する最も上流のニーディングディスクの上流端部からスクリュー軸中心線への垂線と、最も下流のニーディングディスクの下流端部からスクリュー軸中心線への垂線との間の距離とする。また二軸押出機のニーディングゾーンは、スクリュー内の特定の位置に偏在することなく、全域に渡って配置されることが好ましい。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、反応副生成物または熱劣化物質等を除去するため、ベント真空ゾーンを設けてゲージ圧力−0.07MPa以下の圧力まで減圧して溶融混練することが好ましく、ゲージ圧力−0.08MPa以下の圧力まで減圧して溶融混練することがより好ましい。ここでゲージ圧力とは、大気圧をゼロとした際の圧力を示し、低いほど真空度が高く揮発成分を除去する能力が高いことを表す。ベント真空ゾーンにおけるゲージ圧力が−0.07MPaを超えるすなわち真空度が低い場合、前記揮発成分を十分に除去することができず、ポリアミド樹脂を含む樹脂(A)中に不純物が残存するため好ましくない。ベント真空ゾーンにおいて揮発成分を十分に除去することにより、熱可塑性樹脂組成物中の不純物量を低減することが可能となる。ベント真空ゾーンの個数には特に制限はなく、1〜複数個設置することが好ましい。またベント真空ゾーンの位置に関しても特に制限はないが、サンプリングする位置からL/D=0〜10手前の位置に少なくとも1つ設置することは、前記揮発成分を効果的に除去することが可能となるため好ましい。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、最高樹脂温度は180℃〜330℃に制御して溶融混練することが好ましく、200℃〜325℃で溶融混練することがより好ましい。ここでいう最高樹脂温度とは、押出機の複数ヶ所に均等に設置された樹脂温度計により測定した中で最も高い温度を示す。最高樹脂温度が180℃未満の場合には、ポリマー間の反応性が低く、330℃を超える場合には、ポリマーの熱分解が進行するため、最高樹脂温度は180℃〜330℃に制御して溶融混練することが好ましい。
L/Dが50以上の二軸押出機を使用してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、熱劣化を抑制するために原料投入部から不活性ガスを導入して溶融混練することが好ましい。不活性ガスとしては窒素ガスが好ましい。
本発明のポリアミド樹脂を含む樹脂(A)および(a2)の製造方法の二つ目としては、ポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を伸張流動しつつ溶融混練して製造する方法が挙げられる。ここで伸張流動とは、反対方向に流れる2つの流れの中で、溶融した樹脂が引き伸ばされる流動方法のことである。一方、一般的に用いられる剪断流動とは、同一方向で速度の異なる2つの流れの中で、溶融した樹脂が変形を受ける流動方法のことである。ポリアミド樹脂を含む樹脂(A)および(a2)の製造に利用する伸張流動混練では、溶融混練時に一般的に用いられる剪断流動と比較し、分散効率が高いことから、特にリアクティブプロセッシングの様に反応を伴うアロイ化の場合、反応が効率的に進行することが可能となる。
伸張流動しつつ溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、押出機を用いた溶融混練が好ましく用いられ、押出機の例としては、単軸押出機、二軸押出機、三軸以上の多軸押出機が挙げられるが、中でも単軸押出機と二軸押出機が好ましく用いられ、特に二軸押出機が好ましく用いられる。またかかる二軸押出機のスクリューとしては、特に制限はなく、完全噛み合い型、不完全噛み合い型、非噛み合い型等のスクリューが使用できるが、混練性、反応性の観点から、好ましくは、完全噛み合い型である。また、スクリューの回転方向としては、同方向、異方向どちらでも良いが、混練性、反応性の観点から、好ましくは同方向回転である。本発明において、最も好ましいスクリューは、同方向回転完全噛み合い型である。
伸張流動しつつ溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下が10〜1000kg/cm(0.98〜98MPa)であることが好ましい。かかる伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下とは、伸張流動ゾーン手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで求めることができる。伸張流動ゾーンの前後での流入効果圧力降下が10kg/cm(0.98MPa)未満である場合には、伸張流動ゾーン内での伸張流動の形成される割合が低く、また圧力分布の不均一化が生じるため好ましくない。また伸張流動ゾーンの前後での流入効果圧力降下が1000kg/cm(98MPa)より大きい場合には、押出機内での背圧が大きくなりすぎるため安定的な製造が困難となるため好ましくない。また伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下は、50〜600kg/cm(4.9〜59MPa)の範囲がより好ましく、さらには100〜500kg/cm(9.8〜49MPa)の範囲が最も好ましい。
押出機を使用して伸張流動しつつ溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、リアクティブプロセッシングに適した伸張流動場を付与するためには、押出機のスクリューの全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計の長さの割合が、5〜60%の範囲が好ましく、より好ましくは10〜55%、さらに好ましくは、15〜50%の範囲である。
押出機を使用して伸張流動しつつ溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、押出機のスクリューにおける一つの伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の長さをLkとし、スクリュー直径をDとすると、混練性、反応性の観点から、Lk/D=0.2〜10であることが好ましい。より好ましくは0.3〜9、さらに好ましくは0.5〜8である。また、本発明において、二軸押出機の伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)は、スクリュー内の特定の位置に偏在することなく、全域に渡って配置されることが好ましい。
押出機を使用して伸張流動しつつ溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、伸張流動しつつ溶融混練するゾーンの具体的な方法としては、ニーディングディスクよりなり、かかるニーディングディスクのディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に0°<θ<90°の範囲内にあるツイストニーディングディスクであることや、フライトスクリューからなり、かかるフライトスクリューのフライト部にスクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路が形成されていることや、押出機中に溶融樹脂の通過する断面積が暫時減少させた樹脂通路からなることが好ましい例として挙げられる。
押出機を使用して伸張流動しつつ溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、スクリュー回転数1rpmに対する押出量が、0.01kg/h以上であることが好ましい。かかる押出量とは、押出機から吐出されるポリアミド樹脂を含む樹脂の押出速度のことであり、1時間当たりに押出される重量(kg)のことである。スクリュー回転数1rpmに対する押出量が、0.01kg/h未満であると、回転数に対する押出量が十分ではなく、押出機中での滞留時間が長くなりすぎて、熱劣化の原因となると共に、押出機中での樹脂の充満率が非常に小さくなり、十分な混練ができないという問題が生じる。また、スクリューの回転速度としては、前記範囲内であれば特に制限はないが、通常10rpm以上、好ましくは50rpm以上、さらに好ましくは80rpm以上である。また、押出量としては、前記範囲内であれば特に制限はないが、通常0.1kg/h以上、好ましくは0.15kg/h以上、さらに好ましくは0.2kg/h以上である。
押出機を使用して伸張流動しつつ溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、押出機中での滞留時間が1〜30分であることが好ましく、より好ましくは1.5〜28分、さらに好ましくは2〜25分である。かかる滞留時間とは、押出機に原材料を供給してから吐出するまでの滞留時間の平均であり、無着色のポリアミド樹脂を含む樹脂が所定の押出量に調節された定常的な溶融混練状態において、原料が供給されるスクリュー根本の位置から、原料と共に、着色剤を通常1g程度投入し、着色剤等を投入した時点から押出機の吐出口より押出され、その押出物への着色剤による着色度が最大となる時点までの時間とする。滞留時間が1分未満である場合、押出機中での反応時間が短く、十分に反応が促進されないため好ましくなく、滞留時間が30分より長い場合、滞留時間が長いことによる樹脂の熱劣化が起こるため好ましくない。
本発明のポリアミド樹脂を含む樹脂(A)および(a2)の製造方法の三つ目としては、ポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練する方法が挙げられる。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下は10〜1000kg/cm(0.98〜98MPa)であることが好ましい。かかる伸張流動ゾーンの前後での流入効果圧力降下とは、伸張流動ゾーン手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで求めることができる。伸張流動ゾーンの前後での流入効果圧力降下が10kg/cm(0.98MPa)未満である場合には、伸張流動ゾーン内での伸張流動の形成される割合が低く、また圧力分布の不均一化が生じるため好ましくない。また伸張流動ゾーンの前後での流入効果圧力降下が1000kg/cm(98MPa)より大きい場合には、押出機内での背圧が大きくなりすぎるため安定的な製造が困難となるため好ましくない。また伸張流動ゾーンの前後での流入効果圧力降下は、30〜600kg/cm(2.9〜59MPa)の範囲が好ましく、50〜600kg/cm(4.9〜59MPa)の範囲がより好ましく、さらには100〜500kg/cm(9.8〜49MPa)の範囲が最も好ましい。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、押出機のスクリューにおける一つの伸張流動ゾーンの長さをLkとし、スクリュー直径をDとすると、Lk/D=2〜10であることが、混練性、反応性の観点から、好ましい。より好ましくは2.5〜9、さらに好ましくは3〜8である。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、伸張流動ゾーンを形成するための具体的な方法としては、ニーディングディスクよりなり、かかるニーディングディスクのディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に0°<θ<90°の範囲内にあるツイストニーディングディスクであることや、フライトスクリューからなり、かかるフライトスクリューのフライト部にスクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路が形成されていることや、押出機中に溶融樹脂の通過する断面積が暫時減少させた樹脂通路からなることが好ましい例として挙げられる。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、切り欠きとは、図1の1に示すようにスクリューフライトの山の部分を削ってできたものを示す。切り欠き型ミキシングスクリューは樹脂充満率を高くすることが可能で、その切り欠き型ミキシングスクリューを連結させたミキシングゾーンを通過する溶融樹脂は、押出機シリンダー温度の影響を受けやすい。そのため、押出機前半の伸張流動ゾーンで反応促進して発熱した溶融樹脂でもミキシングゾーンで効率的に冷却され、樹脂温度を低下させることが可能となる。また前半の伸張流動ゾーンで反応促進させているため、ミキシングゾーンを通過する際の樹脂の溶融粘度は高くなっており、切り欠き型ミキシングスクリューの切り欠きによる剪断が有効に作用して反応も促進されるようになる。すなわち、伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練する手法は、樹脂温度上昇を抑制しながら、混練性、反応性を向上させることが可能で、スクリュー長さLとスクリュー直径Dの比L/Dが短い汎用の大型押出機で処理量を増加させても、発熱による樹脂劣化を抑制し、衝撃吸収性等に優れるポリアミド樹脂を含む樹脂(A)および(a2)を得ることが可能となる。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、切り欠き型ミキシングスクリューにより溶融混練するゾーン(ミキシングゾーン)は、一条ネジでスクリューピッチの長さが0.1D〜0.5D、かつ切り欠き数が1ピッチ当たり8〜16個である切り欠き型ミキシングスクリューを連結させて構成されることが、樹脂充満による溶融樹脂の冷却効率向上、混練性向上、反応性向上の観点から好ましく、スクリューピッチの長さが0.1D〜0.3D、かつ切り欠き数が1ピッチ当たり10〜15個である切り欠き型ミキシングスクリューを連結させて構成されることが、より好ましい。ここで一条ネジとは、スクリューが360度回転した際にスクリューフライトの山部分が1箇所であることを示す。またスクリューピッチの長さとは、図1の2に示すようにスクリューが360度回転したときのスクリュー長さを示す。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、押出機のスクリューにおける一つのミキシングゾーンの長さをLmとし、スクリュー直径をDとすると、Lm/D=4〜20であることが、樹脂充満による溶融樹脂の冷却効率向上、混練性向上、反応性向上の観点から好ましい。より好ましくは4.5〜18、さらに好ましくは5〜15である。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、ミキシングゾーンは2箇所以上に設けることが、樹脂充満による溶融樹脂の冷却効率の向上、混練性向上、反応性向上の観点から好ましい。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、ミキシングゾーンを構成する切り欠き型ミキシングスクリューの70%以上が、スクリュー軸の回転方向とは逆廻りのネジ廻り方向であることが、樹脂充満による溶融樹脂の冷却効率向上、混練性向上、反応性向上の観点から好ましく、75%以上であることがより好ましい。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、伸張流動ゾーンにおける押出機シリンダー設定温度をCk、ミキシングゾーンにおける押出機シリンダー設定温度をCmとすると、Ck−Cm≧40を満足させつつ溶融混練することが、溶融樹脂の大幅な冷却効率向上に加え、混練性、反応性も大幅に向上できるため好ましく、Ck−Cm≧60を満足させつつ溶融混練することがより好ましい。一般に化学反応は反応温度が高い方が進行しやすく、逆に言うと、樹脂温度が低下すると、熱可塑性樹脂と反応性官能基の反応率は低下する方向に行く。しかし該製造方法ではミキシングゾーンのシリンダー設定温度を下げて樹脂温度を低下させても、逆に反応を進行させることができ、高速引張時の衝撃吸収性、耐衝撃性、耐熱性をより大きくできる。これは、前半に伸張流動しつつ溶融混練するゾーンを設けて熱可塑性樹脂と反応性官能基の反応を促進させているため、ミキシングゾーンを通過する際の溶融粘度が高くなっており、樹脂温度を低下させて更に溶融粘度を高くすると、切り欠き型ミキシングスクリューの切り欠きによる剪断が更に強く作用して、樹脂温度低下による反応率低下を補う以上に反応が促進されるようになるためと考えられる。この効果は伸張流動ゾーンの後に切り欠き型ミキシングスクリューからなるミキシングゾーンを設けたスクリュー構成で初めて発現する。一方で例えば、前半に伸張流動を形成できない一般のニーディングディスクで溶融混練した場合には、熱可塑性樹脂と反応性官能基の反応率は低いため、そのニーディングディスクゾーンの後に切り欠き型ミキシングスクリューから構成されるミキシングゾーンを設けていても、ミキシングゾーンを通過する際の溶融粘度は低い。そのため、切り欠き型ミキシングスクリューの切り欠きによる剪断も小さく、樹脂温度低下による反応率低下を補うだけの反応は進行せず、高速引張時の破断伸度、耐衝撃性、耐熱性が低下する。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、使用する押出機としては、例えば、単軸押出機、二軸押出機、三軸以上の多軸押出機が挙げられるが、中でも単軸押出機と二軸押出機が好ましく用いられ、特に二軸押出機が好ましく用いられる。またかかる二軸押出機のスクリューとしては、特に制限はなく、完全噛み合い型、不完全噛み合い型、非噛み合い型等のスクリューが使用できるが、混練性、反応性の観点から、好ましくは、完全噛み合い型である。また、スクリューの回転方向としては、同方向、異方向どちらでも良いが、混練性、反応性の観点から、好ましくは同方向回転である。本発明において、最も好ましいスクリューは、同方向回転完全噛み合い型である。
伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、L/Dが50未満である汎用の二軸押出機を使用した溶融混練に好ましく適用され、スクリュー直径Dの大きい二軸押出機で処理量を増加させても、発熱による樹脂劣化を抑制し、かつ耐熱性、耐衝撃性、衝撃吸収性等を有する熱可塑性樹脂組成物を得ることができる。
押出機を使用して伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、押出機のスクリューの全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計の長さの割合は5〜40%であり、かつ押出機のスクリューの全長に対する切り欠き型ミキシングスクリューにより溶融混練するゾーン(ミキシングゾーン)の合計の長さの割合は15〜40%であることが、樹脂充満による溶融樹脂の冷却効率の向上、混練性向上、反応性向上の観点から好ましく、伸張流動ゾーンの合計長さの割合が10〜35%、かつミキシングゾーンの合計長さの割合が20〜35%であることがより好ましい。
押出機を使用して伸張流動しつつ溶融混練した後に切り欠き型ミキシングスクリューで溶融混練してポリアミド樹脂を含む樹脂(A)および(a2)を製造する場合、押出機中での滞留時間が6〜1200秒であることが好ましい。かかる滞留時間とは、原料が供給されるスクリュー根本の位置から、原料と共に、着色剤等を投入し、着色剤等を投入した時点から、押出機の吐出口より押出され、その押出物への着色剤による着色度が最大となる時点までの時間のことである。滞留時間が6秒未満である場合、押出機中での反応時間が短く、十分に反応が促進されず、ポリアミド樹脂を含む樹脂(A)および(a2)の特性(耐熱性、耐衝撃性のバランス等)の向上や、特異な粘弾性特性を顕著に発現させた衝撃吸収性の向上が実現されにくい。滞留時間が1200秒より長い場合、滞留時間が長いことによる樹脂の熱劣化が起こるという問題が生じる可能性がある。本発明における滞留時間としては、好ましくは18〜900秒、さらに好ましくは30〜300秒である。
本発明で用いるポリアミド樹脂を含む樹脂(A)および(a2)は、引張速度V1、V2のときの引張弾性率E(V1)、E(V2)が、V1<V2のとき、E(V1)>E(V2)であることが好ましい。この場合の引張試験とは、規格に明記された方法に従って行われ、例えば、射出成形により得られたJIS−5Aダンベル型試験片で行われる。引張弾性率とは、応力−歪み曲線の初期直線部分の勾配を示す。
本発明で用いるポリアミド樹脂を含む樹脂(A)および(a2)は、引張速度V1、V2のときの引張破断伸度ε(V1)、ε(V2)が、V1<V2のとき、ε(V1)<ε(V2)であることが好ましい。この場合の引張試験とは、規格に明記された方法に従って行われ、例えば、射出成形により得られたJIS−5Aダンベル型試験片で行われる。引張破断伸度とは、破壊の瞬間における伸びを示す。前記関係式は、引張速度10mm/min以上500mm/min以下の範囲内における、あらゆるV1、V2に対して成立することが好ましく、さらには1mm/min以上1000mm/min以下の範囲内における、あらゆるV1、V2に対して成立することが好ましい。
本発明で用いる樹状ポリエステル樹脂(B)とは、芳香族オキシカルボニル単位(S)、芳香族および/または脂肪族ジオキシ単位(T)、および、芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲にある樹状ポリエステル樹脂である。
ここで、芳香族オキシカルボニル単位(S)、芳香族および/または脂肪族ジオキシ単位(T)、および、芳香族ジカルボニル単位(U)は、それぞれ下式(1)で表される構造単位であることが好ましい。
Figure 0005790005
ここで、R1およびR3は、それぞれ芳香族残基である。R2は、芳香族残基または脂肪族残基である。R1、R2、およびR3は、それぞれ複数の構造単位を含んでも良い。上記の芳香族残基としては、置換または非置換のフェニレン基、ナフチレン基、ビフェニレン基などが挙げられ、脂肪族残基としてはエチレン、プロピレン、ブチレンなどが挙げられる。R1、R2およびR3は、好ましくは、それぞれ下式で表される構造単位から選ばれる少なくとも1種以上の構造単位である。
Figure 0005790005
ただし、式中Yは、水素原子、ハロゲン原子およびアルキル基から選ばれる少なくとも1種である。ここでアルキル基としては、炭素数1〜4のアルキル基が好ましい。式中nは2〜8の整数である。
本発明の樹状ポリエステルは、3官能以上の有機残基(D)が、互いにエステル結合および/またはアミド結合により直接、あるいは、枝構造部分であるS、TおよびUから選ばれる構造単位を介して結合した、3分岐以上の分岐構造を基本骨格としている。分岐構造は、3分岐、4分岐など単一の基本骨格で形成されていてもよいし、3分岐と4分岐など、複数の基本骨格が共存していてもよい。ポリマーの全てが該基本骨格からなる必要はなく、たとえば末端封鎖のために末端に他の構造が含まれても良い。また、Dが3官能性の有機残基である場合には、樹状ポリエステル中には、Dの3つの官能基が全て反応している構造、2つだけが反応している構造、および1つだけしか反応していない構造が混在していてもよい。好ましくはDの3つの官能基が全て反応した構造が、D全体に対して15モル%以上であることが好ましく、より好ましくは20モル%以上であり、さらに好ましくは30モル%以上である。また、Dが4官能性の有機残基である場合には、樹状ポリエステル中には、Dの4つの官能基が全て反応している構造、3つだけが反応している構造、2つだけが反応している構造、および1つしか反応していない構造が混在していてもよい。好ましくはDの4つの官能基が全て反応した構造がD全体に対して10モル%以上かつ3つの官能基が反応した構造が20モル%以上であることが好ましく、より好ましくは4つの官能基が反応した構造がD全体に対して20モル%以上かつ3つの官能基が反応した構造がD全体に対して30モル%以上であり、さらに好ましくは4つの官能基が反応した構造がD全体に対して25モル%以上かつ3つの官能基が反応した構造がD全体に対して35モル%以上である。
Dは3官能化合物および/または4官能化合物の有機残基であることが好ましく、3官能化合物の有機残基であることが最も好ましい。
上記3分岐の基本骨格を模式的に示すと、式(2)で示される。また上記4分岐の基本骨格を模式的に示すと、式(3)で示される。
Figure 0005790005
Figure 0005790005
本発明の樹状ポリエステルは、溶融液晶性を示すことが好ましい。ここで溶融液晶性を示すとは、室温から昇温していった際に、ある温度域で液晶状態を示すことである。液晶状態とは、せん断下において光学的異方性を示す状態である。
溶融液晶性を示すために、3分岐の場合の基本骨格は、下式(5)で示されるように、有機残基(D)が、S、TおよびUから選ばれる構造単位により構成される枝構造部分Rを介して結合していることが好ましい。
Figure 0005790005
同様に、4分岐の場合の基本骨格は、下式(6)で示される構造が好ましい。
Figure 0005790005
Dで表される3官能の有機残基については特に限定されないが、カルボキシル基、ヒドロキシル基およびアミノ基から選ばれる官能基を含有する化合物の有機残基であることが好ましい。例えば、グリセロール、メチロールプロパン、トリカルバリル酸、ジアミノプロパノール、ジアミノプロピオン酸など脂肪族化合物由来のもの、トリメシン酸、トリメリット酸、4−ヒドロキシ−1,2−ベンゼンジカルボン酸、フロログルシノール、α−レゾルシン酸、β―レゾルシン酸、γ―レゾルシン酸、トリカルボキシナフタレン、ジヒドロキシナフトエ酸、アミノフタル酸、5−アミノイソフタル酸、アミノテレフタル酸、ジアミノ安息香酸、メラミン、シアヌル酸など芳香族化合物由来のものを挙げることができる。これらの中で芳香族化合物由来のものであることが好ましく、下記式(4)で表されるものであることが更に好ましい。具体的にはトリメシン酸、α−レゾルシル酸由来のものが好ましく、特に好ましくはトリメシン酸由来のものである。
Figure 0005790005
また、4官能以上の有機残基Dとしては、カルボキシル基、ヒドロキシル基およびアミノ基から選ばれる官能基を含有する化合物の有機残基であることが好ましい。例えば、エリスリトール、ペンタエリスリトール、スレイトール、キシリトール、グルシトール、マンニトール、1,2,3,4−ブタンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラオール、1,2,3,4,5−シクロヘキサンペンタンオール、1,2,3,4,5,6−シクロヘキサンヘキサンオール、1,2,4,5−シクロヘキサンテトラカルボン酸、1,2,3,4,5−シクロヘキサンペンタカルボン酸、1,2,3,4,5,6−シクロヘキサンヘキサカルボン酸、クエン酸、酒石酸などの脂肪族化合物の残基や1,2,4,5−ベンゼンテトラオール、1,2,3,4−ベンゼンテトラオール、1,2,3,5−ベンゼンテトラオール、1,2,3,4,5−ベンゼンペンタンオール、1,2,3,4,5,6−ベンゼンヘキサンオール、2,2’,3,3’−テトラヒドロキシビフェニル、2,2’,4,4’−テトラヒドロキシビフェニル、3,3’,4,4’−テトラヒドロキシビフェニル、3,3’,5,5’−テトラヒドロキシビフェニル、2,3,6,7−ナフタレンテトラオール、1,4,5,8−ナフタレンテトラオール、ピロメリット酸、メロファン酸、プレーニト酸、メリット酸、2,2’,3,3’−ビフェニルテトラカルボン酸、2,2’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,5,5’−ビフェニルテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、2,3,6,7−ナフタレンテトラオール、1,4,5,8−ナフタレンテトラオール、1,2,4,5,6,8−ナフタレンヘキサオール、1,2,4,5,6,8−ナフタレンヘキサカルボン酸、没食子酸などの芳香族化合物の残基が挙げられる。下式(7)で表される残基がさらに好ましい。
Figure 0005790005
上式の4官能の有機残基の具体例としては、1,2,4,5−ベンゼンテトラオール、1,2,3,4−ベンゼンテトラオール、1,2,3,5−ベンゼンテトラオール、ピロメリット酸、メロファン酸、プレーニト酸、没食子酸などの残基が好ましく、没食子酸の残基が特に好ましい。
また、樹状ポリエステル樹脂の芳香族ヒドロキシカルボニル単位(S)、芳香族および/または脂肪族ジオキシ単位(T)、芳香族ジカルボニル単位(U)は、樹状ポリエステルの分岐間の枝構造部分を構成する単位である。p、q、rをそれぞれ構造単位S、TおよびUの平均含有量(モル比)とした場合にDの含有量dを1モルとした場合にはp+q+r=1〜10であることが好ましい。p+q+rは、より好ましくは、2〜6の範囲である。枝鎖長が長すぎると、剛直で綿密な樹状構造に基づくせん断応答性などの効果が低減するため好ましくない。このp、q、rの値は、例えば、樹状ポリエステル樹脂をペンタフルオロフェノール50重量%:クロロホルム50重量%の混合溶媒に溶解し、40℃でプロトン核の核磁気共鳴スペクトル分析を行った結果のそれぞれの構造単位に由来するピーク強度比から求めることができる。各構造単位のピーク面積強度比から、平均含有率を算出し、小数点3桁は四捨五入する。分岐構造Dの含有量dにあたるピークとの面積強度比から、枝部分Rの平均鎖長を算出し、p+q+rの値とする。この場合にも小数点3桁は四捨五入する。
pとqおよびpとrの比率(p/q、p/r)は、いずれも5/95〜95/5が好ましく、より好ましくは10/90〜90/10であり、より好ましくは20/80〜80/20である。この範囲であれば、液晶性が発現しやすく好ましい。p/q、p/rの比率を95/5以下とすることで、樹状ポリエステル樹脂の融点を適当な範囲とすることができ、p/q、p/rを5/95以上とすることで樹状ポリエステル樹脂の溶融液晶性を発現することができるため好ましい。
qとrは、実質的に等モルであることが好ましいが、末端基を制御するためにどちらかの成分を過剰に加えることもできる。q/rの比率としては0.7〜1.5の範囲であることが好ましく、より好ましくは0.9〜1.1である。ここでいう等モルとは、繰り返し単位内でのモル量が等しいことを意味し、末端構造は含めない。ここで、末端構造とは、枝構造部分の末端を意味し、末端が封鎖されている場合などには、最も末端に近い枝構造部分の末端を意味する。
さらに、R1、R2、R3は前記構造単位である。
R1は芳香族オキシカルボニル単位由来の構造であり、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸から生成した構造単位が挙げられるが、好ましくはp−ヒドロキシ安息香酸由来の構造単位であり、6−ヒドロキシ−2−ナフトエ酸由来のものを一部併用することも可能である。また本発明の効果を損なわない範囲でグリコール酸、乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸などの脂肪族ヒドロキシカルボン酸由来の構造単位を含有しても良い。
R2は芳香族および/または脂肪族ジオキシ単位由来の構造であり、例えば、4,4’−ジヒドロキシビフェニル、ハイドロキノン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニル、t−ブチルハイドロキノン、フェニルハイドロキノン、メチルハイドロキノン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,2−ビス(4−ヒドロキシフェニル)プロパンおよび4,4’−ジヒドロキシジフェニルエーテル、エチレングリコール、1,3−プロピレングリコール、1,4−ブタンジオールなどから生成した構造単位などが挙げられ、好ましくは、4,4’−ジヒドロキシビフェニル、ハイドロキノン、エチレングリコールから生成した構造単位であり、4,4’−ジヒドロキシビフェニルとハイドロキノンもしくは4,4’−ジヒドロキシビフェニルとエチレングリコールから生成した構造単位が含まれることが液晶性の制御の点から好ましい。
R3は芳香族ジカルボニル単位から生成される構造単位であり、例えば、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、1,2−ビス(フェノキシ)エタン−4,4’−ジカルボン酸、1,2−ビス(2−クロロフェノキシ)エタン−4,4’−ジカルボン酸および4,4’−ジフェニルエーテルジカルボン酸などから生成した構造単位が挙げられ、好ましくはテレフタル酸、イソフタル酸から生成した構造単位であり、特に両者を併用した場合に融点調節がしやすく好ましい。また本発明の効果を損なわない範囲でセバシン酸やアジピン酸などの脂肪族ジカルボン酸から生成される構造単位が一部含まれていてもよい。
本発明の樹状ポリエステル樹脂の枝構造部分は、主としてポリエステル骨格からなることが好ましいが、カーボネート構造やアミド構造、ウレタン構造などを特性に大きな影響を与えない程度に導入することも可能であり、中でもアミド構造を導入することが好ましい。このような別の結合を導入することで、多種多様な熱可塑性樹脂に対する相溶性を調整することが可能であり、好ましい。アミド結合の導入の方法としては、p−アミノ安息香酸、m−アミノ安息香酸、p−アミノフェノール、m−アミノフェノール、p−フェニレンジアミン、m−フェニレンジアミン、テトラメチレンジアミンペンタメチレンジアミン、ヘキサメチレンジアミン、2−メチルペンタメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、あるいは芳香族のアミン化合物などを共重合することが好ましく、中でもp−アミノフェノール、p−アミノ安息香酸の共重合が好ましい。
Rの構造の具体例としては、p−ヒドロキシ安息香酸から生成した構造単位および6−ヒドロキシ−2−ナフトエ酸から生成した構造単位からなる構造、p−ヒドロキシ安息香酸から生成した構造単位、6−ヒドロキシ−2−ナフトエ酸から生成した構造単位、4,4’−ジヒドロキシビフェニルから生成した構造単位、テレフタル酸から生成した構造単位からなる構造、p−ヒドロキシ安息香酸から生成した構造単位、4,4’−ジヒドロキシビフェニルから生成した構造単位、テレフタル酸から生成した構造単位、イソフタル酸から生成した構造単位からなる構造、p−ヒドロキシ安息香酸から生成した構造単位、4,4’−ジヒドロキシビフェニルから生成した構造単位、ハイドロキノンから生成した構造単位、テレフタル酸から生成した構造単位、イソフタル酸から生成した構造単位からなる構造、p−ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、テレフタル酸から生成した構造単位からなる構造、p−ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、4,4’−ジヒドロキシビフェニルから生成した構造単位、テレフタル酸から生成した構造単位からなる構造、p−ヒドロキシ安息香酸から生成した構造単位、ハイドロキノンから生成した構造単位、4,4’−ジヒドロキシビフェニルから生成した構造単位、テレフタル酸から生成した構造単位、2,6−ナフタレンジカルボン酸から生成した構造単位からなる構造、p−ヒドロキシ安息香酸から生成した構造単位、6−ヒドロキシ−2−ナフトエ酸から生成した構造単位、ハイドロキノンから生成した構造単位、テレフタル酸から生成した構造単位からなる構造などが挙げられる。
