CN106348597A - 一种可光致变色低温仿古釉及其制备方法 - Google Patents

一种可光致变色低温仿古釉及其制备方法 Download PDF

Info

Publication number
CN106348597A
CN106348597A CN201610749298.5A CN201610749298A CN106348597A CN 106348597 A CN106348597 A CN 106348597A CN 201610749298 A CN201610749298 A CN 201610749298A CN 106348597 A CN106348597 A CN 106348597A
Authority
CN
China
Prior art keywords
powder
photochromic
gqds
mixed
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610749298.5A
Other languages
English (en)
Inventor
黎淑娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Gaoming Technology Co Ltd
Original Assignee
Foshan Gaoming Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Gaoming Technology Co Ltd filed Critical Foshan Gaoming Technology Co Ltd
Priority to CN201610749298.5A priority Critical patent/CN106348597A/zh
Publication of CN106348597A publication Critical patent/CN106348597A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/06Frit compositions, i.e. in a powdered or comminuted form containing halogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种可光致变色低温仿古釉及其制备方法,该制备方法包括以下步骤:步骤A,制备低温熔块;步骤B,制备釉浆:将低温熔块、着色剂、钾长石、石英、方解石、滑石、磷酸钙、光致变色复合物及抗菌复合物混合得到混合粉末,向混合粉末中加入三聚磷酸钠和羧甲基纤维素并混合均匀,细磨,然后加入水得釉浆;步骤C,将釉浆均匀地施敷在坯体上,然后于还原气氛炉中,保温后自然冷却至室温,得到可光致变色低温仿古釉。和现有仿古釉相比,本发明制造的仿古釉配料科学,制备合理,呈色纯正,性能稳定;同时经过合理的搭配光致变色复合物和抗菌复合材料,使得仿古釉具有优异抗菌防污和光致变色特性,进一步拓宽了仿古釉的应用范围。

