WO2021114539A1 - 一种抗菌陶瓷砖及其制备方法 - Google Patents

一种抗菌陶瓷砖及其制备方法 Download PDF

Info

Publication number
WO2021114539A1
WO2021114539A1 PCT/CN2020/085400 CN2020085400W WO2021114539A1 WO 2021114539 A1 WO2021114539 A1 WO 2021114539A1 CN 2020085400 W CN2020085400 W CN 2020085400W WO 2021114539 A1 WO2021114539 A1 WO 2021114539A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
ceramic tile
zirconium phosphate
layer
composite
Prior art date
Application number
PCT/CN2020/085400
Other languages
English (en)
French (fr)
Inventor
柯善军
田维
蒙臻明
马超
Original Assignee
佛山欧神诺陶瓷有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山欧神诺陶瓷有限公司 filed Critical 佛山欧神诺陶瓷有限公司
Priority to EP20864256.1A priority Critical patent/EP3862339B1/en
Publication of WO2021114539A1 publication Critical patent/WO2021114539A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4543Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension by spraying, e.g. by atomising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2092Resistance against biological degradation

Definitions

  • the present disclosure relates to the field of architectural ceramics, in particular to an antibacterial ceramic tile and a preparation method thereof.
  • the functionalization of ceramics has become one of the main directions of the development of the domestic ceramics industry.
  • the antibacterial properties of building ceramics are of great significance for enhancing the added value of products.
  • the first is to directly add antibacterial materials into ceramic tiles and mix and fire; the second is to spray antibacterial materials on the surface of ceramic tiles and fire; the third is to burn in the finished product
  • the surface of the brick is sprayed with antibacterial material, and then subjected to low temperature heat treatment to achieve antibacterial effect.
  • the above-mentioned antibacterial materials mainly include compounds containing silver, zinc and copper, rare earth element antibacterial agents and titanium oxide.
  • the purpose of the present disclosure includes, for example, to provide an antibacterial ceramic tile and a preparation method thereof, so as to improve the above-mentioned shortcomings of the antibacterial ceramic tile in the prior art.
  • the embodiment of the present disclosure provides an antibacterial ceramic tile, which includes an antibacterial glaze layer provided on the upper surface of the ceramic tile.
  • the antibacterial glaze layer is composed of a basic transparent glaze and a zirconium phosphate loaded composite antibacterial agent.
  • the zirconium phosphate loaded composite antibacterial agent accumulates on the antibacterial On the upper part of the glaze layer, the antibacterial active ingredients of the composite antibacterial agent are antibacterial oxides and antibacterial ions.
  • the present disclosure introduces a zirconium phosphate carrier with a porous structure into the transparent glaze layer on the outermost surface of the ceramic tile, and at the same time supports the composite antibacterial agent through the zirconium phosphate carrier, and utilizes the characteristic that the density of the zirconium phosphate carrier is lower than that of the basic transparent glaze, so that After high temperature firing, the zirconium phosphate carrier accumulates on the upper part of the antibacterial glaze layer, thereby achieving the purpose of immobilizing the antibacterial active ingredients on the upper surface of the antibacterial glaze layer, that is, effectively strengthening the bonding force of the antibacterial material and the ceramic tile.
  • the antibacterial glaze layer provided by the present disclosure does not require polishing treatment.
  • a porous microstructure is formed on the surface of the glaze layer. That is, the porous microstructure is mainly composed of the porous structure on the surface of the zirconium phosphate carrier.
  • the active ingredients can be filled and penetrated into the porous structure of the zirconium phosphate carrier after subsequent spraying and heat treatment, thereby giving the antibacterial glaze layer a continuous and excellent antibacterial effect.
  • the antibacterial ceramic tile of the present disclosure also includes a body layer, a bottom glaze layer, and a decorative pattern layer arranged from bottom to top.
  • the antibacterial glaze layer provided by the present disclosure is arranged on the decorative pattern layer and is located at the top of the antibacterial ceramic tile.
  • the surface layer, that is, the zirconium phosphate loaded composite antibacterial agent provided by the present disclosure is located on the outermost surface of the antibacterial ceramic tile.
  • the ceramic tile body includes a body layer, a base glaze layer and a decorative pattern layer arranged from bottom to top, the transparent glaze layer is arranged on the decorative pattern layer, and the antibacterial layer is arranged on the transparent glaze layer.
  • the raw material of the ceramic tile body forming the green body layer is the ordinary raw material of the existing ceramic tile
  • the underglaze forming the base glaze layer is the ordinary underglaze of the existing ceramic tile
  • the decorative pattern layer can be formed by screen printing and spraying. Existing ceramic tile decoration methods and processes such as ink printing will not be repeated here.
  • the addition amount of the zirconium phosphate carrier in the zirconium phosphate loaded composite antibacterial agent is 0.5-2% of the antibacterial glaze layer in terms of mass percentage. Specifically, if the content of the zirconium phosphate carrier is too low, the amount distributed in the glaze layer is small, and the antibacterial effect is poor; if the content of the zirconium phosphate carrier is higher than 2%, the permeability of the glaze layer will be reduced, and the decorative effect will be poor. Therefore, the limitation of the added amount of zirconium phosphate carrier needs to take into account the antibacterial effect and decorative effect of the glaze layer.
  • the carrier zirconium phosphate in the zirconium phosphate loaded composite antibacterial agent is ⁇ -zirconium phosphate prepared by a hydrothermal method, and its specific surface area is 100-200 m2/g.
  • the zirconium phosphate prepared by the hydrothermal method has a three-dimensional network porous structure, and the specific surface area is further increased, which facilitates the attachment of antibacterial active ingredients and at the same time facilitates the migration of antibacterial ions, thereby further improving the antibacterial effect.
  • the antibacterial oxide is 10-30 nm zinc oxide, and its solid content in the composite antibacterial agent is 3% to 5%.
  • the antibacterial oxide not only cooperates with the antibacterial ions to exert an antibacterial effect, but also because of its obvious granularity, it can be filled and fixed in the porous structure of the carrier zirconium phosphate surface, so it has the ability to fill the surface of the ceramic tile antibacterial glaze layer.
  • the function of the ceramic tile makes the surface of the ceramic tile need not be polished and has both anti-fouling and antibacterial properties.
  • the antibacterial oxide of the present disclosure selects zinc oxide, and limits its particle size to 10-30nm and solid content of 3% to 5%.
  • the antibacterial ion is zinc ion, and its concentration in the composite antibacterial agent is 0.01-0.03 mol/L.
  • the antibacterial ion and the antibacterial oxide synergistically exert an antibacterial effect, and due to its solubility and permeability, the porous structure of the surface of the zirconium phosphate carrier can be permeated and filled, because it has an excellent sustained antibacterial effect.
  • the antibacterial ion of the present disclosure selects zinc ion and limits its concentration to 0.01-0.03 mol/L, because zinc ion has a strong effect of destroying bacterial cell reproduction, and the cost is relatively low.
  • the concentration of zinc ions should not be too low, too low to affect the antibacterial effect, too high to exceed the upper limit of the exchange adsorption of zirconium phosphate, resulting in the antibacterial agent can not be fully absorbed and utilized.
  • the chemical composition of the basic transparent glaze is 40 to 41.5% SiO 2 , 11 to 12% Al 2 O 3 , 5 to 5.5% B 2 O 3 , 8 to 9% CaO, 1.5 to 2.5% MgO, 6 to 7% ZnO, 4 to 4.5% BaO, 2 to 3% SrO, 9 to 10.5% K 2 O, 5 to 7% Na 2 O, and 0.1 to 0.25%
  • the transparent glaze of the present disclosure contains boron, barium and strontium elements at the same time. The present disclosure only restricts the chemical composition of the basic transparent glaze, but in fact, the raw material components and proportions of the ceramic tile transparent glaze with a specific chemical composition can be varied, so as to have the chemical composition of the basic transparent glaze of the present disclosure.
  • the transparent glaze contains a certain amount of barium and strontium, which is beneficial to increase the refractive index of the transparent glaze and increase the pattern under the glaze layer.
  • the three-dimensional effect Therefore, the limitation of the chemical composition of the basic transparent glaze in the present disclosure takes into account the decorative effect of the glaze layer that is compatible with the zirconium phosphate carrier.
  • the present disclosure also provides a method for preparing the above-mentioned antibacterial ceramic tile, which includes the following process steps:
  • the transparent glaze layer is composed of a mixture of a basic transparent glaze and a zirconium phosphate carrier. After being fired at a high temperature, a semi-finished product is obtained;
  • step 1) the surface of the semi-finished product is sprayed with a composite antibacterial agent, and the finished product of antibacterial ceramic tile is obtained by polishing and heat treatment with a grinding disc.
  • the zirconium phosphate carrier in the transparent glaze layer of the present disclosure has certain antibacterial properties. Due to its low density, it accumulates on the upper part of the transparent glaze layer after step 1) high temperature firing, and forms at the interface with the basic transparent glaze Interpenetrating structure. That is, in fact, the zirconium phosphate carrier accumulated on the upper part of the transparent glaze layer has given a certain antibacterial property to the surface of the ceramic tile. However, the surface of the traditional porous structure needs to be polished due to its extremely poor flatness and antifouling properties.
  • This application uses the porous structure of zirconium phosphate, and uses the non-high temperature treatment method of spray polishing and heat treatment to load the composite antibacterial agent, which not only solves the defects of poor surface flatness and antifouling of the porous structure, but also combines the composite antibacterial agent and the antibacterial agent.
  • the combination of porous materials at the same time prevents the antibacterial active ingredients of the composite antibacterial agent from being damaged by high temperature treatment, endows the surface of the ceramic tile with long-lasting and excellent antibacterial properties, and also avoids the phenomenon that the appearance of traditional antibacterial ceramic tile products has many defects after high-temperature firing. .
  • the antibacterial active ingredients of the composite antibacterial agent of the present disclosure are antibacterial oxides and antibacterial ions, that is, an antibacterial material having an ionic state and a granular antibacterial material.
  • the antibacterial ions mainly exhibit high sterilization efficiency, while the antibacterial oxides mainly Indicated for bactericidal persistence.
  • the preparation method of the composite antibacterial agent of the present disclosure is as follows: first stir and mix the antibacterial oxide powder, water and dispersant at high speed, and then superfine mechanically to control the solid content to 18-20% to obtain the nano antibacterial oxide slurry; Then mix the antibacterial ion-containing acetate, water and chelating agent at high speed to control the concentration of the chelating agent to 0.2-0.6 mol/L to obtain a solution containing antibacterial ions; finally, the nano antibacterial oxide slurry of step 1) is mixed with The solution containing antibacterial ions in step 2) is mixed and mechanically superfinely ground to obtain a composite antibacterial agent.
  • the chelating agent is ethylenediaminetetraacetic acid, which has a polyhydroxyl structure and is used to chelate antibacterial ions, so that the antibacterial material is uniformly dispersed in the solution, which is beneficial to the stability of the antibacterial effect.