特に好ましいのは、下記構造単位(I)、(II)、(III)、(IV)および(V)から構成されるRもしくは下記構造単位(I)、(II)、(VI)および(IV)から構成されるRである。
Figure 0005790005
Figure 0005790005
上記構造単位(I)、(II)、(III)、(IV)および(V)から構成されるRの場合には、構造単位(I)の含有量pは構造単位の合計p+q+rに対して30〜70%であり、より好ましくは45〜60%である。
また、構造単位(II)の含有量q(II)は構造単位(II)および(III)の合計qに対して60〜75%であり、より好ましくは65〜73%である。また、構造単位(IV)の含有量r(IV)は構造単位(IV)および(V)の合計rに対して60〜92%であり、好ましくは60〜70%であり、より好ましくは62〜68%である。
このような場合には、本発明の特性であるせん断応答性や熱可塑性樹脂への添加効果が顕著に発現するため好ましい。
構造単位(II)および(III)の合計qと(IV)および(V)の合計rは実質的に等モルであることが好ましいが、ポリマーの末端基を調節するためにカルボン酸成分またはヒドロキシル成分を過剰に加えてもよい。すなわち「実質的に等モル」とは、末端を除くポリマー主鎖を構成するユニットとしては等モルであるが、末端を構成するユニットとしては必ずしも等モルとは限らないことを意味する。ここで末端が誘導体もしくは封鎖されている場合には、骨格Rの末端を意味する。
上記構造単位(I)、(II)、(VI)および(IV)から構成されるRの場合には、上記構造単位(I)の含有量pは構造単位(I)、(II)および(VI)の合計に対して30〜90モル%が好ましく、40〜80モル%がより好ましい。また、構造単位(VI)の含有量q(VI)は(II)と(VI)の合計qに対して70〜5モル%が好ましく、60〜8モル%がより好ましい。また、構造単位(IV)は構造単位(II)および(VI)の合計と実質的に等モルであることが好ましいが、いずれかの成分を過剰に加えてもよい。
また、本発明の樹状ポリエステルの末端は、カルボキシル基、水酸基、アミノ基、またはそれらの誘導体が好ましい。水酸基の誘導体もしくは、カルボン酸の誘導体としては、メチルエステルなどのアルキルエステルやフェニルエステルやベンジルエステルなどの芳香族エステルが挙げられる。また、単官能エポキシ化合物、オキサゾリン化合物、オルトエステル、酸無水物化合物などを用いて末端封鎖することも可能である。末端封鎖の方法としては、樹状ポリエステルを合成する際に、あらかじめ単官能性の有機化合物を添加する方法や、ある程度樹状ポリステルの骨格が形成された段階で単官能性の有機化合物を添加する方法などが挙げられる。
具体的には、水酸基末端やアセトキシ末端を封鎖する場合には、安息香酸、4−t−ブチル安息香酸、3−t−ブチル安息香酸、4−クロロ安息香酸、3−クロロ安息香酸、4−メチル安息香酸、3−メチル安息香酸、3,5−ジメチル安息香酸などを添加することで可能である。
また、カルボキシル基末端の封鎖は、カルボン酸反応性単官能化合物を反応することにより行うことができる。ここで、カルボン酸反応性単官能化合物とは、常温または加熱時にカルボン酸と反応し、エステル、アミド、ウレタン、ウレア結合を形成しうる官能基を分子内に1つ有する化合物をいう。樹状ポリエステルの分子末端に存在するカルボン酸基に、カルボン酸反応性単官能化合物を反応させ、分子末端に単官能化合物を導入することにより、樹状ポリエステルの滞留安定性や耐加水分解性を向上させ、さらに他の熱可塑性樹脂や充填剤と混練した際には、熱可塑性樹脂や充填剤の分解を抑制でき、また樹状ポリエステルの分散性が向上することによって、流動性や物性の改良が期待できる。
本発明の樹状ポリエステルに用いることのできるカルボン酸反応性単官能化合物としては、オキサゾリン、エポキシド、オルトエステル、イソシアネート、カルボジイミド、ジアゾ化合物から選ばれる1種類以上の化合物である。カルボン酸との反応性およびハンドリング性の観点から、オキサゾリン、エポキシド、オルトエステル、イソシアネートが好ましく用いることができる。カルボン酸反応性単官能化合物は、単独で使用または2種類以上のカルボン酸反応性単官能化合物を併用しても構わない。
本発明に用いることのできるカルボン酸反応性単官能化合物のうちオキサゾリン化合物としては、例えば、2−メトキシ−2−オキサゾリン、2−エトキシ−2−オキサゾリン、2−プロポキシ−2−オキサゾリン、2−ブトキシ−2−オキサゾリン、2−ペンチルオキシ−2−オキサゾリン、2−ヘキシルオキシ−2−オキサゾリン、2−ヘプチルオキシ−2−オキサゾリン、2−オクチルオキシ−2−オキサゾリン、2−デシルオキシ−2−オキサゾリン、2−シクロペンチルオキシ−2−オキサゾリン、2−シクロヘキシル−2−オキサゾリン、2−アリルオキシ−2−オキサゾリン、2−メタアリルオキシ−2−オキサゾリン、2−フェノキシ−2−オキサゾリン、2−クレジル−2−オキサゾリン、2−p−フェニルフェノキシ−2−オキサゾリン、2−メチル−2−オキサゾリン、2−エチル−2−オキサゾリン、2−プロピル−2−オキサゾリン、2−ブチル−2−オキサゾリン、2−ペンチル−2−オキサゾリン、2−ヘキシル−2−オキサゾリン、2−ヘプチル−2−オキサゾリン、2−オクチル−2−オキサゾリン、2−ノニル−2−オキサゾリン、2−デシル−2−オキサゾリン、2−イソプロピル−2−オキサゾリン、2−イソブチル−2−オキサゾリン、2−sec−ブチル−2−オキサゾリン、2−tert−ブチル−2−オキサゾリン、2−シクロペンチル−2−オキサゾリン、2−シクロヘキシル−2−オキサゾリン、2−アリル−2−オキサゾリン、2−メタアリル−2−オキサゾリン、2−クロチル−2−オキサゾリン、2−フェニル−2−オキサゾリン、2−ビフェニル−2−オキサゾリンなどが挙げられる。このうち、樹状ポリエステルとの反応性や親和性、および耐熱性の観点から、2−メチル−2−オキサゾリン、2−エチル−2−オキサゾリン、2−プロピル−2−オキサゾリン、2−ブチル−2−オキサゾリン、2−イソプロピル−2−オキサゾリン、2−イソブチル−2−オキサゾリン、2−sec−ブチル−2−オキサゾリン、2−tert−ブチル−2−オキサゾリン、2−フェニル−2−オキサゾリン、2−ビフェニル−2−オキサゾリンが好ましく、特に好ましくは2−フェニル−2−オキサゾリンである。
本発明に用いることのできるカルボン酸反応性単官能化合物のうちエポキシ化合物としては、例えば、N−グリシジルフタルイミド、N−グリシジル−4−メチルフタルイミド、N−グリシジル−4,5−ジメチルフタルイミド、N−グリシジル−3−メチルフタルイミド、N−グリシジル−3,6−ジメチルフタルイミド、N−グリシジル−4−エトキシフタルイミド、N−グリシジル−4−クロルフタルイミド、N−グリシジル−4,5−ジクロルフタルイミド、N−グリシジルサクシンイミド、N−グリシジルヘキサヒドロフタルイミド、N−グリシジルマレインイミド、N−グリシジルベンズアミド、N−グリシジル−p−メチルベンズアミド、N−グリシジルナフトアミド、N−グリシジルステラアミド、o−フェニルフェニルグリシジルエーテル、2−メチルオクチルグリシジルエーテル、フェニルグリシジルエーテル、3−(2−キセニルオキシ)−1,2−エポキシプロパン、アリルグリシジルエーテル、ブチルグリシジルエーテル、ラウリルグリシジルエーテル、ベンジルグリシジルエーテル、シクロヘキシルグリシジルエーテル、α−クレシルグリシジルエーテル、p−tert−ブチルフェニルグリシジルエーテル、メタクリル酸グリシジルエーテル、エチレンオキサイド、プロピレンオキサイド、スチレンオキサイド、オクトイレンオキサイド、酢酸グリシジルエステル、プロピオン酸グリシジルエステル、ブタン酸グリシジルエステル、ペンタン酸グリシジルエステル、ヘキサン酸グリシジルエステル、オクタン酸グリシジルエステル、デカン酸グリシジルエステル、ネオデカン酸グリシジルエステル、安息香酸グリシジルエステルなどが挙げられる。このうち、樹状ポリエステルとの反応性や親和性の観点から、エチレンオキサイド、プロピレンオキサイド、ブチルグリシジルエーテル、フェニルグリシジルエーテル、安息香酸グリシジルエステルが好ましく、特に好ましくは安息香酸グリシジルエステルである。
本発明に用いることのできるカルボン酸反応性単官能化合物のうちオルトエステル化合物としては、例えば、オルト酢酸トリメチル、オルト酢酸トリエチル、オルト酢酸トリプロピル、オルト酢酸トリブチル、オルト酢酸トリベンジル、オルト蟻酸トリメチル、オルト蟻酸トリエチル、オルト蟻酸トリプロピル、オルト蟻酸トリブチル、オルト蟻酸トリベンジル、オルトプロピオン酸トリメチル、オルトプロピオン酸トリエチル、オルトプロピオン酸トリプロピル、オルトプロピオン酸トリブチル、オルトプロピオン酸トリベンジル、オルト安息香酸トリメチル、オルト安息香酸トリエチル、オルト安息香酸トリプロピル、オルト安息香酸トリブチル、オルト安息香酸トリベンジルなどが挙げられる。このうち、樹状ポリエステルとの反応性や親和性およびハンドリング性の観点から、オルト酢酸トリメチル、オルト酢酸トリエチル、オルト蟻酸トリメチル、オルト蟻酸トリエチルが好ましく、特に好ましくはオルト酢酸トリメチルまたはオルト酢酸トリエチルである。
本発明に用いることのできるカルボン酸反応性単官能化合物のうちイソシアネート化合物としては、例えば、メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、ブチルイソシアネート、ペンチルイソシアネート、ヘキシルイソシアネート、ヘプチルイソシアネート、オクチルイソシアネート、ノニルイソシアネート、デシルイソシアネート、ドデシルイソシアネート、オクタデシルイソシアネート、ベンジルイソシアネート、シクロへキシルイソシアネート、フェニルイソシアネート、p−クロロフェニルイソシアネート、p−ニトロフェニルイソシアネート、2−クロロエチルイソシアネート、ステアロイルイソシアネート、p−トルオルスルフォニルイソシアネートが挙げられる。このうち、樹状ポリエステルとの反応性や親和性の観点から、メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、ブチルイソシアネート、フェニルイソシアネートが好ましく、特に好ましくはフェニルイソシアネートである。
本発明に用いることのできるカルボン酸反応性単官能化合物のうちジアゾ化合物としては、例えば、ジアゾメタン、ジアゾエタン、ジアゾプロパン、ジアゾブタン、トリメチルシリルジアゾメタンが挙げられる。このうち、樹状ポリエステルとの反応性や親和性の観点から、ジアゾメタンおよびトリメチルシリルジアゾメタンが好ましく用いられる。
理論的には、上記末端の封鎖に用いる有機化合物を、封鎖したい末端基に相当する量添加することで末端封鎖が可能である。封鎖したい末端基相当量に対して、末端封鎖に用いる有機化合物を、1.005倍当量以上用いることが好ましく、より好ましくは1.008倍当量以上である。また、末端封鎖に用いる有機化合物の添加量は2.5倍当量以下であることが好ましい。末端封鎖に用いる化合物の添加量が少なすぎると、末端封鎖が充分ではない。一方、添加量が多すぎると、過剰に添加した化合物が系中に残存して、ガスを発生したりするため好ましくない。
また、有機残基Dの含有量は、樹状ポリエステルを構成する全単量体に対する、有機残基を生成する多官能化合物の配合割合を示し、その含有量は7.5モル%以上であり、10モル%以上がより好ましく、さらに好ましくは20モル%以上である。このような場合に、枝構造部分の連鎖長が、樹状ポリエステルが樹状の形態をとるのに適した長さとなるため好ましい。有機残基Dの含有量の上限としては、50モル%以下であり、45モル%以下が好ましく、40モル%以下がより好ましい。また本発明の樹状ポリエステル樹脂は特性に影響が出ない範囲で、部分的に架橋構造を有していてもよい。
本発明において使用する上記樹状ポリエステル樹脂の製造方法は、特に制限がなく、公知のポリエステルの重縮合法に準じて製造できる。前記R1、R2、R3で表される構造単位を構成する原料単調対をアシル化した後、3官能単量体を反応させる際に、3官能単量体の添加量(モル)を全仕込み単量体(モル)に対して7.5モル%以上となるようにして製造する方法が好ましい。多官能単量体の添加量は、より好ましくは10モル%以上、より好ましくは15モル%以上、さらに好ましくは20モル%以上である。また、添加量の上限としては、50モル%以下が好ましく、より好ましくは33モル%以下である。
例えば、前記構造単位(I)、(II)、(III)、(IV)および(V)から構成されるRとトリメシン酸から構成される樹状ポリエステル樹脂の製造において、次の製造方法が好ましく挙げられる。
(1)p−アセトキシ安息香酸および4,4’−ジアセトキシビフェニル、ジアセトキシベンゼンとテレフタル酸、イソフタル酸から脱酢酸縮重合反応によって液晶性ポリエステルオリゴマーを合成し、トリメシン酸を加えて脱酢酸重合反応させて製造する方法。
(2)p−アセトキシ安息香酸および4,4’−ジアセトキシビフェニル、ジアセトキシベンゼンとテレフタル酸、イソフタル酸およびトリメシン酸から脱酢酸縮重合反応によって製造する方法。
(3)p−ヒドロキシ安息香酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルオリゴマーを合成し、トリメシン酸を加えて脱酢酸重合反応させて製造する方法。
(4)p−ヒドロキシ安息香酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸およびトリメシン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって製造する方法。
(5)p−ヒドロキシ安息香酸のフェニルエステルおよび4,4’−ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルオリゴマーを合成し、トリメシン酸を加えて脱フェノール重縮合反応によって製造する方法。
(6)p−ヒドロキシ安息香酸のフェニルエステルおよび4,4’−ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸のジフェニルエステルおよびトリメシン酸のフェニルエステルから脱フェノール重縮合反応によって製造する方法。
(7)p−ヒドロキシ安息香酸およびテレフタル酸、イソフタル酸、トリメシン酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれフェニルエステルとした後、4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応によって製造する方法。
なかでも(1)〜(4)の製造方法が好ましく、より好ましくは鎖長制御と立体規制の点から(3)または(4)の製造方法が好ましい。
無水酢酸の使用量は、鎖長制御の点からフェノール性水酸基の合計の0.95当量以上1.10当量以下であることが好ましく、1.00当量以上1.05当量以下であることがより好ましい。
本発明の樹状ポリエステル樹脂は、末端に反応性のカルボン酸もしくは水酸基およびその誘導体基があることが特徴であり、配合する熱可塑性樹脂の種類によって、無水酢酸量を制御することおよびジヒドロキシもしくはジカルボン酸モノマーの過剰添加により、末端基を制御することが可能である。分子量を上げるためにトリメシン酸のカルボン酸過剰分に相当するハイドロキノンや4,4’−ジヒドロキシビフェニルなどのジヒドロキシモノマーを過剰に加えカルボン酸と水酸基当量を合わせることが好ましく、一方、カルボン酸を優先的に末端基に残す場合には、ジヒドロキシモノマーの過剰添加を行わないことが好ましく、水酸基を優先的に末端に残す場合には、ジヒドロキシモノマーをトリメシン酸のカルボン酸当量以上に過剰添加し、かつ無水酢酸モル比を1.00未満で行うことが好ましい。
これらの方法により、本発明の樹状ポリエステル樹脂には、種々の熱可塑性樹脂との反応性に富む末端基構造を選択的に設けることが可能である。ただし、熱可塑性樹脂によっては、反応性を抑制するために、末端を選択的に生成した後、単官能エポキシ化合物、単官能カルボン酸などを用いて末端を封鎖した方が分散状態を制御しやすい場合もある。
本発明の樹状ポリエステル樹脂を脱酢酸重縮合反応により製造する際に、樹状ポリエステル樹脂が溶融する温度で、場合によっては減圧下で反応させ、所定量の酢酸を留出させ、重縮合反応を完了させる溶融重合法が好ましい。
