WO2021143003A1 - 一种合成革用水性聚氨酯的制备方法 - Google Patents

一种合成革用水性聚氨酯的制备方法 Download PDF

Info

Publication number
WO2021143003A1
WO2021143003A1 PCT/CN2020/092262 CN2020092262W WO2021143003A1 WO 2021143003 A1 WO2021143003 A1 WO 2021143003A1 CN 2020092262 W CN2020092262 W CN 2020092262W WO 2021143003 A1 WO2021143003 A1 WO 2021143003A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polyether
reaction
parts
trimethylolpropane
Prior art date
Application number
PCT/CN2020/092262
Other languages
English (en)
French (fr)
Inventor
高宏飞
史艳丽
王浩宇
杨鑫
Original Assignee
江苏钟山化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏钟山化工有限公司 filed Critical 江苏钟山化工有限公司
Publication of WO2021143003A1 publication Critical patent/WO2021143003A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • C08G65/3312Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the invention relates to the field of organic chemistry, in particular to a method for preparing water-based polyurethane for synthetic leather.
  • the purpose of the present invention is to provide a method for preparing aqueous polyurethane for synthetic leather, and the aqueous polyurethane for synthetic leather prepared by the method has the advantage of being resistant to hydrolysis.
  • a method for preparing water-based polyurethane for synthetic leather including the following steps:
  • R is a methyl group, an ester group or an allyl group, and n ⁇ 40.
  • the water-based polyurethane emulsion is poured into a glass template, placed horizontally, air-dried at room temperature, taken out after film formation, and dried.
  • the side chain type polyether glycol is prepared by the following method:
  • Trimethylolpropane and aldehyde or ketone undergo a condensation reaction under the action of a catalyst to obtain an intermediate, and the structural formula of the intermediate is as follows:
  • R 1 and R 2 are each selected from one of H and C 1 to C 4 alkyl groups
  • R 1 and R 2 are each selected from one of H, C 1 ⁇ C 4 alkyl, and n ⁇ 40;
  • R 1 and R 2 are respectively selected from one of H, C 1 ⁇ C 4 alkyl, n ⁇ 40, and R is methyl, ester or allyl;
  • step (1) trimethylolpropane and acetone undergo a ketal reaction under the action of a catalyst, the reaction temperature is 40-60°C, the reaction time is 5-10h, and the moles of acetone and trimethylolpropane The ratio is 1 to 6:1; the catalyst is phosphoric acid, sulfuric acid, p-toluenesulfonic acid or a strong acid resin, and the amount of the catalyst is 0.1 to 5% of the total mass of trimethylolpropane and acetone.
  • the intermediate and propylene oxide in step (2) are reacted with propylene oxide at 100-130°C for 5-10 hours under the action of a catalyst, and the reaction pressure is less than or equal to 0.3 MPa.
  • the molar ratio of the propylene oxide to the intermediate in step (2) is 1-40:1
  • the catalyst is potassium hydroxide or potassium methoxide
  • the amount of the catalyst is the intermediate and the intermediate 0.1% to 0.5% of the total mass of propylene oxide.
  • the monofunctional polyether described in step (3) is first reacted with an alkali at 30-120°C under a vacuum of 0.8-0.98 MPa for 1 to 4 hours, and then an etherification end-capping agent is added to the base at 30-120°C. Reacting at ⁇ 120°C for 4-10 hours to obtain the capped polyether.
  • the alkali in step (3) is sodium hydroxide, sodium methoxide or a mixture thereof, the molar ratio of the alkali to the monofunctional polyether (II) is 1-4:1; the etherification capping agent is chlorine Methane or chloropropylene, the molar ratio of etherification end-capping agent to monofunctional polyether is 1 ⁇ 4:1.
  • the hydrolysis reaction in step (4) includes the following steps: in an acidic state and maintaining a vacuum, the capped polyether and trimethylolpropane are hydrolyzed at 140-160°C.
  • step (4) the intermediate and excess trimethylolpropane are separated by distillation.
  • the end-capping rate is calculated using the following method:
  • Test data of hydrolysis resistance test Put the sample in a sealed container of 10% NaOH aqueous solution at 25°C for a certain period of time, then wash it and dry it, and observe its surface condition.
  • the synthetic leather aqueous polyurethane prepared by the method of the invention has the advantage of being resistant to hydrolysis.
  • the applicant has been committed to the synthesis of polyurethane materials for a long time.
  • the prepared aqueous polyurethane emulsion was able to resist hydrolysis after film formation.
  • the present invention provides a new route for preparing side-chain polyether diols.
  • the capped polyether (III) and trimethylolpropane are hydrolyzed under acidic conditions to obtain side-chain polyether diols.
  • the alcohol (IV) and the intermediate (I) are separated by distillation.
  • the obtained intermediate can be directly used in the second step reaction to realize recycling. Therefore, the reaction steps are significantly reduced and the synthesis efficiency is greatly improved.
  • the production cost is greatly reduced, and it has the advantages of safety and environmental protection. Since it is necessary to continuously add new aldehydes or ketones in the reaction step (1), and the aldehydes or ketones have high volatility and flammability, it is necessary to use anti-explosion equipment; steps (2)-(4) of the present invention do not need to be used in Therefore, the method of the present invention reduces the high requirements on the reaction equipment and improves the safety of the reaction.