Description

一种可光致变色低温仿古釉及其制备方法
技术领域
本发明涉及了陶瓷技术领域,特别是涉及了一种可光致变色低温仿古釉及其制备方法。
背景技术
细菌,霉菌作为病原菌对人类和动植物有很大危害,影响人们的健康甚至危及生命,带来了重大的经济损失。因此抗菌材料及其制品的研究日益引起人们的关注,抗菌制品的需求将构成巨大的市场。
光致变色是指由于光源的不同引起的光致变色和由反射、折射及干涉等物理现象引起的颜色变化。光致变色材料分为有机光致变色材料与无机光致变色材料,其中对无机光致变色材料的研究较少,主要包括过渡金属氧化物、金属卤化物和稀土配合物三种。
随着经济的快速发展和人们对生活水平的提高,陶瓷制品已经成为人们家庭、办公室、商场等场所装饰用的陶瓷,但是现有有技术的陶瓷釉面,虽然光滑度高,颜色丰富,但是仿古陶瓷较少,特别是多功能仿古釉,基本没有涉及,因此技术有待提高,亟需研发功能型仿古釉,如抗菌、防静电、净化空气等功能,进一步扩宽其应用范围。
发明内容
为了解决上述现有技术的不足,本发明提供了一种可光致变色低温仿古釉及其制备方法。
本发明所要解决的技术问题通过以下技术方案予以实现:
一种可光致变色低温仿古釉及其制备方法,该制备方法包括以下步骤:
步骤A,制备光致变色低温熔块:将10~18%石英、5~12%长石、15~25%硼砂、3~12%碳酸盐、20~35%硼酸、3~8%锂辉石、1~4%氟化盐、0~5%高岭土混合研磨均匀;再加入0~2%抗菌复合物及1~10%光致变色复合物,研磨均匀制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;将浆料水淬冷却,并破碎成颗粒状,制得光致变色低温熔块;其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得;
步骤B,制备釉浆:按质量百分比计,将25~35%低温熔块、3~10%着色剂、30~40%钾长石、10~20%石英、3~6%方解石、3~6%的滑石、2~5%磷酸钙、0~3%抗菌复合物及1~5%光致变色复合物混合得到混合粉末,向混合粉末中加入三聚磷酸钠和羧甲基纤维素并混合均匀,细磨至300~350目,然后加入水得釉浆并调制釉浆比重为1.6~1.7g/cm3;其中,三聚磷酸钠的加入量为混合粉末质量的0.2~0.5%,羧甲基纤维素的加入量为混合粉末质量的2~3%;
步骤C,将釉浆均匀地施敷在坯体上,然后于还原气氛炉中,在700~800℃下保温后自然冷却至室温,得到光致变色低温仿古釉。
其中,所述着色剂为氧化铁或粒径小于200目的超细矿渣。所述超细矿渣制备过程如下:将铁矿渣粗磨至能够通过60~80目筛后,在研钵中研磨均匀,再进行球磨,球磨机转速为1400~1600r/min,球磨时间为50~70min;然后过200~250目筛。
其中,所述长石由钾长石和钠长石按重量比3~5:1~2混合而得。所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙中的至少一种组成,优选地,所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得。所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。
在本发明中,所述光致变色复合物制备方法如下:氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比3:1~3混合,同时加入光致变色粉,磁力搅拌60~120min后加入苯胺,光致变色粉与苯胺质量比为1:5~10;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应12~36h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将1~10g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯,调节pH值为9~10,反应温度为20~25℃,反应60~90min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀干燥,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800~1000℃热处理1~2h,去除聚苯胺,光致变色粉/多孔SiO2,即光致变色复合物。其中,所述光致变色粉为MoO3纳米粉和/或稀土氧化物,所述稀土氧化物为Nd2O3、Er2O3、Pr2O3、CeO2、Sm2O3、La2O3、Y2O3、Yb2O3、Ho2O3中至少一种。
在本发明中,所述抗菌复合物可通过以下方法制得:
(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得石墨烯量子点(GQDs)悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;
(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2~3:1),超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1~3gGQDs/Ag2O超声搅拌分散于80~120ml水溶液中;逐滴加入浓度为0.005~0.05mol/L硝酸铈水溶液,30~60min后逐滴加入浓度为0.005~0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1~0.2:0.2~0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入4~8mL质量分数为50%的水合肼,在30~40℃下还原反应0.5~1h;之后,再加入40~50mL质量分数为50%的水合肼,在85℃下还原反应30~48h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.1~0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:1~3),调节pH值为9~10,反应温度为20~25℃,反应30~60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在80~90℃下干燥2~4h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行500~800℃热处理1~2h,冷却至室温后,浸没在氢氟酸中以超声功率100~150W进行超声10~15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)将30~45%环氧树脂、35~50%酚醛树脂及8~20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,获得抗菌复合物。