例えば、所定量のp−ヒドロキシ安息香酸および4,4’−ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸、無水酢酸を撹拌翼、留出管を備え、下部に吐出口を備えた反応容器中に仕込み、窒素ガス雰囲気下で撹拌しながら加熱し水酸基をアセチル化させた後、200〜350℃まで昇温して酢酸を留出し、理論留出量の50%まで留出した段階で、トリメシン酸を所定量加えてさらに理論留出量の91%まで酢酸留出させ、反応を完了させる方法が挙げられる。
アセチル化させる条件は、通常130〜170℃の範囲、好ましくは135〜155℃の範囲で通常0.5〜6時間、好ましくは135〜145℃の範囲で1〜2時間反応させる。
重縮合させる温度は、樹状ポリエステル樹脂の溶融温度、例えば、200〜350℃の範囲であり、好ましくは樹状ポリエステル樹脂の融点+10℃以上の温度であり、具体的には240〜320℃が好ましい。重縮合させるときは常圧窒素下でも問題ないが、減圧すると反応が早く進み、系内の残留酢酸が少なくなるため好ましい。減圧度は通常0.1mmHg(13.3Pa)〜200mmHg(26600Pa)であり、好ましくは1mmHg(133Pa)〜100mmHg(13300Pa)である。なお、アセチル化と重縮合は同一の反応容器で連続して行っても良いが、アセチル化と重縮合を異なる反応容器で行っても良い。
得られた樹状ポリエステル樹脂は、それが溶融する温度で反応容器内を例えば、およそ0.01〜1.0kg/cm(0.001〜0.1MPa)に加圧し、反応容器下部に設けられた吐出口よりストランド状に吐出することができる。吐出口には断続的に開閉する機構を設け、液滴状に吐出することも可能である。吐出した樹状ポリエステル樹脂は、空気中もしくは水中を通過して冷却されたのち必要に応じて、カッティングもしくは粉砕される。得られたペレット、もしくは粒状または粉状の樹状ポリエステル樹脂は、更に必要に応じて、熱乾燥や真空乾燥により水、酢酸などを除くことができ、重合度の微調整や更に重合度を上げるために、固相重合をすることも可能である。例えば、窒素気流下、または、減圧下、樹状ポリエステル樹脂の融点−5℃〜融点−50℃(例えば、200〜300℃)の範囲で1〜50時間加熱し、所望の重合度まで重縮合し、反応を完了させる方法が挙げられる。
樹状ポリエステル樹脂の重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を使用することもできる。
本発明で用いられる樹状ポリエステル樹脂(B)は、数平均分子量が1,000〜40,000であることが好ましく、より好ましく1,000〜30,000、更に好ましくは1,000〜20,000である。
なお、この数平均分子量は樹状ポリエステル樹脂(B)が可溶な溶媒を使用してGPC−LS(ゲル浸透クロマトグラフ−光散乱)法により測定した値である。
また、本発明における樹状ポリエステル樹脂の溶融粘度は0.01〜50Pa・sが好ましく、0.5〜20Pa・sがより好ましく、さらには1〜10Pa・sが特に好ましい。
なお、この溶融粘度は樹状ポリエステル樹脂の液晶開始温度+10℃の条件で、ずり速度100/sの条件下で高化式フローテスターによって測定した値である。
こうして得られた本発明の樹状ポリエステル樹脂は、溶融液晶性を示し、せん断応答性が高く、配向により高弾性率化、高ガスバリア化するため、単独でも樹脂材料としての他にコーティング剤などに用いることができる。
本発明で用いる酸無水物(C)の具体的な例としては、無水安息香酸、無水イソ酪酸、無水イタコン酸、無水オクタン酸、無水グルタル酸、無水コハク酸、無水酢酸、無水ジメチルマレイン酸、無水デカン酸、無水トリメリット酸、無水1,8−ナフタル酸、無水フタル酸、無水マレイン酸およびその誘導体などが挙げられる。中でも無水フタル酸、無水コハク酸が好ましく用いられ、特に無水フタル酸が好ましく用いられる。
酸無水物(C)はポリアミド樹脂のアミノ末端基と反応するため、ポリアミド樹脂を含む樹脂(A)および(a1)とともに配合することでポリアミド樹脂のアミノ末端基濃度を低減させることが可能となる。その結果、ポリアミド樹脂と樹状ポリエステル樹脂(B)のエステルアミド交換反応が抑制され、樹状ポリエステル樹脂(B)による良流動化効果がより高度に発現するようになる。
本発明では酸無水物(C)を配合することで、ポリアミド樹脂を含む樹脂(A)に樹状ポリエステル樹脂(B)のみを配合したポリアミド樹脂組成物と比較すると、樹状ポリエステル樹脂(B)の添加量が少なくても十分な流動性向上効果を発現でき、耐加水分解性、ウエルド特性、成形時寸法安定性、成形時突き出しピンによる変形性も改良される。
本発明のポリアミド樹脂組成物の配合割合は、ポリアミド樹脂を含む樹脂(A)100重量部に対して、樹状ポリエステル樹脂(B)0.01〜180重量部、および酸無水物(C)0.01〜30重量部である。好ましくは、ポリアミド樹脂を含む樹脂(A)100重量部に対して、樹状ポリエステル樹脂(B)0.01〜30重量部、および酸無水物(C)0.01〜5重量部である。更に好ましくは、ポリアミド樹脂を含む樹脂(A)100重量部に対して、樹状ポリエステル樹脂(B)0.01〜2.5重量部、および酸無水物(C)0.01〜3重量部である。配合量が上記範囲においては、本発明の効果が顕著に得られるために好ましい。
本発明のポリアミド樹脂組成物においては、機械強度やその他特性を付与するために、更に無機充填材、難燃剤、耐熱剤、その他添加剤を配合することが可能である。
無機充填材としては、繊維状、板状、粉末状、粒状などのいずれの充填材も使用することができる。具体的には、ガラス繊維、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカ、ワラステナイトウィスカ、硼酸アルミウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、あるいはタルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラス・ビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、燐酸カルシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、ガラスフレーク、ガラス粉、カーボンブラックおよびシリカ、黒鉛などの非繊維状充填材、およびモンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイトなどのスメクタイト系粘土鉱物やバーミキュライト、ハロイサイト、カネマイト、ケニヤイト、燐酸ジルコニウム、燐酸チタニウムなどの各種粘土鉱物、Li型フッ素テニオライト、Na型フッ素テニオライト、Na型四珪素フッ素雲母、Li型四珪素フッ素雲母等の膨潤性雲母に代表される層状珪酸塩が用いられる。層状珪酸塩は層間に存在する交換性陽イオンが有機オニウムイオンで交換された層状珪酸塩であってもよく、有機オニウムイオンとしてはアンモニウムイオンやホスホニウムイオン、スルホニウムイオンなどが挙げられる。これらのなかではアンモニウムイオンとホスホニウムイオンが好ましく、特にアンモニウムイオンが好んで用いられる。アンモニウムイオンとしては、1級アンモニウム、2級アンモニウム、3級アンモニウム、4級アンモニウムのいずれでも良い。1級アンモニウムイオンとしてはデシルアンモニウム、ドデシルアンモニウム、オクタデシルアンモニウム、オレイルアンモニウム、ベンジルアンモニウムなどが挙げられる。2級アンモニウムイオンとしてはメチルドデシルアンモニウム、メチルオクタデシルアンモニウムなどが挙げられる。3級アンモニウムイオンとしてはジメチルドデシルアンモニウム、ジメチルオクタデシルアンモニウムなどが挙げられる。4級アンモニウムイオンとしてはベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ベンジルジメチルドデシルアンモニウム、ベンジルジメチルオクタデシルアンモニウムなどのベンジルトリアルキルアンモニウムイオン、トリオクチルメチルアンモニウム、トリメチルオクチルアンモニウム、トリメチルドデシルアンモニウム、トリメチルオクタデシルアンモニウムなどのアルキルトリメチルアンモニウムイオン、ジメチルジオクチルアンモニウム、ジメチルジドデシルアンモニウム、ジメチルジオクタデシルアンモニウムなどのジメチルジアルキルアンモニウムイオンなどが挙げられる。また、これらの他にもアニリン、p−フェニレンジアミン、α−ナフチルアミン、p−アミノジメチルアニリン、ベンジジン、ピリジン、ピペリジン、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸などから誘導されるアンモニウムイオンなども挙げられる。これらのアンモニウムイオンの中でも、トリオクチルメチルアンモニウム、トリメチルオクタデシルアンモニウム、ベンジルジメチルオクタデシルアンモニウム、12−アミノドデカン酸から誘導されるアンモニウムイオンなどが好ましい。層間に存在する交換性陽イオンが有機オニウムイオンで交換された層状珪酸塩は、交換性の陽イオンを層間に有する層状珪酸塩と有機オニウムイオンを公知の方法で反応させることにより製造することができる。具体的には、水、メタノール、エタノールなどの極性溶媒中でのイオン交換反応による方法か、層状珪酸塩に液状あるいは溶融させたアンモニウム塩を直接反応させることによる方法などが挙げられる。これら充填剤の中で好ましくはガラス繊維、タルク、ワラステナイト、およびモンモリロナイト、合成雲母などの層状珪酸塩であり、特に好ましくはガラス繊維である。また、上記の無機充填材は2種以上を併用して使用することもできる。なお、本発明に使用する上記の無機充填材はその表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤で処理して用いることもできる。本発明で用いられるガラス繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はなく、例えば長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。またガラス繊維は弱アルカリ性のものが機械的強度の点で優れており、好ましく使用できる。ガラス繊維はエチレン/酢酸ビニル共重合体などの熱可塑性樹脂、エポキシ系、ウレタン系、アクリル系などの被覆あるいは収束剤で処理されていることが好ましく、エポキシ系が特に好ましい。またシラン系、チタネート系などのカップリング剤、その他表面処理剤で処理されていることが好ましく、エポキシシラン、アミノシラン系のカップリング剤が特に好ましい。
難燃剤としては、特に限定はされないが、具体的には、リン系難燃剤、窒素系難燃剤および水酸化マグネシウムなどのハロゲン原子を含まない非ハロゲン系難燃剤、臭素系難燃剤に代表されるハロゲン系難燃剤を挙げることができる。これらの難燃剤は単独で使用しても良いし、複数を併用して用いても良い。
リン系難燃剤としては、リン元素を含有する化合物であり、具体的には、赤燐、ポリリン酸アンモニウム、ポリリン酸メラミンなどのポリリン酸系化合物、芳香族ホスフェート系化合物、芳香族ビスホスフェート系化合物などが挙げられる。
窒素系難燃剤としては、トリアジン系化合物とシアヌール酸またはイソシアヌール酸の塩を形成する化合物が挙げられる。シアヌール酸またはイソシアヌール酸の塩とは、シアヌール酸またはイソシアヌール酸とトリアジン系化合物との付加物であり、通常は1対1(モル比)、場合により1対2(モル比)の組成を有する付加物である。トリアジン系化合物のうち、シアヌール酸またはイソシアヌール酸と塩を形成しないものは除外される。シアヌール酸またはイソシアヌール酸との塩のうち、特に好ましい例としてはメラミン、モノ(ヒドロキシメチル)メラミン、ジ(ヒドロキシメチル)メラミン、トリ(ヒドロキシメチル)メラミン、ベンゾグアナミン、アセトグアナミン、2−アミド−4,6−ジアミノ−1,3,5−トリアジンの塩が挙げられ、とりわけメラミン、ベンゾグアナミン、アセトグアナミンの塩が好ましい。
水酸化マグネシウムは通常市販されているものであり、粒子径、比表面積、形状など特に限定されるものではないが、好ましくは粒子径が0.1〜20μm、比表面積が3〜75m/g、形状は球状、針状又は小板状のものがよい。水酸化マグネシウムの表面処理については施されていてもいなくてもよい。表面処理法の例としては、シランカップリング剤、アニオン界面活性剤、多価官能性有機酸、エポキシ樹脂など熱硬化性樹脂による被覆形成などの処理法が挙げられる。
臭素系難燃剤としては、化学構造中に臭素を含有する化合物であれば特に制限はなく、通常公知の難燃剤を使用することができる。例えばヘキサブロモベンゼン、ペンタブロモトルエン、ヘキサブロモビフェニル、デカブロモビフェニル、ヘキサブロモシクロデカン、デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル、ヘキサブロモジフェニルエーテル、ビス(ペンタブロモフェノキシ)エタン、エチレン−ビス(テトラブロモフタルイミド)、テトラブロモビスフェノールAなどのモノマー系有機臭素化合物、臭素化ポリカーボネート(例えば臭素化ビスフェノールAを原料として製造されたポリカーボネートオリゴマーあるいはそのビスフェノールAとの共重合物)、臭素化エポキシ化合物(例えば臭素化ビスフェノールAとエピクロルヒドリンとの反応によって製造されるジエポキシ化合物や臭素化フェノール類とエピクロルヒドリンとの反応によって得られるものエポキシ化合物)、ポリ(臭素化ベンジルアクリレート)、臭素化ポリフェニレンエーテル、臭素化ビスフェノールA、塩化シアヌールおよび臭素化フェノールの縮合物、臭素化(ポリスチレン)、ポリ(臭素化スチレン)、架橋臭素化ポリスチレンなどの臭素化ポリスチレン、架橋または非架橋臭素化ポリα−メチルスチレンなどのハロゲン化されたポリマー系臭素化合物が挙げられ、なかでもエチレンビス(テトラブロモフタルイミド)、臭素化エポキシポリマー、臭素化ポリスチレン、架橋臭素化ポリスチレン、臭素化ポリフェニレンエーテルおよび臭素化ポリカーボネートが好ましく、臭素化ポリスチレン、架橋臭素化ポリスチレン、臭素化ポリフェニレンエーテルおよび臭素化ポリカーボネートが最も好ましく使用できる。また、上記の臭素系難燃剤と併用することによって、相乗的に難燃性を向上させるために使用される難燃助剤を添加することも好ましく、例えば三酸化アンチモン、五酸化アンチモン、四酸化アンチモン、十三酸化六アンチモン、結晶性アンチモン酸、アンチモン酸ナトリウム、アンチモン酸リチウム、アンチモン酸バリウム、リン酸アンチモン、硼酸亜鉛、錫酸亜鉛、塩基性モリブデン酸亜鉛、モリブデン酸カルシウム亜鉛、酸化モリブデン、酸化ジルコニウム、酸化亜鉛、酸化鉄、赤リン、膨潤性黒鉛、カーボンブラック等を例示できる。これらのうち三酸化アンチモン、五酸化アンチモンがより好ましい。
耐熱剤としては、例えば、フェノール系化合物、リン系化合物、銅化合物などの熱安定性を保持するためのものが挙げられる。また、フェノール系化合物およびリン系化合物を併用して使用することは、特に耐熱性、熱安定性、流動性保持効果が大きく好ましい。
フェノール系化合物としては、ヒンダードフェノール系化合物が好ましく用いられ、具体例としては、トリエチレングリコール−ビス[3−t−ブチル−(5−メチル−4−ヒドロキシフェニル)プロピオネート]、N、N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナミド)、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリチルテトラキス[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−s−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシ−フェニル)プロピオネート、3,9−ビス[2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼンなどが挙げられる。中でも、N、N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナミド)、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンなどが好ましく用いられる。かかるフェノール系化合物の添加量は、耐熱改良効果の点からポリアミド樹脂100重量部に対して、0.01重量部以上、特に0.02重量部以上であることが好ましく、成形時に発生するガス成分の観点からは、5重量部以下、特に1重量部以下であることが好ましい。
リン系化合物としては、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,4−ジ−クミルフェニル)ペンタエリスリトール−ジ−ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビスフェニレンホスファイト、ジ−ステアリルペンタエリスリトール−ジ−ホスファイト、トリフェニルホスファイト、3,5−ジーブチル−4−ヒドロキシベンジルホスフォネートジエチルエステルなどが挙げられる。中でも、ポリアミド樹脂のコンパウンド中に耐熱剤の揮発や分解を少なくするために、融点が高いものが好ましく用いられる。かかるリン系化合物の添加量は、耐熱改良効果の点からポリアミド樹脂100重量部に対して、0.01重量部以上、特に0.02重量部以上であることが好ましく、成形時に発生するガス成分の観点からは、5重量部以下、特に1重量部以下であることが好ましい。
