WO2021107021A1 - 窒化ケイ素焼結体の製造方法 - Google Patents

窒化ケイ素焼結体の製造方法 Download PDF

Info

Publication number
WO2021107021A1
WO2021107021A1 PCT/JP2020/044044 JP2020044044W WO2021107021A1 WO 2021107021 A1 WO2021107021 A1 WO 2021107021A1 JP 2020044044 W JP2020044044 W JP 2020044044W WO 2021107021 A1 WO2021107021 A1 WO 2021107021A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
sintered body
nitride sintered
producing
mass
Prior art date
Application number
PCT/JP2020/044044
Other languages
English (en)
French (fr)
Inventor
真淵 俊朗
若松 智
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2021561497A priority Critical patent/JPWO2021107021A1/ja
Priority to KR1020227016843A priority patent/KR20220106119A/ko
Priority to CN202080081036.0A priority patent/CN114728855B/zh
Priority to US17/779,273 priority patent/US20220402826A1/en
Priority to EP20892132.0A priority patent/EP4067302A4/en
Publication of WO2021107021A1 publication Critical patent/WO2021107021A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present invention relates to a method for producing a silicon nitride sintered body having high thermal conductivity.
  • the silicon nitride sintered body obtained by adding various sintering aids to silicon nitride powder and sintering at a high temperature is light, has strong mechanical strength, has high chemical resistance, and is electric. It has features such as high insulation, and is used as a wear-resistant member such as a ball bearing and a high-temperature structural member. Further, since it is possible to improve the thermal conductivity by devising the type of auxiliary agent and the sintering conditions, it has come to be used as a thin and high-strength heat-dissipating substrate material.
  • a reduction nitriding method for example, Patent Document 1 in which nitrogen gas is circulated to generate silicon nitride in the presence of carbon powder using silica powder as a raw material, metallic silicon (silicon powder) and nitrogen.
  • a direct nitriding method for example, Patent Document 2 in which and is reacted at a high temperature, and an imide decomposition method in which silicon halide and ammonia are reacted are known.
  • a method of synthesizing a metal nitride by a direct nitriding method using a self-combustion method Self-Propagating High Temperature Synthesis, SHS method
  • the self-combustion method is also called a combustion synthesis method.
  • a raw material powder containing silicon powder is introduced into a reaction vessel, and a part of the raw material powder is strongly heat-ignited in a nitrogen atmosphere to cause a nitriding reaction, and the nitriding is performed.
  • It is a synthetic method that reacts the whole by propagating the heat of nitriding combustion generated by the reaction to the surroundings, and is known as a relatively inexpensive synthetic method.
  • Non-Patent Document 1 the ⁇ -type silicon nitride powder is dissolved in a sintering aid in the sintering process and reprecipitated as ⁇ -type, and as a result, a dense sintered body having high thermal conductivity. Is now widely used because it can be obtained.
  • Non-Patent Document 2 when manufacturing ⁇ -type silicon nitride powder, the manufacturing process tends to be complicated. For example, in the direct nitriding method, it is necessary to nitrid at a low temperature for a long time so that ⁇ type is not generated, so that the manufacturing cost is high (Non-Patent Document 2).
  • Patent Document 3 describes an invention relating to high thermal conductivity silicon nitride ceramics and a method for producing the same.
  • ⁇ -type silicon nitride powder having an average particle size of 0.5 ⁇ m, itellibium oxide, and magnesium nitride silicon nitride powder are used. It is shown that a dense and highly thermally conductive sintered body can be obtained by sintering a molded body containing the above-mentioned sintering aid at 1900 ° C. for 2 to 24 hours in pressurized nitrogen at 10 atm. Has been done.
  • the sintered body of ⁇ -type silicon nitride powder disclosed in Patent Document 3 is produced in pressurized nitrogen at 10 atm as described above.
  • the amount of impurity oxygen solidly dissolved inside the silicon nitride particles which is one of the factors that easily densifies the generated sintered body and lowers the thermal conductivity, is determined. It is known that it can be reduced and it is easy to obtain a sintered body having high thermal conductivity.
  • Patent Document 3 when firing under pressure as in Patent Document 3, it is necessary to use a pressure-resistant container at the time of production. Therefore, there is a problem that there are equipment restrictions in manufacturing and the manufacturing cost is high. Further, in Patent Document 3, the thermal conductivity is determined under the conditions of normal pressure (atmospheric pressure) or substantially normal pressure (pressure near atmospheric pressure) using ⁇ -type silicon nitride powder and not requiring the use of a pressure-resistant container. No description or suggestion has been made as to how to obtain a high sintered body.
  • the present invention has been made in view of the above-mentioned conventional problems, and generally, silicon nitride powder having a high ⁇ conversion rate is used as a raw material, and the silicon nitride powder is sintered at normal pressure or substantially normal pressure.
  • An object of the present invention is to provide a method for producing a sintered body having a high thermal conductivity under a condition in which it is recognized that it is difficult to obtain a sintered body having a high thermal conductivity.
  • the present inventors have conducted extensive research in order to achieve the above object.
  • the silicon nitride powder having a ⁇ conversion rate, the amount of dissolved oxygen, and the specific surface area in a specific range and a sintering aid containing a compound having no oxygen bond are contained, and the total amount of oxygen and the aluminum element are contained.
  • a sintered body having high thermal conductivity can be obtained by using a molded product having a total content of the above in a specific range and firing the molded product in a specific temperature range under normal pressure or substantially normal pressure. Completed.
  • the gist of the present invention is the following [1] to [10].
  • Sintering aid containing silicon nitride powder having a ⁇ conversion rate of 80% or more, a solid oxygen content of 0.2% by mass or less, a specific surface area of 5 to 20 m 2 / g, and a compound having no oxygen bond.
  • a method for producing a silicon nitride sintered body which comprises heating to a temperature of 1200 to 1800 ° C.
  • the silicon nitride powder has an average particle size D 50 of 0.5 to 1.2 ⁇ m, a proportion of particles having a particle size of 0.5 ⁇ m or less is 20 to 50% by mass, and a particle size of 1.
  • the compound having no oxygen bond contained in the sintering aid is a carbonitride-based compound containing a rare earth element or a magnesium element.
  • [7] The method for producing a silicon nitride sintered body according to any one of the above [1] to [6], wherein the density of the molded product is 1.95 g / cm 3 or more.
  • [8] Production of the silicon nitride sintered body according to any one of the above [1] to [7], wherein the obtained silicon nitride sintered body has a thermal conductivity of 80 W / mK or more measured by a laser flash method. Method.
  • [10] The method for producing a silicon nitride sintered body according to any one of the above [1] to [9], wherein the Ra of the obtained silicon nitride sintered body is 0.6 ⁇ m or less.
  • silicon nitride sintered body having high thermal conductivity can be obtained even when silicon nitride powder having a high ⁇ conversion rate is used and fired at normal pressure or substantially normal pressure.
  • a method for producing a sintered body can be provided.
  • the method for producing a silicon nitride sintered body of the present invention comprises a silicon nitride powder having a ⁇ conversion rate of 80% or more, a solid oxygen content of 0.2% by mass or less, and a specific surface area of 5 to 20 m 2 / g, and an oxygen bond.
  • -It is characterized in that silicon nitride is sintered by heating to a temperature of 1200 to 1800 ° C. under a pressure of G or more and less than 0.5 MPa / G.
  • molded product A molded product used in the method for producing a silicon nitride sintered body of the present invention will be described.
  • the molded product contains the specific silicon nitride powder and sintering aid described below.
  • the ⁇ conversion rate of the silicon nitride powder contained in the molded product is 80% or more. Since the silicon nitride powder having a ⁇ conversion rate of 80% or more can be obtained without setting strict production conditions, it can be produced at a relatively low cost. Therefore, by using the silicon nitride powder having a high ⁇ conversion rate, the overall production cost of the silicon nitride sintered body can be suppressed. Further, by setting the ⁇ conversion rate high, the amount of oxygen taken in when the ⁇ -silicon nitride particles undergo transformation into ⁇ -silicon nitride particles during firing can be further suppressed.
  • the ⁇ conversion rate of the silicon nitride powder is preferably 85% or more, more preferably 90% or more.
  • the ⁇ conversion rate of the silicon nitride powder is the ratio of the peak intensity of the ⁇ phase to the total of the ⁇ phase and the ⁇ phase in the silicon nitride powder [100 ⁇ (peak intensity of the ⁇ phase) / (peak intensity of the ⁇ phase + ⁇ phase). Peak intensity)], which is determined by powder X-ray diffraction (XRD) measurement using CuK ⁇ rays. More specifically, C.I. P. Gazzara and D. R. Messier: Ceram. Bull. , 56 (1977), 777-780, by calculating the weight ratio of the ⁇ phase and the ⁇ phase of the silicon nitride powder.
  • the amount of dissolved oxygen in the silicon nitride powder is 0.2% by mass or less. When the amount of solid solution oxygen exceeds 0.2% by mass, the thermal conductivity of the silicon nitride sintered body obtained by firing under the firing conditions characteristic of the present invention becomes low. From the viewpoint of obtaining a silicon nitride sintered body having high thermal conductivity, the amount of dissolved oxygen in the silicon nitride powder is preferably 0.1% by mass or less.
  • the amount of solid-dissolved oxygen means oxygen solid-dissolved inside the particles of the silicon nitride powder (hereinafter, also referred to as internal oxygen), and oxides such as SiO 2 inevitably present on the particle surface. Derived oxygen (hereinafter also referred to as external oxygen) is not included.
  • the amount of solid solution oxygen can be measured by the method described in Examples.
  • the method for adjusting the amount of dissolved oxygen in the silicon nitride powder is not particularly limited, but for example, when producing the silicon nitride powder, it is preferable to use a high-purity raw material.
  • silicon nitride powder is produced by the direct nitride method, it is preferable to use silicon powder as a raw material to be used, which does not have a factor of solid dissolution of oxygen inside.
  • silicon powder typified by cutting powder generated when the silicon is processed such as by cutting.
  • the semiconductor grade silicon is typically polycrystalline silicon obtained by the so-called "Siemens method" in which high-purity trichlorosilane is reacted with hydrogen in a Belger type reaction vessel.
  • the specific surface area of the silicon nitride powder is 5 to 20 m 2 / g. If the specific surface area of the silicon nitride powder exceeds 20 m 2 / g, it becomes difficult to reduce the amount of dissolved oxygen, and if the specific surface area is less than 5 m 2 / g, a high-density and high-strength silicon nitride sintered body. Is difficult to obtain.
  • the specific surface area of the silicon nitride powder is preferably 7 to 20 m 2 / g, more preferably 12 to 15 m 2 / g. In the present invention, the specific surface area means the BET specific surface area measured by using the BET one-point method by adsorbing nitrogen gas.