  • the firing temperature of the high-temperature firing in step 1) is 1150-1200° C. and the firing period is 45-55 min. Specifically, if the firing temperature is too low, bubbles are likely to form in the glaze layer; if the firing temperature is too high, the glaze is likely to boil, causing defects such as poor flatness. However, if the firing cycle is too short, the green body is not easy to become porcelain, and the water absorption rate is too large; if the firing cycle is too long, the green body is overfired and the porcelain blank is easily deformed.
  • the grinding disc in step 2) is a wool felt grinding disc.
  • the wool felt is soft and has good toughness, which is conducive to the full contact between the composite antibacterial agent and the surface of the ceramic tile semi-finished product.
  • the heat treatment temperature of the heat treatment in step 2) is 80-120° C. and the heat treatment time is 10-20 s.
  • heat treatment is mainly to quickly solidify the antibacterial active ingredients in the composite antibacterial agent in the zirconium phosphate carrier. If the heat treatment temperature is too low or the heat treatment time is too short, the antibacterial active ingredients cannot be effectively absorbed; the heat treatment time is too long, affecting production effectiveness.
  • the embodiments of the present disclosure also provide an antibacterial ceramic tile, which includes a ceramic tile body, a transparent glaze layer provided on the upper surface of the ceramic tile body, and an antibacterial layer that penetrates the transparent glaze layer on the side facing away from the ceramic tile body.
  • the layer includes porous zirconium phosphate and a composite antibacterial agent loaded on the porous zirconium phosphate.
  • the antibacterial active ingredients of the composite antibacterial agent include antibacterial oxides and antibacterial ions.
  • Porous zirconium phosphate penetrates the transparent glaze layer, on the one hand, it can give ceramic tiles a certain antibacterial performance; on the other hand, porous zirconium phosphate penetrates into the transparent glaze layer, which can make the antibacterial layer and the transparent glaze layer better bond
  • the composite antibacterial agent antibacterial oxide and antibacterial ion
  • the antibacterial oxide is particulate, which can It is filled in the pores of porous zirconium phosphate, and the antibacterial layer is leveled by antibacterial ions, which can reduce the surface defects of ceramic tiles.
  • the antibacterial active ingredients of the composite antibacterial agent of the present disclosure are antibacterial oxides and antibacterial ions, that is, an antibacterial material with an ionic state and a granular antibacterial material.
  • the antibacterial ions mainly exhibit high sterilization efficiency, while the antibacterial oxides mainly Indicated for bactericidal persistence.
  • the mass percentage of the porous zirconium phosphate in the antibacterial layer is 0.5-2%. In some possible embodiments, the mass percentage of the porous zirconium phosphate in the antibacterial layer is 0.5%, 0.1%, 0.15%, or 2%.
  • the porous zirconium phosphate in the antibacterial layer is ⁇ -zirconium phosphate, and its specific surface area is 100-200 m2/g.
  • the porous zirconium phosphate may also be ⁇ -zirconium phosphate or ⁇ -zirconium phosphate.
  • the specific surface area of ⁇ -zirconium phosphate is 100 m2/g, 120 m2/g, 140 m2/g, 160 m2/g, 180 m2/g, or 200 m2/g.
  • the antibacterial oxide is zinc oxide with a particle size of 10-30 nm, and its solid content in the composite antibacterial agent is 3% to 5%.
  • the antibacterial oxide may also be titanium oxide, silver oxide, magnesium oxide, copper oxide, calcium oxide, or the like.
  • the particle size of zinc oxide is 10 nm, 15 nm, 20 nm, 25 nm, or 30 nm.
  • the solid content of zinc oxide in the antibacterial compound is 3%, 3.5%, 4%, 4.5% or 5%.
  • the antibacterial ion is zinc ion.
  • the antibacterial ions may also be silver ions, copper ions, and the like.
  • the chemical composition of the transparent glaze layer is 40 ⁇ 41.5% SiO2, 11 ⁇ 12% Al 2 O 3 , 5 ⁇ 5.5% B 2 O 3 , 8 ⁇ 9% CaO, 1.5% by weight. ⁇ 2.5% MgO, 6 ⁇ 7% ZnO, 4 ⁇ 4.5% BaO, 2 ⁇ 3% SrO, 9 ⁇ 10.5% K 2 O, 5 ⁇ 7% Na 2 O and 0.1 ⁇ 0.25% others .
  • the embodiment of the present disclosure also provides a method for preparing the antibacterial ceramic tile, which includes the following process steps:
  • step 2) Apply a composite antibacterial agent solution to the surface of the semi-finished product obtained in step 1), polish it with a grinding disc, and heat treatment to obtain an antibacterial ceramic tile.
  • the density of the zirconium phosphate carrier is lower than that of the transparent glaze, when the transparent glaze and zirconium phosphate are fired at a high temperature, the transparent glaze is located under the zirconium phosphate (the transparent glaze is closer to the ceramic tile body), and the phosphoric acid is fired at a high temperature.
  • the zirconium layer and the transparent glaze layer form an interpenetrating structure, and the sintered zirconium phosphate layer forms a porous zirconium phosphate layer structure.
  • Porous zirconium phosphate imparts certain antibacterial properties to the surface of ceramic tiles.
  • the surface of the traditional porous structure needs to be polished due to its extremely poor flatness and antifouling properties.
  • This application uses the porous structure of zirconium phosphate, and then adds a composite antibacterial agent solution into the porous structure, and carries the composite antibacterial agent by polishing and heat treatment, which not only solves the problem of poor surface smoothness and antifouling of the porous structure
  • the composite antibacterial agent is combined with the antibacterial porous material while preventing the antibacterial active ingredients of the composite antibacterial agent from being damaged by high temperature treatment, which gives the ceramic tile surface long-lasting and excellent antibacterial performance, and avoids the high temperature burning of the traditional antibacterial ceramic tile product
  • the appearance and decoration effect of the finished product has many defects.
  • the antibacterial active ingredients of the composite antibacterial agent of the present disclosure are antibacterial oxides and antibacterial ions, that is, an antibacterial material with an ionic state and a granular antibacterial material.
  • the antibacterial ions mainly exhibit high sterilization efficiency, while the antibacterial oxides mainly Indicated for bactericidal persistence.
  • the concentration of the antibacterial ion in the composite antibacterial agent solution is 0.01 to 0.03 mol/L.
  • the concentration of antibacterial ions is 0.01 mol/L, 0.015 mol/L, 0.02 mol/L, 0.025 mol/L, or 0.03 mol/L.
  • the sintering temperature of the high-temperature sintering is 1150-1200° C., and the sintering period is 45-55 min.
  • the firing temperature for high-temperature firing is 1150°C, and the firing period is 55 minutes; the firing temperature for high-temperature firing is 1200°C, and the firing period is 45 minutes; or the firing temperature for high-temperature firing is It is 1180°C, and the firing cycle is 50min.
  • the grinding disc in step 2) is a wool felt grinding disc.
  • the heat treatment temperature of the heat treatment in step 2) is 80-120° C., and the heat treatment time is 10-20 s.
  • the heat treatment temperature is 80°C and the heat treatment time is 20s; the heat treatment temperature is 120°C and the heat treatment time is 10s; or the heat treatment temperature is 100°C and the heat treatment time is 15s.
  • the beneficial effects of the embodiments of the present disclosure include, for example, the present disclosure
  • the present disclosure introduces zirconium phosphate into the antibacterial glaze layer on the surface of the ceramic tile, and takes advantage of the low density of zirconium phosphate. After high-temperature firing, it accumulates on the upper part of the glaze layer to form a surface with a porous structure, thereby adhering as a composite antibacterial agent.
  • the carrier strengthens the binding force of the antibacterial material and the ceramic tile, and gives the ceramic tile longer-lasting and more excellent antibacterial performance, and at the same time does not affect the appearance and decoration effect of the ceramic tile.
  • the present disclosure adopts a composite antibacterial agent, wherein the antibacterial active ingredients include different forms of antibacterial oxides and antibacterial ions.
  • the antibacterial oxide fills the porous structure of the zirconium phosphate carrier and has antibacterial and antifouling effects.
  • the antibacterial ion penetrates the landfill
  • the porous structure of the zirconium phosphate carrier cooperates with the antibacterial oxide to play an antibacterial effect, so the antibacterial effect of the ceramic tile of the present disclosure is durable and efficient.
  • the present disclosure adjusts the preparation method to make it compatible with the antibacterial glaze layer.
  • the composite antibacterial agent is not processed at high temperature to maximize the antibacterial activity of the antibacterial material, and through spraying and polishing treatments, the antibacterial The active ingredients are effectively exposed on the surface of the ceramic tiles, so that the antibacterial effect is more excellent.
  • the preparation method of the present disclosure has simple steps and strong controllability, which is conducive to large-scale industrial production.
  • FIG. 1 is a schematic cross-sectional view of a part of the structure of an antibacterial ceramic tile provided by an embodiment of the disclosure
  • FIG. 2 is a schematic cross-sectional view of a ceramic tile body provided by an embodiment of the disclosure.
  • 100-ceramic tile body 101-body layer; 102-priming glaze layer; 103-decorative pattern layer; 200-transparent glaze layer; 300-antibacterial layer.
  • the present disclosure provides an antibacterial ceramic tile, which is provided with a body layer 101, a base glaze layer 102, a decorative pattern layer 103, and an antibacterial glaze layer from bottom to top.
  • the antibacterial glaze layer is composed of a basic transparent glaze and a zirconium phosphate loaded composite antibacterial agent.
  • the zirconium phosphate loaded composite antibacterial agent accumulates on the top of the antibacterial glaze layer, and the antibacterial active ingredients of the composite antibacterial agent are antibacterial oxides and antibacterial ions.
  • the carrier in the zirconium phosphate loaded composite antibacterial agent is ⁇ -zirconium phosphate prepared by hydrothermal method, and its specific surface area is 100m 2 /g; the antibacterial oxide is 30nm zinc oxide, which is used in the composite antibacterial agent.
  • the solid content of the antibacterial ion is 3%; the antibacterial ion is zinc ion, and its concentration in the composite antibacterial agent is 0.03mol/L; the chemical composition of the basic transparent glaze is 41.02% SiO2, 11.76% Al2O3, 5.50% by weight B2O3, 8.74% CaO, 2.35% MgO, 6.78% ZnO, 4.23% BaO, 2.64% SrO, 10.03% K2O, 6.80% Na2O and 0.15% others.
  • the transparent glaze layer 200 is composed of 99% basic transparent glaze and 1% zirconium phosphate carrier mixed composition, after high-temperature firing at a firing temperature of 1150°C and a firing cycle of 55 minutes, a semi-finished product is obtained;
  • step 2) Spray a composite antibacterial agent on the surface of the semi-finished product obtained in step 1), polish it with a wool felt material grinding disc, and heat treatment at a temperature of 120° C. for 10 seconds to obtain the finished antibacterial ceramic tile of Example 1.
  • the antibacterial ceramic tile made by the above method has a green body layer 101, a base glaze layer 102, a decorative pattern layer 103, a transparent glaze layer 200 and an antibacterial layer 300 from bottom to top.
  • the transparent glaze layer 200 and the antibacterial layer 300 penetrate each other, and the antibacterial layer 300 includes porous zirconium phosphate and a composite antibacterial agent supported on the porous zirconium phosphate.
  • the antibacterial active ingredients of the composite antibacterial agent include antibacterial oxides and antibacterial ions.
  • the ceramic tile body 100 includes a body layer 101, a base glaze layer 102, and a decorative pattern layer 103 arranged from bottom to top.
  • the transparent glaze layer 200 is arranged on the decorative pattern layer 103, and the antibacterial layer 300 is arranged on the transparent glaze.