銅化合物としては、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化第一銅、ヨウ化第二銅、硫酸第二銅、硝酸第二銅、リン酸銅、酢酸第一銅、酢酸第二銅、サリチル酸第二銅、ステアリン酸第二銅、安息香酸第二銅および前記無機ハロゲン化銅とキシリレンジアミン、2−メルカプトベンズイミダゾール、ベンズイミダゾールなどの錯化合物などが挙げられる。なかでも1価の銅化合物とりわけ1価のハロゲン化銅化合物が好ましく、酢酸第1銅、ヨウ化第1銅などを特に好適な銅化合物として例示できる。かかる銅化合物の添加量は、ポリアミド樹脂100重量部に対して、0.01〜2重量部であることが好ましく、さらに0.015〜1重量部の範囲であることが好ましい。添加量が多すぎると溶融成形時に金属銅の遊離が起こり、着色により製品の価値を減ずることになる。また銅化合物と併用する形でハロゲン化アルカリを添加することも可能である。このハロゲン化アルカリ化合物の例としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、臭化ナトリウムおよびヨウ化ナトリウムを挙げることができ、ヨウ化カリウム、ヨウ化ナトリウムが特に好ましい。
その他添加剤としては、例えば、紫外線吸収剤(レゾルシノール、サリシレート等)、亜リン酸塩、次亜リン酸塩などの着色防止剤、滑剤および離型剤(ステアリン酸、モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料および顔料を含む着色剤、導電剤あるいは着色剤としてカーボンブラック、結晶核剤、可塑剤および帯電防止剤など、通常の添加剤が挙げられる。
ポリアミド樹脂を含む樹脂(A)、樹状ポリエステル樹脂(B)、および酸無水物(C)を配合してなる本発明のポリアミド樹脂組成物の製造方法としては、溶融混練による方法が好ましく、溶融混練には公知の方法を用いることができる。例えば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用い、ポリアミド樹脂を含む樹脂(A)の溶融温度以上で溶融混練することができる。中でも、二軸押出機が好ましい。
混練方法としては、特に制限はないが、1)ポリアミド樹脂を含む樹脂(A)、樹状ポリエステル樹脂(B)、および酸無水物(C)を一括混練する方法、2)ポリアミド樹脂を含む樹脂(a1)100重量部に対して、樹状ポリエステル樹脂(B)0.06〜180重量部、および酸無水物(C)0.06〜30重量部を溶融混練した後、ポリアミド樹脂を含む樹脂(a2)を追加して溶融する方法などを例示することができる。
上記2)記載の混練方法は、ポリアミド樹脂を含む樹脂(a1)100重量部に対して、樹状ポリエステル樹脂(B)0.06〜180重量部、および酸無水物(C)0.06〜30重量部を溶融混練した後、ストランド状に吐出して冷却しカッティングして得た、樹状ポリエステル樹脂(B)および酸無水物(C)を高濃度に含有したペレット(マスターペレット)とポリアミド樹脂を含む樹脂(a2)のペレットを固体状態で混合してから溶融する方法も好ましく含まれる。また本発明は、上記マスターペレットとポリアミド樹脂を含む樹脂(a2)ペレットの混合ペレット、およびこの混合ペレットを溶融成形してなる成形品も提供するものである。ここで言う溶融成形とは、通常公知の射出成形、射出圧縮成形、圧縮成形、押出成形、ブロー成形、プレス成形、紡糸などの任意の方法を示す。
特に上記2)記載の混練方法は、ポリアミド樹脂を含む樹脂(a2)に、ポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を配合してなり、電子顕微鏡で観察されるモルホロジーにおいて、ポリアミド樹脂(A1)が連続相、反応性官能基を有する樹脂(A2)が分散相を形成し、かつ分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における前記微粒子の占める面積が20%以上である樹脂を用いた際に有効であり、流動性が大幅に改良される以外に、引張試験時の特異性が顕著になる。
具体的には、上記2)記載の混練方法で得られた成形品は、引張速度V1、V2のときの引張破断伸度ε(V1)、ε(V2)が、V1<V2のとき、ε(V1)<ε(V2)となることは勿論のこと、ε(V1)およびε(V2)の絶対値が大きくなり、かつε(V1)とε(V2)の差も大きくなる。この効果は、上記1)のポリアミド樹脂を含む樹脂(A)、樹状ポリエステル樹脂(B)、および酸無水物(C)を一括混練する方法では得ることができない。ここで引張試験とは、規格に明記された方法に従って行われ、例えば、射出成形により得られたJIS−5Aダンベル型試験片で行われる。引張破断伸度とは、破壊の瞬間における伸びを示す。前記関係式は、引張速度10mm/min以上500mm/min以下の範囲内における、あらゆるV1、V2に対して成立することが好ましく、さらには1mm/min以上1000mm/min以下の範囲内における、あらゆるV1、V2に対して成立することが好ましい。
本発明のポリアミド樹脂組成物は、通常公知の射出成形、射出圧縮成形、圧縮成形、押出成形、ブロー成形、プレス成形、紡糸などの任意の方法で成形することができ、各種成形品に加工し利用することができる。成形品としては、射出成形品、押出成形品、ブロー成形品、フィルム、シート、繊維などとして利用でき、フィルムとしては、未延伸、一軸延伸、二軸延伸などの各種フィルムとして、繊維としては、未延伸糸、延伸糸、超延伸糸など各種繊維として利用することができる。特に、本発明においては流動性に優れる点を活かして、自動車部品等の大型射出成形品や厚み0.01〜1.0mmの薄肉部位を有する射出成形品に加工することが可能である。
本発明において、上記各種成形品は、自動車部品、電子機器筐体、電気・電子部品、建材、スポーツ用品、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。具体的な用途としては、エアフローメーター、エアポンプ、サーモスタットハウジング、エンジンマウント、イグニッションホビン、イグニッションケース、クラッチボビン、センサーハウジング、アイドルスピードコントロールバルブ、バキュームスイッチングバルブ、ECUハウジング、バキュームポンプケース、インヒビタースイッチ、回転センサー、加速度センサー、ディストリビューターキャップ、コイルベース、ABS用アクチュエーターケース、ラジエータタンクのトップ及びボトム、クーリングファン、ファンシュラウド、エンジンカバー、シリンダーヘッドカバー、オイルキャップ、オイルパン、オイルフィルター、フューエルキャップ、フューエルストレーナー、ディストリビューターキャップ、ベーパーキャニスターハウジング、エアクリーナーハウジング、タイミングベルトカバー、ブレーキブースター部品、各種ケース、各種チューブ、各種タンク、各種ホース、各種クリップ、各種バルブ、各種パイプなどの自動車用アンダーフード部品、トルクコントロールレバー、安全ベルト部品、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、各種モーターハウジングなどの自動車用内装部品、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、グリルエプロンカバーフレーム、ランプリフレクター、ランプベゼル、ドアハンドルなどの自動車用外装部品、ワイヤーハーネスコネクター、SMJコネクター、PCBコネクター、ドアグロメットコネクターなど各種自動車用コネクター、リレーケース、コイルボビン、光ピックアップシャーシ、モーターケース、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、記録媒体(CD、DVD、PD、FDDなど)ドライブのハウジングおよび内部部品、コピー機のハウジングおよび内部部品、ファクシミリのハウジングおよび内部部品、パラボラアンテナなどに代表される電気・電子部品を挙げることができる。またノートパソコン等の電子機器筐体にも好適である。更に、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、ビデオカメラ、プロジェクターなどの映像機器部品、レーザーディスク(登録商標)、コンパクトディスク(CD)、CD−ROM、CD−R、CD−RW、DVD−ROM、DVD−R、DVD−RW、DVD−RAM、ブルーレイディスクなどの光記録媒体の基板、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品、などに代表される家庭・事務電気製品部品を挙げることができる。また電子楽器、家庭用ゲーム機、携帯型ゲーム機などのハウジングや内部部品、各種ギヤー、各種ケース、センサー、LEPランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドホン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、コイルボビンなどの電気・電子部品、サッシ戸車、ブラインドカーテンパーツ、配管ジョイント、カーテンライナー、ブラインド部品、ガスメーター部品、水道メーター部品、湯沸かし器部品、ルーフパネル、断熱壁、アジャスター、プラ束、天井釣り具、階段、ドアー、床などの建築部材、釣り糸、漁網、海藻養殖網、釣り餌袋などの水産関連部材、植生ネット、植生マット、防草袋、防草ネット、養生シート、法面保護シート、飛灰押さえシート、ドレーンシート、保水シート、汚泥・ヘドロ脱水袋、コンクリート型枠などの土木関連部材、歯車、ねじ、バネ、軸受、レバー、キーステム、カム、ラチェット、ローラー、給水部品、玩具部品、結束バンド、クリップ、ファン、テグス、パイプ、洗浄用治具、モーター部品、顕微鏡、双眼鏡、カメラ、時計などの機械部品、マルチフィルム、トンネル用フィルム、防鳥シート、植生保護用不織布、育苗用ポット、植生杭、種紐テープ、発芽シート、ハウス内張シート、農ビの止め具、緩効性肥料、防根シート、園芸ネット、防虫ネット、幼齢木ネット、プリントラミネート、肥料袋、試料袋、土嚢、獣害防止ネット、誘因紐、防風網などの農業部材、紙おむつ、生理用品包材、綿棒、おしぼり、便座ふきなどの衛生用品、医療用不織布(縫合部補強材、癒着防止膜、人工器官補修材)、創傷被服材、キズテープ包帯、貼符材基布、手術用縫合糸、骨折補強材、医療用フィルムなどの医療用品、カレンダー、文具、衣料、食品等の包装用フィルム、トレイ、ブリスター、ナイフ、フォーク、スプーン、チューブ、プラスチック缶、パウチ、コンテナー、タンク、カゴなどの容器・食器類、ホットフィル容器類、電子レンジ調理用容器類化粧品容器、ラップ、発泡緩衝剤、紙ラミ、シャンプーボトル、飲料用ボトル、カップ、キャンディ包装、シュリンクラベル、蓋材料、窓付き封筒、果物かご、手切れテープ、イージーピール包装、卵パック、HDD用包装、コンポスト袋、記録メディア包装、ショッピングバック、電気・電子部品等のラッピングフィルムなどの容器・包装、天然繊維複合、ポロシャツ、Tシャツ、インナー、ユニホーム、セーター、靴下、ネクタイなどの各種衣料、カーテン、イス貼り地、カーペット、テーブルクロス、布団地、壁紙、ふろしきなどのインテリア用品、キャリアーテープ、プリントラミ、感熱孔版印刷用フィルム、離型フィルム、多孔性フィルム、コンテナバッグ、クレジットカード、キャッシュカード、IDカード、ICカード、紙、皮革、不織布等のホットメルトバインダー、磁性体、硫化亜鉛、電極材料等粉体のバインダー、光学素子、導電性エンボステープ、ICトレイ、ゴルフティー、ゴミ袋、レジ袋、各種ネット、歯ブラシ、文房具、水切りネット、ボディタオル、ハンドタオル、お茶パック、排水溝フィルター、クリアファイル、コート剤、接着剤、カバン、イス、テーブル、クーラーボックス、クマデ、ホースリール、プランター、ホースノズル、食卓、机の表面、家具パネル、台所キャビネット、ペンキャップ、ガスライターなどとして有用である。またスポーツ用品としても好適であり、ゴルフクラブやシャフト、グリップ、ゴルフボール等のゴルフ関連用品、テニスラケットやバトミントンラケットおよびそのガット等のスポーツラケット関連用品、アメリカンフットボールや野球、ソフトボール等のマスク、ヘルメット、胸当て、肘当て、膝当て等のスポーツ用身体保護用品、スポーツウェア等のウェア関連用品、スポーツシューズの底材等のシューズ関連用品、釣り竿、釣り糸等の釣り具関連用品、サーフィン等のサマースポーツ関連用品、スキー・スノーボード等のウィンタースポーツ関連用品、その他インドアおよびアウトドアスポーツ関連用品等にも好適に使用される。
以下、実施例により本発明をさらに詳述するが、本発明の骨子は以下の実施例のみに限定されるものではない。
(1)射出成形
(1−1)参考例13〜30、実施例18〜43、70〜95、比較例24〜44、61〜81の引張試験片
日精樹脂工業社製射出成形機(NP7−1F)を用いて、表に記載のシリンダー温度、金型温度に設定し、射出圧力下限圧+5kgf/cmの条件により、JIS−5Aダンベル型試験片(長さ75mm×端部幅12.5mm×厚さ2mm)を作製した。
(1−2)参考例31〜41、参考実施例1〜15、実施例16〜17参考実施例55〜67、実施例68〜69、参考比較例1〜15、18〜23、比較例16〜17参考比較例45〜55、58〜60、比較例56〜57の引張試験片、曲げ試験片、Izod衝撃試験片
住友重機社製射出成形機(SG75H−MIV)を用いて、表に記載のシリンダー温度、金型温度に設定し、射出圧力下限圧+5kgf/cm2の条件により、ASTM1号ダンベル型試験片、1/2”×5”×1/4”の棒状試験片および1/8インチノッチ付きIzod衝撃試験片を作製した。
(2)モルホロジー観察
射出成形により得られたJIS−5Aダンベル型試験片の断面方向中心部を1〜2mm角に切削し、四酸化ルテニウムで反応性官能基を有する樹脂(A2)を染色後、0.1μm以下(約80nm)の超薄切片をウルトラミクロトームにより−196℃で切削し、3万5千倍に拡大して透過型電子顕微鏡で観察した。得られた画像について、基本構造および分散相(A2)内の1〜100nmの微粒子の有無を確認し、更に分散相中における微粒子の占める面積は、Scion Corporation社製画像解析ソフト「Scion Image」を使用し算出した。
(3)流動性
住友重機社製射出成形機(SG75H−MIV)を用いて、表に記載のシリンダー温度、金型温度に設定し、射出圧力を30MPaに設定し、200mm長×10mm幅×1mm厚の棒流動試験片を用い、保圧0での棒流動長を測定した。流動長が大きいほど流動性に優れることを示している。
(4)引張弾性率および引張破断伸度の評価
射出成形により得られたJIS−5Aダンベル型試験片を、オートグラフAG100kNG(島津製作所製)に供し、チャック間距離を50mmとし、100mm/min、500mm/min、1000mm/minの速度で、引張試験を実施し、各速度における引張弾性率および引張破断伸度を評価した。なお、引張破断伸度は、チャック間距離50mmを基準とした破断伸度とした。
(5)引張強度の評価
射出成形により得られたASTM1号ダンベル型試験片を用いて、テンシロンUTA−2.5T(オリエンテック社製)に供し、ASTM−D638に準じて、23℃、湿度50%の雰囲気下で、評点間距離114mm、歪み速度10mm/minで引張試験を行い評価した。
(6)曲げ弾性率の評価
射出成形により得られた1/2”×5”×1/4”の棒状試験片を用いて、テンシロンRTA−1T(オリエンテック社製)に供し、ASTMーD790に準じて、23℃、湿度50%の雰囲気下で、試料評点間距離100mm、歪み速度3mm/minで曲げ試験を行い評価した。
(7)衝撃強度の評価
射出成形により得られた1/8インチノッチ付きIzod衝撃試験片を用いて、ASTMーD256に従い、23℃、湿度50%の雰囲気下でIzod衝撃強度を評価した。
参考例1
撹拌翼および留出管を備えた500mLの反応容器にp−ヒドロキシ安息香酸51.93g(0.38モル)、4,4’−ジヒドロキシビフェニル19.1g(0.10モル)、テレフタル酸5.86g(0.035モル)、トリメシン酸21.2g(0.10モル)、安息香酸5.55g(0.045モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレ−ト11.3g(0.059モル)および無水酢酸65.3g(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた。3時間かけて290℃まで昇温した後、重合温度を290℃に保持したまま30分で1.0mmHg(133Pa)に減圧し、撹拌トルクが2.5kg・cmに到達したところで重合反応を停止し内容物を水中に吐出した。得られた樹状ポリエステル(B−1)は、110℃で4時間加熱乾燥した後ブレンダーを用いて粉砕し、エタノールおよび脱イオン水で洗浄した。その後、真空加熱乾燥機を用いて110℃で16時間真空乾燥し、得られた粉体状樹状ポリエステルを各種測定に供した。
得られた樹状ポリエステル(B−1)について核磁気共鳴スペクトル分析を行った結果、トリメシン酸含有量は14モル%であった。