  • the average particle size D 50 of the silicon nitride powder is preferably 0.5 to 3 ⁇ m, more preferably 0.7 to 1.7 ⁇ m. When silicon nitride powder having such an average particle size is used, sintering becomes easier to proceed.
  • the average particle size D 50 is a value on a 50% volume basis measured by a laser diffraction / scattering method.
  • the proportion of particles having a particle size of 0.5 ⁇ m or less in the silicon nitride powder is preferably 20 to 50% by mass, and more preferably 20 to 40% by mass.
  • the proportion of particles having a particle size of 1.0 ⁇ m or more in the silicon nitride powder is preferably 20 to 50% by mass, more preferably 20 to 40% by mass.
  • the total oxygen content of the silicon nitride powder is not particularly limited, but is preferably 1% by mass or more.
  • the total oxygen amount is the sum of the above-mentioned solid solution oxygen (internal oxygen) amount and the external oxygen amount. When the total amount of oxygen is at least these lower limit values, for example, silicon oxide on the surface of the particles tends to promote sintering.
  • the total oxygen content of the silicon nitride powder is preferably 10% by mass or less. Even if the total oxygen content of the silicon nitride powder is 1% by mass or more, the thermal conductivity of the sintered body can be increased as long as the solid solution oxygen content is not more than a certain value as described above. ..
  • the total oxygen content of the silicon nitride powder can be measured by the method described in Examples.
  • the amount of silicon nitride powder in the molded product is preferably 80% by mass or more, preferably 90% by mass or more, based on the total amount of the molded product.
  • the method for producing the silicon nitride powder is not particularly limited as long as it is a method for obtaining the silicon nitride powder having the above-mentioned characteristics.
  • Examples of the method for producing silicon nitride powder include a reduction nitriding method in which nitrogen gas is circulated to generate silicon nitride in the presence of carbon powder using silica powder as a raw material, and direct nitriding in which silicon powder and nitrogen are reacted at a high temperature.
  • a method, an imide decomposition method in which silicon halide is reacted with ammonia, or the like can be applied, but the direct nitriding method is preferable from the viewpoint of easy production of silicon nitride powder having the above-mentioned characteristics, and the direct nitriding method using the self-combustion method is particularly preferable.
  • the method (combustion synthesis method) is more preferable.
  • the combustion synthesis method is a method in which silicon powder is used as a raw material, a part of the raw material powder is forcibly ignited in a nitrogen atmosphere, and silicon nitride is synthesized by self-heating of the raw material compound.
  • the combustion synthesis method is a known method, and for example, Japanese Patent Application Laid-Open No. 2000-264608, International Publication No. 2019/1678779, and the like can be referred to.
  • the molded article in the present invention contains a sintering aid containing a compound having no oxygen bond.
  • a sintering aid containing a compound having no oxygen bond.
  • a carbonitride-based compound containing a rare earth element or a magnesium element (hereinafter, also referred to as a specific carbonitride-based compound) is preferable.
  • a specific carbonitride-based compound it becomes easier to obtain a silicon nitride sintered body having a higher thermal conductivity more effectively.
  • the above-mentioned specific carbonitride-based compound functions as a getter agent for adsorbing oxygen contained in the silicon nitride powder, and as a result, a silicon nitride sintered body having high thermal conductivity can be obtained. It is presumed to be.
  • the carbonitride-based compound containing a rare earth element as the rare earth element, Y (yttrium), La (lanthanum), Sm (samarium), Ce (cerium) and the like are preferable.
  • Examples of the carbonitride-based compound containing a rare earth element include Y 2 Si 4 N 6 C, Yb 2 Si 4 N 6 C, Ce 2 Si 4 N 6 C, and the like, and among these, thermal conductivity. From the viewpoint of facilitating the acquisition of a silicon nitride sintered body having a high ratio, Y 2 Si 4 N 6 C and Yb 2 Si 4 N 6 C are preferable. Examples of the carbonitride-based compound containing a magnesium element include MgSi 4 N 6 C and the like. These specific carbonitride-based compounds may be used alone or in combination of two or more.
  • carbonitride-based compound containing the above rare earth element or magnesium element particularly preferred compounds, Y 2 Si 4 N 6 C , a MgSi 4 N 6 C.
  • the sintering aid may further contain a metal oxide in addition to the above-mentioned compound having no oxygen bond.
  • the sintering aid contains a metal oxide
  • the silicon nitride powder can be easily sintered, and a more dense and high-strength sintered body can be easily obtained.
  • the metal oxide include yttria (Y 2 O 3 ), magnesia (MgO), and ceria (CeO). Of these, itria is preferred.
  • One type of metal oxide may be used alone, or two or more types may be used in combination.
  • the mass ratio (oxygen-free compound / metal oxide) of the oxygen-free compound represented by the specific carbonitride-based compound and the metal oxide contained in the sintering aid is preferably 0. It is .2 to 4, more preferably 0.6 to 2. Within such a range, it becomes easy to obtain a silicon nitride sintered body that is dense and has high thermal conductivity.
  • the content of the sintering aid in the molded product is preferably 5 to 20 parts by mass, and more preferably 7 to 10 parts by mass with respect to 100 parts by mass of the silicon nitride powder.
  • the molded body can be molded using a binder.
  • the molded product can be obtained by molding a molding composition described later, drying it as necessary, and degreasing it to remove the binder.
  • the binder is not particularly limited, and examples thereof include polyvinyl alcohol, polyvinyl butyral, methyl cellulose, alginic acid, polyethylene glycol, carboxymethyl cellulose, ethyl cellulose, and acrylic resin.
  • the content of the binder in the molding composition used for producing the molded product is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the silicon nitride powder, and the ratio may be appropriately determined according to the molding method. Good.
  • the total oxygen content of the molded product is 1 to 15% by mass.
  • the molded product refers to a product in a state of being subjected to sintering, and the binder, solvent, etc. used in the production of the molded product are dried, degreased, etc. before being subjected to sintering. It means the one that does not include the one that is removed by the processing of.
  • the total amount of oxygen exceeds 15% by mass, the thermal conductivity of the obtained silicon nitride sintered body decreases due to the influence of oxygen.
  • the total amount of oxygen is less than 1% by mass, sintering is difficult to proceed, a dense silicon nitride sintered body cannot be obtained, and the thermal conductivity and strength are lowered.
  • the total oxygen content of the molded product is preferably 2 to 10% by mass, more preferably 3 to 5% by mass.
  • the total amount of oxygen can be set in a desired range by appropriately adjusting the total amount of oxygen of the silicon nitride used, the type of sintering aid, the molding method, and the like.
  • the total content (mass) of the aluminum element in the molded product is 800 ppm or less. That is, the molded product used in the present invention has a very small amount of aluminum element, which makes it possible to obtain a silicon nitride sintered body having high thermal conductivity.
  • the total content of aluminum elements in the molded product is preferably 500 ppm or less, more preferably 200 ppm or less.
  • the density of the molded product is not particularly limited, but is preferably 1.95 g / cm 3 or more, and more preferably 1.98 g / cm 3 or more. When the density of the molded product is at least these lower limit values, it becomes easy to obtain a silicon nitride sintered body having excellent thermal conductivity.
  • the method for producing the molded product used in the present invention is not particularly limited, and examples thereof include a method for molding a molding composition containing at least silicon nitride powder and a sintering aid by a known molding means.
  • Known molding means include, for example, a press molding method, an extrusion molding method, an injection molding method, a sheet molding method (doctor blade method), and the like.
  • a binder may be further added to the molding composition.
  • the type of binder is as described above.
  • the amount of the sintering aid and the amount of the binder with respect to 100 parts by mass of the silicon nitride powder in the molding composition are the same as those described in the molded product.
  • the molding composition may contain a solvent from the viewpoint of ease of handling and molding.
  • the solvent is not particularly limited, and examples thereof include organic solvents such as alcohols and hydrocarbons, and water, but in the present invention, it is preferable to use water. That is, it is preferable to obtain a molded product by molding a molding composition containing silicon nitride powder, a sintering aid, and water.
  • water is used as the solvent, the environmental load is reduced as compared with the case where an organic solvent is used, which is preferable.
  • the above-mentioned molded product is fired under certain conditions to sinter the silicon nitride.
  • the conditions for firing will be described.
  • the firing is performed in an atmosphere of an inert gas.
  • the "inert gas atmosphere” means, for example, a nitrogen atmosphere or an argon atmosphere.
  • firing is performed under a pressure of 0 MPa ⁇ G or more and less than 0.1 MPa ⁇ G.
  • the pressure is preferably 0 MPa ⁇ G or more and 0.05 MPa ⁇ G or less, and more preferably 0 MPa ⁇ G (that is, normal pressure (atmospheric pressure)).
  • the G at the end of the pressure unit MPa ⁇ G means the gauge pressure.
  • silicon nitride is easily decomposed, so that the temperature cannot be adjusted to, for example, more than 1800 ° C., and therefore the silicon nitride is densified and has high thermal conductivity. It was difficult to obtain a sintered body.
  • the specific molded product is used as described above, a silicon nitride sintered body having high thermal conductivity can be obtained even in the above pressure range.
  • silicon nitride can be sintered under normal pressure or substantially normal pressure, it is not necessary to manufacture it in a pressure vessel (pressure vessel). Therefore, the manufacturing equipment can be simplified and the manufacturing cost can be reduced. Specifically, firing can be performed in a batch furnace such as a muffle furnace or a tube furnace, or in a continuous furnace such as a pusher furnace, so that various manufacturing methods can be applied and productivity is improved. To do.
  • the molded product is heated to a temperature of 1200 to 1800 ° C. and fired. If the temperature is less than 1200 ° C., the sintering of silicon nitride is difficult to proceed, and if the temperature exceeds 1800 ° C., the silicon nitride is easily decomposed. From this point of view, the heating temperature at the time of firing is preferably 1600 to 1800 ° C. The firing time is not particularly limited, but is preferably about 3 to 20 hours.
  • the molded product When a binder is used for forming the molded product, it is preferable to provide a degreasing step for removing organic components such as the binder.
  • the degreasing conditions are not particularly limited, but for example, the molded product may be heated to 450 to 650 ° C. in the air or in an inert atmosphere such as nitrogen or argon.
  • the silicon nitride sintered body obtained by the production method of the present invention exhibits high thermal conductivity.
  • the thermal conductivity of the obtained silicon nitride sintered body is preferably 80 W / mK or more, and more preferably 100 W / mK or more.