较佳地,在步骤(4)和(5)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。
在本发明中,所述抗菌复合物还可以通过以下方法制得:
(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得石墨烯量子点(GQDs)悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;
(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2~3:1),超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1~3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05~0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60~90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)将30~45%环氧树脂、35~50%酚醛树脂及8~20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,获得抗菌复合物。
较佳地,在步骤(3)和(4)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。
本发明具有如下有益效果:本方法在碳纳米网上负载并固定抗菌剂,不仅防止其团聚,显著提高金属纳米粒子等抗菌剂的稳定性,使其能更好分散在仿古釉内,且具有更长效的抗菌活性以及银离子不会溢出氧化变色;同时复合了多种抗菌剂的抗菌性能,相比于单一的银纳米抗菌剂有着更好的抗菌效果,抗菌持久;光致变色复合物具有光致变色的效果,使产品更加丰富多彩,利用其生产的陶瓷砖是采用传统着色剂生产的陶瓷砖无法比拟的,可随着照射光线强弱的不同而变化的各种颜色,异彩纷呈,瑰丽多姿,从而使陶瓷产品显得美妙神奇、清新高雅,点缀都市夜生活,给建筑物及室内装饰增添情调及艺术效果。和现有仿古釉相比,本发明制造的仿古釉配料科学,制备合理,呈色纯正,性能稳定;同时经过合理的搭配光致变色复合物和抗菌复合材料,使得仿古釉具有优异抗菌防污和光致变色特性,进一步拓宽了仿古釉的应用范围。
具体实施方式
下面通过具体的优选实施方式来进一步说明本发明的技术方案。
实施例1
一种可光致变色低温仿古釉及其制备方法,该制备方法包括以下步骤:
步骤A,制备光致变色低温熔块:将10%石英、10%长石、14%硼砂、12%碳酸盐、35%硼酸、3%锂辉石、4%氟化盐、1.5%高岭土混合研磨均匀;再加入0.5%抗菌复合物及10%光致变色复合物,研磨均匀制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;将浆料水淬冷却,并破碎成颗粒状,制得光致变色低温熔块;其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得;
步骤B,制备釉浆:按质量百分比计,将32%低温熔块、8%着色剂、32%钾长石、10%石英、4%方解石、5%的滑石、5%磷酸钙、3%抗菌复合物及1%光致变色复合物混合得到混合粉末,向混合粉末中加入三聚磷酸钠和羧甲基纤维素并混合均匀,细磨至300~350目,然后加入水得釉浆并调制釉浆比重为1.6~1.7g/cm3;其中,三聚磷酸钠的加入量为混合粉末质量的0.3%,羧甲基纤维素的加入量为混合粉末质量的2%;
步骤C,将釉浆均匀地施敷在坯体上,然后于还原气氛炉中,在700~800℃下保温后自然冷却至室温,得到光致变色低温仿古釉。
其中,所述光致变色复合物制备方法如下:氮气环境下,将浓度为0.3mol/L的质子酸溶液和浓度为0.3mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入光致变色粉(Nd2O3、Er2O3和Pr2O3按重量比2:1:1混合),磁力搅拌90min后加入苯胺,光致变色粉与苯胺质量比为1:8;持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将8g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与纳米聚苯胺/光致变色粉复合物的质量比为5:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800℃热处理1h,去除聚苯胺,光致变色粉/多孔SiO2,即得光致变色复合物。
其中,所述抗菌复合物按以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.001mol/L硝酸银水溶液;逐滴加入浓度为0.1mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.05mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.005mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1:0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应30min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声10min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:18持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)将30%环氧树脂、50%酚醛树脂及20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900℃,保温1.5h;将膜刮离该基板,获得抗菌复合物。
实施例2
一种可光致变色低温仿古釉及其制备方法,该制备方法包括以下步骤:
步骤A,制备光致变色低温熔块:将15%石英、8%长石、25%硼砂、8%碳酸盐、27%硼酸、5%锂辉石、3%氟化盐、3%高岭土混合研磨均匀;再加入1%抗菌复合物及5%光致变色复合物,研磨均匀制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;将浆料水淬冷却,并破碎成颗粒状,制得光致变色低温熔块;其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得;
步骤B,制备釉浆:按质量百分比计,将25%低温熔块、5%着色剂、30%钾长石、20%石英、5%方解石、5%的滑石、5%磷酸钙、2%抗菌复合物及3%光致变色复合物混合得到混合粉末,向混合粉末中加入三聚磷酸钠和羧甲基纤维素并混合均匀,细磨至300~350目,然后加入水得釉浆并调制釉浆比重为1.6~1.7g/cm3;其中,三聚磷酸钠的加入量为混合粉末质量的0.3%,羧甲基纤维素的加入量为混合粉末质量的2%;
步骤C,将釉浆均匀地施敷在坯体上,然后于还原气氛炉中,在700~800℃下保温后自然冷却至室温,得到光致变色低温仿古釉。
其中,所述光致变色复合物的制备方法如下:氮气环境下,将浓度为0.3mol/L的质子酸溶液和浓度为0.3mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入光致变色粉(MoO3纳米粉),磁力搅拌90min后加入苯胺,光致变色粉与苯胺质量比为1:8;持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将8g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与纳米聚苯胺/光致变色粉复合物的质量比为5:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800℃热处理1h,去除聚苯胺,光致变色粉/多孔SiO2,即得光致变色复合物。
其中,所述抗菌复合物按以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.005mol/L硝酸银水溶液;逐滴加入浓度为0.2mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取2gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.03mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.03mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.2:0.3;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.3gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应45min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声12min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:15持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.5wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)将45%环氧树脂、35%酚醛树脂及20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900℃,保温1.5h;将膜刮离该基板,获得抗菌复合物。
实施例3
一种可光致变色低温仿古釉及其制备方法,该制备方法包括以下步骤:
步骤A,制备光致变色低温熔块:将18%石英、12%长石、21%硼砂、5%碳酸盐、27%硼酸、8%锂辉石、1%氟化盐、5%高岭土混合研磨均匀;再加入2%抗菌复合物及1%光致变色复合物,研磨均匀制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;将浆料水淬冷却,并破碎成颗粒状,制得光致变色低温熔块;其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得;
步骤B,制备釉浆:按质量百分比计,将27%低温熔块、3%着色剂、37%钾长石、16%石英、6%方解石、3%的滑石、2%磷酸钙、1%抗菌复合物及5%光致变色复合物混合得到混合粉末,向混合粉末中加入三聚磷酸钠和羧甲基纤维素并混合均匀,细磨至300~350目,然后加入水得釉浆并调制釉浆比重为1.6~1.7g/cm3;其中,三聚磷酸钠的加入量为混合粉末质量的0.3%,羧甲基纤维素的加入量为混合粉末质量的2%;所述着色剂为粒径小于200目的超细矿渣,其制备过程如下:将铁矿渣粗磨至能够通过60~80目筛后,在研钵中研磨均匀,再进行球磨,球磨机转速为1500r/min,球磨时间为60min;然后过200~250目筛,制得超细矿渣;
步骤C,将釉浆均匀地施敷在坯体上,然后于还原气氛炉中,在700~800℃下保温后自然冷却至室温,得到光致变色低温仿古釉。
其中,所述光致变色复合物的制备方法如下:氮气环境下,将浓度为0.3mol/L的质子酸溶液和浓度为0.3mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入光致变色粉(Ho2O3),磁力搅拌90min后加入苯胺,光致变色粉与苯胺质量比为1:8;持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将8g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与纳米聚苯胺/光致变色粉复合物的质量比为5:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800℃热处理1h,去除聚苯胺,光致变色粉/多孔SiO2,即得光致变色复合物。
其中,抗菌复合物按以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.01mol/L硝酸银水溶液;逐滴加入浓度为0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取3gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.005mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.2:0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.1gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:12持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)将40%环氧树脂、40%酚醛树脂及20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900℃,保温1.5h;将膜刮离该基板,获得抗菌复合物。