  • the basic transparent glaze can also be referred to as the transparent glaze layer 200; the antibacterial glaze layer can be composed of the transparent glaze layer 200 and the antibacterial layer 300.
  • the antibacterial layer 300 is partially embedded in the transparent glaze layer 200, and the transparent glaze layer 200 is partially embedded in the antibacterial layer 300, indicating that the two penetrate into each other.
  • An antibacterial ceramic tile is provided with a body layer, a bottom glaze layer, a decorative pattern layer, a transparent glaze layer and an antibacterial layer from bottom to top.
  • the antibacterial layer is a composite antibacterial agent.
  • the antibacterial active ingredients of the composite antibacterial agent are antibacterial oxides and antibacterial ions.
  • the antibacterial oxide is 30nm zinc oxide, and its solid content in the composite antibacterial agent is 3%; the antibacterial ion is zinc ion, and its concentration in the composite antibacterial agent is 0.03mol/L; the chemical composition of the transparent glaze layer In terms of weight percentages, 41.02% SiO 2 , 11.76% Al 2 O 3 , 5.50% B 2 O 3 , 8.74% CaO, 2.35% MgO, 6.78% ZnO, 4.23% BaO, 2.64% SrO, 10.03% K 2 O, 6.80% Na 2 O, and 0.15% others.
  • step 2) Spray a composite antibacterial agent on the surface of the semi-finished product obtained in step 1), polish it with a wool felt material grinding disc, and heat treatment at a temperature of 120° C. for 10 seconds to obtain a finished product of Comparative Example 1 antibacterial ceramic tile.
  • the antibacterial ceramic tile prepared by the above method is provided with a body layer, a base glaze layer, a decorative pattern layer, a transparent glaze layer and an antibacterial layer from bottom to top, and the antibacterial layer is a composite antibacterial agent.
  • the antibacterial active ingredients of the composite antibacterial agent are antibacterial oxides and antibacterial ions.
  • An antibacterial ceramic tile is provided with a body layer, a bottom glaze layer, a decorative pattern layer and an antibacterial glaze layer from bottom to top.
  • the antibacterial glaze layer is composed of a basic transparent glaze and a zirconium phosphate loaded composite antibacterial agent.
  • the antibacterial active ingredients of the composite antibacterial agent are antibacterial oxides and antibacterial ions.
  • the carrier in the zirconium phosphate loaded composite antibacterial agent is ⁇ -zirconium phosphate prepared by hydrothermal method, and its specific surface area is 100m 2 /g; the antibacterial oxide is 30nm zinc oxide, which is used in the composite antibacterial agent.
  • the solid content of the antibacterial ion is 3%; the antibacterial ion is zinc ion, and its concentration in the composite antibacterial agent is 0.03mol/L; the chemical composition of the basic transparent glaze is 41.02% SiO 2 and 11.76% Al 2 O in terms of weight percentage. 3. 5.50% B 2 O 3 , 8.74% CaO, 2.35% MgO, 6.78% ZnO, 4.23% BaO, 2.64% SrO, 10.03% K 2 O, 6.80% Na 2 O and 0.15 %other.
  • the transparent glaze layer is composed of 98% basic transparent glaze, 1% zirconium phosphate and 1% composite antibacterial agent mixed composition, after high temperature firing at a firing temperature of 1150°C and a firing cycle of 55 minutes, a semi-finished product is obtained;
  • step 2) The semi-finished product obtained in step 1) is subjected to post-polishing treatment to obtain a finished product of comparative example 2 antibacterial ceramic tiles.
  • the antibacterial ceramic tile prepared by the above method has a green body layer, a bottom glaze layer, a decorative pattern layer and an antibacterial layer from bottom to top.
  • the antibacterial layer is composed of a transparent glaze layer, zirconium sulfate and a composite antibacterial agent.
  • the antibacterial active ingredients of the composite antibacterial agent are antibacterial oxides and antibacterial ions.
  • the present disclosure provides an antibacterial ceramic tile, which is provided with a body layer 101, a base glaze layer 102, a decorative pattern layer 103, and an antibacterial glaze layer from bottom to top.
  • the antibacterial glaze layer is composed of a basic transparent glaze and a zirconium phosphate loaded composite antibacterial agent.
  • the zirconium phosphate loaded composite antibacterial agent accumulates on the top of the antibacterial glaze layer, and the antibacterial active ingredients of the composite antibacterial agent are antibacterial oxides and antibacterial ions.
  • the carrier zirconium phosphate in the zirconium phosphate loaded composite antibacterial agent is ⁇ -zirconium phosphate prepared by hydrothermal method, and its specific surface area is 200m2/g; the antibacterial oxide is 10nm zinc oxide, which is used in the composite antibacterial agent.
  • the solid content is 5%;
  • the antibacterial ion is zinc ion, and its concentration in the composite antibacterial agent is 0.01mol/L;
  • the chemical composition of the basic transparent glaze is 41.5% SiO2, 11.25% Al 2 O 3 , 5.5% B 2 O 3 , 8% CaO, 2.5% MgO, 6% ZnO, 4.5% BaO, 2% SrO, 10.5% K 2 O, 7% Na 2 O and 0.25% others .
  • the transparent glaze layer 200 consists of 98% of the basic transparent glaze and 2% zirconium phosphate carrier mixed composition, after high-temperature firing at a firing temperature of 1200°C and a firing cycle of 45 minutes, a semi-finished product is obtained;
  • step 2) Spray a composite antibacterial agent on the surface of the semi-finished product obtained in step 1), polish it with a wool felt material grinding disc, and heat it at a temperature of 80° C. for 20 s to obtain the finished antibacterial ceramic tile of Example 2.
  • the antibacterial ceramic tile made by the above method has a green body layer 101, a base glaze layer 102, a decorative pattern layer 103, a transparent glaze layer 200 and an antibacterial layer 300 from bottom to top.
  • the transparent glaze layer 200 and the antibacterial layer 300 penetrate each other, and the antibacterial layer 300 includes porous zirconium phosphate and a composite antibacterial agent supported on the porous zirconium phosphate.
  • the antibacterial active ingredients of the composite antibacterial agent include antibacterial oxides and antibacterial ions.
  • the basic transparent glaze can be referred to as the transparent glaze layer 200;
  • the antibacterial glaze layer is composed of the transparent glaze layer 200 and the antibacterial layer 300.
  • the antibacterial layer 300 is partially embedded in the transparent glaze layer 200, and the transparent glaze layer 200 is partially embedded in the antibacterial layer 300, indicating that the two penetrate into each other.
  • the present disclosure provides an antibacterial ceramic tile, which is provided with a body layer 101, a base glaze layer 102, a decorative pattern layer 103 and an antibacterial glaze layer from bottom to top.
  • the antibacterial glaze layer is composed of a basic transparent glaze and a zirconium phosphate loaded composite antibacterial agent.
  • the zirconium phosphate loaded composite antibacterial agent accumulates on the top of the antibacterial glaze layer, and the antibacterial effective components of the composite antibacterial agent are divided into antibacterial oxides and antibacterial ions.
  • the carrier in the zirconium phosphate loaded composite antibacterial agent is ⁇ -zirconium phosphate prepared by hydrothermal method, and its specific surface area is 150m 2 /g; the antibacterial oxide is 20nm zinc oxide, which is used in the composite antibacterial agent.
  • the solid content is 4%;
  • the antibacterial ion is zinc ion, and its concentration in the composite antibacterial agent is 0.02mol/L;
  • the chemical composition of the basic transparent glaze is 40.4% SiO2, 12% Al 2 O 3 by weight percentage , 5.2% B 2 O 3 , 9% CaO, 2.5% MgO, 7% ZnO, 4.2% BaO, 3% SrO, 9.8% K 2 O, 6.8% Na 2 O and 0.1% other.
  • the transparent glaze layer 200 consists of 99.5% of the basic transparent glaze and 0.5% zirconium phosphate carrier mixed composition, after high temperature firing at a firing temperature of 1185°C and firing cycle of 50 minutes, a semi-finished product is obtained;
  • step 2) Spray a composite antibacterial agent on the surface of the semi-finished product obtained in step 1), polish it with a wool felt material grinding disc, and heat it at a temperature of 100° C. for 15 seconds to obtain the finished antibacterial ceramic tile of Example 3.
  • the antibacterial ceramic tile made by the above method has a green body layer 101, a base glaze layer 102, a decorative pattern layer 103, a transparent glaze layer 200 and an antibacterial layer 300 from bottom to top.
  • the transparent glaze layer 200 and the antibacterial layer 300 penetrate each other, and the antibacterial layer 300 includes porous zirconium phosphate and a composite antibacterial agent supported on the porous zirconium phosphate.
  • the antibacterial active ingredients of the composite antibacterial agent include antibacterial oxides and antibacterial ions.
  • the basic transparent glaze can be referred to as the transparent glaze layer 200;
  • the antibacterial glaze layer is composed of the transparent glaze layer 200 and the antibacterial layer 300.
  • the antibacterial layer 300 is partially embedded in the transparent glaze layer 200, and the transparent glaze layer 200 is partially embedded in the antibacterial layer 300, indicating that the two penetrate into each other.
  • the present disclosure provides an antibacterial ceramic tile, which is provided with a body layer 101, a base glaze layer 102, a decorative pattern layer 103, and an antibacterial glaze layer from bottom to top.
  • the antibacterial glaze layer is composed of a basic transparent glaze and a zirconium phosphate loaded composite antibacterial agent.
  • the zirconium phosphate loaded composite antibacterial agent is accumulated on the upper part of the antibacterial glaze layer, and the antibacterial glaze layer is composed of a basic transparent glaze and the zirconium phosphate loaded composite antibacterial agent.
  • the carrier zirconium phosphate in the zirconium phosphate loaded composite antibacterial agent is ⁇ -zirconium phosphate prepared by hydrothermal method, and its specific surface area is 165m 2 /g; the antibacterial oxide is 15nm zinc oxide, which is used in the composite antibacterial agent The solid content is 4.5%; the antibacterial ion is zinc ion, and its concentration in the composite antibacterial agent is 0.015mol/L; the chemical composition of the basic transparent glaze is 41% SiO 2 , 11.5% Al 2 O in weight percentage 3. 5.4% B 2 O 3 , 8.7% CaO, 2.3% MgO, 6.8% ZnO, 4.35% BaO, 2.8% SrO, 10.5% K 2 O, 6.45% Na 2 O and 0.2 %other.
  • the green body layer 101, the base glaze layer 102 and the decorative pattern layer 103 are sequentially prepared by the existing ceramic tile forming method, and a transparent glaze layer 200 is applied on the decorative pattern layer 103.
  • the transparent glaze layer 200 is composed of 98.5% of the basic transparent glaze and 1.5% zirconium phosphate carrier mixed composition, after high temperature firing at a firing temperature of 1200°C and firing cycle of 50min, a semi-finished product is obtained;
  • step 2) Spray a composite antibacterial agent on the surface of the semi-finished product obtained in step 1), polish it with a wool felt material grinding disc, and heat it at a temperature of 110° C. for 15 seconds to obtain the finished antibacterial ceramic tile of Example 4.
  • the antibacterial ceramic tile made by the above method has a green body layer 101, a base glaze layer 102, a decorative pattern layer 103, a transparent glaze layer 200 and an antibacterial layer 300 from bottom to top.
  • the transparent glaze layer 200 and the antibacterial layer 300 penetrate each other, and the antibacterial layer 300 includes porous zirconium phosphate and a composite antibacterial agent supported on the porous zirconium phosphate.
  • the antibacterial active ingredients of the composite antibacterial agent include antibacterial oxides and antibacterial ions.
  • the basic transparent glaze can be referred to as the transparent glaze layer 200;
  • the antibacterial glaze layer is composed of the transparent glaze layer 200 and the antibacterial layer 300.
  • the antibacterial layer 300 is partially embedded in the transparent glaze layer 200, and the transparent glaze layer 200 is partially embedded in the antibacterial layer 300, indicating that the two penetrate into each other.
  • the present disclosure provides an antibacterial ceramic tile and a preparation method, and the ceramic tile has excellent antibacterial performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Finishing Walls (AREA)