  • the thermal conductivity can be measured by the laser flash method.
  • the dielectric breakdown voltage of the silicon nitride sintered body obtained by the production method of the present invention is preferably 11 kV or more, more preferably 13 kV or more.
  • a silicon nitride sintered body having such a dielectric breakdown voltage is less likely to undergo dielectric breakdown and is excellent in reliability as a product.
  • the silicon nitride sintered body obtained by the production method of the present invention is fired under mild conditions (conditions under normal pressure or substantially normal pressure and at a temperature lower than usual), there is little surface unevenness.
  • the Ra (arithmetic mean roughness) of the obtained silicon nitride sintered body is preferably 0.6 ⁇ m or less, and more preferably 0.55 ⁇ m or less.
  • Such a silicon nitride sintered body having Ra has good stickability to an object to be used such as a metal. Further, it is possible to shorten the working time when mirror-polishing the silicon nitride sintered body as required. Ra can be measured with a surface roughness meter. Further, the thermal conductivity, the breakdown voltage, and Ra are measured after the surface of the silicon nitride sintered body is blasted to remove deposits such as a mold release agent adhering to the sintered body at the time of sintering. ..
  • ⁇ -conversion rate of silicon nitride powder The ⁇ -conversion rate of silicon nitride powder was determined by powder X-ray diffraction (XRD) measurement using CuK ⁇ rays. Specifically, C.I. P. Gazzara and D. R. Messier: Ceram. Bull. , 56 (1977), 777-780, calculated the weight ratio of the ⁇ phase and the ⁇ phase of the silicon nitride powder, and determined the ⁇ conversion rate.
  • the specific surface area of silicon nitride powder is determined by using the BET method specific surface area measuring device (Macsorb HM model-1201) manufactured by Mountech Co., Ltd. and using the BET one-point method by adsorbing nitrogen gas. It was measured. Before performing the above-mentioned specific surface area measurement, the silicon nitride powder to be measured was previously heat-treated in air at 600 ° C. for 30 minutes to remove organic substances adsorbed on the powder surface.
  • the temperature was raised at 0.8 kW for 10 seconds and from 0.8 kW to 4 kW over 350 seconds, and the amount of carbon dioxide generated during that period was measured and converted into an oxygen content.
  • the oxygen generated at the beginning is oxygen derived from oxides existing on the surface of the silicon nitride particles (external oxygen), and the oxygen generated later is solid-dissolved in the silicon nitride crystal. Since it corresponds to oxygen (internal oxygen), a perpendicular line was drawn from the portion corresponding to the valley of these two measurement peaks after subtracting the background measured in advance, and the two peaks were separated.
  • the amount of solid solution oxygen (internal oxygen) and the amount of external oxygen were calculated by proportionally distributing each peak area.
  • the silicon nitride powder of the sample was calcined in air at a temperature of about 500 ° C. for 2 hours.
  • the surface oxygen content of the silicon nitride powder may be small, or the particle surface may be covered with a hydrophobic substance by a crushing aid or the like during crushing, and the particles themselves may be hydrophobic.
  • the dispersion in water may be insufficient and reproducible particle size measurement may be difficult. Therefore, the silicon nitride powder of the sample is calcined in the air at a temperature of about 200 ° C.
  • the particle size distribution of the obtained dispersion of the silicon nitride powder was measured using a laser diffraction / scattering method particle size distribution measuring device (Microtrack MT3300EXII manufactured by Microtrack Bell Co., Ltd.).
  • a laser diffraction / scattering method particle size distribution measuring device Microtrack MT3300EXII manufactured by Microtrack Bell Co., Ltd.
  • water refractive index 1.33
  • the particle characteristics were selected as the refractive index 2.01
  • the particle permeability was selected as transparent
  • the particle shape was selected as non-spherical.
  • the particle size at which the cumulative curve of the particle size distribution measured by the above particle size distribution measurement is 50% is defined as the average particle size (average particle size D50).
  • Total oxygen content of the molded product was measured by the inert gas melting-infrared absorption method. The measurement was performed with an oxygen / nitrogen analyzer (“EMGA-920” manufactured by HORIBA). As a sample, 15 mg of the molded product was encapsulated in a tin capsule (the tin capsule uses Tin Cupsule made by LECO), introduced into a graphite crucible, heated at 5.5 kW for 20 seconds, and further heated at 5.0 kW for 20 seconds to obtain the adsorbed gas. After degassing, the mixture was heated at 5.0 kW for 75 seconds, and the amount of carbon dioxide generated during that period was measured and converted into an oxygen content.
  • EMGA-920 oxygen / nitrogen analyzer
  • Total content of aluminum elements in the molded product was measured using an inductively coupled plasma emission spectrophotometer (“iCAP 6500 DUO” manufactured by Thermo Fisher Scientihook Co., Ltd.). ..
  • Thermal Conductivity of Silicon Nitride Sintered Body The thermal conductivity of the silicon nitride sintered body was measured by a laser flash method using LFA-502 manufactured by Kyoto Electronics Industry. The thermal conductivity is obtained by multiplying the thermal diffusivity, the density of the sintered body, and the specific heat of the sintered body. The specific heat of the silicon nitride sintered body was 0.68 (J / g ⁇ K). The sintered body density was measured using an automatic hydrometer (manufactured by Shinko Denshi Co., Ltd .: DMA-220H type). The thermal conductivity was measured after the surface of the silicon nitride sintered body was blasted and then the surface was coated with Au and carbon.
  • Dielectric breakdown voltage of silicon nitride sintered body The dielectric breakdown voltage was measured according to JIS C2110. Specifically, a voltage was applied to the silicon nitride sintered body using an insulation withstand voltage measuring device (“TK-O-20K” manufactured by Measurement Technology Research Institute), and the voltage when dielectric breakdown occurred was measured. ..
  • Ra (10) Ra (arithmetic mean roughness) of the silicon nitride sintered body Ra of the silicon nitride sintered body is measured by scanning the needle with a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd., "Surfcom 480A") at an evaluation length of 2.5 mm and a measurement speed of 0.3 mm / s. , Ra was measured.
  • a silicon nitride sintered body was used in which the surface was blasted to remove the release agent and the like.
  • Silicon powder (semiconductor grade, average particle size 5 ⁇ m) and silicon nitride powder (average particle size 1.5 ⁇ m), which is a diluent, are mixed and used as raw material powder (Si: 80% by mass, Si 3 N 4 : 20% by mass). ) was obtained.
  • the raw material powder was filled in a reaction vessel to form a raw material powder layer.
  • the reaction vessel was installed in a pressure-resistant closed reactor having an ignition device and a gas supply / exhaust mechanism, the inside of the reactor was depressurized and degassed, and then nitrogen gas was supplied to replace nitrogen. Then, nitrogen gas was gradually supplied to raise the pressure to 0.7 MPa.
  • the bulk density of the raw material powder at the time when the predetermined pressure was reached (at the time of ignition) was 0.5 g / cm 3 . Then, the end portion of the raw material powder in the reaction vessel was ignited and a combustion synthesis reaction was carried out to obtain a massive product made of silicon nitride. The obtained massive products were crushed by rubbing against each other, and then an appropriate amount was put into a vibration mill to perform fine pulverization for 6 hours.
  • the pulverizer and pulverization method use conventional equipment and methods, but as a measure to prevent heavy metal contamination, urethane lining is applied to the inside of the pulverizer, and balls containing silicon nitride as the main component are used for the pulverization media. used.
  • Silicon nitride powder A was obtained. The measurement results of the obtained silicon nitride powder A are shown in Table 1.
  • silicon nitride powder B As the silicon nitride powder B, a commercially available silicon nitride powder was heated in a nitrogen atmosphere to prepare the silicon nitride powder shown in Table 1.
  • ⁇ Sintering aid> 1 For the compound Y 2 Si 4 N 6 C powder that does not have an oxygen bond, itria (manufactured by Shin-Etsu Chemical Co., Ltd.), silicon nitride powder (manufactured by the company described above) and carbon powder (manufactured by Mitsubishi Chemical Co., Ltd.) are reacted as follows. It was prepared by heat synthesis using the formula. 8Si 3 N 4 + 6Y 2 O 3 + 15C + 2N 2 ⁇ 6Y 2 Si 4 N 6 C + 9CO 2 Similarly, MgSi 4 N 6 C powder was prepared by heat synthesis using the following reaction formula. Si 3 N 4 + MgSiN 2 + C ⁇ MgSi 4 N 6 C 2. Metal oxide yttria (Y 2 O 3 ) ... manufactured by Shin-Etsu Chemical Co., Ltd.
  • Binder polyvinyl alcohol resin (Japan Vam & Poval Co., Ltd.), which is an aqueous resin binder, was used.
  • Example 1 Silicon Nitride Powder A 100 parts by mass, Oxygen- Free Compound Y 2 Si 4 N 6 C 2 parts by mass, MgSi 4 N 6 C 5 parts by mass, Itria 3 parts by mass, weighed and used as a dispersion medium in a resin pot Using silicon nitride balls, pulverization and mixing were carried out in a ball mill for 24 hours. The water was weighed in advance so that the concentration of the slurry was 60 wt%, and the water was put into the resin pot. After pulverization and mixing, 22 parts by mass of an aqueous resin binder was added and further mixed for 12 hours to obtain a slurry-like molding composition.
  • the viscosity of the molding composition was adjusted using a vacuum defoaming machine (manufactured by Sayama Riken) to prepare a coating slurry. Then, the viscosity-adjusted molding composition was sheet-molded by the doctor blade method to obtain a sheet-molded article having a width of 75 cm and a thickness of 0.42 mmt.
  • the sheet molded product obtained as described above was degreased in dry air at a temperature of 550 ° C. to obtain a degreased molded product.
  • the physical characteristics of the obtained molded product are shown in Table 2.
  • the degreased molded product was placed in a baking vessel and fired at 1780 ° C. for 9 hours under a nitrogen atmosphere and a pressure of 0.02 MPa ⁇ G to obtain a silicon nitride sintered body.
  • the physical characteristics of the sintered body are shown in Table 2.
  • Example 1 A silicon nitride sintered body was obtained in the same manner as in Example 1 except that the silicon nitride powder A used in Example 1 was changed to silicon nitride powder B. The physical characteristics of the sintered body are shown in Table 2.
  • Example 2 In Example 1, the amount of the sintering aid was changed as shown in Table 2 to obtain the total oxygen amount and the molded product density shown in Table 2, and the firing temperature was set to 1740 ° C. in the same manner. A silicon nitride sintered body was obtained. The physical characteristics of the sintered body are shown in Table 2.
  • Example 3 In Example 1, silicon nitride powder C was used as the silicon nitride powder, and the same was applied except that the amount of the sintering aid was adjusted to change the total oxygen amount and the molded product density as shown in Table 2. A silicon nitride sintered body was obtained. The physical characteristics of the sintered body are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本発明は、β化率が80%以上、固溶酸素量が0.2質量%以下、比表面積が5~20m/gの窒化ケイ素粉末と、酸素結合を持たない化合物を含む焼結助剤とを含有し、総酸素量が1~15質量%、アルミニウム元素の総含有量が800ppm以下に調整された成形体を、不活性ガス雰囲気及び0MPa・G以上0.1MPa・G未満の圧力下、1200~1800℃の温度に加熱して窒化ケイ素を焼結することを特徴とする、窒化ケイ素焼結体の製造方法である。 本発明によれば、β化率の高い窒化ケイ素粉末を用い、かつ常圧又は略常圧で焼成させる場合であっても、熱伝導率の高い窒化ケイ素焼結体を得ることができる窒化ケイ素焼結体の製造方法を提供することができる。

