WO2021109557A1 - 一种低模量密封胶用聚醚的合成方法 - Google Patents

一种低模量密封胶用聚醚的合成方法 Download PDF

Info

Publication number
WO2021109557A1
WO2021109557A1 PCT/CN2020/098800 CN2020098800W WO2021109557A1 WO 2021109557 A1 WO2021109557 A1 WO 2021109557A1 CN 2020098800 W CN2020098800 W CN 2020098800W WO 2021109557 A1 WO2021109557 A1 WO 2021109557A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyoxypropylene ether
polyether
low modulus
sealant
reaction
Prior art date
Application number
PCT/CN2020/098800
Other languages
English (en)
French (fr)
Inventor
马定连
金一丰
王新荣
刘鹏飞
徐杰
Original Assignee
浙江皇马科技股份有限公司
浙江皇马新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江皇马科技股份有限公司, 浙江皇马新材料科技有限公司 filed Critical 浙江皇马科技股份有限公司
Priority to US17/782,670 priority Critical patent/US20230131312A1/en
Priority to JP2022534420A priority patent/JP2023505512A/ja
Publication of WO2021109557A1 publication Critical patent/WO2021109557A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0657Polyethers
    • C09K2200/0662Polyether-polyol

Definitions

  • the invention relates to the technical field of organic compound synthesis, in particular to a method for synthesizing polyether for low modulus sealant.
  • prefabricated buildings have the advantages of short construction period, low energy consumption, less pollution, and safety in construction, making them gradually become one of the main directions of future building development. Specifically, compared with traditional concrete buildings, prefabricated buildings can reduce the amount of on-site waste by about 80%, material consumption can be reduced by nearly 60%, construction personnel can be reduced by about 90%, and the construction period can be shortened by about 70%. In the assembly process of prefabricated buildings, there are a large number of joints that need to be waterproofed and sealed, especially for exterior wall joints. Sealant is the first line of defense for waterproofing and sealing, and its performance will directly affect the waterproof sealing effect.
  • Prefabricated buildings have high requirements for sealant displacement resistance, elastic recovery rate and weather resistance, so low modulus sealants are urgently needed to meet market needs.
  • the low modulus sealants used in the building materials market mainly include polyurethane (PU) construction sealants, silane-modified polyether (MS) construction sealants, and silicone (SR) construction sealants.
  • Polyurethane building sealant is inexpensive, has excellent adhesion, and has excellent deformation adaptability, but its structure contains a large number of urethane bonds, which is seriously insufficient in terms of UV resistance.
  • silicone sealant is excellent in acid and alkali resistance and weather resistance, its non-paintability limits its application range.
  • Silane-modified polyether sealant is the fastest growing building sealing material in the past 30 years.
  • the surface can be painted, and it is the most suitable building sealing material for industrial buildings, but currently it is completely modified with polyol polyether silane (such as glycerol polyether silicone oil modified, propylene glycol polyether modified sealant) silane modified polyether sealant Its high modulus leads to insufficient elasticity and affects its use effect.
  • polyol polyether silane such as glycerol polyether silicone oil modified, propylene glycol polyether modified sealant
  • the purpose of the present invention is to provide a method for synthesizing polyether for low modulus sealants.
  • the polyether prepared by the present invention can well enhance the rigidity and strength of the sealant while reducing the rigidity of the sealant.
  • the elastic modulus overcomes the problem of high modulus of the existing polyether silane modified sealant.
  • a method for synthesizing polyether for low modulus sealant which comprises the following steps: using a mixture of polyol polyoxypropylene ether and polyol polyoxypropylene ether as an initiator, using propylene oxide as a chain extender, and A metal complex catalyst is added for reaction, and the reaction is completed to obtain the polyether for low modulus sealant.
  • the specific reaction formula is as follows:
  • the weight ratio of the monool polyoxypropylene ether to the polyol polyoxypropylene ether in the starter is (5:95) to (30:70).
  • the unit alcohol polyoxypropylene ether is butanol polyoxypropylene ether, ethanol polyoxypropylene ether, propanol polyoxypropylene ether, C6 alcohol polyoxypropylene ether, C8 alcohol polyoxypropylene ether , C10 alcohol polyoxypropylene ether, C12 alcohol polyoxypropylene ether one or a mixture of any two or more.
  • the polyol polyoxypropylene ether is glycerol polyoxypropylene ether, ethylene glycol polyoxypropylene ether, propylene glycol polyoxypropylene ether, pentaerythritol polyoxypropylene ether, sorbitol polyoxypropylene ether, One kind or a mixture of any two or more kinds of sucrose polyoxypropylene ether.
  • the molecular weights of the monohydric alcohol polyoxypropylene ether and the polyhydric alcohol polyoxypropylene ether are both 300-4000.
  • the molecular weight of the polyether for low modulus sealant is 4,000 to 30,000.
  • the amount of the catalyst is 10-100 ppm of the total amount of the initiator and propylene oxide.
  • the catalyst is a bimetallic complex catalyst DMC or a multimetallic complex catalyst MMC or a mixture of the two.
  • the amount of propylene oxide used is 4-15 times the weight of the initiator.
  • the reaction temperature is 100 to 180°C.
  • the present invention has the following beneficial effects:
  • the synthesis method of polyether for low modulus sealant of the present invention adopts a mixture of unit alcohol polyoxypropylene ether and polyol polyoxypropylene ether as the initiator, and then uses propylene oxide as the chain extender Synthetic polyether, on the one hand, after the hydroxyl polyol polyoxypropylene ether is modified by silane end-blocking, it crosslinks with water to form a network structure, which effectively guarantees the curing strength.
  • the unit alcohol polyoxypropylene ether contains the hydroxyl group end.