实施例4
基于实施例2的制备方法,不同之处在于:步骤(4)和(5)之间增加如下步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:3;50W超声90min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。
三维海绵状石墨烯制备方法如下:将3g 石墨粉,1g NaNO3在冰水浴中与250ml98%浓硫酸混合均匀,缓慢加入6g KMnO4。然后升温至在35℃,搅拌40min 后,加入95ml 去离子水,升温至98℃反应20min;再加入270ml 水稀释,并用5ml 30% H2O2中和多余KMnO4,混合溶液的颜色为棕黄色,趁热过滤,用去离子水反复洗涤至中性,超声分散得到GO;取200ml 质量分数为5mg/ml的氧化石墨烯溶液倒入直径25cm,高2cm的圆盘状反应皿中,加入抗坏血酸(VC)0.5g搅拌使其充分混合;然后密闭反应皿并置于80℃水热反应15h,反应皿中的氧化石墨烯自发收缩交联成三维海绵结构,冷冻干燥,得到柔性的三维海绵状石墨烯。
实施例5
基于实施例1的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.001mol/L硝酸银水溶液;逐滴加入浓度为0.1mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:18持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)将30%环氧树脂、50%酚醛树脂及20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900℃,保温1.5h;将膜刮离该基板,获得抗菌复合物。
实施例6
基于实施例2的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.005mol/L硝酸银水溶液;逐滴加入浓度为0.2mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取2gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.2g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;80min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:15持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.5wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)将45%环氧树脂、35%酚醛树脂及20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900℃,保温1.5h;将膜刮离该基板,获得抗菌复合物。
实施例7
基于实施例3的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.01mol/L硝酸银水溶液;逐滴加入浓度为0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:12持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)将40%环氧树脂、40%酚醛树脂及20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900℃,保温1.5h;将膜刮离该基板,获得抗菌复合物。
实施例8
基于实施例6的制备方法,不同之处在于:步骤(3)和(4)之间增加如下一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:3;50W超声90min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。
三维海绵状石墨烯制备方法如下:将3g 石墨粉,1g NaNO3在冰水浴中与250ml98%浓硫酸混合均匀,缓慢加入6g KMnO4。然后升温至在35℃,搅拌40min 后,加入95ml 去离子水,升温至98℃反应20min;再加入270ml 水稀释,并用5ml 30% H2O2中和多余KMnO4,混合溶液的颜色为棕黄色,趁热过滤,用去离子水反复洗涤至中性,超声分散得到GO;取200ml 质量分数为5mg/ml的氧化石墨烯溶液倒入直径25cm,高2cm的圆盘状反应皿中,加入抗坏血酸(VC)0.5g搅拌使其充分混合;然后密闭反应皿并置于80℃水热反应15h,反应皿中的氧化石墨烯自发收缩交联成三维海绵结构,冷冻干燥,得到柔性的三维海绵状石墨烯。
对比例1
基于实施例1的制备方法,不同之处在于:所述抗菌复合物为载金属抗菌剂的二氧化钛;未添加光致变色复合物。
对比例2
基于实施例5的制备方法,不同之处在于:所述抗菌复合物为氧化锌和二氧化钛的混合物;所述光致变色复合物为MoO3纳米粉。
将实施例1~8及对比例1、2进行性能测试,测试结果如下表:
灭菌率:取 105个/ml 的大肠杆菌0.1ml,均匀涂布于烧成的40*40mm仿古釉上,在室内放置 2h,然后将菌液用无菌水洗脱至培养基中,37℃下培养24h,然后检测菌数,计算灭菌率。
热稳定性实验:将成品置于电炉中,自室温升到200℃,保温20min,迅速投入25℃水中,10min后取出擦干,釉层无温度冲击裂纹并测试其灭菌率。
磨损测试:选用莫氏硬度为3~4的磨料,在由仿古釉上摩擦1000次来模仿铺贴使用2年后的效果。
防污测试:选用铬绿为污染剂。
灭菌均匀性评价:在仿古釉上选取100个区域进行灭菌测试,对测得的数据进行均匀度分析,通过均匀度=100*(1-标准偏差/平均值)。当均匀度大于97%,则标记为▲;当均匀度大于90%且小于97%,则标记为☆;当均匀度低于90%,则标记为╳。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。