Abstract

一种抗菌陶瓷砖,其包括设置在陶瓷砖上表面的抗菌釉层,所述抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成,所述磷酸锆负载复合抗菌剂积聚于抗菌釉层上部,所述复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。在陶瓷砖表面的抗菌釉层中引入磷酸锆,利用磷酸锆密度低的特点,经高温烧成后积聚在釉层上部形成具有多孔结构的表面,从而作为复合抗菌剂附着的载体,强化了抗菌材料与陶瓷砖的结合力,赋予了该陶瓷砖更长效、更优异的抗菌性能,同时不影响陶瓷砖表面外观装饰效果。该抗菌陶瓷砖的制备方法,其步骤简单,可控性强,有利于大规模工业化生产。

Description

一种抗菌陶瓷砖及其制备方法
相关申请的交叉引用
本公开要求于2019年12月13日提交中国专利局的申请号为201911278043.5、名称为“一种抗菌陶瓷砖及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及建筑陶瓷领域,具体而言,涉及一种抗菌陶瓷砖及其制备方法。
背景技术
随着生活水平的提高和工作环境的改善,人们对建筑陶瓷的要求已经超越其单纯的建筑装饰功能,越来越注重其功能化的应用。陶瓷的功能化已成为国内建陶行业发展的主要方向之一。建筑陶瓷的抗菌性能对于提升产品的附加值具有重要的意义。目前,抗菌陶瓷主要有以下几类:第一种是将直接将抗菌材料加入陶瓷砖中混合烧成;第二种是将抗菌材料喷涂在陶瓷砖表面烧制而成;第三种是在成品砖表面喷涂抗菌材料,后经低温热处理实现抗菌效果。上述抗菌材料主要包括含银、锌和铜等化合物、稀土元素抗菌剂和氧化钛等。
发明人在研究中发现,现有的抗菌陶瓷砖存在如下缺点:
抗菌性能差。
发明内容
本公开的目的包括,例如,提供一种抗菌陶瓷砖及其制备方法,以改善上述现有技术中抗菌陶瓷砖存在的缺点。
本公开的实施例是这样实现的:
本公开的实施例提供一种抗菌陶瓷砖,其包括设置在陶瓷砖上表面的抗菌釉层,抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成,磷酸锆负载复合抗菌剂积聚于抗菌釉层上部,复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。
具体地,本公开在陶瓷砖最表面的透明釉层中引入了具有多孔结构的磷酸锆载体,同时通过磷酸锆载体负载复合抗菌剂,利用了磷酸锆载体密度低于基础透明釉的特性,使得经高温烧成后磷酸锆载体积聚于该抗菌釉层的上部,从而实现了将抗菌有效成分固载在抗菌釉层上表面的目的,即有效地强化了抗菌材料与陶瓷砖的结合力。本公开提供的抗菌釉层无需抛光处理,其高温烧成后便在釉层表面形成多孔微结构,即该多孔微结构主要由磷酸锆载体表面的多孔结构构成,其使得复合抗菌剂中的抗菌有效成分经后续喷洒及热处理后可填充和渗透到磷酸锆载体的多孔结构中,从而赋予该抗菌釉层持续及优异的抗菌效果。
实际上,本公开的抗菌陶瓷砖还包括自下而上设置的坯体层、底釉层、装饰图案层,而本公开提供的抗菌釉层设置在装饰图案层上,位于该抗菌陶瓷砖最表层,即本公开提供的磷酸锆负载复合抗菌剂位于该抗菌陶瓷砖最表面。
可选的,陶瓷砖本体包括自下而上设置的坯体层、底釉层和装饰图案层, 透明釉层设置在装饰图案层上,抗菌层设置在透明釉层上。
本公开中形成坯体层的陶瓷砖坯体原料为现有陶瓷砖普通坯体原料,形成底釉层的底釉为现有陶瓷砖普通底釉,而形成装饰图案层可通过丝网印刷及喷墨打印等现有陶瓷砖装饰的方法和工艺,在此不再赘述。
可选的,磷酸锆负载复合抗菌剂中的磷酸锆载体的添加量按质量百分比计为抗菌釉层的0.5~2%。具体地,如磷酸锆载体含量过低,在釉层中分布的量少,抗菌效果欠佳;如磷酸锆载体含量高于2%,会降低釉层的通透性,装饰效果欠佳。因而,磷酸锆载体添加量的限定需兼顾釉层的抗菌效果和装饰效果。
可选的,磷酸锆负载复合抗菌剂中的载体磷酸锆为水热法制备而成的α-磷酸锆,其比表面积为100~200m2/g。具体地,水热法制备的磷酸锆,具有三维网络多孔结构,比表面积进一步增大,有利于附着抗菌有效成分,同时也有利于抗菌离子的迁移,从而进一步提高抗菌效果。
可选的,抗菌氧化物为10~30nm的氧化锌,其在复合抗菌剂中的固含量为3~5%。具体地,抗菌氧化物不仅与抗菌离子协同发挥抗菌效果,且由于其具有明显的颗粒性,可填充和卡固在载体磷酸锆表面的多孔结构中,因而具有填平该陶瓷砖抗菌釉层表面的作用,进而使得该陶瓷砖表面无需进行抛光处理并兼具防污和抗菌性能。本公开的抗菌氧化物选用氧化锌,并限定其粒径为10~30nm、固含量为3~5%,是由于氧化锌抗菌效果明显,且氧化锌来源广,相比抗菌剂银,氧化锌成本较低。同时,由于氧化锌在发挥抗菌作用时,会在氧化锌颗粒周围形成富锌离子环境,粒径越细,锌离子溶出越容易,但低于10nm的氧化锌容易发生团聚,因而氧化锌的粒径限定在10~30nm为宜。另外,氧化 锌含量过低,填孔不完全,影响防污效果;含量过高,氧化锌过量,易在砖面形成白色痕迹,影响装饰效果。
可选的,抗菌离子为锌离子,其在复合抗菌剂中的浓度为0.01~0.03mol/L。具体地,抗菌离子与抗菌氧化物协同发挥抗菌效果,且由于其具有可溶性和渗透性,可渗透填埋磷酸锆载体表面的多孔结构,因为具有优异的持续抗菌效果。本公开的抗菌离子选用锌离子,并限定其浓度为0.01~0.03mol/L,是由于锌离子具有很强的破坏细菌细胞繁殖的作用,且成本较低。另外,锌离子的浓度不宜过低,过低抑菌效果受影响,过高超过磷酸锆的交换吸附的上限,导致抗菌剂不能充分被吸收利用。
可选的,基础透明釉的化学成分按重量百分比计为40~41.5%的SiO 2、11~12%的Al 2O 3、5~5.5%的B 2O 3、8~9%的CaO、1.5~2.5%的MgO、6~7%的ZnO、4~4.5%的BaO、2~3%的SrO、9~10.5%的K 2O、5~7%的Na 2O及0.1~0.25%其他,即本公开的透明釉同时含有硼、钡和锶元素。本公开仅对基础透明釉进行了化学成分的限定,而实际上具有特定化学成分的陶瓷砖透明釉料的原料组分及配比可以是多样的,以能具有本公开基础透明釉的化学成分组成即可。具体地,选择含硼的透明釉,降低透明釉的始融温度,提高釉面平整度,同时透明釉中含有一定量的钡和锶,有利于提高透明釉的折射率,增加釉层下图案的立体效果。因而,本公开中对基础透明釉化学成分的限定兼顾了与磷酸锆载体的适配性的釉层的装饰效果。
本公开还提供了一种上述的抗菌陶瓷砖的制备方法,其包括如下工艺步骤:
1)制备得普通带底釉层和装饰图案层的陶瓷砖坯体,布施透明釉层,透明釉层由基础透明釉和磷酸锆载体混合组成,经高温烧成后,得半成品;
2)于步骤1)所得半成品表面喷洒复合抗菌剂,经磨盘抛磨和热处理,得抗菌陶瓷砖成品。
具体地,本公开透明釉层中的磷酸锆载体本身具有一定的抗菌性能,由于其密度低,经步骤1)高温烧成后积聚于透明釉层的上部,并与基础透明釉在界面处形成互渗结构。即实际上积聚于透明釉层上部的磷酸锆载体已赋予了陶瓷砖表面一定的抗菌性能。然而,传统多孔结构的表面由于平整性和防污性极差而需要进行抛光处理。本申请利用了磷酸锆的多孔结构,采用喷洒抛磨、热处理的非高温处理方式负载复合抗菌剂,不仅解决了多孔结构表面平整性和防污性极差的缺陷,且将复合抗菌剂与抗菌多孔材料相结合同时避免复合抗菌剂的抗菌有效成分受高温处理破坏,赋予了陶瓷砖表面长效、优异的抗菌性能,亦避免了传统抗菌陶瓷砖成品高温烧成后外观装饰效果多缺陷的现象。
另外,本公开的复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子,即兼具离子状态的抗菌材料和颗粒状的抗菌材料,其中抗菌离子主要表现为杀菌高效性,而抗菌氧化物主要表明为杀菌持久性。本公开的复合抗菌剂的制备方法为:先将抗菌氧化物粉体、水和分散剂高速搅拌混合,经机械超细研磨,控制固含量为18~20%,得纳米抗菌氧化物浆料;再将含抗菌离子的醋酸盐、水和螯合剂高速搅拌混合,控制螯合剂浓度为0.2~0.6mol/L,得含抗菌离子的溶液;最后将步骤1)的纳米抗菌氧化物浆料和步骤2)的含抗菌离子的溶液混合,经机械超细研磨,得复合抗菌剂。其中,螯合剂选用乙二胺四乙酸,其 具有多羟基结构,用于螯合抗菌离子,使抗菌材料均匀分散在溶液中,有利于抗菌效果的稳定性。
可选的,步骤1)中高温烧成的烧成温度为1150~1200℃且烧成周期为45~55min。具体地,烧成温度过低,釉层中易形成气泡;烧成温度过高,釉面易沸腾,造成平整度不佳等缺陷。而烧成周期过短,坯体不易成瓷,吸水率过大;烧成周期过长,坯体过烧,瓷坯容易变形。
可选的,步骤2)中磨盘为羊毛毡材质磨盘。具体地,羊毛毡柔软以及韧性好,有利于复合抗菌剂与陶瓷砖半成品表面的充分接触。
可选的,步骤2)中热处理的热处理温度为80~120℃且热处理时间为10~20s。具体地,热处理主要是快速将复合抗菌剂中的抗菌有效成分固化在磷酸锆载体中,热处理温度过低或者热处理时间过短,抗菌有效成分均不能有效被吸附;热处理时间过长,影响生产的效率。