  • the sealant prepared by the polyether of the present invention has both rigidity and strength. It can also reduce the modulus of elasticity and has good tensile properties.
  • the synthesis method of the present invention has simple process, few process steps, short production cycle, low energy consumption, and easy production control.
  • a method for synthesizing polyether for low modulus sealant which comprises the following steps: adding a mixture of polyol polyoxypropylene ether and polyol polyoxypropylene ether and a metal complex catalyst into a reaction kettle, evacuating, and using N 2 replaces the air in the reactor.
  • the vacuum degree is ⁇ -0.096Mpa, the temperature is increased while vacuuming and dehydration.
  • the temperature is increased to 120 ⁇ 130°C, the temperature is kept and dehydrated for 0.5 ⁇ 2h; propylene oxide is added for the reaction, and the reaction temperature is 100 ⁇ 180°C, the pressure in the reactor is -0.05 ⁇ 0.40Mpa, keep the temperature and continue the reaction until the pressure no longer drops; after the reaction is completed, vacuum degassing, when the vacuum degree ⁇ -0.098Mpa, keep for 10-30min, the molecular weight is obtained after cooling 4000 to 30,000 of the polyether for low modulus sealant.
  • the weight ratio of the unit alcohol polyoxypropylene ether to the polyol polyoxypropylene ether is (5:95) to (30:70).
  • the amount of propylene oxide is 4-15 times the weight of the initiator.
  • the amount of the catalyst is 10-100 ppm of the total amount of the initiator and propylene oxide.
  • the unit alcohol polyoxypropylene ether is butanol polyoxypropylene ether, ethanol polyoxypropylene ether, propanol polyoxypropylene ether, C6 alcohol polyoxypropylene ether, C8 alcohol polyoxypropylene ether, C10 alcohol polyoxypropylene ether , One or a mixture of any two or more of C12 alcohol polyoxypropylene ether.
  • Polyol polyoxypropylene ether is one or any of glycerol polyoxypropylene ether, ethylene glycol polyoxypropylene ether, propylene glycol polyoxypropylene ether, pentaerythritol polyoxypropylene ether, sorbitol polyoxypropylene ether, and sucrose polyoxypropylene ether A mixture of two or more.
  • the molecular weights of the monohydric alcohol polyoxypropylene ether and the polyhydric alcohol polyoxypropylene ether are both 300-4000.
  • the catalyst is a bimetallic complex catalyst DMC or a multimetallic complex catalyst MMC or a mixture of the two.
  • the high-pressure stirring reaction vessel was repeatedly cleaned several times with distilled water until it was clean, and the reaction vessel was dried and cooled to normal temperature for use. Unless otherwise specified, the components used in the following examples are all commercially available.
  • Product index The molecular weight of gel chromatography analysis is 4982, and the hydroxyl value of the sample tested by chemical method is 22.5.
  • Product index The molecular weight tested by gel chromatography is 8610, and the hydroxyl value of the sample tested by chemical method is 18.6.
  • Product index Gel chromatography analysis molecular weight 8588, chemical method test sample hydroxyl value 19.6.
  • Product index The molecular weight of gel chromatography analysis is 18200, and the hydroxyl value of the sample tested by chemical method is 12.1.
  • the vacuum is degassed, and when the vacuum degree is greater than or equal to -0.098 MPa and maintained for 30 minutes, the temperature is lowered and the material is discharged to obtain the finished polyether product for low modulus sealant.
  • Product index The molecular weight of gel chromatography analysis is 29215, and the hydroxyl value of the sample tested by chemical method is 10.1.
  • Product index The molecular weight of gel chromatography analysis is 29015, and the hydroxyl value of the sample tested by chemical method is 11.6.
  • the vacuum is degassed, and when the vacuum degree is greater than or equal to -0.098 MPa and maintained for 30 minutes, the temperature is lowered and the material is discharged to obtain the finished polyether product for low modulus sealant.
  • Product index The molecular weight of gel chromatography analysis is 28815, and the hydroxyl value of the sample tested by chemical method is 12.0.
  • the vacuum is degassed, and when the vacuum degree is greater than or equal to -0.098 MPa and maintained for 30 minutes, the temperature is lowered and the material is discharged to obtain the finished polyether product for low modulus sealant.
  • Product index The molecular weight of gel chromatography analysis is 27650, and the hydroxyl value of the sample tested by chemical method is 5.3.
  • Product index The molecular weight of gel chromatography analysis is 27550, and the hydroxyl value of the sample tested by chemical method is 6.1.
  • the polyether samples prepared in Examples 1 to 6 and Comparative Examples 1 to 6 were reacted with 2-isocyanatoethyltriethoxysilane under the action of a catalyst to prepare silane-modified polyethers.
  • the material ratio is in accordance with the fixed molar ratio of -OH to -NCO of 1:1.1, and other reaction conditions are the same.
  • the reaction formula for preparing silane-modified polyether from polyether is as follows (take dihydroxy polyether as an example):
  • silane-modified polyether prepared in each example and comparative example was used to make sealant according to the formula in the following table:
  • the tensile strength and the elongation at break are determined according to the specified test of GB/T528-2009-"Determination of Tensile Stress and Strain Properties of Vulcanized Rubber or Thermoplastic Rubber", and the amount of tensile film is according to GB/T 13477-2002 "Construction Sealing material test method” category to determine, the results are shown in Table 1.
  • the present invention uses polyol polyoxypropylene
  • the polyether prepared by using the mixture of ether and polyoxypropylene ether of the unit alcohol as the initiator can well enhance the rigidity and strength of the sealant, and can reduce the elastic modulus, which overcomes the existing polyether silane modified sealant mold The problem of high volume.