Claims (9)

1.一种可光致变色低温仿古釉的制备方法,其包括以下步骤:
步骤A,制备光致变色低温熔块:将10~18%石英、5~12%长石、15~25%硼砂、3~12%碳酸盐、20~35%硼酸、3~8%锂辉石、1~4%氟化盐、0~5%高岭土混合研磨均匀;再加入0~2%抗菌复合物及1~10%光致变色复合物,研磨均匀制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;将浆料水淬冷却,并破碎成颗粒状,制得光致变色低温熔块;其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得;
步骤B,制备釉浆:按质量百分比计,将25~35%低温熔块、3~10%着色剂、30~40%钾长石、10~20%石英、3~6%方解石、3~6%的滑石、2~5%磷酸钙、0~3%抗菌复合物及1~5%光致变色复合物混合得到混合粉末,向混合粉末中加入三聚磷酸钠和羧甲基纤维素并混合均匀,细磨至300~350目,然后加入水得釉浆并调制釉浆比重为1.6~1.7g/cm3;其中,三聚磷酸钠的加入量为混合粉末质量的0.2~0.5%,羧甲基纤维素的加入量为混合粉末质量的2~3%;
步骤C,将釉浆均匀地施敷在坯体上,然后于还原气氛炉中,在700~800℃下保温后自然冷却至室温,得到光致变色低温仿古釉。
2.根据权利要求1所述的可光致变色低温仿古釉的制备方法,其特征在于,所述抗菌复合物的制备方法如下:
(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得GQDs悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;
(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液,超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1~3gGQDs/Ag2O超声搅拌分散于80~120ml水溶液中;逐滴加入浓度为0.005~0.05mol/L硝酸铈水溶液,30~60min后逐滴加入浓度为0.005~0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1~0.2:0.2~0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入4~8mL质量分数为50%的水合肼,在30~40℃下还原反应0.5~1h;之后,再加入40~50mL质量分数为50%的水合肼,在85℃下还原反应30~48h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.1~0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入,调节pH值为9~10,反应温度为20~25℃,反应30~60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在80~90℃下干燥2~4h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行500~800℃热处理1~2h,冷却至室温后,浸没在氢氟酸中以超声功率100~150W进行超声10~15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)将30~45%环氧树脂、35~50%酚醛树脂及8~20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,获得抗菌复合物。
3.根据权利要求2所述的可光致变色低温仿古釉的制备方法,其特征在于,步骤(4)和(5)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。
4.一种可光致变色低温仿古釉的制备方法,其包括以下步骤:
步骤A,制备光致变色低温熔块:将10~18%石英、5~12%长石、15~25%硼砂、3~12%碳酸盐、20~35%硼酸、3~8%锂辉石、1~4%氟化盐、0~5%高岭土混合研磨均匀;再加入0~2%抗菌复合物及1~10%光致变色复合物,研磨均匀制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;将浆料水淬冷却,并破碎成颗粒状,制得光致变色低温熔块;其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得;
步骤B,制备釉浆:按质量百分比计,将25~35%低温熔块、3~10%着色剂、30~40%钾长石、10~20%石英、3~6%方解石、3~6%的滑石、2~5%磷酸钙、0~3%抗菌复合物及1~5%光致变色复合物混合得到混合粉末,向混合粉末中加入三聚磷酸钠和羧甲基纤维素并混合均匀,细磨至300~350目,然后加入水得釉浆并调制釉浆比重为1.6~1.7g/cm3;其中,三聚磷酸钠的加入量为混合粉末质量的0.2~0.5%,羧甲基纤维素的加入量为混合粉末质量的2~3%;
步骤C,将釉浆均匀地施敷在坯体上,然后于还原气氛炉中,在700~800℃下保温后自然冷却至室温,得到光致变色低温仿古釉;
其中,所述抗菌复合物的制备方法如下:
(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得GQDs悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;
(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液,超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1~3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05~0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60~90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)将30~45%环氧树脂、35~50%酚醛树脂及8~20%多孔二氧化钛/抗菌粉复合物充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,获得抗菌复合物。
5.根据权利要求4所述的可光致变色低温仿古釉的制备方法,其特征在于,步骤(3)和(4)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。
6.根据权利要求1或4所述的可光致变色低温仿古釉的制备方法,其特征在于,所述着色剂为氧化铁或粒径小于200目的超细矿渣;所述超细矿渣制备过程如下:将铁矿渣粗磨至能够通过60~80目筛后,在研钵中研磨均匀,再进行球磨,球磨机转速为1400~1600r/min,球磨时间为50~70min;然后过200~250目筛。
7.根据权利要求1或4所述的可光致变色低温仿古釉的制备方法,其特征在于,所述光致变色复合物制备方法如下:氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比3:1~3混合,同时加入光致变色粉,磁力搅拌60~120min后加入苯胺,光致变色粉与苯胺质量比为1:5~10;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应12~36h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将1~10g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯,调节pH值为9~10,反应温度为20~25℃,反应60~90min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀干燥,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800~1000℃热处理1~2h,去除聚苯胺,光致变色粉/多孔SiO2,即光致变色复合物。
8.根据权利要求1或4所述的可光致变色低温仿古釉的制备方法,其特征在于,所述长石由钾长石和钠长石按重量比3~5:1~2混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。
9.一种可光致变色低温仿古釉,其特征在于,由权利要求1或4所述的可光致变色低温仿古釉的制备方法制得。
CN201610749298.5A 2016-08-29 2016-08-29 一种可光致变色低温仿古釉及其制备方法 Pending CN106348597A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610749298.5A CN106348597A (zh) 2016-08-29 2016-08-29 一种可光致变色低温仿古釉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610749298.5A CN106348597A (zh) 2016-08-29 2016-08-29 一种可光致变色低温仿古釉及其制备方法