本公开实施例还提供了一种抗菌陶瓷砖,包括陶瓷砖本体、在陶瓷砖本体的上表面设置的透明釉层,以及渗透于透明釉层的背离陶瓷砖本体的一侧的抗菌层,抗菌层包括多孔磷酸锆以及负载于多孔磷酸锆上的复合抗菌剂,复合抗菌剂的抗菌有效成分包括抗菌氧化物和抗菌离子。
多孔磷酸锆渗透于透明釉层上,一方面,其可以赋予陶瓷砖一定的抗菌性能;另一方面,多孔磷酸锆渗透进入透明釉层中,可以使抗菌层与透明釉层的结合力更好;第三方面,多孔磷酸锆的孔洞内负载复合抗菌剂(抗菌氧化物和抗菌离子),可以进一步增加陶瓷砖的抗菌性能;第四方面,负载复合抗菌剂 后,抗菌氧化物为颗粒物,可以填充在多孔磷酸锆的孔洞内,并通过抗菌离子将抗菌层平整,可以减少陶瓷砖的表面缺陷。
同时,本公开的复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子,即兼具离子状态的抗菌材料和颗粒状的抗菌材料,其中抗菌离子主要表现为杀菌高效性,而抗菌氧化物主要表明为杀菌持久性。
可选的,多孔磷酸锆占抗菌层的质量百分比为:0.5~2%。在一些可能的实施方式中,多孔磷酸锆占抗菌层的质量百分比为:0.5%、0.1%、0.15%或2%。
可选的,抗菌层中的多孔磷酸锆为α-磷酸锆,其比表面积为100~200m2/g。在其他实施例中,多孔磷酸锆还可以是β-磷酸锆或者γ-磷酸锆等。在一些可能的实施方式中,α-磷酸锆的比表面积为100m2/g、120m2/g、140m2/g、160m2/g、180m2/g或200m2/g。
可选的,抗菌氧化物是粒径为10~30nm的氧化锌,其在复合抗菌剂中的固含量为3~5%。在其他实施例中,抗菌氧化物还可以是氧化钛、氧化银、氧化镁、氧化铜、氧化钙等。在一些可能的实施方式中,氧化锌的粒径为10nm、15nm、20nm、25nm或30nm。氧化锌在抗菌复合剂中的固含量为3%、3.5%、4%、4.5%或5%。
可选的,抗菌离子为锌离子。在其他实施例中,抗菌离子还可以是银离子、铜离子等。
可选的,透明釉层的化学成分按重量百分比计为40~41.5%的SiO2、11~12%的Al 2O 3、5~5.5%的B 2O 3、8~9%的CaO、1.5~2.5%的MgO、6~7%的ZnO、4~4.5% 的BaO、2~3%的SrO、9~10.5%的K 2O、5~7%的Na 2O及0.1~0.25%其他。
本公开的实施例还提供了一种抗菌陶瓷砖的制备方法,包括如下工艺步骤:
1)将混合的透明釉材料和磷酸锆布施于陶瓷砖本体的表面,经高温烧成后,得半成品;
2)于步骤1)所得半成品表面施加复合抗菌剂溶液,经磨盘抛磨、热处理,得抗菌陶瓷砖。
由于磷酸锆载体密度低于透明釉的密度,在将透明釉和磷酸锆高温烧成的时候,透明釉位于磷酸锆的下方(透明釉更加靠近陶瓷砖本体),且使得经高温烧成后磷酸锆层与透明釉层形成了互渗结构,并使烧结后的磷酸锆层形成了多孔磷酸锆层结构。多孔磷酸锆赋予了陶瓷砖表面一定的抗菌性能。然而,传统多孔结构的表面由于平整性和防污性极差而需要进行抛光处理。本申请利用了磷酸锆的多孔结构,然后在多孔结构内添加复合抗菌剂溶液,并进行抛磨、热处理的方式负载复合抗菌剂,不仅解决了多孔结构的表面平整性、防污性极差的缺陷,且将复合抗菌剂与抗菌多孔材料相结合同时避免复合抗菌剂的抗菌有效成分受高温处理破坏,赋予了陶瓷砖表面长效、优异的抗菌性能,亦避免了传统抗菌陶瓷砖成品高温烧成后外观装饰效果多缺陷的现象。
同时,本公开的复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子,即兼具离子状态的抗菌材料和颗粒状的抗菌材料,其中抗菌离子主要表现为杀菌高效性,而抗菌氧化物主要表明为杀菌持久性。
可选的,复合抗菌剂溶液中,抗菌离子的浓度为0.01~0.03mol/L。在一些的实施方式中,抗菌离子的浓度为0.01mol/L、0.015mol/L、0.02mol/L、0.025mol/L或0.03mol/L。
可选的,步骤1)中高温烧成的烧成温度为1150~1200℃、烧成周期为45~55min。在一些可能的实施方式中,高温烧成的烧成温度为1150℃,烧成周期为55min;高温烧成的烧成温度为1200℃,烧成周期为45min;或高温烧成的烧成温度为1180℃,烧成周期为50min。
可选的,步骤2)中磨盘为羊毛毡材质磨盘。
可选的,步骤2)中热处理的热处理温度为80~120℃、热处理时间为10~20s。在一些可能的实施方式中,热处理温度为80℃,热处理时间为20s;热处理温度为120℃,热处理时间为10s;或热处理温度为100℃,热处理时间为15s。
与现有的技术相比,本公开实施例的有益效果包括,例如:本公开
(1)本公开在陶瓷砖表面的抗菌釉层中引入磷酸锆,利用磷酸锆密度低的特点,经高温烧成后积聚在釉层上部形成具有多孔结构的表面,从而作为复合抗菌剂附着的载体,强化了抗菌材料与陶瓷砖的结合力,赋予了该陶瓷砖更长效及更优异的抗菌性能,同时不影响陶瓷砖表面外观装饰效果。
(2)本公开采用复合抗菌剂,其中抗菌有效成分包括不同形态的抗菌氧化物和抗菌离子,抗菌氧化物填充磷酸锆载体的多孔结构且兼具抗菌和防污的作用,抗菌离子渗透填埋磷酸锆载体的多孔结构并与抗菌氧化物协同发挥抗菌 作用,因而本公开陶瓷砖的抗菌效果持久且高效。
(3)本公开通过调整制备方法,使其与抗菌釉层相适配,其中复合抗菌剂未经高温处理,最大限度地保持了抗菌材料的抗菌活性,且通过喷洒和抛磨处理,使抗菌有效成分有效暴露在陶瓷砖表面,从而使抗菌效果更优异。
(4)本公开的制备方法步骤简单,可控性强,有利于大规模工业化生产。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的抗菌陶瓷砖的部分结构的剖视示意图;
图2为本公开实施例提供的陶瓷砖本体的剖视示意图。
图标:
100-陶瓷砖本体;101-坯体层;102-底釉层;103-装饰图案层;200-透明釉层;300-抗菌层。
具体实施方式
下面结合实施例对本公开进行具体描述,以便于所属技术领域的人员对本公开的理解。有必要在此特别指出的是,实施例只是用于对本公开做进一步说 明,不能理解为对本公开保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本公开作出的非本质性的改进和调整,应仍属于本公开的保护范围。同时下述所提及的原料未详细说明的,均为市售产品;未详细提及的工艺步骤或制备方法为均为本领域技术人员所知晓的工艺步骤或制备方法。
实施例1
请参阅图1和图2,本公开提供一种抗菌陶瓷砖,其自下而上设置坯体层101、底釉层102、装饰图案层103和抗菌釉层。抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成。磷酸锆负载复合抗菌剂积聚于抗菌釉层上部,复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。
其中,磷酸锆负载复合抗菌剂中的载体磷酸锆为水热法制备而成的α-磷酸锆,其比表面积为100m 2/g;抗菌氧化物为30nm的氧化锌,其在复合抗菌剂中的固含量为3%;抗菌离子为锌离子,其在复合抗菌剂中的浓度为0.03mol/L;基础透明釉的化学成分按重量百分比计为41.02%的SiO2、11.76%的Al2O3、5.50%的B2O3、8.74%的CaO、2.35%的MgO、6.78%的ZnO、4.23%的BaO、2.64%的SrO、10.03%的K2O、6.80%的Na2O以及0.15%其他。
制备方法:
1)采用现有陶瓷砖成型方式依次制备坯体层101、底釉层102和装饰图案层103,在装饰图案层103上布施透明釉层200,透明釉层200由99%的基础透明釉和1%的磷酸锆载体混合组成,经烧成温度为1150℃且烧成周期为55min的高温烧成后,得半成品;
2)于步骤1)所得半成品表面喷洒复合抗菌剂,经羊毛毡材质磨盘抛磨,再置于温度为120℃下热处理10s,得实施例1抗菌陶瓷砖成品。
通过上述方法制得的抗菌陶瓷砖,其自下而上设置坯体层101、底釉层102、装饰图案层103、透明釉层200和抗菌层300。透明釉层200和抗菌层300相互渗透,抗菌层300包括多孔磷酸锆以及负载于多孔磷酸锆上的复合抗菌剂。复合抗菌剂的抗菌有效成分包括抗菌氧化物和抗菌离子。
需要说明的是,陶瓷砖本体100包括自下而上设置的坯体层101、底釉层102和装饰图案层103,透明釉层200设置在装饰图案层103上,抗菌层300设置在透明釉层200上。基础透明釉也可以称之为透明釉层200;抗菌釉层可以由透明釉层200和抗菌层300组成。
此外,图1中抗菌层300部分嵌入透明釉层200,且透明釉层200部分嵌入抗菌层300,表示二者相互渗透。
对比例1
一种抗菌陶瓷砖,其自下而上设置坯体层、底釉层、装饰图案层、透明釉层和抗菌层。抗菌层为复合抗菌剂。复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。
其中,抗菌氧化物为30nm的氧化锌,其在复合抗菌剂中的固含量为3%;抗菌离子为锌离子,其在复合抗菌剂中的浓度为0.03mol/L;透明釉层的化学成分按重量百分比计为41.02%的SiO 2、11.76%的Al 2O 3、5.50%的B 2O 3、8.74%的CaO、2.35%的MgO、6.78%的ZnO、4.23%的BaO、2.64%的SrO、10.03%的K 2O、 6.80%的Na 2O以及0.15%其他。