核磁気共鳴スペクトルは、サンプルをペンタフルオロフェノール50重量%:重クロロホルム50重量%混合溶媒に溶解し、40℃でプロトン核の核磁気共鳴スペクトル分析を行った。p−オキシベンゾエート単位由来の7.44ppmおよび8.16ppmのピーク、4,4’−ジオキシビフェニル単位由来の7.04ppm、7.70ppmのピーク、テレフタレート単位由来の8.31ppmのピーク、エチレンオキシド単位由来の4.75ppmのピーク、トリメシン酸由来の9.25ppmのピークが検出された。各ピークの面積強度比から、トリメシン酸含有量を算出し、小数点以下は四捨五入した。
得られた樹状ポリエステルの融点は235℃、液晶開始温度は191℃で数平均分子量12500であった。高化式フローテスターを用い、温度270℃、剪断速度100/sで測定した溶融粘度は18Pa・sであった。
なお、融点(Tm)は示差走査熱量測定において、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)とした。
液晶開始温度は、剪断応力加熱装置(CSS−450)により剪断速度100(1/秒)、昇温速度5.0℃/分、対物レンズ60倍において測定し、視野全体が流動開始する温度として測定した。
また、分子量は以下の条件で、GPC(ゲル浸透クロマトグラフ)法により測定した。
カラム :K−806M(2本)、K−802(1本)(昭和電工)
溶媒 :ペンタフルオロフェノール/クロロホルム=35/65(重量%)
流速 :0.8mL/min
試料濃度:0.08%(wt/vol)
注入量 :0.200mL
温度 :23℃
検出器 :示差屈折率(RI)検出器(東ソー製RI−8020)
校正曲線:単分散ポリスチレンによる校正曲線を使用。
参考例2
反応に用いるモノマーの仕込み重量を、p−ヒドロキシ安息香酸44.2g(0.32モル)、4,4’−ジヒドロキシビフェニル21.6g(0.12モル)、テレフタル酸4.98g(0.030モル)、トリメシン酸27.1g(0.13モル)、安息香酸7.09g(0.058モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレ−ト9.61g(0.050モル)および無水酢酸62.0g(フェノール性水酸基合計の1.10当量)とした以外は参考例1と同様にして樹状ポリエステル(B−2)を得た。
得られた樹状ポリエステル(B−2)を参考例1と同様に評価し、トリメシン酸含有量は21モル%、融点は228℃、液晶開始温度は185℃で数平均分子量11300であった。高化式フローテスターを用い、温度260℃、剪断速度100/sで測定した溶融粘度は17Pa・sであった。
参考例3
反応に用いるモノマーの仕込み重量を、p−ヒドロキシ安息香酸58.6g(0.42モル)、4,4’−ジヒドロキシビフェニル15.9g(0.085モル)、テレフタル酸6.60g(0.040モル)、トリメシン酸14.4g(0.068モル)、安息香酸5.21g(0.043モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレ−ト12.7g(0.066モル)および無水酢酸66.8g(フェノール性水酸基合計の1.10当量)とした以外は参考例1と同様にして樹状ポリエステル(B−3)を得た。
得られた樹状ポリエステル(B−3)を参考例1と同様に評価し、トリメシン酸含有量は9モル%、融点は245℃、液晶開始温度は201℃で数平均分子量12200であった。高化式フローテスターを用い、温度270℃、剪断速度100/sで測定した溶融粘度は17Pa・sであった。
参考例4
重合反応停止時の到達撹拌トルクを3.5kg・cmに変更したこと以外は参考例1と同様にして樹状ポリエステル(B−4)を得た。トリメシン酸含有量は15モル%、融点は237℃、液晶開始温度は192℃で数平均分子量15800であった。高化式フローテスターを用い、温度260℃、剪断速度100/sで測定した溶融粘度は24Pa・sであった。
参考例5
反応に用いるモノマーの仕込み重量を、p−ヒドロキシ安息香酸43.1g(0.31モル)、4,4’−ジヒドロキシビフェニル17.9g(0.096モル)、テレフタル酸6.48g(0.039モル)、トリメシン酸18.0g(0.086モル)、安息香酸5.87g(0.048モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレ−ト7.49g(0.039モル)および無水酢酸56.6g(フェノール性水酸基合計の1.10当量)とした以外は参考例1と同様にして樹状ポリエステル(B−5)を得た。
得られた樹状ポリエステル(B−5)を参考例1と同様に評価し、トリメシン酸含有量は9モル%、融点は248℃、液晶開始温度は205℃で数平均分子量12400であった。高化式フローテスターを用い、温度270℃、剪断速度100/sで測定した溶融粘度は18Pa・sであった。
参考例6
反応に用いるモノマーの仕込み重量を、p−ヒドロキシ安息香酸37.7g(0.27モル)、4,4’−ジヒドロキシビフェニル27.8g(0.15モル)、ハイドロキノン3.87g(0.035モル)、テレフタル酸12.6g(0.076モル)、イソフタル酸6.80g(0.041モル)、トリメシン酸21.3g(0.10モル)、安息香酸5.57g(0.046モル)および無水酢酸72.1g(フェノール性水酸基合計の1.10当量)とした以外は参考例1と同様にして樹状ポリエステル(B−6)を得た。
得られた樹状ポリエステル(B−6)を参考例1と同様に評価し、トリメシン酸含有量は9モル%、融点は228℃、液晶開始温度は184℃で数平均分子量11300であった。高化式フローテスターを用い、温度260℃、剪断速度100/sで測定した溶融粘度は15Pa・sであった。
参考例7
反応に用いるモノマーの仕込み重量を、p−ヒドロキシ安息香酸50.4g(0.37モル)、4,4’−ジヒドロキシビフェニル12.4g(0.067モル)、2−ヒドロキシ−6−ナフトエ酸25.4g(0.14モル)、トリメシン酸21.0g(0.10モル)、安息香酸5.50g(0.045モル)および無水酢酸71.1g(フェノール性水酸基合計の1.10当量)とした以外は参考例1と同様にして樹状ポリエステル(A−7)を得た。
得られた樹状ポリエステル(B−7)を参考例1と同様に評価し、トリメシン酸含有量は14モル%、融点は225℃、液晶開始温度は186℃で数平均分子量11900であった。高化式フローテスターを用い、温度260℃、剪断速度100/sで測定した溶融粘度は14Pa・sであった。
参考例8
撹拌翼を備えた反応容器に参考例1で得られた樹状ポリエステル樹脂(B−1)100g、オルト酢酸エチル70gを仕込み、窒素ガス雰囲気下で撹拌しながら200℃で30分反応させた後、撹拌を停止し、内容物を冷水中に吐出し、樹状ポリエステル樹脂(B−8)を得た。赤外分光分析(装置;島津社製FTIR−8100A)における吸収スペクトルより、カルボン酸末端由来のピーク減少を確認した。得られた樹状ポリエステルの融点Tmは228℃、数平均分子量11500であり、本ポリマーは液晶性を示し、液晶開始温度は175℃であった。
参考例9(B−9)
撹拌トルクが2.0kg・cmに到達したところで重合反応を停止し内容物を水中に吐出した以外は参考例2と同様にして樹状ポリエステル(B−9)を得た。
得られた樹状ポリエステル(B−9)を参考例1と同様に評価し、トリメシン酸含有量は21モル%、融点は228℃、液晶開始温度は185℃で数平均分子量8000であった。高化式フローテスターを用い、温度260℃、剪断速度100/sで測定した溶融粘度は13Pa・sであった。
参考例10(G−1)
撹拌翼、留出管を備えた500mLの反応容器にp−ヒドロキシ安息香酸66.3g(0.48モル)、4,4’−ジヒドロキシビフェニル8.38g(0.045モル)、テレフタル酸7.48g(0.045モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレ−ト14.41g(0.075モル)および無水酢酸62.48g(フェノール性水酸基合計の1.00当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、260℃まで昇温し、3時間撹拌し、酢酸の理論留出量の91%が留出したところで加熱、撹拌を停止し、内容物を冷水中に吐出し、直鎖状の液晶樹脂(G−1)を得た。この液晶樹脂(G−1)の融点は264℃、液晶開始温度は232℃で、数平均分子量2200であった。
参考例11(G−2)
撹拌翼、留出管を備えた500mLの反応容器にp−ヒドロキシ安息香酸66.3g(0.48モル)、4,4’−ジヒドロキシビフェニル8.38g(0.045モル)、テレフタル酸7.48g(0.045モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレ−ト14.41g(0.075モル)および無水酢酸62.48g(フェノール性水酸基合計の1.00当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、トリメシン酸6.62g(0.032モル)を加えて260℃まで昇温し、3時間撹拌し、酢酸の理論留出量の91%が留出したところで加熱、撹拌を停止し、内容物を冷水中に吐出し、樹状ポリエステル樹脂(G−2)を得た。
この樹状ポリエステル樹脂(G−2)は参考例1と同様に評価し、分岐点含有率は5モル%、融点Tmは232℃、液晶開始温度は215℃で、数平均分子量2200であった。
参考例12(G−3)
撹拌翼、冷却器を備えた反応容器を窒素置換した後、トリメチロールプロパン5部、2,2’−ビス(ヒドロキシメチル)ヘプタン酸50部、ステアリン酸7部およびp−トルエンスルホン酸0.2部を仕込み、窒素気流下、140℃で撹拌しながら2時間反応し、さらに140℃、67Paで1時間反応させ、樹状樹脂(G−3)を得た。G−3を分析した結果、数平均分子量1900であった。
参考例13〜24
表1に示す配合組成で混合し、窒素フローを行いながら、スクリュー径が44mm、スクリューは2条ネジの2本のスクリューのL/D=35の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEXー44)を使用し、表1に示すシリンダー温度、スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D=35)よりストランド状の溶融樹脂を吐出した。その際のスクリュー構成はAとして、L/D=12、17、22の3箇所から、それぞれ、Lk/D=4.0、4.0、4.0としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設け、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)を形成させた。さらに各伸張流動ゾーンの下流側に、逆スクリューゾーンを設け、各逆スクリューゾーンの長さLr/Dは、順番にLr/D=0.5、0.5、0.5とした。スクリュー全長に対する伸張流動ゾーンの合計の長さの割合(%)を、(伸張流動ゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、31%であった。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、150kg/cm(14.7MPa)であった。ベント真空ゾーンはL/D=30の位置に設け、ゲージ圧力−0.1MPaで揮発成分の除去を行った。ダイヘッドを通過して4mmφ×8ホールから吐出された溶融樹脂は温度計で樹脂温度を測定し、またゲル化物の有無を目視で確認した。その後、吐出樹脂はストランド状に引いて冷却バスを通過させて冷却し、ペレタイザーにより引取りながら裁断することにより、ポリアミド樹脂を含む樹脂(A)のペレット状のサンプルを得た。該サンプルを80℃で12時間以上真空乾燥後、前記した射出成形を実施し、各種評価を行った。混練条件および各種評価結果を表1に示す。
参考例25、26
表2に示す配合組成で混合し、窒素フローを行いながら、スクリュー径が65mm、スクリューは2条ネジの2本のスクリューのL/D=45の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEX−65αII)を使用し、表2に示すシリンダー温度、スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D=45)よりストランド状の溶融樹脂を吐出した。その際のスクリュー構成はBとして、L/D=13の位置から、ニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクをLk/D=5.0分連結させて、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)を形成させた。さらに伸張流動ゾーンの下流側に、L/D=0.5の逆スクリューゾーンを設けた。スクリュー全長に対する伸張流動ゾーンの合計の長さの割合(%)を、(伸張流動ゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、11%であった。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cm(19.6MPa)であった。更にL/D=23および31の位置から、一条ネジでスクリューピッチが0.25Dかつ切り欠き数が1ピッチ当たり12である切り欠き型ミキシングスクリューを、それぞれLm/D=5.0分連結させて、2箇所のミキシングゾーンを形成させた。スクリュー全長に対するミキシングゾーンの合計の長さの割合(%)を、(ミキシングゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、22%であった。またミキシングゾーンを構成する切り欠き型ミキシングスクリューのうち、スクリュー軸の回転方向とは逆廻りのネジ廻り方向であるスクリューの割合(%)は80%とした。ベント真空ゾーンはL/D=38の位置に設け、ゲージ圧力−0.1MPaで揮発成分の除去を行った。ダイヘッドを通過して4mmφ×23ホールから吐出された溶融樹脂は温度計で樹脂温度を測定し、またゲル化物の有無を目視で確認した。その後、吐出樹脂はストランド状に引いて冷却バスを通過させて冷却し、ペレタイザーにより引取りながら裁断することにより、ポリアミド樹脂を含む樹脂(A)のペレット状のサンプルを得た。該サンプルを80℃で12時間以上真空乾燥後、前記した射出成形を実施し、各種評価を行った。混練条件および各種評価結果を表2に示す。
参考例27、28
表2に示す配合組成で混合し、窒素フローを行いながら、スクリュー径が65mm、スクリューは2条ネジの2本のスクリューのL/D=31.5の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEX−65αII)を使用し、表2に示すシリンダー温度、スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D=31.5)よりストランド状の溶融樹脂を吐出した。その際のスクリュー構成はCとして、L/D=10の位置から、ニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクをLk/D=4.0分連結させて、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)を形成させた。さらに伸張流動ゾーンの下流側に、L/D=0.5の逆スクリューゾーンを設けた。スクリュー全長に対する伸張流動ゾーンの合計の長さの割合(%)を、(伸張流動ゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、13%であった。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、150kg/cm(14.7MPa)であった。更にL/D=16および21の位置から、一条ネジでスクリューピッチが0.25Dかつ切り欠き数が1ピッチ当たり12である切り欠き型ミキシングスクリューを、それぞれLm/D=4.0分連結させて、2箇所のミキシングゾーンを形成させた。スクリュー全長に対するミキシングゾーンの合計の長さの割合(%)を、(ミキシングゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、25%であった。またミキシングゾーンを構成する切り欠き型ミキシングスクリューのうち、スクリュー軸の回転方向とは逆廻りのネジ廻り方向であるスクリューの割合(%)は75%とした。ベント真空ゾーンはL/D=27の位置に設け、ゲージ圧力−0.1MPaで揮発成分の除去を行った。ダイヘッドを通過して4mmφ×23ホールから吐出された溶融樹脂は温度計で樹脂温度を測定し、またゲル化物の有無を目視で確認した。その後、吐出樹脂はストランド状に引いて冷却バスを通過させて冷却し、ペレタイザーにより引取りながら裁断することにより、ポリアミド樹脂を含む樹脂(A)のペレット状のサンプルを得た。該サンプルを80℃で12時間以上真空乾燥後、前記した射出成形を実施し、各種評価を行った。混練条件および各種評価結果を表2に示す。
参考例29