Abstract

本发明公开了一种低模量密封胶用聚醚的合成方法,属于有机化合物合成技术领域。本发明的合成方法主要以单元醇聚氧丙烯醚与多元醇聚氧丙烯醚的混合物为起始剂,以环氧丙烷为扩链剂,并加入金属络合催化剂进行反应,反应完毕得到所述低模量密封胶用聚醚。本发明所制得的聚醚能够很好地增强密封胶的刚性强度,又能降低弹性模量,克服了现有聚醚硅烷改性密封胶模量高的问题,合成工艺简单、易于生产控制,生产周期短、能耗低。

Description

一种低模量密封胶用聚醚的合成方法 技术领域
本发明涉及有机化合物合成技术领域,具体涉及一种低模量密封胶用聚醚的合成方法。
背景技术
随着国家对节能环保的日益重视,装配式建筑具有施工周期短、能耗低、污染少、施工安全等优点,使其逐渐成为未来建筑发展的主要方向之一。具体来说,装配式建筑比传统混凝土建筑的现场垃圾量可以减少80%左右,材料耗损可以减少近60%,建造人员可减少约90%,建筑周期可缩短大概70%。而装配式建筑在拼装过程中存在大量接缝需要进行防水密封处理,尤其是外墙接缝,密封胶是防水密封的第一道防线,其性能好坏将直接影响到防水密封效果。
装配式建筑对密封胶耐位移、弹性回复率及耐候性要求较高,因此急需低模量密封胶来满足市场需要。目前,建材市场上用的低模量密封胶主要有聚氨酯(PU)建筑密封胶、硅烷改性聚醚(MS)建筑密封胶以及硅酮(SR)建筑密封胶。聚氨酯建筑密封胶价格低廉,粘接性优良,具有优良的变形适应能力,但其结构中含有大量的氨基甲酸酯键,在耐紫外性能等方面严重不足。硅酮密封胶虽然在耐酸碱、耐候性方面表现优异,但其不可涂饰性限制其应用范围。硅烷改性聚醚密封胶是近三十年来发展最快的建筑密封材料,兼具聚氨酯良好的粘接性能和硅酮密封胶优异的耐酸碱耐候性能,而且环保无气味不 污染基材,表面可涂饰,是工业化建筑最为合适的建筑密封材料,但目前完全采用多元醇聚醚硅烷改性(如甘油聚醚硅油改性、丙二醇聚醚改性密封胶)的硅烷改性聚醚密封胶其模量高,导致其弹性不足,影响其使用效果。
因此,开发一种低模量密封胶用聚醚的合成方法是十分有必要的。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种低模量密封胶用聚醚的合成方法,本发明所制得的聚醚能够很好地增强密封胶的刚性强度,又能降低弹性模量,克服了现有聚醚硅烷改性密封胶模量高的问题。
为解决上述问题,本发明所采用的技术方案如下:
一种低模量密封胶用聚醚的合成方法,其包括以下步骤:以单元醇聚氧丙烯醚与多元醇聚氧丙烯醚的混合物为起始剂,以环氧丙烷为扩链剂,并加入金属络合催化剂进行反应,反应完毕得到所述低模量密封胶用聚醚。具体反应式如下:
Figure PCTCN2020098800-appb-000001
作为本发明优选的实施方式,所述起始剂中单元醇聚氧丙烯醚与多元醇 聚氧丙烯醚的重量比为(5:95)~(30:70)。
作为本发明优选的实施方式,所述单元醇聚氧丙烯醚为丁醇聚氧丙烯醚、乙醇聚氧丙烯醚、丙醇聚氧丙烯醚、C6醇聚氧丙烯醚、C8醇聚氧丙烯醚、C10醇聚氧丙烯醚、C12醇聚氧丙烯醚中的一种或任意两种以上的混合物。
作为本发明优选的实施方式,所述多元醇聚氧丙烯醚为甘油聚氧丙烯醚、乙二醇聚氧丙烯醚、丙二醇聚氧丙烯醚、季戊四醇聚氧丙烯醚、山梨醇聚氧丙烯醚、蔗糖聚氧丙烯醚的一种或任意两种以上的混合物。
作为本发明优选的实施方式,所述单元醇聚氧丙烯醚和多元醇聚氧丙烯醚的分子量均为300~4000。
作为本发明优选的实施方式,所述低模量密封胶用聚醚的分子量为4000~30000。
作为本发明优选的实施方式,所述催化剂的用量为起始剂和环氧丙烷的总量的10~100ppm。
作为本发明优选的实施方式,所述催化剂为双金属络合催化剂DMC或多金属络合催化剂MMC或两者的混合。
作为本发明优选的实施方式,所述环氧丙烷的用量为起始剂重量的4~15倍。
作为本发明优选的实施方式,反应温度为100~180℃。
相比现有技术,本发明的有益效果在于:
(1)本发明所述的低模量密封胶用聚醚的合成方法通过采用单元醇聚氧丙烯醚与多元醇聚氧丙烯醚的混合物为起始剂,再以环氧丙烷为扩链剂合成聚醚,一方面使得羟基多元醇聚氧丙烯醚通过硅烷封端改性后,遇水交联形成网状结构,有效保证了固化强度,另一方面单元醇聚氧丙烯醚含羟基的一 端参与到交联反应中并链接到网状结构中,而另一端烷基作为惰性基团保留,能够有效增加整体的拉伸弹性,从而使得本发明的聚醚制备的密封胶既有刚性强度,又能降低弹性模量,具有很好的拉伸性能。
(2)本发明的合成方法工艺简单、工艺步骤少,生产周期短、能耗低,易于生产控制。
具体实施方式
一种低模量密封胶用聚醚的合成方法,其包括以下步骤:在反应釜中加入单元醇聚氧丙烯醚与多元醇聚氧丙烯醚的混合物和金属络合催化剂,抽真空,并采用N 2置换反应釜中的空气,当真空度≥-0.096Mpa时,边抽真空边升温脱水,升温至120~130℃时保温脱水0.5~2h;加入环氧丙烷进行反应,反应温度为100~180℃、反应釜内压力为-0.05~0.40Mpa,保温继续反应,直至压力不再下降为止;反应完毕,真空脱气,当真空度≥-0.098Mpa时保持10-30min,降温后得到分子量为4000~30000的所述低模量密封胶用聚醚。