  • Figure 1 is the Fourier infrared spectrum of the raw material trimethylolpropane, the abscissa is the wavelength, the unit name is cm -1 , the ordinate is the absorption intensity, and the unit name is %.
  • Figure 2 is the Fourier infrared spectrum of the intermediate (I) standard product.
  • the abscissa is the wavelength
  • the unit name is cm -1
  • the ordinate is the absorption intensity
  • the unit name is %.
  • Figure 3 shows the Fourier infrared spectra of the intermediate (I) obtained in step (1) and step (4).
  • (1) is the intermediate obtained in step (1);
  • (4) is the intermediate obtained in step (4), the abscissa is the wavelength, and the unit name is cm -1 .
  • Figure 4 shows the proton nuclear magnetic resonance spectrum of the intermediate, the abscissa is the chemical shift, and the unit name is ppm.
  • Figure 5 shows the Fourier infrared spectrum of the product side-chain polyether diol.
  • the abscissa is the wavelength
  • the unit name is cm -1
  • the ordinate is the absorption intensity
  • the unit name is %.
  • Figure 6 shows the proton nuclear magnetic resonance spectrum of the product side-chain polyether glycol, the abscissa is the chemical shift, and the unit name is ppm.
  • the preparation of side chain polyether glycol includes the following steps:
  • R 1 and R 2 are both CH 3 .
  • the hydroxyl value of the side chain polyether diol is 108.2 mg KOH/g and the average molecular weight is 1034 as measured by the phthalic anhydride-pyridine method (GB/T 12008.3-2009).
  • Fourier infrared analysis (as shown in Figure 5) and proton nuclear magnetic resonance analysis (as shown in Figure 6) were performed on the product side-chain polyether glycol (ie, side-chain polyoxypropylene ether).
  • R is CH 3 ;
  • step (4) The reaction process of step (4) is shown in the following formula:
  • Figure 1 is the Fourier infrared spectrum of the raw material trimethylolpropane
  • Figure 2 is the intermediate (I) (2,2-dimethyl-1,3-dioxane-5-ethyl-5-methanol) ) Fourier infrared spectrum of the standard.
  • the temperature of the prepolymer was lowered to 49°C, and 3g of triethylamine was added for neutralization for 30 minutes, and 150ml of deionized water was added under rapid stirring conditions to obtain a stable aqueous polyurethane emulsion. Then pour the water-based polyurethane emulsion into the glass stencil, place it horizontally, and air dry at room temperature, take it out after forming the film, dry it in an oven at 80°C for 5h, take it out and place it in a desiccator to cool naturally to obtain a water-based polyurethane film A.
  • the water-based polyurethane adhesive film A was immersed in a sealed container containing a 10% by mass NaOH aqueous solution at 25°C for 24 hours, then washed and dried, and it was found that the surface began to slightly crack. After immersing for 23 hours, no cracks were found.
  • the temperature of the prepolymer was lowered to 49°C, and 3g of triethylamine was added for neutralization for 30 minutes, and 150ml of deionized water was added under rapid stirring conditions to obtain a stable aqueous polyurethane emulsion. Then pour the water-based polyurethane emulsion into a glass template, place it horizontally, and air-dry at room temperature, take it out after forming the film, dry it in an oven at 80°C for 5h, take it out and place it in a desiccator to cool naturally to obtain a control water-based polyurethane film 1.
  • control water-based polyurethane film 1 After immersing the control water-based polyurethane film 1 in a sealed container containing a NaOH aqueous solution with a concentration of 10% by mass at 25° C. for 3 hours, it was washed and air-dried, and it was found that the surface was slightly cracked.
  • the preparation of side chain polyether glycol includes the following steps:
  • the structural formula is The hydroxyl value of the monofunctional polyether measured by the phthalic anhydride-pyridine method (GB/T 12008.3-2009) is 54.56mg KOH/g, the average molecular weight is 1028, and the yield is 98.3%.
  • the capped polyether has a hydroxyl value of 0.8 mg KOH/g measured by the phthalic anhydride-pyridine method (GB/T 12008.3-2009), and the capping rate is 98.5%.
  • the temperature of the prepolymer was lowered to 49°C, and 3g of triethylamine was added for neutralization for 30 minutes, and 150ml of deionized water was added under rapid stirring conditions to obtain a stable aqueous polyurethane emulsion.
  • the water-based polyurethane adhesive film B was immersed in a sealed container containing a 10% by mass NaOH aqueous solution at 25°C for 6 hours, washed and dried, and it was found that the surface was slightly cracked.
  • the hydrolysis resistance of the water-based polyurethane film A is increased by about eight times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明提供一种合成革用水性聚氨酯的制备方法,涉及一种有机化学领域。该水性聚氨酯的制备方法,包括如下步骤:将5~10质量份侧链型聚醚二元醇与45~50质量份聚丙二醇在N 2保护下(脱水条件:100~110℃真空,脱水时间为1~2h)脱水,冷却至常温加入30~35质量份异佛尔酮二异氰酸酯,滴加0.2~0.4质量份二丁基锡月桂酸酯,升温至70~90℃,反应1~3h后加入2~4质量份二羟甲基丙酸,反应1~3h后,得到预聚体;将所述预聚体温度降至50℃以下后,加入2~3质量份三乙胺,在搅拌条件下加入去离子水,得到水性聚氨酯乳液。本发明方法制备的合成革用水性聚氨酯具有耐水解的优点。