表2に示す配合組成で混合し、窒素フローを行いながら、スクリュー径が90mm、スクリューは2条ネジの2本のスクリューのL/D=31.5の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEX−90)を使用し、表2に示すシリンダー温度、スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D=31.5)よりストランド状の溶融樹脂を吐出した。その際のスクリュー構成はDとして、L/D=10の位置から、ニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクをLk/D=4.0分連結させて、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)を形成させた。さらに伸張流動ゾーンの下流側に、L/D=0.5の逆スクリューゾーンを設けた。スクリュー全長に対する伸張流動ゾーンの合計の長さの割合(%)を、(伸張流動ゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、13%であった。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、150kg/cm(14.7MPa)であった。更にL/D=16および21の位置から、一条ネジでスクリューピッチが0.25Dかつ切り欠き数が1ピッチ当たり12である切り欠き型ミキシングスクリューを、それぞれLm/D=4.0分連結させて、2箇所のミキシングゾーンを形成させた。スクリュー全長に対するミキシングゾーンの合計の長さの割合(%)を、(ミキシングゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、25%であった。またミキシングゾーンを構成する切り欠き型ミキシングスクリューのうち、スクリュー軸の回転方向とは逆廻りのネジ廻り方向であるスクリューの割合(%)は75%とした。ベント真空ゾーンはL/D=27の位置に設け、ゲージ圧力−0.1MPaで揮発成分の除去を行った。ダイヘッドを通過して4mmφ×23ホールから吐出された溶融樹脂は温度計で樹脂温度を測定し、またゲル化物の有無を目視で確認した。その後、吐出樹脂はストランド状に引いて冷却バスを通過させて冷却し、ペレタイザーにより引取りながら裁断することにより、ポリアミド樹脂を含む樹脂(A)のペレット状のサンプルを得た。該サンプルを80℃で12時間以上真空乾燥後、前記した射出成形を実施し、各種評価を行った。混練条件および各種評価結果を表2に示す。
参考例30
表2に示す配合組成で混合し、窒素フローを行いながら、スクリュー径が41mm、スクリューは2条ネジの2本のスクリューのL/D=100の同方向回転完全噛み合い型二軸押出機(東芝機械社製、TEM−41SS−22/1V)を使用し、表2に示すシリンダー温度、スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D=100)よりストランド状の溶融樹脂を吐出した。その際のスクリュー構成はEとして、L/D=21、27、46、57、71、79、93の位置から始まる7箇所のニーディングゾーンを設け、各ニーディングゾーンの長さLk/Dは、順番にLk/D=1.8、1.8、2.3、2.3、2.3、2.3、3.1とした。さらに各ニーディングゾーンの下流側に、逆スクリューゾーンを設け、各逆スクリューゾーンの長さLr/Dは、順番にLr/D=0.4、0.4、0.8、0.8、0.4、0.8、0.4とした。また、スクリュー全長に対する前記ニーディングゾーンの合計長さの割合(%)を、(ニーディングゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、ニーディングゾーンの合計長さの割合は16%であった。ベント真空ゾーンはL/D=96の位置に設け、ゲージ圧力−0.1MPaで揮発成分の除去を行った。ダイヘッドを通過して4mmφ×5ホールから吐出された溶融樹脂は温度計で樹脂温度を測定し、またゲル化物の有無を目視で確認した。その後、吐出樹脂はストランド状に引いて冷却バスを通過させて冷却し、ペレタイザーにより引取りながら裁断することにより、ポリアミド樹脂を含む樹脂(A)のペレット状のサンプルを得た。該サンプルを80℃で12時間以上真空乾燥後、前記した射出成形を実施し、各種評価を行った。混練条件および各種評価結果を表2に示す。
Figure 0005790005
Figure 0005790005
参考例13〜30では、ポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)の溶融混練方法を高度に制御することで、分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における微粒子の占める面積を20%以上にすることができている。また引張試験からは、引張速度を大きくするに従い、引張弾性率が低下し、引張破断伸度が増大することも分かる。
参考例31〜41
表3に示す配合組成で混合し、窒素フローを行いながら、スクリュー径が30mm、スクリューは2条ネジの2本のスクリューのL/D=35の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEX−30α)を使用し、表3に示すシリンダー温度、スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D=35)よりストランド状の溶融樹脂を吐出した。その際のスクリュー構成はFとして、L/D=7、16、25の位置から始まる3箇所のニーディングゾーンを設け、各ニーディングゾーンの長さLk/Dは、順番にLk/D=3.0、3.0、3.0とした。さらに各ニーディングゾーンの下流側に、逆スクリューゾーンを設け、各逆スクリューゾーンの長さLr/Dは、順番にLr/D=0.5、0.5、0.5とした。また、スクリュー全長に対する前記ニーディングゾーンの合計長さの割合(%)を、(ニーディングゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、ニーディングゾーンの合計長さの割合は26%であった。ベント真空ゾーンはL/D=30の位置に設け、ゲージ圧力−0.1MPaで揮発成分の除去を行った。ダイヘッドを通過して4mmφ×2ホールから吐出された溶融樹脂は温度計で樹脂温度を測定し、またゲル化物の有無を目視で確認した。その後、吐出樹脂はストランド状に引いて冷却バスを通過させて冷却し、ペレタイザーにより引取りながら裁断することにより、ポリアミド樹脂を含む樹脂(a2)のペレット状のサンプルを得た。該サンプルを80℃で12時間以上真空乾燥後、前記した射出成形を実施し、各種評価を行った。混練条件および各種評価結果を表3に示す。
Figure 0005790005
参考実施例1〜15、実施例16〜17、18〜43、参考比較例1〜15、18〜23、比較例16〜17、24〜44
表4〜8に示す配合組成で混合し、窒素フローを行いながら、スクリュー径が30mm、スクリューは2条ネジの2本のスクリューのL/D=35の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEX−30α)を使用し、表4〜8に示すシリンダー温度、スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D=35)よりストランド状の溶融樹脂を吐出した。その際のスクリュー構成はFとして、L/D=7、16、25の位置から始まる3箇所のニーディングゾーンを設け、各ニーディングゾーンの長さLk/Dは、順番にLk/D=3.0、3.0、3.0とした。さらに各ニーディングゾーンの下流側に、逆スクリューゾーンを設け、各逆スクリューゾーンの長さLr/Dは、順番にLr/D=0.5、0.5、0.5とした。また、スクリュー全長に対する前記ニーディングゾーンの合計長さの割合(%)を、(ニーディングゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、ニーディングゾーンの合計長さの割合は26%であった。ベント真空ゾーンはL/D=30の位置に設け、ゲージ圧力−0.1MPaで揮発成分の除去を行った。ダイヘッドを通過して4mmφ×2ホールから吐出された溶融樹脂はストランド状に引いて冷却バスを通過させて冷却し、ペレタイザーにより引取りながら裁断することにより、ポリアミド樹脂組成物のペレット状のサンプルを得た。該サンプルを80℃で12時間以上真空乾燥後、前記した射出成形を実施し、各種評価を行った。混練条件および各種評価結果を表4〜8に示す。
Figure 0005790005
Figure 0005790005
Figure 0005790005
Figure 0005790005
Figure 0005790005
参考比較例1、5および参考例31〜41に示した、樹状ポリエステル樹脂(B)および酸無水物(C)を添加していないポリアミド樹脂組成物と比較して、本発明の参考実施例1〜15、実施例16〜17では、優れた機械特性を有しつつ流動性が著しく向上していることが分かる。また参考比較例2〜4、6〜15、比較例16〜17に示した、樹状ポリエステル樹脂(B)のみを添加したポリアミド樹脂組成物と比較しても、本発明の参考実施例1〜15、実施例16〜17では、優れた機械特性を有しつつ流動性が向上していることが分かる。また本発明では酸無水物(C)を添加することで、従来の樹状ポリエステル樹脂(B)のみ添加したポリアミド樹脂組成物と比較して、樹状ポリエステル樹脂(B)の添加量が少なくても十分な流動性向上効果を発現できることが分かる。また従来の流動性改良技術である参考比較例18〜23と比較しても、本発明の参考実施例1〜5では流動性向上効果が顕著であることも分かる。
参考例13〜30に示したポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)からなる特異なモルホロジーと特異な引張特性を有するポリアミド樹脂を含む樹脂(A)に、樹状ポリエステル樹脂(B)のみを添加したポリアミド樹脂組成物である比較例24〜41と比較して、酸無水物(C)も添加した本発明の実施例18〜43では、特異な引張特性を有しつつ流動性が著しく向上していることが分かる。また従来の流動性改良技術である比較例42〜44と比較しても、本発明の実施例18では流動性向上効果が顕著であることも分かる。
参考実施例44〜54、参考例42〜45
表9に示す配合組成で混合し、窒素フローを行いながら、スクリュー径が30mm、スクリューは2条ネジの2本のスクリューのL/D=35の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEX−30α)を使用し、表9に示すシリンダー温度、スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D=35)よりストランド状の溶融樹脂を吐出した。その際のスクリュー構成はFとして、L/D=7、16、25の位置から始まる3箇所のニーディングゾーンを設け、各ニーディングゾーンの長さLk/Dは、順番にLk/D=3.0、3.0、3.0とした。さらに各ニーディングゾーンの下流側に、逆スクリューゾーンを設け、各逆スクリューゾーンの長さLr/Dは、順番にLr/D=0.5、0.5、0.5とした。また、スクリュー全長に対する前記ニーディングゾーンの合計長さの割合(%)を、(ニーディングゾーンの合計長さ)÷(スクリュー全長)×100により算出すると、ニーディングゾーンの合計長さの割合は26%であった。ベントはオープンベントで減圧せず、ダイヘッドを通過して4mmφ×2ホールから吐出された溶融樹脂はストランド状に引いて冷却バスを通過させて冷却し、ペレタイザーにより引取りながら裁断することにより、ポリアミド樹脂組成物マスターペレットのサンプルを得た。またその際、ストランド切れ状態、ストランド発泡状態、ストランド色を評価した。該サンプルを80℃で12時間以上真空乾燥後、参考実施例55〜67、実施例68〜95および参考比較例45〜55、58〜60、比較例56〜57、61〜81に使用した。混練結果を表9に示す。
Figure 0005790005
酸無水物は揮発性が高いため、溶融混練時のシリンダー温度をポリアミド樹脂を含む樹脂(a1−1)の融点+5℃である230℃に設定して溶融混練を行ったところ、酸無水物(C)に無水フタル酸を使用した参考実施例44、45、47〜54および参考例43〜45では、ストランド切れ、ストランド発泡がなく、押出は安定していた。また酸無水物(C)に無水コハク酸を使用した参考実施例46では、ストランド発泡が若干観察されたが、ストランド切れはなく、サンプル採取には問題はなかった。
参考実施例55〜67、実施例68〜95、参考比較例45〜55、58〜60、比較例56〜57、61〜81
表10〜14に記載の各成分(ペレット)をドライブレンドした後、表10〜14に記載のシリンダー温度、金型温度に設定して射出成形を実施し、各種評価を行った。各種評価結果を表10〜14に示す。
Figure 0005790005
Figure 0005790005
Figure 0005790005
Figure 0005790005
Figure 0005790005
参考比較例1、5および参考例31〜41に示した、樹状ポリエステル樹脂(B)および酸無水物(C)を含まない場合と比較して、本発明の参考実施例55〜67、実施例68〜69では、優れた機械特性を有しつつ流動性が著しく向上していることが分かる。また参考比較例45〜55、比較例56〜57に示した、樹状ポリエステル樹脂(B)は含むが酸無水物(C)は含まないマスターペレットを使用した場合と比較しても、本発明の参考実施例55〜67、実施例68〜69では、優れた機械特性を有しつつ流動性が向上していることが分かる。また従来の流動性改良技術である参考比較例58〜60と比較しても、本発明の参考実施例55〜57では流動性向上効果が顕著であることも分かる。
参考例13〜30に示したポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)からなる特異なモルホロジーと特異な引張特性を有するポリアミド樹脂を含む樹脂(a2)に、樹状ポリエステル樹脂(B)は含むが酸無水物(C)は含まないマスターペレットをドライブレンドして射出成形した比較例61〜78と比較して、酸無水物(C)も含むマスターペレットをドライブレンドして射出成形した本発明の実施例70〜95では流動性が著しく向上し、また驚くべきことに引張特性の特異性はマスターペレット未添加よりも顕著になる。具体的には、引張速度を大きくするに従い、引張弾性率が低下して引張破断伸度が増大する傾向が顕著となる。この効果は、ポリアミド樹脂を含む樹脂(A)、樹状ポリエステル樹脂(B)、および酸無水物(C)を一括混練する方法では得ることができない特殊な効果である。
また従来の流動性改良技術である比較例79〜81と比較しても、本発明の実施例70〜95では流動性向上効果が顕著であることも分かる。
本参考例、実施例および比較例に用いたポリアミド樹脂(A1)は以下の通りである。
(A1−1):融点225℃、98%硫酸中0.01g/mlでの相対粘度2.75、アミノ末端基濃度5.8×10−5mol/gのナイロン6樹脂。
(A1−2):融点225℃、98%硫酸中0.01g/mlでの相対粘度2.35、アミノ末端基濃度4.4×10−5mol/gのナイロン6樹脂。
(A1−3):融点265℃、98%硫酸中0.01g/mlでの相対粘度3.60、アミノ末端基濃度3.7×10−5mol/gのナイロン66樹脂。
(A1−4):融点225℃、98%硫酸中0.01g/mlでの相対粘度2.70、アミノ末端基濃度4.0×10−5mol/gのナイロン610樹脂。
(A1−5):融点190℃、98%硫酸中0.01g/mlでの相対粘度2.55のポリアミド11樹脂。
(A1−6):融点180℃、98%硫酸中0.01g/mlでの相対粘度2.55のポリアミド12樹脂。
(A1−7):融点295℃、98%硫酸中0.01g/mlでの相対粘度2.70のポリアミド66/6T=50/50樹脂。
同様に、反応性官能基を有する樹脂(A2)は以下の通りである。
(A2−1):グリシジルメタクリレート変性ポリエチレン共重合体「“ボンドファースト”(登録商標)BF−7L」(住友化学社製)。
(A2−2):グリシジルメタクリレート変性ポリエチレン共重合体「“ボンドファースト”BF−7M」(住友化学社製)。
(A2−3):無水マレイン酸変性エチレン−1−ブテン共重合体「“タフマー”(登録商標)MH7020」(三井化学社製)。
同様に、ポリアミド樹脂を含む樹脂(A)を構成する樹脂は以下の通りである。
(A−1):融点225℃、98%硫酸中0.01g/mlでの相対粘度2.75、アミノ末端基量5.8×10−5mol/gのナイロン6樹脂。
(A−2):融点265℃、98%硫酸中0.01g/mlでの相対粘度2.95、アミノ末端基量2.5×10−5mol/gのナイロン66樹脂。
(A−3):グリシジルメタクリレート変性ポリエチレン共重合体「“ボンドファースト”BF−7L」(住友化学社製)。
(A−4):無水マレイン酸変性エチレン−1−ブテン共重合体「“タフマー”MH7020」(三井化学社製)。
(A−5):ポリフェニレンエーテル樹脂「“ユピエース”(登録商標)PX−100F」(三菱エンジニアリングプラスチックス社製)100重量部に対し、無水マレイン酸1.2重量部とラジカル発生剤(パーヘキシン25B:日本油脂製)0.1重量部をドライブレンドし、シリンダー温度320℃で溶融混練して得た変性PPE樹脂。