Description

窒化ケイ素焼結体の製造方法
 本発明は、高い熱伝導率を有する窒化ケイ素焼結体の製造方法に関する。
 窒化ケイ素粉末に各種の焼結助剤を添加し、高温で焼結させた窒化ケイ素焼結体は、各種セラミックス焼結体の中でも、軽い、機械的強度が強い、耐薬品性が高い、電気絶縁性が高い、等の特徴があり、ボールベアリング等の耐摩耗用部材、高温構造用部材として用いられている。また助剤の種類や焼結条件を工夫することにより、熱伝導性も高めることが可能であるため、薄くて強度の高い放熱用基板材料としても使用されるようになってきた。
 窒化ケイ素粉末の合成法としては、シリカ粉末を原料として、炭素粉末存在下において、窒素ガスを流通させて窒化ケイ素を生成させる還元窒化法(例えば特許文献1)、金属ケイ素(シリコン粉末)と窒素とを高温で反応させる直接窒化法(例えば特許文献2)、ハロゲン化ケイ素とアンモニアとを反応させるイミド分解法等が知られている。
 さらに、自己燃焼法(Self-Propagating High Temperature Synthesis, SHS法)を利用する直接窒化法により金属窒化物を合成する方法も知られている。自己燃焼法は、燃焼合成法とも呼ばれ、シリコン粉末を含む原料粉末を反応容器内に導入し、窒素雰囲気下で原料粉末の一部を強熱着火して窒化反応を生じさせて、該窒化反応による発生する窒化燃焼熱を周囲に伝播させることで、全体を反応させる合成法であり、比較的安価な合成法として知られている。
 窒化ケイ素粉末の結晶形態としては、α型とβ型とが存在することが知られている。例えば非特許文献1に示すように、α型窒化ケイ素粉末は、焼結過程で焼結助剤に溶解してβ型として再析出し、この結果として、緻密で熱伝導率の高い焼結体を得ることができるため、現在広く使用されている。
 しかしながら、α型窒化ケイ素粉末を製造する場合は、その製造プロセスが複雑となりやすい。例えば直接窒化法では、β型が生成しないように、低温で長時間かけて窒化する必要があるため、製造コストが高くなる(非特許文献2)。
 このような背景から、比較的低コストで製造されるβ型窒化ケイ素粉末を用いて、緻密で熱伝導率の高い焼結体を製造する技術が望まれている。
 特許文献3には、高熱伝導窒化ケイ素セラミックス並びにその製造方法に関する発明が記載されており、その実施例では、平均粒径0.5μmのβ型窒化ケイ素粉末と、酸化イッテリビウム及び窒化ケイ素マグネシウム粉末からなる焼結助剤とを含む成形体を、10気圧の加圧窒素中、1900℃で2~24時間焼結を行うことで、緻密で熱伝導率の高い焼結体が得られることが示されている。
特開2009-161376号公報 特開平10-218612号公報 特開2002-128569号公報
日本舶用機関学会誌、1993年9月、第28巻、第9号、p548-556 Journal of the Ceramic Society of Japan 100[11]1366-1370(1992)
 特許文献3に開示されているβ型窒化ケイ素粉末の焼結体は、上記したように10気圧の加圧窒素中で製造している。一般に、加圧下で焼成する場合は、原料の窒化ケイ素の分解を抑制しやすくなり、そのため1800℃超の高温で焼成することが可能となる。このような高温高圧下において焼成する場合は、生成する焼結体が緻密化されやすく、また熱伝導率を低下させる要因の一つである窒化ケイ素粒子内部に固溶している不純物酸素量を低減することが可能であり、熱伝導率の高い焼結体が得やすいことが知られている。
 しかしながら、特許文献3のように加圧下で焼成を行う場合は、製造時に耐圧容器を用いる必要がある。そのため、製造に設備的な制約があり、かつ製造コストが高くなる問題がある。また、特許文献3では、β型窒化ケイ素粉末を使用し、かつ耐圧容器を用いる必要のない常圧(大気圧)又は略常圧(大気圧近傍の圧力)の条件下で、熱伝導率の高い焼結体を得る方法について何ら記載も示唆もされていない。
 本発明は、上記従来の課題に鑑みてなされたものであって、β化率の高い窒化ケイ素粉末を原料として用い、しかもこれを常圧又は略常圧で焼結させるという、一般的には高熱伝導率の焼結体を得難いと認識されている条件下において、高熱伝導率の焼結体を製造する方法を提供することを課題とする。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた。その結果、β化率、固溶酸素量、及び比表面積が特定の範囲にある窒化ケイ素粉末と、酸素結合を持たない化合物を含む焼結助剤とを含有し、かつ総酸素量とアルミニウム元素の総含有量を特定範囲とした成形体を用い、これを常圧又は略常圧下において特定温度範囲で焼成することで、熱伝導率の高い焼結体が得られることを見出し、本発明を完成させた。
 本発明の要旨は、以下の[1]~[10]である。
[1]β化率が80%以上、固溶酸素量が0.2質量%以下、比表面積が5~20m/gの窒化ケイ素粉末と、酸素結合を持たない化合物を含む焼結助剤とを含有し、総酸素量が1~15質量%、アルミニウム元素の総含有量が800ppm以下に調整された成形体を、不活性ガス雰囲気及び0MPa・G以上0.1MPa・G未満の圧力下、1200~1800℃の温度に加熱して窒化ケイ素を焼結することを特徴とする、窒化ケイ素焼結体の製造方法。
[2]前記窒化ケイ素粉末の全酸素量が1質量%以上である、上記[1]に記載の窒化ケイ素焼結体の製造方法。
[3]前記成形体が、窒化ケイ素粉末、焼結助剤、及び水を含む成形用組成物を成形したものである、上記[1]又は[2]に記載の窒化ケイ素焼結体の製造方法。
[4]前記窒化ケイ素粉末は、その平均粒径D50が0.5~1.2μmであり、粒径0.5μm以下の粒子の占める割合が20~50質量%であり、かつ粒径1.0μm以上の粒子の占める割合が20~50質量%である、上記[1]~[3]のいずれかに記載の窒化ケイ素焼結体の製造方法。
[5]前記焼結助剤が金属酸化物を含む、上記[1]~[4]のいずれかに記載の窒化ケイ素焼結体の製造方法。
[6]前記焼結助剤に含まれる酸素結合を持たない化合物が、希土類元素又はマグネシウム元素を含む炭窒化物系の化合物である、上記[1]~[5]のいずれかに記載の窒化ケイ素焼結体の製造方法。
[7]前記成形体の密度が1.95g/cm以上である、上記[1]~[6]のいずれかに記載の窒化ケイ素焼結体の製造方法。
[8]得られる窒化ケイ素焼結体のレーザーフラッシュ法により測定された熱伝導率が80W/mK以上である、上記[1]~[7]のいずれかに記載の窒化ケイ素焼結体の製造方法。
[9]得られる窒化ケイ素焼結体の絶縁破壊電圧が11kV以上である、上記[1]~[8]のいずれかに記載の窒化ケイ素焼結体の製造方法。
[10]得られる窒化ケイ素焼結体のRaが0.6μm以下である、上記[1]~[9]のいずれかに記載の窒化ケイ素焼結体の製造方法。
 本発明によれば、β化率の高い窒化ケイ素粉末を用い、かつ常圧又は略常圧で焼成させる場合であっても、熱伝導率の高い窒化ケイ素焼結体を得ることができる窒化ケイ素焼結体の製造方法を提供することができる。
[窒化ケイ素焼結体の製造方法]
 本発明の窒化ケイ素焼結体の製造方法は、β化率が80%以上、固溶酸素量が0.2質量%以下、比表面積が5~20m/gの窒化ケイ素粉末と、酸素結合を持たない化合物を含む焼結助剤とを含有し、総酸素量が1~15質量%、アルミニウム元素の総含有量が800ppm以下に調整された成形体を、不活性ガス雰囲気及び0.1MPa・G以上0.5MPa・G未満の圧力下、1200~1800℃の温度に加熱して窒化ケイ素を焼結することを特徴とする。
〔成形体〕
 本発明の窒化ケイ素焼結体の製造方法において使用する成形体について説明する。該成形体は、以下に説明する特定の窒化ケイ素粉末及び焼結助剤を含有する。
<窒化ケイ素粉末>
(β化率)
 成形体に含まれる窒化ケイ素粉末のβ化率は80%以上である。β化率が80%以上の窒化ケイ素粉末は、厳密な製造条件を設定しなくても得ることができるため、比較的低コストで製造することができる。したがって、β化率の高い窒化ケイ素粉末を使用することで、窒化ケイ素焼結体の全体の製造コストを抑制することができる。また、β化率を高く設定することで、α窒化ケイ素粒子が焼成時にβ窒化ケイ素粒子に変態を起こす際に取り込む酸素量をさらに少なく抑えることが出来る。ここで窒化ケイ素粉末のβ化率は、好ましくは85%以上、より好ましくは90%以上である。