具体反应式如下:
Figure PCTCN2020098800-appb-000002
以上方法中,单元醇聚氧丙烯醚与多元醇聚氧丙烯醚的重量比为(5:95)~(30:70)。环氧丙烷的用量为为起始剂重量的4~15倍。催化剂的用量为起始剂和环氧丙烷的总量的10~100ppm。
优选地,单元醇聚氧丙烯醚为丁醇聚氧丙烯醚、乙醇聚氧丙烯醚、丙醇聚氧丙烯醚、C6醇聚氧丙烯醚、C8醇聚氧丙烯醚、C10醇聚氧丙烯醚、C12醇聚氧丙烯醚中的一种或任意两种以上的混合物。多元醇聚氧丙烯醚为甘油聚氧丙烯醚、乙二醇聚氧丙烯醚、丙二醇聚氧丙烯醚、季戊四醇聚氧丙烯醚、山梨醇聚氧丙烯醚、蔗糖聚氧丙烯醚的一种或任意两种以上的混合物。单元醇聚氧丙烯醚和多元醇聚氧丙烯醚的分子量均为300~4000。催化剂为双金属络合催化剂DMC或多金属络合催化剂MMC或两者的混合。
下面结合具体实施方式对本发明作进一步详细说明。以下实施例中,反应前均先用蒸馏水将高压搅拌反应釜反复清洗几次,直至干净为止,烘干反应釜,冷却至常温后备用。以下实施例中所用到的组分如无特别说明,均来自于市售。
实施例1
在2.5L高压搅拌反应釜中加入分子量为400的丙二醇聚氧丙烯醚92g和分子量为300的丁醇聚氧丙烯醚8g以及双金属络合物催化剂DMC 0.026g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度为120℃后保温脱水1h。脱水毕,加入环氧丙烷1175g。控制反应温度在110-130℃、反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,真空≥-0.098MPa保持10min后降温放料得到所述低模量密封胶用聚 醚成品。
产品指标:凝胶色谱测试分子量为4980,化学法测试样品羟值为21.6(按GB/T 7383-2007方法测试,下同)。
对比例1
在2.5L高压搅拌反应釜中加入分子量为400的丙二醇聚氧丙烯醚100g以及双金属络合物催化剂DMC 0.026g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度为120℃后保温脱水1h。脱水毕,加入环氧丙烷1148g,控制反应温度在110-130℃、反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,真空≥-0.098MPa时保持10min后,降温放料得到聚醚成品。
产品指标:凝胶色谱分析分子量为4982,化学法测试样品羟值为22.5。
实施例2
在2.5L高压搅拌反应釜中加入分子量为800的甘油聚氧丙烯醚115g和分子量为1200的乙醇聚氧丙烯醚20g以及多金属络合物催化剂MMC 0.060g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至120℃后保温脱水1h。脱水毕,加入环氧丙烷1230g,控制反应温度在120-150℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持10min后,降温放料得到所述低模量密封胶用聚醚成品。
产品指标:凝胶色谱测试分子量为8610,化学法测试样品羟值为18.6。
对比例2
在2.5L高压搅拌反应釜中加入分子量为800的甘油聚氧丙烯醚100g以及双金属络合物催化剂DMC 0.060g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至120℃后保温脱水1h。脱水毕,加入环氧丙烷986g,控制反应温度在120-150℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持10min后,降温放料得到所述低模量密封胶用聚醚成品。
产品指标:凝胶色谱分析分子量8588,化学法测试样品羟值为19.6。
实施例3
在2.5L高压搅拌反应釜中加入分子量为1500的季戊四醇聚氧丙烯醚108g和分子量为3000的直链C8醇聚氧丙烯醚27g以及双金属络合物催化剂DMC与多金属络合物催化剂MMC的混合物0.1g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至130℃后保温脱水1.5h。脱水毕,加入环氧丙烷1250g,控制反应温度在130-160℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持20min后,降温放料得到所述低模量密封胶用聚醚成品。
产品指标:凝胶色谱分析分子量为18200,化学法测试样品羟值为12.1。