Publications (1)

Publication Number Publication Date
CN106348597A true CN106348597A (zh) 2017-01-25

Family

ID=57855544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610749298.5A Pending CN106348597A (zh) 2016-08-29 2016-08-29 一种可光致变色低温仿古釉及其制备方法

Country Status (1)

Country Link
CN (1) CN106348597A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107827362A (zh) * 2017-11-30 2018-03-23 南宁市生润科技有限公司 一种变色陶瓷釉料
CN108793743A (zh) * 2017-04-28 2018-11-13 李超凡 一种用于船体金属外表面防腐的釉料及其烧结工艺
CN110436936A (zh) * 2019-08-09 2019-11-12 东莞市唯美陶瓷工业园有限公司 一种装饰图案光色陶瓷砖及其制备方法
CN113480168A (zh) * 2021-07-01 2021-10-08 醴陵陶润实业发展有限公司 一种实用型装饰颗粒及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872889A (zh) * 2012-10-10 2013-01-16 江苏大学 一种石墨烯/磷酸银/二氧化钛双功能复合材料及其制备方法
CN103081946A (zh) * 2013-01-18 2013-05-08 湖南元素密码石墨烯研究院(有限合伙) 一种多孔石墨烯负载铈纳米复合抗菌剂及其制备方法
CN103143338A (zh) * 2013-03-21 2013-06-12 四川农业大学 一种多孔二氧化钛/石墨烯复合材料及其制备方法
CN103922808A (zh) * 2014-04-09 2014-07-16 陕西科技大学 一种利用铁矿渣制备低温绿色仿古釉的方法
CN104211050A (zh) * 2014-07-15 2014-12-17 中国科学技术大学 一种石墨烯量子点悬浮液和粉末的制备方法
CN104530831A (zh) * 2014-12-23 2015-04-22 佛山欧神诺陶瓷股份有限公司 一种稀土功能陶瓷墨水及其制备方法及生产方法
CN104525107A (zh) * 2014-12-03 2015-04-22 杜茂龙 一种石墨烯基防雾霾口罩滤材及其制备方法
CN105348890A (zh) * 2015-12-18 2016-02-24 陈荣芳 一种发光复合涂料的制备方法
CN105895870A (zh) * 2016-04-06 2016-08-24 鸿纳(东莞)新材料科技有限公司 一种高浓度、高纯度的石墨烯浆料及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872889A (zh) * 2012-10-10 2013-01-16 江苏大学 一种石墨烯/磷酸银/二氧化钛双功能复合材料及其制备方法
CN103081946A (zh) * 2013-01-18 2013-05-08 湖南元素密码石墨烯研究院(有限合伙) 一种多孔石墨烯负载铈纳米复合抗菌剂及其制备方法
CN103143338A (zh) * 2013-03-21 2013-06-12 四川农业大学 一种多孔二氧化钛/石墨烯复合材料及其制备方法
CN103922808A (zh) * 2014-04-09 2014-07-16 陕西科技大学 一种利用铁矿渣制备低温绿色仿古釉的方法
CN104211050A (zh) * 2014-07-15 2014-12-17 中国科学技术大学 一种石墨烯量子点悬浮液和粉末的制备方法
CN104525107A (zh) * 2014-12-03 2015-04-22 杜茂龙 一种石墨烯基防雾霾口罩滤材及其制备方法
CN104530831A (zh) * 2014-12-23 2015-04-22 佛山欧神诺陶瓷股份有限公司 一种稀土功能陶瓷墨水及其制备方法及生产方法
CN105348890A (zh) * 2015-12-18 2016-02-24 陈荣芳 一种发光复合涂料的制备方法
CN105895870A (zh) * 2016-04-06 2016-08-24 鸿纳(东莞)新材料科技有限公司 一种高浓度、高纯度的石墨烯浆料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘银 等: "《无机非金属材料工艺学》", 30 September 2015, 中国科学技术大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793743A (zh) * 2017-04-28 2018-11-13 李超凡 一种用于船体金属外表面防腐的釉料及其烧结工艺
CN107827362A (zh) * 2017-11-30 2018-03-23 南宁市生润科技有限公司 一种变色陶瓷釉料
CN110436936A (zh) * 2019-08-09 2019-11-12 东莞市唯美陶瓷工业园有限公司 一种装饰图案光色陶瓷砖及其制备方法
CN110436936B (zh) * 2019-08-09 2022-01-11 东莞市唯美陶瓷工业园有限公司 一种装饰图案光色陶瓷砖及其制备方法
CN113480168A (zh) * 2021-07-01 2021-10-08 醴陵陶润实业发展有限公司 一种实用型装饰颗粒及其制备方法