Description

一种合成革用水性聚氨酯的制备方法 技术领域
本发明涉及一种有机化学领域,具体涉及一种合成革用水性聚氨酯的制备方法。
背景技术
合成革与天然皮革相比,具有价格相对便宜、成革均一性好以及物化性能优良等优点。据合成革行业统计,于2012年起,全国超纤革产量已达1.5亿平方米,但其制造过程中含浸和涂饰等环节大量使用溶剂型聚氨酯,造成VOCs污染和资源浪费。近年来,随着一系列环保法规的实施,合成革行业溶剂型树脂的使用受到较大限制。水性聚氨酯(WPU)具有无溶剂排放、环境友好等优点,但是与真皮相比,存在耐水解性能差的问题。
发明内容
本发明的目的是提供一种合成革用水性聚氨酯的制备方法,采用该方法制备的合成革用水性聚氨酯具有耐水解的优点。
本发明的目的采用如下技术方案实现:
一种合成革用水性聚氨酯的制备方法,包括如下步骤:
将5~10质量份侧链型聚醚二元醇与45~50质量份聚丙二醇在N 2保护下(脱水条件:100~110℃真空,脱水时间为1~2h)脱水,冷却至常温加入30~35质量份异佛尔酮二异氰酸酯,滴加0.2~0.4质量份二丁基锡月桂酸酯,升温至70~90℃,反应1~3h后加入2~4质量份二羟甲基丙酸,反应1~3h后,得到预聚体;将所述预聚体温度降至50℃以下后,加入2~3质量份三乙胺,在搅拌条件下加入去离子水,得到水性聚氨酯乳液;
所述侧链型聚醚二元醇的结构式如下:
Figure PCTCN2020092262-appb-000001
其中,R为甲基、酯基或烯丙基,n≤40。
在本发明中,所述水性聚氨酯乳液倒入玻璃模版中,水平放置,室温下风干,成膜后取出,干燥。
在本发明中,所述侧链型聚醚二元醇采用如下方法制备:
(1)三羟甲基丙烷与醛或酮在催化剂的作用下发生缩合反应得到中间体,所述中间体的结构式如下:
Figure PCTCN2020092262-appb-000002
其中R 1,R 2分别选自H、C 1~C 4烷基中的一种;
(2)对所述中间体进行聚合环氧化物反应得到单官聚醚,所述单官聚醚的结构式如下:
Figure PCTCN2020092262-appb-000003
其中R 1,R 2分别选自H、C 1~C 4烷基中的一种,n≤40;
(3)对所述单官聚醚进行封端反应得到封端聚醚,所述封端聚醚的结构式如下:
Figure PCTCN2020092262-appb-000004
其中R 1、R 2分别选自H、C 1~C 4烷基中的一种,n≤40,R为甲基、酯基或烯丙基;
(4)将所述封端聚醚与三羟甲基丙烷水解,蒸馏分离后,得到所述侧链型聚醚二元醇。
在本发明中,步骤(1)中三羟甲基丙烷与丙酮在催化剂作用下进行缩酮反应,反应温度为40~60℃,反应时间为5~10h,丙酮与三羟甲基丙烷的摩尔比为1~6:1;所述催化剂为磷酸、硫酸、对甲苯磺酸或强酸性树脂,所述催化剂用量为三羟甲基丙烷和丙酮总质量的0.1~5%。
在本发明中,步骤(2)中所述中间体与环氧丙烷在催化剂作用下,于100~130℃下反应5~10h,反应压力≤0.3MPa。
在本发明中,步骤(2)中所述环氧丙烷与中间体的摩尔比为1~40:1,所述催化剂为氢氧化钾或甲醇钾,所述催化剂的用量为所述中间体和环氧丙烷总质量的0.1~0.5%。
在本发明中,步骤(3)中所述单官聚醚先与碱在真空度为0.8~0.98MPa下,于30~120℃反应1~4h,然后再加入醚化封端剂,在30~120℃反应4~10h,得到所述封端聚醚。
在本发明中,步骤(3)中所述碱为氢氧化钠、甲醇钠或其混合物,碱与单官聚醚(II)的摩尔比为1~4:1;醚化封端剂为氯甲烷或氯丙烯,醚化封端剂与单官聚醚的摩尔比为1~4:1。
在本发明中,步骤(4)中水解反应包括如下步骤:在酸性及维持真空状态下,所述封端聚醚与三羟甲基丙烷在140~160℃水解。
在本发明中,步骤(4)中蒸馏分离所述中间体及多余的三羟甲基丙烷。