 なお、窒化ケイ素粉末のβ化率とは、窒化ケイ素粉末におけるα相とβ相の合計に対するβ相のピーク強度割合[100×(β相のピーク強度)/(α相のピーク強度+β相のピーク強度)]を意味し、CuKα線を用いた粉末X線回折(XRD)測定により求められる。より詳細には、C.P.Gazzara and D.R.Messier:Ceram.Bull.,56(1977),777-780に記載された方法により、窒化ケイ素粉末のα相とβ相の重量割合を算出することで求められる。
(固溶酸素量)
 窒化ケイ素粉末の固溶酸素量は、0.2質量%以下である。固溶酸素量が0.2質量%を超えると、本発明の特徴である焼成条件で焼成して得られる窒化ケイ素焼結体の熱伝導率が低くなる。高熱伝導率の窒化ケイ素焼結体を得る観点から、窒化ケイ素粉末の固溶酸素量は、好ましくは0.1質量%以下である。
 ここで、固溶酸素量とは、窒化ケイ素粉末の粒子内部に固溶された酸素(以下、内部酸素ともいう)のことを意味し、粒子表面に不可避的に存在するSiOなどの酸化物由来の酸素(以下、外部酸素ともいう)は含まない。
 なお、固溶酸素量は、実施例に記載の方法で測定することができる。
 窒化ケイ素粉末の固溶酸素量の調整方法は、特に限定されないが、例えば、窒化ケイ素粉末を製造する際に、高純度の原料を用いるとよい。例えば、直接窒化法で窒化ケイ素粉末を製造する場合は、使用する原料として、内部に酸素が固溶する要因が無いシリコン粉末を使用することが好ましく、具体的には、半導体グレードのシリコン由来、例えば、上記シリコンを切断等の加工する際に発生する切削粉を代表とするシリコン粉末を使用することが好ましい。上記半導体グレードのシリコンは、ベルジャー式反応容器内で、高純度のトリクロロシランと水素とを反応させる、いわゆる「ジーメンス法」により得られる多結晶シリコンが代表的である。 
(比表面積)
 窒化ケイ素粉末の比表面積は5~20m/gである。窒化ケイ素粉末の比表面積が20m/gを超えると、固溶酸素量を低くすることが難しくなり、比表面積が5m/g未満であると、高密度で強度が高い窒化ケイ素焼結体が得にくくなる。窒化ケイ素粉末の比表面積は、好ましくは7~20m/gであり、より好ましくは12~15m/gである。
 なお、本発明において比表面積は、窒素ガス吸着によるBET1点法を用いて測定したBET比表面積を意味する。
(平均粒径)
 窒化ケイ素粉末の平均粒径D50は、0.5~3μmであることが好ましく、0.7~1.7μmであることがより好ましい。このような平均粒径の窒化ケイ素粉末を用いると、焼結が一層進行し易くなる。平均粒径D50は、レーザ回折散乱法により測定した50%体積基準での値である。
 窒化ケイ素粉末における粒径0.5μm以下の粒子の割合は、好ましくは20~50質量%であり、より好ましくは20~40質量%である。また、窒化ケイ素粉末における粒径1.0μm以上の粒子の割合は、好ましくは20~50質量%であり、より好ましくは20~40質量%である。このような粒度分布を有する窒化ケイ素粉末を用いると、緻密で熱伝導率が高い窒化ケイ素焼結体を得やすくなる。
 この理由は、定かではないが、β窒化ケイ素粒子は、α窒化ケイ素粒子とは異なり焼成中の溶解再析出は起こりにくく焼成初期の段階で微細粒子と粗大粒子を一定のバランスに整えておくことでより緻密な焼結体を得ることが可能となるものと考えられる。
(全酸素量)
 窒化ケイ素粉末の全酸素量は、特に限定されないが1質量%以上であることが好ましい。全酸素量とは、上記した固溶酸素(内部酸素)量と、外部酸素量との合計である。全酸素量がこれら下限値以上であると、例えば、粒子表面の酸化ケイ素などにより焼結が促進されやすくなるという効果が発揮される。また、窒化ケイ素粉末の全酸素量は、10質量%以下であることが好ましい。
 なお、窒化ケイ素粉末の全酸素量が1質量%以上であったとしても、固溶酸素量が上記したように一定値以下である限りは、焼結体の熱伝導性を高くすることができる。
 窒化ケイ素粉末の全酸素量は、実施例に記載の方法で測定することができる。
 成形体中の窒化ケイ素粉末の量は、成形体全量基準で、好ましくは80質量%以上、好ましくは、90質量%以上である。
<窒化ケイ素粉末の製造>
 窒化ケイ素粉末の製造方法は、上述した特性を有する窒化ケイ素粉末を得られる方法であれば特に限定されない。窒化ケイ素粉末の製造方法としては、例えば、シリカ粉末を原料として、炭素粉末存在下において、窒素ガスを流通させて窒化ケイ素を生成させる還元窒化法、シリコン粉末と窒素とを高温で反応させる直接窒化法、ハロゲン化ケイ素とアンモニアとを反応させるイミド分解法などを適用できるが、上述した特性を有する窒化ケイ素粉末を製造しやすい観点から、直接窒化法が好ましく、中でも自己燃焼法を利用する直接窒化法(燃焼合成法)がより好ましい。
 燃焼合成法は、シリコン粉末を原料として使用し、窒素雰囲気下で原料粉末の一部を強制着火し、原料化合物の自己発熱により窒化ケイ素を合成する方法である。燃焼合成法は、公知の方法であり、例えば、特開2000-264608号公報、国際公開第2019/167879号などを参照することができる。
<焼結助剤>
 本発明における成形体は、酸素結合を持たない化合物を含む焼結助剤を含有する。このような焼結助剤を用いることにより、得られる窒化ケイ素焼結体の熱伝導率の低下を防止することができる。
 上記酸素結合を持たない化合物としては、希土類元素又はマグネシウム元素を含む炭窒化物系の化合物(以下、特定の炭窒化物系の化合物ともいう)が好ましい。このような、特定の炭窒化物系の化合物を用いることで、より効果的に熱伝導率が高い窒化ケイ素焼結体を得やすくなる。この理由は定かではないが、上記特定の炭窒化物系の化合物が、窒化ケイ素粉末に含まれる酸素を吸着するゲッター剤として機能し、結果として熱伝導率が高い窒化ケイ素焼結体が得られるものと推定される。
 希土類元素を含む炭窒化物系の化合物において、希土類元素としては、Y(イットリウム)、La(ランタン)、Sm(サマリウム)、Ce(セリウム)などが好ましい。
 希土類元素を含む炭窒化物系の化合物としては、例えば、YSiC、YbSiC、CeSiC、などが挙げられ、これらの中でも、熱伝導率が高い窒化ケイ素焼結体を得やすくする観点から、YSiC、YbSiCが好ましい。
 マグネシウム元素を含む炭窒化物系の化合物としては、例えば、MgSiCなどが挙げられる。
 これら特定の炭窒化物系の化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 上記した希土類元素又はマグネシウム元素を含む炭窒化物系の化合物の中でも、特に好ましい化合物は、YSiC、MgSiCである。
 また、焼結助剤は、上記酸素結合を持たない化合物に加えて、さらに金属酸化物を含むことができる。焼結助剤が、金属酸化物を含有することで、窒化ケイ素粉末の焼結が進行しやすくなり、より緻密で強度が高い焼結体を得やすくなる。
 金属酸化物としては、例えば、イットリア(Y)、マグネシア(MgO)、セリア(CeO)などが挙げられる。これらの中でも、イットリアが好ましい。金属酸化物は1種を単独で用いてもよいし、2種以上を併用してもよい。
 焼結助剤に含まれる、前記特定の炭窒化物系の化合物を代表とする酸素を持たない化合物と金属酸化物との質量比(酸素を持たない化合物/金属酸化物)は、好ましくは0.2~4であり、より好ましくは0.6~2である。このような範囲であると、緻密で、熱伝導率が高い窒化ケイ素焼結体を得やすくなる。
 また、成形体における焼結助剤の含有量は、窒化ケイ素粉末100質量部に対して、好ましくは5~20質量部であり、より好ましくは7~10質量部である。
<バインダー>
 成形体は、バインダーを使用して成形することができる。この場合、成形体は後述する成形用組成物を成形し、これを必要に応じて乾燥し、脱脂を行うことによりバインダーを除去して得ることができる。
 バインダーとしては、特に限定されないが、ポリビニルアルコール、ポリビニルブチラール、メチルセルロース、アルギン酸、ポリエチレングリコール、カルボキシメチルセルロース、エチルセルロース、アクリル樹脂などが挙げられる。
 成形体の製造に用いる成形用組成物中のバインダーの含有量は、窒化ケイ素粉末100質量部に対して、好ましくは1~30質量部であり、成形方法に応じて適宜その割合を決定すればよい。
<総酸素量>
 本発明において、成形体の総酸素量は、1~15質量%である。ここで、上記成形体は、前記説明からも理解されるように、焼結に供する状態のものをいい、成形体の製造に使用したバインダー、溶媒等、焼結に供する前に乾燥や脱脂等の処理により除去されるものは含まない状態のものをいう。総酸素量が15質量%を超えると、酸素の影響により、得られる窒化ケイ素焼結体の熱伝導率が低下する。また、総酸素量が1質量%未満であると、焼結が進行し難く、緻密な窒化ケイ素焼結体が得られず、熱伝導率及び強度が低下してしまう。成形体の総酸素量は、好ましくは2~10質量%であり、より好ましくは3~5質量%である。総酸素量は、使用する窒化ケイ素の全酸素量、及び焼結助剤の種類、並びに成形方法などを適宜調節することにより所望の範囲とすることができる。