Similar Documents

Publication Publication Date Title
CN106348603A (zh) 一种具有净化空气效果的低温仿古釉及其制备方法
CN106348597A (zh) 一种可光致变色低温仿古釉及其制备方法
CN102924049B (zh) 用于低温烧成龙泉青瓷的原料及烧制方法
CN106242297A (zh) 一种抗菌除臭陶瓷砖及其制备方法
CN106380076A (zh) 一种低温仿古釉及其制备方法
CN106336119A (zh) 一种光致变色陶瓷釉及其制备方法
CN106396395A (zh) 一种抗菌低温仿古釉及其制备方法
CN106380077A (zh) 一种除臭抗菌低温仿古釉及其制备方法
CN106673443B (zh) 一种具有光催化功能锆酸铋陶瓷微晶乳浊釉料的制备方法
CN106396394A (zh) 一种生态陶瓷砖及其制备方法
CN106366765A (zh) 一种陶瓷喷墨用可下陷光致变色陶瓷墨水及其制备方法
CN106396405A (zh) 一种光致变色陶瓷砖及其制备方法
CN106746652A (zh) 一种抗菌陶瓷釉及其制备方法
CN106167652A (zh) 一种具有皮纹效果的防静电陶瓷墨水及其制备方法
CN106365453A (zh) 一种防辐射陶瓷砖及其制备方法
CN106396387A (zh) 一种抗菌防辐射陶瓷砖及其制备方法
CN103880476B (zh) 一种具有抗菌、除菌功能的陶瓷冷釉及其制备方法
CN109439032A (zh) 贝壳颗粒及其制备方法、具有贝壳颗粒的涂料及其制备方法
CN106630621B (zh) 一种具有光催化功能锆酸铋微晶陶瓷釉的制备方法
CN106242291A (zh) 一种抗菌防静电低温仿古釉及其制备方法
CN106348595A (zh) 一种夜光抗菌无铅镉低温熔块及其制备方法
CN106189519A (zh) 一种可光致变色水性uv光固化陶瓷喷墨油墨及其制备方法
CN106189509A (zh) 一种喷墨用抗菌除臭低温陶瓷墨水及其制备方法
CN106189517A (zh) 一种具有皮纹效果的光致变色陶瓷墨水及其制备方法
CN106189504A (zh) 一种环保型水性uv光固化陶瓷喷墨油墨及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170125