本发明中,封端率采用如下方法计算:
Figure PCTCN2020092262-appb-000005
耐水解性能测试实验资料:将试样置于25℃、10%的NaOH水溶液的密封容器浸泡一定时间后,洗净晾干,观察其表面状况。
有益效果:采用本发明方法制备的合成革用水性聚氨酯具有耐水解的优点。申请人长期致力于合成聚氨酯材料,在研究过程中发现将原料中直链型聚丙二醇部分替代为侧链型聚氧丙烯醚时,所制备的水性聚氨酯乳液成膜后,在耐水解性能方面能够得到极大提升。另外,本发明提供了一种制备侧链型聚醚二元醇的新路线,将封端聚醚(III)与三羟甲基丙烷在酸性条件下水解,同时获得侧链型聚醚二元醇(IV)和中间体(I),然后通过蒸馏将两者分离,获得的中间体可以直接用于第二步反应从而实现循环使用,因此,显著减少了反应步骤,大大提高了合成效率,极大的降低了生产成本,且具有安全环保等优点。由于反应步骤(1)中需要不断添加新的醛或酮,而醛或酮具有高挥发性和易燃性,因此必须使用防止爆炸的设备;本发明步骤(2)-(4)不需要在防止爆炸的设备中进行,因此采用本发明方法减少了对反应设备的高要求,提高了反应的安全性。
附图说明
图1为原料三羟甲基丙烷的傅立叶红外光谱,横坐标为波长,单位名称是 cm -1,纵坐标为吸收强度,单位名称是%。
图2为中间体(I)标准品的傅立叶红外光谱,横坐标为波长,单位名称是cm -1,纵坐标为吸收强度,单位名称是%。
图3为步骤(1)及步骤(4)所得中间体(I)的傅立叶红外光谱。其中(1)为步骤(1)所得中间体;(4)为步骤(4)所得中间体,横坐标为波长,单位名称是cm -1
图4为中间体的核磁共振氢谱,横坐标为化学位移,单位名称是ppm。
图5为产物侧链型聚醚二元醇的傅立叶红外光谱,横坐标为波长,单位名称是cm -1,纵坐标为吸收强度,单位名称是%。
图6为产物侧链型聚醚二元醇的核磁共振氢谱,横坐标为化学位移,单位名称是ppm。
具体实施方式
下面通过实施例对本发明做进一步详细说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
实施例1制备合成革用水性聚氨酯
1.制备侧链型聚醚二元醇
制备侧链型聚醚二元醇包括如下步骤:
(1)将402g三羟甲基丙烷(3mol)、348g丙酮(6mol)和1g强酸性阳离子树脂(江苏色可赛思树脂有限公司,产品编号success220)加入2L四口烧瓶中,升温至60℃,在60℃下保温反应6h。反应液经过滤得到无色透明液体,减压蒸馏(真空度为0.98MPa,温度为80℃)并回收丙酮后,得到482g中间体,结构如(I)式,收率为92.3%,产品纯度为99.5%。
Figure PCTCN2020092262-appb-000006
其中R 1,R 2均为CH 3
(2)准确称取870g环氧丙烷(15mol)置于储罐中,将174g中间体(结构如(I)式,1mol)和2.5g甲醇钾加入反应釜中,氮气置换三次,然后开始通入环氧丙烷,保持釜内温度为115℃,压力为0.3MPa,进料时间为5h,进料结束后,于 120~130℃、压力为0.3MPa条件下老化反应3h。老化反应结束后,真空脱除未反应的环氧丙烷,即可得到1037g单官聚醚,结构如(II)式。通过苯酐-吡啶法(GB/T 12008.3-2009)测定单官聚醚的羟值为59.3mg KOH/g,平均分子量为946,收率为99.1%。
Figure PCTCN2020092262-appb-000007
其中R 1,R 2均为CH 3,n=15。
(3)向1037g单官聚醚(1.1mol)中加入88g NaOH(2.2mol),在真空度为0.8MPa、100℃下反应3h后,开始缓慢通入82.5g一氯甲烷(1.65mol),1h内通入完毕,然后在100℃下继续反应8h,反应结束后真空脱除未反应的一氯甲烷,得到封端聚醚,结构式如(III)所示。通过苯酐-吡啶法(GB/T 12008.3-2009)测定封端聚醚的羟值为1.2mg KOH/g,封端率为98.0%。