<アルミニウム元素の総含有量>
 成形体のアルミニウム元素の総含有量(質量)は800ppm以下である。すなわち、本発明において使用する成形体は、アルミニウム元素の量が非常に少ないものであり、これにより高い熱伝導率を有する窒化ケイ素焼結体を得ることが可能となる。成形体のアルミニウム元素の総含有量は、好ましくは500ppm以下であり、より好ましくは200ppm以下である。
<成形体密度>
 成形体の密度は、特に限定されないが、好ましくは1.95g/cm以上であり、より好ましくは1.98g/cm以上である。成形体の密度がこれら下限値以上であると、熱伝導率に優れる窒化ケイ素焼結体を得やすくなる。
〔成形体の製造〕
 本発明において使用する成形体の製造方法は特に限定されず、例えば、窒化ケイ素粉末、及び焼結助剤を少なくとも含有する成形用組成物を、公知の成形手段によって成形する方法が挙げられる。公知の成形手段としては、例えば、プレス成形法、押出し成形法、射出成形法、シート成形法(ドクターブレード法)などが挙げられる。
 成形しやすさの観点から、成形用組成物にさらに、バインダーを配合してもよい。なお、バインダーの種類は前記したとおりである。
 なお、成形用組成物中における窒化ケイ素粉末100質量部に対する焼結助剤の量やバインダーの量については、成形体において説明した量と同様である。
 また、成形用組成物には、取り扱い易さや、成形のし易さなどの観点から、溶剤を含有させてもよい。溶剤としては、特に限定されず、アルコール類、炭化水素類などの有機溶剤、水などを挙げることができるが、本発明においては、水を用いることが好ましい。すなわち、窒化ケイ素粉末、焼結助剤、及び水を含む成形用組成物を成形して、成形体を得ることが好ましい。溶剤として水を用いる場合は、有機溶剤を用いる場合と比較して、環境負荷が低減され好ましい。
 一般には、成形用組成物に含まれる溶剤として水を用いると、成形体を焼成して得られる窒化ケイ素焼結体の内部に水由来の酸素が残存しやすく、そのため、熱伝導率が低下しやすい。これに対して、本発明では、前記固溶酸素量が一定値以下の窒化ケイ素粉末を用いることなどにより溶剤として水を用いて総酸素量が増加したとしても、前記総酸素量を制御することで熱伝導率の高い焼結体を得ることができる。
〔焼結方法〕
 本発明の窒化ケイ素焼結体の製造方法においては、上記した成形体を一定の条件下で焼成し、窒化ケイ素を焼結させる。以下、焼成する際の条件について説明する。
 焼成は、不活性ガス雰囲気下において行う。不活性ガス雰囲気下とは、例えば、窒素雰囲気下、又はアルゴン雰囲気下などを意味する。
 また、このような不活性ガス雰囲気下において、0MPa・G以上0.1MPa・G未満の圧力下で焼成を行う。圧力は、好ましくは0MPa・G以上0.05MPa・G以下であり、より好ましくは0MPa・G(すなわち常圧(大気圧))である。ここで、圧力単位のMPa・Gの末尾のGはゲージ圧力を意味する。
 一般に、このような常圧又は略常圧領域の圧力であると、窒化ケイ素が分解し易いため、温度を例えば1800℃超に調整できず、そのため、緻密化され、熱伝導率の高い窒化ケイ素焼結体を得ることが難しかった。これに対して、本発明の製造方法では、上記のように特定の成形体を用いているため、上記圧力範囲においても、熱伝導率の高い窒化ケイ素焼結体を得ることができる。
 また、常圧又は略常圧の条件で、窒化ケイ素を焼結できるため、圧力容器(耐圧容器)内で製造する必要がなくなる。そのため、製造設備を簡略化することができ、製造コストを低下させることが可能となる。具体的は、焼成を、マッフル炉、管状炉などのバッチ炉で行うこともできるし、プッシャー炉などの連続炉で行うことも可能となるため、多様な製造方法が適用でき、生産性が向上する。
 成形体は、1200~1800℃の温度に加熱して焼成させる。温度が1200℃未満であると窒化ケイ素の焼結が進行し難くなり、1800℃を超えると窒化ケイ素が分解しやすくなる。このような観点から、焼成させる際の加熱温度は、1600~1800℃が好ましい。
 また、焼成時間は、特に限定されないが、3~20時間程度とすることが好ましい。
 なお、前記成形体の形成にバインダーを使用する場合、バインダーなどの有機成分の除去は、脱脂工程を設けて行うことが好ましい。上記脱脂条件は、特に限定されないが、例えば、成形体を空気中又は窒素、アルゴン等の不活性雰囲気下で450~650℃に加熱することにより行えばよい。
[窒化ケイ素焼結体の物性]
 本発明の製造方法で得られる窒化ケイ素焼結体は、高い熱伝導率を示す。得られる窒化ケイ素焼結体の熱伝導率は、好ましくは80W/mK以上であり、より好ましくは100W/mK以上である。
 熱伝導率は、レーザーフラッシュ法により測定することができる。
 本発明の製造方法で得られる窒化ケイ素焼結体の絶縁破壊電圧は、好ましくは11kV以上であり、より好ましくは13kV以上である。このような絶縁破壊電圧を備える窒化ケイ素焼結体は、絶縁破壊が生じ難く、製品としての信頼性に優れる。
 本発明の製造方法により得られる窒化ケイ素焼結体は、マイルドな条件(常圧又は略常圧下で、かつ通常よりも温度が低い条件)で焼成されているため、表面の凹凸が少ない。具体的には、得られる窒化ケイ素焼結体のRa(算術平均粗さ)は、好ましくは0.6μm以下であり、より好ましくは0.55μm以下である。このようなRaを有する窒化ケイ素焼結体は、例えば金属などの使用対象物に対する貼付性が良好となる。さらに、窒化ケイ素焼結体を必要に応じて鏡面研磨する際の、作業時間を短くすることができる。
 Raは、表面粗さ計により測定することができる。
 また、前記熱伝導率、絶縁破壊電圧、Raの測定は、窒化ケイ素焼結体の表面をブラスト処理して、焼結時に焼結体に付着した離型剤等の付着物を除去した後に行う。
 以下、本発明をさらに具体的に説明するため実施例を示すが、本発明はこれらの実施例に限定されるものではない。
 なお、実施例において、各種物性の測定は以下の方法によって行ったものである。
(1)窒化ケイ素粉末のβ化率
 窒化ケイ素粉末のβ化率は、CuKα線を用いた粉末X線回折(XRD)測定により求めた。具体的には、C.P.Gazzara and D.R.Messier:Ceram.Bull.,56(1977),777-780に記載された方法により、窒化ケイ素粉末のα相とβ相の重量割合を算出し、β化率を求めた。
(2)窒化ケイ素粉末の比表面積
 窒化ケイ素粉末の比表面積は、(株)マウンテック製のBET法比表面積測定装置(Macsorb HM model-1201)を用いて、窒素ガス吸着によるBET1点法を用いて測定した。
 なお、上述した比表面積測定を行う前に、測定する窒化ケイ素粉末は事前に空気中で600℃、30分熱処理を行い、粉末表面に吸着している有機物を除去した。
(3)窒化ケイ素粉末の固溶酸素量及び全酸素量
 窒化ケイ素粉末の固溶酸素量は、不活性ガス融解-赤外線吸収法により測定した。測定は、酸素・窒素分析装置(HORIBA社製「EMGA-920」)により行った。
 試料として各実施例、比較例で使用した窒化ケイ素粉末25mgをスズカプセルに封入(スズカプセルはLECO製のTin Cupsuleを使用)しグラファイト坩堝に導入し、5.5kWで20秒間加熱し、吸着ガスの脱ガスを行った後、0.8kWで10秒、0.8kWから4kWまで350秒かけて昇温しその間に発生した二酸化炭素の量を測定し、酸素含有量に換算した。350秒の昇温中、初期に発生する酸素が、窒化ケイ素粒子の表面に存在する酸化物由来の酸素(外部酸素)であり、遅れて発生する酸素が窒化ケイ素の結晶に固溶する固溶酸素(内部酸素)に相当することから、予め測定したバックグランドを差し引いたこれら2つの測定ピークの谷に相当する部分から垂線を引き、2つのピークを分離した。それぞれのピーク面積を比例配分することより、固溶酸素(内部酸素)量と、外部酸素量とを算出した。
(4)窒化ケイ素粉末の粒子径
(i)試料の前処理