制备方法:
1)采用现有陶瓷砖成型方式依次制备坯体层、底釉层、装饰图案层和透明釉层,经烧成温度为1150℃且烧成周期为55min的高温烧成后,得半成品;
2)于步骤1)所得半成品表面喷洒复合抗菌剂,经羊毛毡材质磨盘抛磨,再置于温度为120℃下热处理10s,得对比例1抗菌陶瓷砖成品。
通过上述方法制得的抗菌陶瓷砖,其自下而上设置坯体层、底釉层、装饰图案层、透明釉层和抗菌层,抗菌层为复合抗菌剂。复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。
对比例2
一种抗菌陶瓷砖,其自下而上设置坯体层、底釉层、装饰图案层和抗菌釉层。抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成。复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。
其中,磷酸锆负载复合抗菌剂中的载体磷酸锆为水热法制备而成的α-磷酸锆,其比表面积为100m 2/g;抗菌氧化物为30nm的氧化锌,其在复合抗菌剂中的固含量为3%;抗菌离子为锌离子,其在复合抗菌剂中的浓度为0.03mol/L;基础透明釉的化学成分按重量百分比计为41.02%的SiO 2、11.76%的Al 2O 3、5.50%的B 2O 3、8.74%的CaO、2.35%的MgO、6.78%的ZnO、4.23%的BaO、2.64%的SrO、10.03%的K 2O、6.80%的Na 2O和0.15%其他。
制备方法:
1)采用现有陶瓷砖成型方式依次制备坯体层、底釉层和装饰图案层,在装饰图案层上布施透明釉层,透明釉层由98%的基础透明釉、1%的磷酸锆和1%的复合抗菌剂混合组成,经烧成温度为1150℃且烧成周期为55min的高温烧成后,得半成品;
2)将步骤1)所得半成品进行抛光后处理,得对比例2抗菌陶瓷砖成品。
通过上述方法制得的抗菌陶瓷砖,其自下而上设置坯体层、底釉层、装饰图案层和抗菌层。抗菌层由透明釉层、硫酸锆和复合抗菌剂组成。复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。
实施例2
请参阅图1和图2,本公开提供一种抗菌陶瓷砖,其自下而上设置坯体层101、底釉层102、装饰图案层103和抗菌釉层。抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成。磷酸锆负载复合抗菌剂积聚于抗菌釉层上部,复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。
其中,磷酸锆负载复合抗菌剂中的载体磷酸锆为水热法制备而成的α-磷酸锆,其比表面积为200m2/g;抗菌氧化物为10nm的氧化锌,其在复合抗菌剂中的固含量为5%;抗菌离子为锌离子,其在复合抗菌剂中的浓度为0.01mol/L;基础透明釉的化学成分按重量百分比计为41.5%的SiO2、11.25%的Al 2O 3、5.5%的B 2O 3、8%的CaO、2.5%的MgO、6%的ZnO、4.5%的BaO、2%的SrO、10.5%的K 2O、7%的Na 2O以及0.25%其他。
制备方法:
1)采用现有陶瓷砖成型方式依次制备坯体层101、底釉层102和装饰图案层103,在装饰图案层103上布施透明釉层200,透明釉层200由98%的基础透明釉和2%的磷酸锆载体混合组成,经烧成温度为1200℃且烧成周期为45min的高温烧成后,得半成品;
2)于步骤1)所得半成品表面喷洒复合抗菌剂,经羊毛毡材质磨盘抛磨,再置于温度为80℃下热处理20s,得实施例2抗菌陶瓷砖成品。
通过上述方法制得的抗菌陶瓷砖,其自下而上设置坯体层101、底釉层102、装饰图案层103、透明釉层200和抗菌层300。透明釉层200和抗菌层300相互渗透,抗菌层300包括多孔磷酸锆以及负载于多孔磷酸锆上的复合抗菌剂。复合抗菌剂的抗菌有效成分包括抗菌氧化物和抗菌离子。
需要说明的是,基础透明釉可以称之为透明釉层200;抗菌釉层由透明釉层200和抗菌层300组成。
此外,图1中抗菌层300部分嵌入透明釉层200,且透明釉层200部分嵌入抗菌层300,表示二者相互渗透。
实施例3
本公开提供一种抗菌陶瓷砖,其自下而上设置坯体层101、底釉层102、装饰图案层103和抗菌釉层。抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成。磷酸锆负载复合抗菌剂积聚于抗菌釉层上部,复合抗菌剂的抗菌有效成 分为抗菌氧化物和抗菌离子。
其中,磷酸锆负载复合抗菌剂中的载体磷酸锆为水热法制备而成的α-磷酸锆,其比表面积为150m 2/g;抗菌氧化物为20nm的氧化锌,其在复合抗菌剂中的固含量为4%;抗菌离子为锌离子,其在复合抗菌剂中的浓度为0.02mol/L;基础透明釉的化学成分按重量百分比计为40.4%的SiO2、12%的Al 2O 3、5.2%的B 2O 3、9%的CaO、2.5%的MgO、7%的ZnO、4.2%的BaO、3%的SrO、9.8%的K 2O、6.8%的Na 2O以及0.1%其他。
制备方法:
1)采用现有陶瓷砖成型方式依次制备坯体层101、底釉层102和装饰图案层103,在装饰图案层103上布施透明釉层200,透明釉层200由99.5%的基础透明釉和0.5%的磷酸锆载体混合组成,经烧成温度为1185℃且烧成周期为50min的高温烧成后,得半成品;
2)于步骤1)所得半成品表面喷洒复合抗菌剂,经羊毛毡材质磨盘抛磨,再置于温度为100℃下热处理15s,得实施例3抗菌陶瓷砖成品。
通过上述方法制得的抗菌陶瓷砖,其自下而上设置坯体层101、底釉层102、装饰图案层103、透明釉层200和抗菌层300。透明釉层200和抗菌层300相互渗透,抗菌层300包括多孔磷酸锆以及负载于多孔磷酸锆上的复合抗菌剂。复合抗菌剂的抗菌有效成分包括抗菌氧化物和抗菌离子。
需要说明的是,基础透明釉可以称之为透明釉层200;抗菌釉层由透明釉层200和抗菌层300组成。
此外,图1中抗菌层300部分嵌入透明釉层200,且透明釉层200部分嵌入抗菌层300,表示二者相互渗透。
实施例4
请参阅图1和图2,本公开提供一种抗菌陶瓷砖,其自下而上设置坯体层101、底釉层102、装饰图案层103和抗菌釉层。抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成。磷酸锆负载复合抗菌剂积聚于抗菌釉层上部,抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成。
其中,磷酸锆负载复合抗菌剂中的载体磷酸锆为水热法制备而成的α-磷酸锆,其比表面积为165m 2/g;抗菌氧化物为15nm的氧化锌,其在复合抗菌剂中的固含量为4.5%;抗菌离子为锌离子,其在复合抗菌剂中的浓度为0.015mol/L;基础透明釉的化学成分按重量百分比计为41%的SiO 2、11.5%的Al 2O 3、5.4%的B 2O 3、8.7%的CaO、2.3%的MgO、6.8%的ZnO、4.35%的BaO、2.8%的SrO、10.5%的K 2O、6.45%的Na 2O以及0.2%其他。
制备方法:
1)采用现有陶瓷砖成型方式依次制备坯体层101、底釉层102和装饰图案层103,在装饰图案层103上布施透明釉层200,透明釉层200由98.5%的基础透明釉和1.5%的磷酸锆载体混合组成,经烧成温度为1200℃且烧成周期为50min的高温烧成后,得半成品;
2)于步骤1)所得半成品表面喷洒复合抗菌剂,经羊毛毡材质磨盘抛磨,再置于温度为110℃下热处理15s,得实施例4抗菌陶瓷砖成品。
通过上述方法制得的抗菌陶瓷砖,其自下而上设置坯体层101、底釉层102、装饰图案层103、透明釉层200和抗菌层300。透明釉层200和抗菌层300相互渗透,抗菌层300包括多孔磷酸锆以及负载于多孔磷酸锆上的复合抗菌剂。复合抗菌剂的抗菌有效成分包括抗菌氧化物和抗菌离子。
需要说明的是,基础透明釉可以称之为透明釉层200;抗菌釉层由透明釉层200和抗菌层300组成。
此外,图1中抗菌层300部分嵌入透明釉层200,且透明釉层200部分嵌入抗菌层300,表示二者相互渗透。
实验例:性能检测
根据JC/T 897-2014《抗菌陶瓷制品抗菌性能》标准,分别将实施例1~实施例4所得成品与对比例1所得成品、对比例2所得成品以及购于鸿利建材贸易有限公司的普通抗菌陶瓷砖(市售商品)进行抗菌性能检测,其检测结果如下表1所示。从表1数据可得出,本公开所制备得到的抗菌陶瓷砖的抗菌性能优异,其抗菌率均达到99.9%以上,且抗菌持久性均高于99.5%。
表1 实施例、对比例和市场商品相关性能检测结果
Figure PCTCN2020085400-appb-000001
上述实施例为本公开的优选实施例,凡与本公开类似的工艺及所作的等效变化,均应属于本公开的保护范畴。
工业实用性:
综上,本公开提供了一种抗菌陶瓷砖及制备方法,陶瓷砖的抗菌性能优异。