对比例3
在2.5L高压搅拌反应釜中加入分子量为1500的季戊四醇聚氧丙烯醚100g0以及双金属络合物催化剂DMC 0.1g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱 水,当温度升至130℃后保温脱水1.5h。脱水毕,加入环氧丙烷1160g,控制反应温度在130-160℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持20min后,降温放料得到聚醚成品。
产品指标:凝胶色谱分析分子量为18250,化学法测试样品羟值为12.3。
实施例4:
在2.5L高压搅拌反应釜中加入分子量为2500的山梨醇聚氧丙烯醚100g和分子量为4000的直链C10醇聚氧丙烯醚35g以及双金属络合物催化剂DMC0.13g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至130℃后保温脱水1.5h。脱水毕,加入环氧丙烷1250g,控制反应温度在140-170℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持30min后,降温放料得到所述低模量密封胶用聚醚成品。
产品指标:凝胶色谱分析分子量为29215,化学法测试样品羟值为10.1。
对比例4
在2.5L高压搅拌反应釜中加入分子量为2500的山梨醇聚氧丙烯醚100g以及双金属络合物催化剂DMC 0.13g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至130℃后保温脱水1.5h。脱水毕,加入环氧丙烷1250g,控制反应温度在140-170℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持30min后,降温放料得到聚醚成品。
产品指标:凝胶色谱分析分子量为29015,化学法测试样品羟值为11.6。
实施例5
在2.5L高压搅拌反应釜中加入分子量为4000的蔗糖醇聚氧丙烯醚144g和分子量为3800的直链C12醇聚氧丙烯醚41g以及多金属络合物催化剂MMC0.14g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至130℃后保温脱水2h。脱水毕,加入环氧丙烷1217g,控制反应温度在140-180℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持30min后,降温放料得到所述低模量密封胶用聚醚成品。
产品指标:凝胶色谱分析分子量为28815,化学法测试样品羟值为12.0。
对比例5
在2.5L高压搅拌反应釜中加入分子量为4000的蔗糖醇聚氧丙烯醚144g以及双金属络合物催化剂DMC 0.14g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至130℃后保温脱水1h。脱水毕,加入环氧丙烷918g,控制反应温度在140-180℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持10min后,降温放料得到聚醚成品。
产品指标:凝胶色谱分析分子量为28756,化学法测试样品羟值为15.6。
实施例6
在2.5L高压搅拌反应釜中加入分子量为3000的甘油聚氧丙烯醚110g和分子量为4000的直链C6醇聚氧丙烯醚40g以及双金属络合物催化剂DMC 0.10g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至130℃后保温脱水2h。脱水毕,加入环氧丙烷1135g,控制反应温度在140-180℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持30min后,降温放料得到所述低模量密封胶用聚醚成品。
产品指标:凝胶色谱分析分子量为27650,化学法测试样品羟值为5.3。
对比例6
在2.5L高压搅拌反应釜中加入分子量为3000的甘油聚氧丙烯醚120g以及双金属络合物催化剂DMC 0.10g,用真空泵抽真空,采用N2置换掉反应釜内的空气,置换三次后,在真空度≥-0.096MPa下,边抽真空边升温脱水,当温度升至130℃后保温脱水2h。脱水毕,加入环氧丙烷1000g,控制反应温度在140-180℃,反应釜内压力在-0.05~0.40MPa,加完后保温继续反应,直到压力不再降为止。反应完毕,真空脱气,当真空度≥-0.098MPa保持30min后,降温放料得到聚醚成品。
产品指标:凝胶色谱分析分子量为27550,化学法测试样品羟值为6.1。
性能测试:
分别采用实施例1~6与对比例1~6所制得的聚醚样品与2-异氰酸酯基乙基三乙氧基硅烷在催化剂作用下反应制成硅烷改性聚醚。物料配比按照固定的-OH与-NCO摩尔比1:1.1,其它反应条件一致。聚醚制备硅烷改性聚醚的反应式如下(以双羟基聚醚为例):