 試料の窒化ケイ素粉末の前処理として、窒化ケイ素粉末を空気中で約500℃の温度で2時間焼成処理を行った。上記焼成処理は、粒子径測定において、窒化ケイ素粉末の表面酸素量が少ないか、粉砕時の粉砕助剤等によって粒子表面が疎水性物質で覆われ、粒子そのものが疎水性を呈している場合があり、このような場合、水への分散が不十分となって再現性のある粒子径測定が困難となることがある。そのため、試料の窒化ケイ素粉末を空気中で200℃~500℃程度の温度で数時間焼成処理することによって窒化ケイ素粉末に親水性を付与し、水溶媒に分散しやすくなって再現性の高い粒子径測定が可能となる。この際、空気中で焼成しても測定される粒子径にはほとんど影響がないことを確認している。
(ii)粒子径の測定
 最大100mlの標線を持つビーカー(内径60mmφ、高さ70mm)に、90mlの水と濃度5質量%のピロリン酸ナトリウム5mlを入れてよく撹拌した後、耳かき一杯程度の試料の窒化ケイ素粉末を投入し、超音波ホモイナイザー((株)日本精機製作所製US-300E、チップ径26mm)によってAMPLITUDE(振幅)50%(約2アンペア)で2分間、窒化ケイ素粉末を分散させた。
 なお、上記チップは、その先端がビーカーの20mlの標線の位置まで挿入して分散を行った。
 次いで、得られた窒化ケイ素粉末の分散液について、レーザー回折・散乱法粒度分布測定装置(マイクロトラック・ベル(株)製マイクロトラックMT3300EXII)を用いて粒度分布を測定した。測定条件は、溶媒は水(屈折率1.33)を選択し、粒子特性は屈折率2.01、粒子透過性は透過、粒子形状は非球形を選択した。上記の粒子径分布測定で測定された粒子径分布の累積カーブが50%になる粒子径を平均粒子径(平均粒径D50)とする。
(5)成形体の総酸素量
 成形体の総酸素量は、不活性ガス融解-赤外線吸収法により測定した。測定は、酸素・窒素分析装置(HORIBA社製「EMGA-920」)により行った。
 試料として成形体15mgをスズカプセルに封入(スズカプセルはLECO製のTin Cupsuleを使用)しグラファイト坩堝に導入し、5.5kWで20秒間加熱し、さらに5.0kWで20秒間加熱し吸着ガスの脱ガスを行った後、5.0kWで75秒加熱しその間に発生した二酸化炭素の量を測定し、酸素含有量に換算した。
(6)成形体の密度
 自動比重計(新光電子(株)製:DMA-220H型)を使用してそれぞれの成形体について密度を測定し、15ピースの平均値を成形体の密度とした。
(7)成形体のアルミニウム元素の総含有量
 成形体中のアルミニウム元素の総含有量は、誘導結合プラズマ発光分光分析装置(サーモフィッシャーサイエンティフック社製「iCAP 6500 DUO」)を用いて測定した。
(8)窒化ケイ素焼結体の熱伝導率
 窒化ケイ素焼結体の熱伝導率は、京都電子工業製LFA-502を用いてレーザーフラッシュ法により測定した。熱伝導率は、熱拡散率と焼結体密度と焼結体比熱の掛け算によって求められる。尚、窒化ケイ素焼結体の比熱は0.68(J/g・K)の値を採用した。焼結体密度は、自動比重計(新光電子(株)製:DMA-220H型)を用いて測定した。
 なお、熱伝導率の測定は、窒化ケイ素焼結体の表面をブラスト処理した後、表面にAuコート及びカーボンコートをした後に行った。
(9)窒化ケイ素焼結体の絶縁破壊電圧
 JIS C2110に準じて、絶縁破壊電圧を測定した。具体的には、絶縁耐圧測定装置装置(計測技術研究所社製「TK-O-20K」)を用いて、窒化ケイ素焼結体に電圧を加え、絶縁破壊が生じたときの電圧を測定した。
(10)窒化ケイ素焼結体のRa(算術平均粗さ)
 窒化ケイ素焼結体のRaは、表面粗さ測定器(東京精密株式会社製、「サーフコム480A」)を用いて、評価長さ2.5mm、測定速度0.3mm/sで針を走査させて、Raを測定した。
 なお、窒化ケイ素焼結体は、表面をブラスト処理して離型剤等を除去したものを用いた。
 各実施例、及び比較例においては、次の各原料を使用した。
<窒化ケイ素粉末>
 表1に示す窒化ケイ素粉末A、B、Cを準備した。これらは、以下の方法により製造した。
(窒化ケイ素粉末Aの製造)
 シリコン粉末(半導体グレード、平均粒径5μm)と、希釈剤である窒化ケイ素粉末(平均粒径1.5μm)とを混合し、原料粉末(Si:80質量%、Si:20質量%)を得た。該原料粉末を反応容器に充填し、原料粉末層を形成させた。次いで、該反応容器を着火装置とガスの給排機構を有する耐圧性の密閉式反応器内に設置し、反応器内を減圧して脱気後、窒素ガスを供給して窒素置換した。その後、窒素ガスを除々に供給し、0.7MPaまで上昇せしめた。所定の圧力に達した時点(着火時)での原料粉末の嵩密度は0.5g/cmであった。
 その後、反応容器内の原料粉末の端部に着火し、燃焼合成反応を行い、窒化ケイ素よりなる塊状生成物を得た。得られた塊状生成物を、お互いに擦り合わせることで解砕した後、振動ミルに適量を投入して6時間の微粉砕を行った。なお、微粉砕機及び微粉砕方法は、常法の装置及び方法を用いているが、重金属汚染防止対策として粉砕機の内部はウレタンライニングを施し、粉砕メディアには窒化ケイ素を主剤としたボールを使用した。また微粉砕開始直前に粉砕助剤としてエタノールを1質量%添加し、粉砕機を密閉状態として微粉砕を行い、次いで、空気中で加熱して酸化処理を行い、全酸素濃度を調整して、窒化ケイ素粉末Aを得た。得られた窒化ケイ素粉末Aの測定結果を表1に示した。
(窒化ケイ素粉末Bの製造)
 窒化ケイ素粉末Bとして、市販の窒化ケイ素粉末を窒素雰囲気中で加熱して表1に示す窒化ケイ素粉末を準備した。
(窒化ケイ素粉末Cの製造)
 前記窒化ケイ素粉末Aの製造方法において、酸化処理を行わなかった以外は、同様にして窒化ケイ素粉末Cを得た。得られた窒化ケイ素粉末Cの測定結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
<焼結助剤>
 1.酸素結合を持たない化合物
 YSiC粉末については、イットリア(信越化学工業株式会社製)、窒化ケイ素粉末(上記記載の自社製粉末)および炭素粉末(三菱化学製)を、下記反応式を用い加熱合成を行い作製した。
 8Si+6Y+15C+2N→6YSiC+9CO
MgSiC粉末についても同様に、下記反応式を用いて加熱合成を行い作製した。
  Si+MgSiN+C→MgSi
 2.金属酸化物
 イットリア(Y)・・信越化学工業株式会社製
<バインダー>
 バインダーとして、水系樹脂バインダーであるポリビニルアルコール樹脂(日本酢ビ・ポバール株式会社)を用いた。
[実施例1]
 窒化ケイ素粉末A 100質量部、酸素結合を含まない化合物YSiC 2質量部、MgSiC 5質量部、イットリア3質量部、秤量し、水を分散媒として樹脂ポットと窒化ケイ素ボールを用いて、24時間ボールミルで粉砕混合を行った。なお、水はスラリーの濃度が60wt%となるように予め秤量し、樹脂ポット内に投入した。粉砕混合後、水系樹脂バインダーを22質量部添加し、さらに12時間混合を行いスラリー状の成形用組成物を得た。次いで、該成形用組成物を真空脱泡機(サヤマ理研製)を用いて粘度調整を行い、塗工用スラリーを作製した。その後、この粘度調整した成形用組成物をドクターブレード法によりシート成形を行い、幅75cm、厚さ0.42mmtのシート成形体を得た。
 上記の通り得られたシート成形体を、乾燥空気中550℃の温度で脱脂処理し、脱脂された成形体を得た。得られた成形体の物性を表2に示した。
 その後、該脱脂後の成形体を焼成容器に入れて、窒素雰囲気及び0.02MPa・Gの圧力下において、1780℃で9時間焼成を行い、窒化ケイ素焼結体を得た。焼結体の物性を表2に示した。
[比較例1]
 実施例1で用いた窒化ケイ素粉末Aを窒化ケイ素粉末Bに変更した以外は、実施例1と同様にして、窒化ケイ素焼結体を得た。焼結体の物性を表2に示した。
[実施例2]
 前記実施例1において、焼結助剤の量を表2に示すように変更して、表2に示す総酸素量、成形体密度とし、また、焼成温度を1740℃とした以外は、同様にして窒化ケイ素焼結体を得た。焼結体の物性を表2に示した。
[実施例3]
 前記実施例1において、窒化ケイ素粉末として、窒化ケイ素粉末Cを使用し、焼結助剤の量を調整して総酸素量と成形体密度を表2に示すように変えた以外は、同様にして窒化ケイ素焼結体を得た。焼結体の物性を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 各実施例の結果から明らかなように、特定の成形体を用いた場合には、原料として用いた窒化ケイ素粉末のβ化率が高く、かつ焼成時の圧力が低い場合であっても、熱伝導率の高い焼結体を得られることが分かった。
 これに対して、本発明の要件を満足しない成形体を用いた場合には、焼成時の圧力が低い場合において、熱伝導率の高い焼結体を得ることができなかった。