Figure PCTCN2020092262-appb-000008
其中R 1,R 2均为CH 3,n=15,R为CH 3
(4)将800g封端聚醚、120g三羟甲基丙烷、30g水和5g磷酸混合,在真空度0.95Mpa,145℃条件下水解反应2h。反应结束后,首先蒸馏(真空度为0.96Mpa,温度为160℃)收集得到85g中间体(结构式如式(I),可再次用于聚合环化反应);然后,提高体系温度至180℃、真空度0.96MPa下进行减压蒸馏,得到35g未反应的三羟甲基丙烷;最后,反应体系降温至80℃,加入2g硅酸镁搅拌1h,以脱色并去除金属离子,过滤得765g侧链型聚醚二元醇。通过苯酐-吡啶法(GB/T 12008.3-2009)测得侧链型聚醚二元醇的羟值为108.2mg KOH/g,平均分子量为1034。对产物侧链型聚醚二元醇(即侧链型聚氧丙烯醚)进行傅里叶红外分析(如图5所示)以及核磁共振氢谱分析(如图6所示)。产物侧链型聚醚二元醇的 1H NMR数据:(CDCl 3为溶剂,TMS为内标):3.68~3.49(m,37H,-OCH 2-),3.49~3.45(m,19H,≡CH),3.38(s,3H,-OCH 3),2.9~3.2(br,2H,-OH),1.29~1.26(q,2H,-CH 2-),1.15~1.08(d,46H,-CH 3),0.84~0.86(t,3H, -CH 3)。确定产物侧链型聚醚二元醇的结构如式所示。
Figure PCTCN2020092262-appb-000009
其中n=15,R为CH 3
步骤(4)的反应过程如下式所示:
Figure PCTCN2020092262-appb-000010
图1为原料三羟甲基丙烷的傅里叶红外光谱,图2为中间体(I)(2,2-二甲基-1,3-二氧六环-5-乙基-5-甲醇)标准品的傅里叶红外光谱。对比图1及图2可以看出,中间体(I)在3463cm -1处的羟基伸缩振动吸收峰与三羟甲基丙烷相比明显减弱,并且与步骤(1)中所得中间体和步骤(4)水解反应后蒸馏所得中间体的红外谱图一致(见图3),说明步骤(1)中所得中间体和步骤(4)水解反应后蒸馏所得中间体均为2,2-二甲基-1,3-二氧六环-5-乙基-5-甲醇。对步骤(1)中所得中间体进行核磁共振氢谱(图4)分析, 1H NMR数据:(CDCl 3为溶剂,TMS为内标):3.72(s,2H,HOCH 2-),3.68~3.62(m,4H,-OCH 2-),2.42(br,1H,-OH),1.43(q,3H,-CH 3),1.,39(s,3H,-CH 3),1.33~1.29(q,2H,-CH 2-),0.86~0.83(t,3H,-CH 3)。确定步骤(1)和步骤(4)所得中间体结构如式(I)所示。
2.制备合成革用水性聚氨酯
将本实施例标题1所得侧链型聚氧丙烯醚8g和聚丙二醇(数均分子量Mn=1000)50g在N 2保护下于100~110℃真空脱水2h,冷却至常温加入35g IPDI(异佛尔酮二异氰酸酯),滴加0.3g二丁基锡月桂酸酯,升温至80℃,在80℃反应2h后加入3g二羟甲基丙酸,继续反应2h后,,得到-NCO与-OH摩尔比为 1.2的预聚体。将预聚体温度降至49℃,加入3g三乙胺中和30min,在快速搅拌条件下加入去离子水150ml,得到稳定的水性聚氨酯乳液。然后将水性聚氨酯乳液倒入玻璃模版中,水平放置,室温下风干,成膜后取出,于80℃烘箱内烘干5h,取出放于干燥器中自然冷却,得到水性聚氨酯胶膜A。
将水性聚氨酯胶膜A置于25℃、装有质量百分浓度为10%的NaOH水溶液的密封容器内浸泡24h后,洗净晾干,发现其表面开始有轻度龟裂。浸泡23h,还未发现任何龟裂。