Figure PCTCN2020098800-appb-000003
制备密封胶的具体步骤如下:
(1)各施例与对比例制成的硅烷改性聚醚按照下表中的配方制作密封胶:
Figure PCTCN2020098800-appb-000004
注:“*”表示用实施例和对比例聚醚制成的硅烷改性聚醚
(2)密封胶具体的制作工艺如下:
a、使用双行星式搅拌机进行混合生产:将轻钙、重钙、硅烷改性聚醚聚合物、偶联剂、增塑剂投入料缸,搅拌均匀;
b、加入吸水剂,高速搅拌至分散均匀,物料中没有颗粒;
c、升温至100~150℃,抽真空保温1~3h;
d、降温至30~60℃,停止真空;
e、加入催化剂,搅拌均匀后脱泡出胶。
(3)对各实施例和对比例所得的硅烷改性聚醚密封胶,测定拉伸强度、拉断伸长率和拉伸膜量。
其中,拉伸强度和拉断伸长率按GB/T528-2009-《硫化橡胶或热塑性橡胶拉伸应力应变性能的测定》的规定试验进行测定,拉伸膜量按GB/T 13477-2002“建筑密封材料试验方法”类来测定,结果见表1。
表1各实施例及对比例聚醚合成的密封胶的效果数据
Figure PCTCN2020098800-appb-000005
Figure PCTCN2020098800-appb-000006
从表1中的6组对比数据可知,本发明实施例1~6比对比例1~6制成的密封胶的拉伸膜量要低20%以上,断裂拉伸率增加10%以上,且随着单元醇聚氧丙烯醚比例的增加,拉伸膜量降低幅度增大,断裂拉伸率随之增加,而拉伸强度变化较小,由此可证,本发明采用多元醇聚氧丙烯醚与单元醇聚氧丙烯醚的混合物作为起始剂所制得的聚醚能够很好地增强密封胶的刚性强度,又能降低弹性模量,克服了现有聚醚硅烷改性密封胶模量高的问题。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种低模量密封胶用聚醚的合成方法,其特征在于:包括以下步骤:以单元醇聚氧丙烯醚与多元醇聚氧丙烯醚的混合物为起始剂,以环氧丙烷为扩链剂,并加入金属络合催化剂进行反应,反应完毕得到所述低模量密封胶用聚醚。
  2. 根据权利要求1所述的低模量密封胶用聚醚的合成方法,其特征在于:所述起始剂中单元醇聚氧丙烯醚与多元醇聚氧丙烯醚的重量比为(5:95)~(30:70)。
  3. 根据权利要求1或2所述的低模量密封胶用聚醚的合成方法,其特征在于:所述单元醇聚氧丙烯醚为丁醇聚氧丙烯醚、乙醇聚氧丙烯醚、丙醇聚氧丙烯醚、C6醇聚氧丙烯醚、C8醇聚氧丙烯醚、C10醇聚氧丙烯醚、C12醇聚氧丙烯醚中的一种或任意两种以上的混合物。
  4. 根据权利要求1或2所述的低模量密封胶用聚醚的合成方法,其特征在于:所述多元醇聚氧丙烯醚为甘油聚氧丙烯醚、乙二醇聚氧丙烯醚、丙二醇聚氧丙烯醚、季戊四醇聚氧丙烯醚、山梨醇聚氧丙烯醚、蔗糖聚氧丙烯醚的一种或任意两种以上的混合物。
  5. 根据权利要求1或2所述的低模量密封胶用聚醚的合成方法,其特征在于:所述单元醇聚氧丙烯醚和多元醇聚氧丙烯醚的分子量均为300~4000。
  6. 根据权利要求1或2所述的低模量密封胶用聚醚的合成方法,其特征在于:所述低模量密封胶用聚醚的分子量为4000~30000。
  7. 根据权利要求1或2所述的低模量密封胶用聚醚的合成方法,其特征在于:所述催化剂的用量为起始剂和环氧丙烷的总量的10~100ppm。
  8. 根据权利要求7所述的低模量密封胶用聚醚的合成方法,其特征在于: 所述催化剂为双金属络合催化剂DMC或多金属络合催化剂MMC或两者的混合。
  9. 根据权利要求1或2所述的低模量密封胶用聚醚的合成方法,其特征在于:所述环氧丙烷的用量为起始剂重量的4~15倍。
  10. 根据权利要求1或2所述的低模量密封胶用聚醚的合成方法,其特征在于:反应温度为100~180℃。
PCT/CN2020/098800 2019-12-06 2020-06-29 一种低模量密封胶用聚醚的合成方法 WO2021109557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/782,670 US20230131312A1 (en) 2019-12-06 2020-06-29 Synthesis method of polyether for low-modulus sealant
JP2022534420A JP2023505512A (ja) 2019-12-06 2020-06-29 低弾性係数シーラント用ポリエーテルの合成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911243263.4 2019-12-06
CN201911243263.4A CN110922579B (zh) 2019-12-06 2019-12-06 一种低模量密封胶用聚醚的合成方法