同様に、樹状ポリエステル樹脂(B)は以下の通りである。
(B−1):参考例1
(B−2):参考例2
(B−3):参考例3
(B−4):参考例4
(B−5):参考例5
(B−6):参考例6
(B−7):参考例7
(B−8):参考例8
(B−9):参考例9。
同様に、酸無水物(C)は以下の通りである。
(C−1):無水フタル酸(鹿1級)(関東化学社製)。
(C−2):無水マレイン酸(1級)(キシダ化学社製)。
同様に、無機充填材(D)は以下の通りである。
(D−1):ガラス繊維「T−249」(日本電気硝子社製)
(D−2):ガラス繊維「T−289」(日本電気硝子社製)
(D−3):アンモニウム塩で有機化処理した膨潤性層状珪酸塩「“エスベン”(登録商標)NTO」(ホージュン社製)。膨潤性層状珪酸塩(D−3)を2g量り取り、るつぼに入れ600℃に設定した入江製作所製TMF−5型電気炉で2時間焼成した後の残留物の重量は1.32gであった。これより無機灰分量は計算により66重量%である。
(D−4):タルク「LMS−300」(富士タルク社製)。
同様に、難燃剤(E)は以下の通りである。
(E―1)赤燐「“ノーバエクセル”(登録商標)140」(隣化学工業社製)
(E―2)シアヌール酸メラミン「MC−4000」(日産化学工業社製)。
同様に、耐熱剤(F)は以下の通りである。
(F−1):「“Irganox”(登録商標)1098」(チバ・スペシャリティ・ケミカルズ社製)
(F−2):「“Irganox”1010」(チバ・スペシャリティ・ケミカルズ社製)。
同様に、その他樹脂(G)は以下の通りである。
(G−1):参考例10
(G−2):参考例11
(G−3):参考例12。
同様に、ポリアミド樹脂を含む樹脂(a1)は以下の通りである。
(a1−1)融点225℃、98%硫酸中0.01g/mlでの相対粘度2.75、アミノ末端基濃度5.8×10−5mol/gのナイロン6樹脂。
同様に、ポリアミド樹脂を含む樹脂(a2)は以下の通りである。
(a2−1)融点225℃、98%硫酸中0.01g/mlでの相対粘度2.75、アミノ末端基濃度5.8×10−5mol/gのナイロン6樹脂。
(a2−1)融点265℃、98%硫酸中0.01g/mlでの相対粘度2.95、アミノ末端基量2.5×10−5mol/gのナイロン66樹脂。
1:切り欠き
2:スクリューピッチ
3:スクリュー直径D

Claims (21)

  1. ポリアミド樹脂を含む樹脂(A)100重量部に対して、芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲である樹状ポリエステル樹脂(B)0.01〜180重量部、および酸無水物(C)0.01〜30重量部を配合してなり、
    ポリアミド樹脂を含む樹脂(A)がポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を配合してなり、ポリアミド樹脂を含む樹脂(A)を電子顕微鏡で観察して得られるモルホロジーにおいて、ポリアミド樹脂(A1)が連続相、反応性官能基を有する樹脂(A2)が分散相を形成し、かつ分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における前記微粒子の占める面積が20%以上であることを特徴とするポリアミド樹脂組成物。
  2. ポリアミド樹脂を含む樹脂(A)100重量部に対して、芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲である樹状ポリエステル樹脂(B)0.01〜30重量部、および酸無水物(C)0.01〜5重量部を配合してなる請求項1に記載のポリアミド樹脂組成物。
  3. ポリアミド樹脂を含む樹脂(A)100重量部に対して、芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲である樹状ポリエステル樹脂(B)0.01〜2.5重量部、および酸無水物(C)0.01〜3重量部を配合してなる請求項1または2に記載のポリアミド樹脂組成物。
  4. 反応性官能基を有する樹脂(A2)が、反応性官能基を有するゴム質重合体であることを特徴とする請求項3に記載のポリアミド樹脂組成物。
  5. 反応性官能基を有する樹脂(A2)の反応性官能基が、アミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、オキサゾリン基から選ばれる少なくとも1種であることを特徴とする請求項3または4に記載のポリアミド樹脂組成物。
  6. ポリアミド樹脂を含む樹脂(A)が、引張速度V1、V2のときの引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)であることを特徴とする請求項1〜5のいずれかに記載のポリアミド樹脂組成物。
  7. ポリアミド樹脂を含む樹脂(A)が、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)であることを特徴とする請求項1〜5のいずれかに記載のポリアミド樹脂組成物。
  8. 酸無水物(C)が無水フタル酸または無水コハク酸であることを特徴とする請求項1〜7のいずれかに記載のポリアミド樹脂組成物。
  9. 酸無水物(C)が無水フタル酸であることを特徴とする請求項1〜7のいずれかに記載のポリアミド樹脂組成物。
  10. 樹状ポリエステル樹脂(B)の芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)が、それぞれ下式(1)で表される構造単位であることを特徴とする請求項1〜9のいずれかに記載のポリアミド樹脂組成物。
    Figure 0005790005
    (ここで、R1、R2およびR3は、それぞれ下式で表される構造単位から選ばれる少なくとも1種の構造単位である。)
    Figure 0005790005
    (ただし、式中Yは、水素原子、ハロゲン原子およびアルキル基から選ばれる少なくとも1種である。式中nは2〜8の整数である。)
  11. 樹状ポリエステル樹脂(B)が、下式(2)で示される基本骨格を含有することを特徴とする請求項1〜10のいずれかに記載のポリアミド樹脂組成物。
    Figure 0005790005
    (ここで、Dは3官能化合物の有機残基であり、D−D間はエステル結合および/またはアミド結合により直接、あるいは、前記S、TおよびUから選ばれる構造単位を介して結合している。)
  12. 樹状ポリエステル樹脂(B)が、下式(3)で示される基本骨格を含有することを特徴とする請求項1〜10のいずれかに記載のポリアミド樹脂組成物。
    Figure 0005790005
    (ここで、Dは4官能化合物の有機残基であり、D−D間はエステル結合および/またはアミド結合により直接、あるいは、前記S、TおよびUから選ばれる構造単位を介して結合している。)
  13. 樹状ポリエステル樹脂(B)のDで表される有機残基が芳香族化合物の有機残基であることを特徴とする請求項1〜12のいずれかに記載のポリアミド樹脂組成物。
  14. 樹状ポリエステル樹脂(B)の有機残基Dが下式(4)で表される化合物の有機残基であることを特徴とする請求項1〜11および13のいずれかに記載のポリアミド樹脂組成物。
    Figure 0005790005
  15. 樹状ポリエステル樹脂(B)が、溶融液晶性を示すことを特徴とする請求項1〜14のいずれかに記載のポリアミド樹脂組成物。
  16. ポリアミド樹脂を含む樹脂(a1)100重量部に対して、樹状ポリエステル樹脂(B)0.06〜180重量部、および酸無水物(C)0.06〜30重量部を溶融混練した後、ポリアミド樹脂を含む樹脂(a2)を追加して溶融することを特徴とする請求項2〜15のいずれかに記載のポリアミド樹脂組成物の製造方法。
  17. ポリアミド樹脂を含む樹脂(a1)100重量部に対して、芳香族オキシカルボニル単位(S)、芳香族ジオキシ単位(T)、脂肪族ジオキシ単位(T)、および芳香族ジカルボニル単位(U)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲である樹状ポリエステル樹脂(B)0.06〜180重量部、および酸無水物(C)0.06〜30重量部を配合してなるポリアミド樹脂組成物のマスターペレットと、ポリアミド樹脂を含む樹脂(a2)のペレットからなる混合ペレットであって、ポリアミド樹脂を含む樹脂(a2)がポリアミド樹脂(A1)と反応性官能基を有する樹脂(A2)を配合してなり、ポリアミド樹脂を含む樹脂(a2)を電子顕微鏡で観察して得られるモルホロジーにおいて、ポリアミド樹脂(A1)が連続相、反応性官能基を有する樹脂(A2)が分散相を形成し、かつ分散相(A2)中に(A1)と(A2)の反応により生成した化合物よりなる粒子径1〜100nmの微粒子を含有し、更に分散相(A2)中における前記微粒子の占める面積が20%以上である混合ペレット
  18. 請求項17記載の混合ペレットを溶融成形してなる請求項2〜15のいずれかに記載のポリアミド樹脂組成物からなる成形品。
  19. 請求項1〜15のいずれかに記載のポリアミド樹脂組成物を溶融成形してなる成形品。
  20. 成形品がフィルム、シートおよび繊維から選ばれる1種であることを特徴とする請求項18または19に記載の成形品。
  21. 成形品が、自動車部品、電機・電子部品、電子機器筐体、建材、スポーツ用品から選ばれる1種であることを特徴とする請求項18〜20のいずれかに記載の成形品
JP2011025619A 2010-02-26 2011-02-09 ポリアミド樹脂組成物およびその製造方法 Expired - Fee Related JP5790005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025619A JP5790005B2 (ja) 2010-02-26 2011-02-09 ポリアミド樹脂組成物およびその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010041479 2010-02-26
JP2010041479 2010-02-26
JP2011025619A JP5790005B2 (ja) 2010-02-26 2011-02-09 ポリアミド樹脂組成物およびその製造方法

Publications (3)

Publication Number Publication Date
JP2011195814A JP2011195814A (ja) 2011-10-06
JP2011195814A5 JP2011195814A5 (ja) 2013-05-09
JP5790005B2 true JP5790005B2 (ja) 2015-10-07

Family

ID=44874420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025619A Expired - Fee Related JP5790005B2 (ja) 2010-02-26 2011-02-09 ポリアミド樹脂組成物およびその製造方法

Country Status (1)

Country Link
JP (1) JP5790005B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015111A1 (ja) 2011-07-25 2013-01-31 東レ株式会社 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
CN104619776B (zh) * 2012-09-14 2017-05-17 东丽株式会社 聚酰胺树脂组合物、成型品
JP6354379B2 (ja) * 2013-06-28 2018-07-11 東レ株式会社 ポリアミド樹脂組成物
JP6554792B2 (ja) * 2013-10-11 2019-08-07 東レ株式会社 炭素繊維強化樹脂組成物、ペレット、成形品および電子機器筐体
JP6733154B2 (ja) * 2015-11-19 2020-07-29 東レ株式会社 ウエルドを有する成形品
CN111138850B (zh) 2019-12-12 2021-08-13 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法
CN112961000B (zh) * 2021-02-07 2022-07-26 汝南禾尔丰流体肥业有限公司 一种含氨甲环酸的水溶性钛肥及其施用方法
CN116410587A (zh) * 2021-12-30 2023-07-11 合肥杰事杰新材料股份有限公司 一种耐摩擦pa6复合材料及其制备方法
CN114381116B (zh) * 2022-02-17 2024-03-19 上海金发科技发展有限公司 一种无卤阻燃聚酰胺复合材料及其制备方法与应用
CN114874603A (zh) * 2022-05-31 2022-08-09 扬州市天宇鞋业有限公司 一种基于聚酰亚胺纳米纤维的复合材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034404A (ja) * 1998-05-12 2000-02-02 Toray Ind Inc ポリアミド樹脂組成物および成形品
JP4600016B2 (ja) * 2004-08-27 2010-12-15 東レ株式会社 熱可塑性樹脂組成物およびその製造方法
JP5182914B2 (ja) * 2006-03-30 2013-04-17 東レ株式会社 樹状ポリエステル、その製造方法および熱可塑性樹脂組成物
JP5098461B2 (ja) * 2006-06-27 2012-12-12 東レ株式会社 熱可塑性樹脂組成物およびその成形品
JP2008156618A (ja) * 2006-11-30 2008-07-10 Toray Ind Inc ポリアミド樹脂組成物およびその成形品

Also Published As

Publication number Publication date
JP2011195814A (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5790005B2 (ja) ポリアミド樹脂組成物およびその製造方法
KR101351165B1 (ko) 수지상 폴리에스테르, 그의 제조 방법 및 열가소성 수지 조성물
JP5278621B1 (ja) 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
JP5077500B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP2013249363A (ja) ポリアミド樹脂組成物および樹脂金属複合体
US10391676B2 (en) Fiber-reinforced multilayered pellet, molded article molded therefrom, and method of producing fiber-reinforced multilayered pellet
WO2013080820A1 (ja) 炭素繊維強化熱可塑性樹脂組成物、そのペレットおよび成形品
JP6354379B2 (ja) ポリアミド樹脂組成物
JP6213145B2 (ja) 繊維強化樹脂組成物およびその成形品
JP2009041008A (ja) 熱可塑性樹脂組成物およびその成形品
JP2012092303A (ja) 長繊維強化樹脂ペレットおよびそれを溶融成形してなる長繊維強化樹脂成形品
JP5182914B2 (ja) 樹状ポリエステル、その製造方法および熱可塑性樹脂組成物
JP5286753B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP2012031394A (ja) 熱可塑性樹脂組成物およびその製造方法
JP2014040576A (ja) 繊維強化樹脂ペレットおよびその製造方法
JP5386870B2 (ja) 樹状ポリエステル、その製造方法および熱可塑性樹脂組成物
JP5320698B2 (ja) ポリアミド樹脂組成物およびその成形品
JP2008156618A (ja) ポリアミド樹脂組成物およびその成形品
JP2009155490A (ja) 樹状ポリエステル、その製造方法および熱可塑性樹脂組成物
JP2008133425A (ja) 熱可塑性樹脂組成物およびその成形品
JP5098461B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP2012116917A (ja) 繊維強化樹脂ペレット
JP2011162647A (ja) 多分岐ポリエステルおよびその組成物
JP2009242524A (ja) 熱可塑性樹脂組成物およびその成形品
JP2011080092A (ja) 樹状ポリエステル、その製造方法および熱可塑性樹脂組成物

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150407

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

LAPS Cancellation because of no payment of annual fees