对比例1:将聚丙二醇(Mn=1000)58g在N 2保护下于100~110℃真空脱水2h,冷却至常温加入35g IPDI,滴加0.3g二丁基锡月桂酸酯,升温至80℃,在80℃反应2h后加入3g二羟甲基丙酸,继续反应2h后,-NCO与-OH摩尔比为1.2后,得到预聚体。将预聚体温度降至49℃,加入3g三乙胺中和30min,在快速搅拌条件下加入去离子水150ml,得到稳定的水性聚氨酯乳液。然后将水性聚氨酯乳液倒入玻璃模版中,水平放置,室温下风干,成膜后取出,于80℃烘箱内烘干5h,取出放于干燥器中自然冷却,得到对照水性聚氨酯膜1。
将对照水性聚氨酯膜1置于25℃、装有质量百分浓度为10%的NaOH水溶液的密封容器浸泡3h后,洗净晾干,发现其表面即有轻度龟裂。
实施例2制备合成革用水性聚氨酯
1.制备侧链型聚醚二元醇
制备侧链型聚醚二元醇包括如下步骤:
(1)按照实施例1中方法制备中间体,结构如(I)式,其中R 1、R 2均为CH 3
(2)准确称取880g(20mol)环氧乙烷置于储罐中,将174g中间体(结构如式I,R 1、R 2均为CH 3)和1.5g甲醇钾加入反应釜中,氮气置换三次,然后开始通入环氧乙烷,保持釜内温度105℃,压力为0.3MPa,进料时间为5h,进料结束后,于120℃条件下老化反应3h.老化反应结束后,真空脱除未反应的环氧乙烷,即可得到1038g单官聚醚,结构式为
Figure PCTCN2020092262-appb-000011
通过苯酐-吡啶法(GB/T 12008.3-2009)测定单官聚醚的羟值为54.56mg KOH/g,平均分子量为1028,收率为98.3%.
(3)然后向步骤(2)所得1038g单官聚醚中加入64g NaOH(1.6mol),60℃保温反应2h后,开始缓慢通入70g氯甲烷(1.4mol),1h内通入完毕,然后在100℃下继续反应6h,反应结束后真空脱除未反应的氯甲烷,得到封端聚醚,结构式为
Figure PCTCN2020092262-appb-000012
该封端聚醚通过苯酐-吡啶法(GB/T 12008.3-2009)测定羟值为0.8mg KOH/g,封端率为98.5%。
(4)将步骤(3)所得的封端聚醚800g、120g三羟甲基丙烷、30g水和5g磷酸混合,在真空度0.95Mpa,140℃条件下水解反应2h。反应结束后,首先蒸馏收集得到88g中间体,结构如(I)式,其中R 1、R 2均为CH 3;然后,提高体系温度至180℃,在真空度0.95MPa下进行减压蒸馏,得到32g未反应的三羟甲基丙烷。最后,反应体系降温至80℃,加入2g硅酸镁搅拌1h后,以脱色并去除金属离子,过滤得770g侧链型聚氧乙烯醚。通过苯酐-吡啶法(GB/T 12008.3-2009)测定侧链型聚氧乙烯醚的羟值为104.5mg KOH/g,平均分子量为1074。
2.制备合成革用水性聚氨酯
将本实施例标题1所得侧链型聚氧乙烯醚8g和聚丙二醇(Mn=1000)50g在N 2保护下于100~110℃真空脱水2h,冷却至常温加入35g IPDI(异佛尔酮二异氰酸酯),滴加0.3g二丁基锡月桂酸酯,升温至80℃,在80℃反应2h后加入3g二羟甲基丙酸,继续反应2h后,-NCO与-OH的摩尔比为1.2,得到预聚体。将预聚体温度降至49℃,加入3g三乙胺中和30min,在快速搅拌条件下加入去离子水150ml,得到稳定的水性聚氨酯乳液。
将水性聚氨酯乳液倒入玻璃模版中,水平放置,室温下风干,成膜后取出,于80℃烘箱内烘干5h,取出放于干燥器中自然冷却,得到水性聚氨酯胶膜B。
将水性聚氨酯胶膜B置于25℃、装有质量百分浓度为10%的NaOH水溶液的密封容器浸泡6h后,洗净晾干,发现其表面有轻度龟裂。
与水性聚氨酯胶膜B相比,水性聚氨酯胶膜A的耐水解性能提升了约八倍。