Publications (1)

Publication Number Publication Date
WO2021109557A1 true WO2021109557A1 (zh) 2021-06-10

Family

ID=69858295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098800 WO2021109557A1 (zh) 2019-12-06 2020-06-29 一种低模量密封胶用聚醚的合成方法

Country Status (4)

Country Link
US (1) US20230131312A1 (zh)
JP (1) JP2023505512A (zh)
CN (1) CN110922579B (zh)
WO (1) WO2021109557A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922579B (zh) * 2019-12-06 2021-12-03 浙江皇马科技股份有限公司 一种低模量密封胶用聚醚的合成方法
CN111393611B (zh) * 2020-04-29 2022-04-29 浙江皇马科技股份有限公司 一种密封胶用硅烷封端树脂及其制备方法
CN114479054A (zh) * 2022-02-24 2022-05-13 浙江皇马科技股份有限公司 一种单元醇聚醚的制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068292A (ja) * 2003-08-25 2005-03-17 Asahi Glass Co Ltd ポリエーテルモノオールまたはポリエーテルポリオールおよびその製造方法
CN100999575A (zh) * 2006-11-28 2007-07-18 王伟松 烯丙醇无规聚醚的制备方法
CN101100509A (zh) * 2007-07-24 2008-01-09 王伟松 丙二醇聚氧丙烯醚的合成方法
CN101445432A (zh) * 2008-12-30 2009-06-03 上虞市皇马表面活性剂研究所有限公司 一种壬基酚聚氧丙烯醚的合成方法
CN101497635A (zh) * 2008-12-30 2009-08-05 浙江皇马科技股份有限公司 蔗糖和甘油混合醇聚氧丙烯醚的制备方法
WO2010072769A1 (de) * 2008-12-23 2010-07-01 Basf Se Verfahren zur herstellung von polyether-blockcopolymeren
CN107177034A (zh) * 2017-06-05 2017-09-19 浙江皇马科技股份有限公司 一种烯丙醇聚氧丙烯醚及其制备方法
CN110922579A (zh) * 2019-12-06 2020-03-27 浙江皇马科技股份有限公司 一种低模量密封胶用聚醚的合成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292900B1 (ko) * 2005-04-21 2013-08-02 아사히 가라스 가부시키가이샤 저반발성 연질 폴리우레탄폼 및 그 제조 방법
CN100588671C (zh) * 2006-11-28 2010-02-10 王伟松 丁醇聚醚的合成方法
JP5785954B2 (ja) * 2010-12-13 2015-09-30 株式会社カネカ 反応性可塑剤、およびこれを含む硬化性組成物
JP5907708B2 (ja) * 2011-04-13 2016-04-26 株式会社カネカ 硬化性組成物
JP2013076094A (ja) * 2013-01-28 2013-04-25 Asahi Glass Co Ltd 硬化性組成物
CN103694465B (zh) * 2013-11-25 2016-06-01 黎明化工研究设计院有限责任公司 一种聚醚的连续合成方法
JP6977747B2 (ja) * 2018-03-07 2021-12-08 Agc株式会社 床用接着剤用硬化性組成物、及び硬化物
CN109536106A (zh) * 2018-11-29 2019-03-29 上海东大化学有限公司 一种高强度硅烷改性聚醚聚合物及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068292A (ja) * 2003-08-25 2005-03-17 Asahi Glass Co Ltd ポリエーテルモノオールまたはポリエーテルポリオールおよびその製造方法