Claims (20)

  1. 一种抗菌陶瓷砖,其特征在于:包括设置在陶瓷砖上表面的抗菌釉层,所述抗菌釉层由基础透明釉和磷酸锆负载复合抗菌剂组成,所述磷酸锆负载复合抗菌剂积聚于抗菌釉层上部,所述复合抗菌剂的抗菌有效成分为抗菌氧化物和抗菌离子。
  2. 根据权利要求1所述的一种抗菌陶瓷砖,其特征在于:所述磷酸锆负载复合抗菌剂中的载体磷酸锆的添加量按质量百分比计为抗菌釉层的0.5~2%。
  3. 根据权利要求1或者2所述的一种抗菌陶瓷砖,其特征在于:所述磷酸锆负载复合抗菌剂中的载体磷酸锆为水热法制备而成的α-磷酸锆,其比表面积为100~200m 2/g。
  4. 根据权利要求1-3中任一项所述的一种抗菌陶瓷砖,其特征在于:所述抗菌氧化物为10~30nm的氧化锌,其在复合抗菌剂中的固含量为3~5%。
  5. 根据权利要求1-4中任一项所述的一种抗菌陶瓷砖,其特征在于:所述抗菌离子为锌离子,其在复合抗菌剂中的浓度为0.01~0.03mol/L。
  6. 根据权利要求1-5中任一项所述的一种抗菌陶瓷砖,其特征在于:所述基础透明釉的化学成分按重量百分比计为40~41.5%的SiO 2、11~12%的Al 2O 3、5~5.5%的B 2O 3、8~9%的CaO、1.5~2.5%的MgO、6~7%的ZnO、4~4.5%的BaO、2~3%的SrO、9~10.5%的K 2O、5~7%的Na 2O、0.1~0.25%其他。
  7. 一种如权利要求1~6中任一项所述的抗菌陶瓷砖的制备方法,其特征在于包括如下工艺步骤:
    1)制备得普通带底釉层和装饰图案层的陶瓷砖坯体,布施透明釉层,所 述透明釉层由基础透明釉和磷酸锆载体混合组成,经高温烧成后,得半成品;
    2)于步骤1)所得半成品表面喷洒复合抗菌剂,经磨盘抛磨和热处理,得抗菌陶瓷砖成品。
  8. 根据权利要求7所述的一种抗菌陶瓷砖的制备方法,其特征在于:步骤1)中所述高温烧成的烧成温度为1150~1200℃、烧成周期为45~55min。
  9. 根据权利要求7或者8所述的一种抗菌陶瓷砖的制备方法,其特征在于:步骤2)中所述磨盘为羊毛毡材质磨盘。
  10. 根据权利要求7-9中任一项所述的一种抗菌陶瓷砖的制备方法,其特征在于:步骤2)中所述热处理的热处理温度为80~120℃、热处理时间为10~20s。
  11. 一种抗菌陶瓷砖,其特征在于:包括陶瓷砖本体、在所述陶瓷砖本体的上表面设置的透明釉层以及渗透于所述透明釉层的背离所述陶瓷砖本体的一侧的抗菌层,所述抗菌层包括多孔磷酸锆以及负载于所述多孔磷酸锆上的复合抗菌剂,所述复合抗菌剂的抗菌有效成分包括抗菌氧化物和抗菌离子。
  12. 根据权利要求11所述的一种抗菌陶瓷砖,其特征在于:所述多孔磷酸锆占所述抗菌层的质量百分比为:0.5~2%。
  13. 根据权利要求11或者12所述的一种抗菌陶瓷砖,其特征在于:所述抗菌层中的所述多孔磷酸锆为α-磷酸锆,其比表面积为100~200m2/g。
  14. 根据权利要求11-13中任一项所述的一种抗菌陶瓷砖,其特征在于:所述抗菌氧化物是粒径为10~30nm的氧化锌,其在复合抗菌剂中的固含量为 3~5%。
  15. 根据权利要求11-14中任一项所述的一种抗菌陶瓷砖,其特征在于:所述抗菌离子为锌离子。
  16. 根据权利要求11-15中任一项所述的一种抗菌陶瓷砖,其特征在于:所述透明釉层的化学成分按重量百分比计为40~41.5%的SiO 2、11~12%的Al 2O 3、5~5.5%的B 2O 3、8~9%的CaO、1.5~2.5%的MgO、6~7%的ZnO、4~4.5%的BaO、2~3%的SrO、9~10.5%的K 2O、5~7%的Na 2O、0.1~0.25%其他。
  17. 一种如权利要求11~16中任一项所述的抗菌陶瓷砖的制备方法,其特征在于,包括如下工艺步骤:
    1)将混合的透明釉材料和磷酸锆布施于所述陶瓷砖本体的表面,经高温烧成后,得半成品;
    2)于步骤1)所得半成品表面施加复合抗菌剂溶液,经磨盘抛磨和热处理,得所述抗菌陶瓷砖。
  18. 根据权利要求17所述的抗菌陶瓷砖的制备方法,其特征在于,所述复合抗菌剂溶液中,所述抗菌离子的浓度为0.01~0.03mol/L。
  19. 根据权利要求17或者18所述的抗菌陶瓷砖的制备方法,其特征在于,步骤1)中所述高温烧成的烧成温度为1150~1200℃且烧成周期为45~55min。
  20. 根据权利要求17-19中任一项所述的抗菌陶瓷砖的制备方法,其特征在于,步骤2)中所述热处理的热处理温度为80~120℃且热处理时间为10~20s。
PCT/CN2020/085400 2019-12-13 2020-04-17 一种抗菌陶瓷砖及其制备方法 WO2021114539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20864256.1A EP3862339B1 (en) 2019-12-13 2020-04-17 Method for preparing an antibacterial ceramic tile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911278043.5A CN110698227B (zh) 2019-12-13 2019-12-13 一种抗菌陶瓷砖及其制备方法
CN201911278043.5 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021114539A1 true WO2021114539A1 (zh) 2021-06-17