Claims (10)

  1. 一种合成革用水性聚氨酯的制备方法,其特征在于包括如下步骤:
    将5~10质量份侧链型聚醚二元醇与45~50质量份聚丙二醇在N 2保护下(脱水条件:100~110℃真空,脱水时间为1~2h)脱水,冷却至常温加入30~35质量份异佛尔酮二异氰酸酯,滴加0.2~0.4质量份二丁基锡月桂酸酯,升温至70~90℃,反应1~3h后加入2~4质量份二羟甲基丙酸,反应1~3h后,得到预聚体;将所述预聚体温度降至50℃以下后,加入2~3质量份三乙胺,在搅拌条件下加入去离子水,得到水性聚氨酯乳液;
    所述侧链型聚醚二元醇的结构式如下:
    Figure PCTCN2020092262-appb-100001
    其中,R为甲基、酯基或烯丙基,n≤40。
  2. 根据权利要求1所述合成革用水性聚氨酯的制备方法,其特征在于所述水性聚氨酯乳液倒入玻璃模版中,水平放置,室温下风干,成膜后取出,干燥。
  3. 根据权利要求1或2所述制备方法,其特征在于所述侧链型聚醚二元醇采用如下方法制备:
    (1)三羟甲基丙烷与醛或酮在催化剂的作用下发生缩合反应得到中间体,所述中间体的结构式如下:
    Figure PCTCN2020092262-appb-100002
    其中R 1,R 2分别选自H、C 1~C 4烷基中的一种;
    (2)对所述中间体进行聚合环氧化物反应得到单官聚醚,所述单官聚醚的结构式如下:
    Figure PCTCN2020092262-appb-100003
    其中R 1,R 2分别选自H、C 1~C 4烷基中的一种,n≤40;
    (3)对所述单官聚醚进行封端反应得到封端聚醚,所述封端聚醚的结构式如下:
    Figure PCTCN2020092262-appb-100004
    其中R 1、R 2分别选自H、C 1~C 4烷基中的一种,n≤40,R为甲基、酯基或烯丙基;
    (4)将所述封端聚醚与三羟甲基丙烷水解,蒸馏分离后,得到所述侧链型聚醚二元醇。
  4. 根据权利要求3所述制备方法,其特征在于步骤(1)中三羟甲基丙烷与丙酮在催化剂作用下进行缩酮反应,反应温度为40~60℃,反应时间为5~10h,丙酮与三羟甲基丙烷的摩尔比为1~6∶1;所述催化剂为磷酸、硫酸、对甲苯磺酸或强酸性树脂,所述催化剂用量为三羟甲基丙烷和丙酮总质量的0.1~5%。
  5. 根据权利要求4所述制备方法,其特征在于步骤(2)中所述中间体与环氧丙烷在催化剂作用下,于100~130℃下反应5~10h,反应压力≤0.3MPa。
  6. 根据权利要求5所述制备方法,其特征在于步骤(2)中所述环氧丙烷与中间体的摩尔比为1~40∶1,所述催化剂为氢氧化钾或甲醇钾,所述催化剂的用量为所述中间体和环氧丙烷总质量的0.1~0.5%。
  7. 根据权利要求6所述制备方法,其特征在于步骤(3)中所述单官聚醚先与碱在真空度为0.8~0.98MPa下,于30~120℃反应1~4h,然后再加入醚化封端剂,在30~120℃反应4~10h,得到所述封端聚醚。
  8. 根据权利要求7所述制备方法,其特征在于步骤(3)中所述碱为氢氧化钠、甲醇钠或其混合物,碱与单官聚醚(II)的摩尔比为1~4∶1;醚化封端剂为氯甲烷或氯丙烯,醚化封端剂与单官聚醚的摩尔比为1~4∶1。
  9. 根据权利要求8所述制备方法,其特征在于步骤(4)中水解反应包括如下步骤:在酸性及维持真空状态下,所述封端聚醚与三羟甲基丙烷在140~160℃水解。
  10. 根据权利要求9所述制备方法,其特征在于步骤(4)中蒸馏分离所述中间体及多余的三羟甲基丙烷。
PCT/CN2020/092262 2020-01-14 2020-05-26 一种合成革用水性聚氨酯的制备方法 WO2021143003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010036103.9A CN111138628B (zh) 2020-01-14 2020-01-14 一种合成革用水性聚氨酯的制备方法
CN202010036103.9 2020-01-14

Publications (1)

Publication Number Publication Date
WO2021143003A1 true WO2021143003A1 (zh) 2021-07-22

Family

ID=70524815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092262 WO2021143003A1 (zh) 2020-01-14 2020-05-26 一种合成革用水性聚氨酯的制备方法

Country Status (2)