CN100999575A (zh) * 2006-11-28 2007-07-18 王伟松 烯丙醇无规聚醚的制备方法
CN101100509A (zh) * 2007-07-24 2008-01-09 王伟松 丙二醇聚氧丙烯醚的合成方法
WO2010072769A1 (de) * 2008-12-23 2010-07-01 Basf Se Verfahren zur herstellung von polyether-blockcopolymeren
CN101445432A (zh) * 2008-12-30 2009-06-03 上虞市皇马表面活性剂研究所有限公司 一种壬基酚聚氧丙烯醚的合成方法
CN101497635A (zh) * 2008-12-30 2009-08-05 浙江皇马科技股份有限公司 蔗糖和甘油混合醇聚氧丙烯醚的制备方法
CN107177034A (zh) * 2017-06-05 2017-09-19 浙江皇马科技股份有限公司 一种烯丙醇聚氧丙烯醚及其制备方法
CN110922579A (zh) * 2019-12-06 2020-03-27 浙江皇马科技股份有限公司 一种低模量密封胶用聚醚的合成方法

Also Published As

Publication number Publication date
US20230131312A1 (en) 2023-04-27
CN110922579A (zh) 2020-03-27
JP2023505512A (ja) 2023-02-09
CN110922579B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2021109557A1 (zh) 一种低模量密封胶用聚醚的合成方法
CN110157376B (zh) 透明双组份硅烷改性聚醚密封胶及其制备方法
CN109251711B (zh) 硅烷改性聚醚密封胶的制备方法
WO2020133062A1 (zh) 一种反应型密封胶树脂的制备方法
CN108179003B (zh) 低模量、高位移能力的脱醇型硅酮耐候密封胶及其制备方法
CN110862797A (zh) 一种硅烷封端聚醚密封胶及其制备方法
CN109293912B (zh) 一种可控硅含量的聚醚及其制备方法和应用
WO2022193662A1 (zh) 一种单组份硅烷改性聚醚密封胶及其制备方法和应用
CN111808569B (zh) 一种耐湿热、高强度单组份聚氨酯免底涂粘接密封剂及其制备方法
CN104152102A (zh) 一种高性能硅酮密封胶及其制备方法
CN113462293A (zh) 硅烷改性树脂防水涂料及其制备方法
CN104559137B (zh) 高弹性无溶剂聚氨酯堵漏材料及其制备方法与应用
WO2023202133A1 (zh) 氨基硅烷改性增粘剂、高耐水性硅烷改性聚醚胶及其制备方法
CN114369236B (zh) 高性能聚酯醚多元醇及其制备方法和应用
CN111978850A (zh) 一种硅烷改性防水涂料及其制备方法
CN114181605B (zh) 一种单组分水性聚氨酯防水涂料及其制备方法
CN107778475A (zh) Ptmeg类无毒塑化剂及其制备方法
CN104387247A (zh) 一种双羟乙基双酚a醚的制备方法
CN113684003A (zh) 一种双组分室温硫化硅橡胶组合物
WO2021143003A1 (zh) 一种合成革用水性聚氨酯的制备方法
CN111087951A (zh) 一种建筑密封胶的制备方法
CN114479054A (zh) 一种单元醇聚醚的制备方法及应用
CN111073577A (zh) 环保型ms密封胶及其制备方法
CN107916089B (zh) 一种缓膨型遇水膨胀聚氨酯密封胶及其制备方法
CN104650314A (zh) 可双重固化的有机氟改性聚氨酯预聚物和制备方法及其制成的紫外光固化膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534420

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896549

Country of ref document: EP

Kind code of ref document: A1