Family

ID=69208094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085400 WO2021114539A1 (zh) 2019-12-13 2020-04-17 一种抗菌陶瓷砖及其制备方法

Country Status (3)

Country Link
EP (1) EP3862339B1 (zh)
CN (1) CN110698227B (zh)
WO (1) WO2021114539A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788616A (zh) * 2021-10-14 2021-12-14 山东鑫晟嘉卫浴有限公司 纳米抗菌搪瓷浴缸
CN115281214A (zh) * 2022-08-26 2022-11-04 厦门稀土材料研究所 一种抗菌助剂、制备方法及双组分抗菌防霉环氧彩砂
CN115321949A (zh) * 2022-08-30 2022-11-11 山西始耳趾电子科技有限公司 一种高光抗菌瓷砖及其生产工艺
CN117859768A (zh) * 2024-03-11 2024-04-12 佛山市东鹏陶瓷有限公司 复合抗病毒剂及其制备方法、保护釉、瓷砖及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698227B (zh) * 2019-12-13 2020-04-28 佛山欧神诺陶瓷有限公司 一种抗菌陶瓷砖及其制备方法
CN113716976A (zh) * 2020-05-25 2021-11-30 重庆鑫景特种玻璃有限公司 一种抗菌陶瓷及其制备方法
CN111748781B (zh) * 2020-06-18 2022-08-16 九牧厨卫股份有限公司 一种复合抗菌靶材及其制备方法和应用
CN111848223B (zh) * 2020-07-22 2022-10-28 晋大纳米科技(厦门)有限公司 一种强抗菌功能性抛釉砖及其制备方法
CN112408796B (zh) * 2020-11-27 2022-07-12 景德镇陶瓷大学 一种抗菌、易洁、无锆洁白功能釉及其制备方法和应用
CN113061055B (zh) * 2021-03-25 2022-11-22 景德镇陶瓷大学 一种具有抗菌性的陶瓷制品及其制备方法和应用
CN113248146B (zh) * 2021-06-03 2021-09-24 佛山欧神诺陶瓷有限公司 一种复合工艺抗菌陶瓷砖及其制备方法
CN113860734B (zh) * 2021-09-30 2023-03-28 广东松发陶瓷股份有限公司 一种具有抗菌功能的陶瓷釉料及其制备方法与应用
CN113666640B (zh) * 2021-10-21 2022-02-22 佛山市东鹏陶瓷发展有限公司 介孔抗菌熔块及其制备方法、抗菌陶瓷砖的制备方法
CN115073003B (zh) * 2022-07-07 2023-12-12 佛山市东鹏陶瓷发展有限公司 一种抗菌瓷砖及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898876A (ja) * 1994-09-29 1996-04-16 Toto Ltd 抗菌性を有する多機能材及びその製造方法
CN104844274A (zh) * 2015-04-27 2015-08-19 昆明理工大学 一种抗菌蜂窝陶瓷的制备方法
CN105801175A (zh) * 2016-03-04 2016-07-27 浙江根根陶瓷有限公司 一种抗菌瓷砖及其制造方法
CN108184898A (zh) * 2018-01-05 2018-06-22 烟台鲁量新材料科技有限公司 一种无机复合抗菌剂的制备方法
CN109553437A (zh) * 2018-12-11 2019-04-02 佛山欧神诺陶瓷有限公司 一种抗菌有釉陶瓷砖的制备方法
CN110256747A (zh) * 2019-05-15 2019-09-20 金富科技股份有限公司 一种抗菌塑料及其制备方法和应用
CN110698227A (zh) * 2019-12-13 2020-01-17 佛山欧神诺陶瓷有限公司 一种抗菌陶瓷砖及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807641A (en) * 1993-05-31 1998-09-15 Sumitomo Osaka Cement Co., Ltd. Anti-bacterial and anti-fungal glaze composition for ceramic products
JP2004041281A (ja) * 2002-07-09 2004-02-12 Ishizuka Glass Co Ltd 抗菌性砂場用砂と砂中の抗菌粒子混入量の測定方法
CN1409966A (zh) * 2002-11-20 2003-04-16 广州擎天新材料研究开发有限公司 一种不变色的食品级纳米抗菌粉体及其制备方法
CN1325429C (zh) * 2004-06-08 2007-07-11 景德镇环球陶瓷有限公司 彩色釉中彩瓷及其制备方法
CN102958369B (zh) * 2010-07-02 2014-11-05 东亚合成株式会社 使用了釉药用抗菌性组合物的陶瓷器的抗菌加工方法
CN102503583A (zh) * 2011-11-08 2012-06-20 山西高陶瓷业有限责任公司 一种大红釉骨质瓷的制备方法
CN109293395A (zh) * 2018-10-24 2019-02-01 东莞唛铂纳米科技有限公司 一种抗菌陶瓷的制造工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898876A (ja) * 1994-09-29 1996-04-16 Toto Ltd 抗菌性を有する多機能材及びその製造方法
CN104844274A (zh) * 2015-04-27 2015-08-19 昆明理工大学 一种抗菌蜂窝陶瓷的制备方法
CN105801175A (zh) * 2016-03-04 2016-07-27 浙江根根陶瓷有限公司 一种抗菌瓷砖及其制造方法
CN108184898A (zh) * 2018-01-05 2018-06-22 烟台鲁量新材料科技有限公司 一种无机复合抗菌剂的制备方法
CN109553437A (zh) * 2018-12-11 2019-04-02 佛山欧神诺陶瓷有限公司 一种抗菌有釉陶瓷砖的制备方法
CN110256747A (zh) * 2019-05-15 2019-09-20 金富科技股份有限公司 一种抗菌塑料及其制备方法和应用
CN110698227A (zh) * 2019-12-13 2020-01-17 佛山欧神诺陶瓷有限公司 一种抗菌陶瓷砖及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788616A (zh) * 2021-10-14 2021-12-14 山东鑫晟嘉卫浴有限公司 纳米抗菌搪瓷浴缸
CN115281214A (zh) * 2022-08-26 2022-11-04 厦门稀土材料研究所 一种抗菌助剂、制备方法及双组分抗菌防霉环氧彩砂
CN115281214B (zh) * 2022-08-26 2024-02-13 厦门稀土材料研究所 一种抗菌助剂、制备方法及双组分抗菌防霉环氧彩砂
CN115321949A (zh) * 2022-08-30 2022-11-11 山西始耳趾电子科技有限公司 一种高光抗菌瓷砖及其生产工艺
CN117859768A (zh) * 2024-03-11 2024-04-12 佛山市东鹏陶瓷有限公司 复合抗病毒剂及其制备方法、保护釉、瓷砖及其制备方法

Also Published As

Publication number Publication date
EP3862339C0 (en) 2023-08-09
EP3862339A1 (en) 2021-08-11
EP3862339B1 (en) 2023-08-09
EP3862339A4 (en) 2022-01-12
CN110698227A (zh) 2020-01-17
CN110698227B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2021114539A1 (zh) 一种抗菌陶瓷砖及其制备方法
CN110776257B (zh) 一种具有抗菌功能的陶瓷釉及其制备方法和应用
CN110818261A (zh) 一种抗菌陶瓷釉及其制备方法和应用
CN111517649B (zh) 抗菌釉粉、抗菌岩板及其制备方法
CN106542735B (zh) 一种耐磨全生料超平厚抛釉及其应用
CN108083646A (zh) 稀土日用陶瓷釉及应用该陶瓷釉的日用陶瓷的制备方法
CN113248146B (zh) 一种复合工艺抗菌陶瓷砖及其制备方法
WO2013041751A1 (es) Combinación y procedimiento de obtención de esmaltes cerámicos bactericidas para productos cerámicos
CN112608029B (zh) 炫光仿古砖及其制备方法
CN106186689B (zh) 一种用于制备龙泉青瓷的熔块、龙泉青瓷熔块釉及该熔块釉的制备方法
CN111559869A (zh) 一种抗菌釉料、抗菌釉面砖及其制备方法
CN109250900B (zh) 一种负离子粉、釉料及其制备方法
WO2015054805A1 (zh) 高白度釉下多彩低温陶瓷及制备方法
CN108484114A (zh) 一种高掺量抛光废料的釉面瓷质砖及其制备方法
CN115677219A (zh) 一种抗菌釉料、具有高硬度、平整釉面及抗菌功能的陶瓷砖及其制备方法
CN113248147A (zh) 一种耐磨、抗菌釉料及其制备方法
KR101197773B1 (ko) 가구용 무기접착제 조성물과 이를 이용한 가구용 무기접착제
CN107651971A (zh) 一种抗菌陶瓷薄板及其制备方法
CN106348597A (zh) 一种可光致变色低温仿古釉及其制备方法
CN108975891B (zh) 喷墨渗花玉质抛光砖及其制备方法
CN113666640B (zh) 介孔抗菌熔块及其制备方法、抗菌陶瓷砖的制备方法
CN111620564B (zh) 一种具有调湿功能的夜光釉料
CN113860854A (zh) 一种抗菌性能稳定持久的陶瓷板及其制备方法
CN111109291A (zh) 一种陶瓷砖抗菌剂及其制备方法
CN114195480A (zh) 一种细腻耐污的抗菌砖及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020864256

Country of ref document: EP

Effective date: 20210322

NENP Non-entry into the national phase

Ref country code: DE