Country Link
CN (1) CN111138628B (zh)
WO (1) WO2021143003A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138628B (zh) * 2020-01-14 2021-03-05 江苏钟山化工有限公司 一种合成革用水性聚氨酯的制备方法
CN113185685B (zh) * 2021-06-22 2022-08-05 万华化学集团股份有限公司 一种聚醚二元醇及其制备方法,以及一种水性聚氨酯乳液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905929A (en) * 1973-03-23 1975-09-16 Bayer Ag Aqueous dispersions of polyurethane having side chain polyoxyethylene units
US4190566A (en) * 1975-12-10 1980-02-26 Bayer Aktiengesellschaft Water-dispersible polyurethanes
CN101638472A (zh) * 2009-09-04 2010-02-03 安徽大学 侧链非离子型水性聚氨酯乳液的制备方法
CN103193972A (zh) * 2012-01-09 2013-07-10 烟台万华聚氨酯股份有限公司 一种聚醚二元醇的制备方法
CN107207693A (zh) * 2015-02-06 2017-09-26 塔明克公司 水性聚氨酯分散体
CN111138628A (zh) * 2020-01-14 2020-05-12 江苏钟山化工有限公司 一种合成革用水性聚氨酯的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031225B (zh) * 2013-03-06 2016-11-09 万华化学集团股份有限公司 一种用于合成革粘合剂的水性聚氨酯分散体及其制备方法
CN107522839A (zh) * 2017-08-30 2017-12-29 广东德美精细化工集团股份有限公司 一种无溶剂具备阴离子和非离子特性的水性聚氨酯树脂制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905929A (en) * 1973-03-23 1975-09-16 Bayer Ag Aqueous dispersions of polyurethane having side chain polyoxyethylene units
US4190566A (en) * 1975-12-10 1980-02-26 Bayer Aktiengesellschaft Water-dispersible polyurethanes
CN101638472A (zh) * 2009-09-04 2010-02-03 安徽大学 侧链非离子型水性聚氨酯乳液的制备方法
CN103193972A (zh) * 2012-01-09 2013-07-10 烟台万华聚氨酯股份有限公司 一种聚醚二元醇的制备方法
CN107207693A (zh) * 2015-02-06 2017-09-26 塔明克公司 水性聚氨酯分散体
CN111138628A (zh) * 2020-01-14 2020-05-12 江苏钟山化工有限公司 一种合成革用水性聚氨酯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI BING, PENG DAN, ZHAO NING, MU QIUHONG, LI JINHUI: "The physical properties of nonionic waterborne polyurethane with a polyether as side chain", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 127, no. 3, 5 February 2013 (2013-02-05), pages 1848 - 1852, XP055829631, ISSN: 0021-8995, DOI: 10.1002/app.37915 *

Also Published As

Publication number Publication date
CN111138628A (zh) 2020-05-12
CN111138628B (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2021143003A1 (zh) 一种合成革用水性聚氨酯的制备方法
KR101378232B1 (ko) 폴리에테르 폴리올의 제조 방법
US9073836B2 (en) Process for preparing allyl alcohol alkoxylates
CN109320521B (zh) 环氧单体及其制备方法、环氧树脂
CN115197173B (zh) 一种生物基环氧树脂及其制备方法
US20220056209A1 (en) Method for preparing reactive sealant resin
Jiang et al. A fully bio-based Schiff base vitrimer with self-healing ability at room temperature
CN115650861B (zh) 一种木质素基聚氨酯扩链剂在制备聚氨酯材料中的应用
CN111574820A (zh) 一种自修复交联聚氨酯及其制备方法
CN113416208B (zh) 丁香酚生物基含硅氧杂环丁烷单体及其制备方法
CN116621719A (zh) 一种应用于制备聚氨酯的全生物基芳基二胺扩链剂的合成方法
CN116789618A (zh) 一种生物质环氧单体、生物质自修复环氧树脂及制备方法
CN108395512B (zh) 一种生物基含碳酸酯结构的聚氨酯及其制备方法和应用
CN116355195A (zh) 一种脂肪族聚碳酸酯多元醇的制备方法
CN113717375B (zh) 一种超支化聚醚、制备方法及其应用
CN116102702A (zh) 一种无溶剂、无催化剂制备蓖麻油基聚氨酯的方法及应用
JP5886854B2 (ja) アリルアルコールアルコキシレートの製造方法
CN110294666A (zh) 双酚a双烷烯醚化多元醇的制备方法及由其制得的双酚a双烷烯醚化多元醇
CN111116867B (zh) 一种栲胶基环氧树脂及其制备方法
CN111378107B (zh) 一种反应型密封胶树脂的制备方法
CN114591674A (zh) 一种新型蓖麻基聚氨酯涂层材料及其制备方法
CN115894466B (zh) 一种环氧树脂的制备方法
CN111116890A (zh) 聚五氟丙基缩水甘油醚及其用途和制备方法
CN109970951B (zh) 一种多环氧基环氧树脂的合成方法
CN116814211B (zh) 一种反应型密封胶树脂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913400

Country of ref document: EP

Kind code of ref document: A1