 

Claims (10)

  1.  β化率が80%以上、固溶酸素量が0.2質量%以下、比表面積が5~20m/gの窒化ケイ素粉末と、酸素結合を持たない化合物を含む焼結助剤とを含有し、総酸素量が1~15質量%、アルミニウム元素の総含有量が800ppm以下に調整された成形体を、不活性ガス雰囲気及び0MPa・G以上0.1MPa・G未満の圧力下、1200~1800℃の温度に加熱して窒化ケイ素を焼結することを特徴とする、窒化ケイ素焼結体の製造方法。
  2.  前記窒化ケイ素粉末の全酸素量が1質量%以上である、請求項1に記載の窒化ケイ素焼結体の製造方法。
  3.  前記成形体が、窒化ケイ素粉末、焼結助剤、及び水を含む成形用組成物を成形したものである、請求項1又は2に記載の窒化ケイ素焼結体の製造方法。
  4.  前記窒化ケイ素粉末は、その平均粒径D50が0.5~3μmであり、粒径0.5μm以下の粒子の占める割合が20~50質量%であり、かつ粒径1.0μm以上の粒子の占める割合が20~50質量%である、請求項1~3のいずれか一項に記載の窒化ケイ素焼結体の製造方法。
  5.  前記焼結助剤が金属酸化物を含む、請求項1~4のいずれか一項に記載の窒化ケイ素焼結体の製造方法。
  6.  前記焼結助剤に含まれる酸素結合を持たない化合物が、希土類元素又はマグネシウム元素を含む炭窒化物系の化合物である、請求項1~5のいずれか一項に記載の窒化ケイ素焼結体の製造方法。
  7.  前記成形体の密度が1.95g/cm以上である、請求項1~6のいずれか一項に記載の窒化ケイ素焼結体の製造方法。
  8.  得られる窒化ケイ素焼結体のレーザーフラッシュ法により測定された熱伝導率が80W/mK以上である、請求項1~7のいずれか一項に記載の窒化ケイ素焼結体の製造方法。
  9.  得られる窒化ケイ素焼結体の絶縁破壊電圧が11kV以上である、請求項1~8のいずれか一項に記載の窒化ケイ素焼結体の製造方法。
  10.  得られる窒化ケイ素焼結体のRaが0.6μm以下である、請求項1~9のいずれか一項に記載の窒化ケイ素焼結体の製造方法。

     
PCT/JP2020/044044 2019-11-28 2020-11-26 窒化ケイ素焼結体の製造方法 WO2021107021A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021561497A JPWO2021107021A1 (ja) 2019-11-28 2020-11-26
KR1020227016843A KR20220106119A (ko) 2019-11-28 2020-11-26 질화규소 소결체의 제조 방법
CN202080081036.0A CN114728855B (zh) 2019-11-28 2020-11-26 氮化硅烧结体的制造方法
US17/779,273 US20220402826A1 (en) 2019-11-28 2020-11-26 Method for manufacturing silicon nitride sintered compact
EP20892132.0A EP4067302A4 (en) 2019-11-28 2020-11-26 METHOD FOR MANUFACTURING A SINTERED SILICON NITRIDE TABLET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019215103 2019-11-28
JP2019-215103 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021107021A1 true WO2021107021A1 (ja) 2021-06-03

Family

ID=76129582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044044 WO2021107021A1 (ja) 2019-11-28 2020-11-26 窒化ケイ素焼結体の製造方法

Country Status (7)

Country Link
US (1) US20220402826A1 (ja)
EP (1) EP4067302A4 (ja)
JP (1) JPWO2021107021A1 (ja)
KR (1) KR20220106119A (ja)
CN (1) CN114728855B (ja)
TW (1) TW202134171A (ja)
WO (1) WO2021107021A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075156A1 (ja) * 2020-10-05 2022-04-14 株式会社トクヤマ グリーンシートの製造方法
WO2022210369A1 (ja) * 2021-03-30 2022-10-06 株式会社トクヤマ 窒化ケイ素焼結体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116639985B (zh) * 2023-06-07 2024-05-28 湖南湘瓷科艺有限公司 一种高导热率氮化硅陶瓷基板及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177307A (ja) * 1989-12-07 1991-08-01 Denki Kagaku Kogyo Kk 窒化ケイ素粉末
JP2000264608A (ja) 1999-03-23 2000-09-26 Osamu Yamada 燃焼合成反応によるBN、AlN又はSi3N4の製造方法
WO2013146713A1 (ja) * 2012-03-28 2013-10-03 宇部興産株式会社 窒化ケイ素粉末の製造方法及び窒化ケイ素粉末、ならびに窒化ケイ素焼結体及びそれを用いた回路基板
JP2015086125A (ja) * 2013-11-01 2015-05-07 国立大学法人東北大学 窒素・ケイ素系焼結体およびその製造方法
WO2019167879A1 (ja) * 2018-02-28 2019-09-06 株式会社トクヤマ 窒化ケイ素粉末の製造方法
JP2019167879A (ja) 2018-03-23 2019-10-03 本田技研工業株式会社 燃料ポンプモジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218612A (ja) 1997-02-03 1998-08-18 Shin Etsu Chem Co Ltd 窒化ケイ素粉末の製造方法
DE10146227B4 (de) * 2000-09-20 2015-01-29 Hitachi Metals, Ltd. Siliciumnitrid-Sinterkörper, Leiterplatte und thermoelektrisches Modul
JP3648541B2 (ja) 2000-10-19 2005-05-18 独立行政法人産業技術総合研究所 高熱伝導窒化ケイ素セラミックス並びにその製造方法
JP5045926B2 (ja) 2007-12-28 2012-10-10 戸田工業株式会社 窒化ケイ素粉末の製造法
CN106132908B (zh) * 2014-03-31 2017-08-25 日本精细陶瓷有限公司 氮化硅衬底的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177307A (ja) * 1989-12-07 1991-08-01 Denki Kagaku Kogyo Kk 窒化ケイ素粉末
JP2000264608A (ja) 1999-03-23 2000-09-26 Osamu Yamada 燃焼合成反応によるBN、AlN又はSi3N4の製造方法
WO2013146713A1 (ja) * 2012-03-28 2013-10-03 宇部興産株式会社 窒化ケイ素粉末の製造方法及び窒化ケイ素粉末、ならびに窒化ケイ素焼結体及びそれを用いた回路基板
JP2015086125A (ja) * 2013-11-01 2015-05-07 国立大学法人東北大学 窒素・ケイ素系焼結体およびその製造方法
WO2019167879A1 (ja) * 2018-02-28 2019-09-06 株式会社トクヤマ 窒化ケイ素粉末の製造方法
JP2019167879A (ja) 2018-03-23 2019-10-03 本田技研工業株式会社 燃料ポンプモジュール

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C. P. GAZZARAD. R. MESSIER, CERAM. BULL., vol. 56, 1977, pages 777 - 780
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 100, no. 11, 1992, pages 1366 - 1370
JOURNAL OF THE MARINE ENGINEERING SOCIETY IN JAPAN, vol. 28, no. 9, September 1993 (1993-09-01), pages 548 - 556
LI, YINSHENG ET AL.: "Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 101, no. 9, 2018, pages 4128 - 4136, XP055832150 *
See also references of EP4067302A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075156A1 (ja) * 2020-10-05 2022-04-14 株式会社トクヤマ グリーンシートの製造方法
WO2022210369A1 (ja) * 2021-03-30 2022-10-06 株式会社トクヤマ 窒化ケイ素焼結体の製造方法

Also Published As

Publication number Publication date
KR20220106119A (ko) 2022-07-28
CN114728855A (zh) 2022-07-08
US20220402826A1 (en) 2022-12-22
CN114728855B (zh) 2023-06-06
JPWO2021107021A1 (ja) 2021-06-03
EP4067302A4 (en) 2024-05-15
TW202134171A (zh) 2021-09-16
EP4067302A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
WO2021107021A1 (ja) 窒化ケイ素焼結体の製造方法
JP5836522B2 (ja) 窒化ケイ素基板の製造方法
WO2019167879A1 (ja) 窒化ケイ素粉末の製造方法
EP4174020A1 (en) Silicon nitride sintered substrate
Lee et al. Preparation of Al2TiO5 from alkoxides and the effects of additives on its properties
WO2022004754A1 (ja) 窒化ケイ素焼結体の連続製造方法
JP7337304B1 (ja) 窒化ケイ素粉末
JP6720053B2 (ja) 窒化ケイ素焼結体の製造方法
WO2022210369A1 (ja) 窒化ケイ素焼結体の製造方法
WO2007018140A2 (ja) 窒化アルミニウム焼結体
JP5403851B2 (ja) 珪酸ジルコニウム焼結体の製造方法
JP2008297134A (ja) 炭化硼素質焼結体および防護部材
JP7437570B1 (ja) 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法
Nakashima et al. Effects of heating rate on microstructure and property of sintered reaction bonded silicon nitrides
Futaki et al. The sinterability of ultrafine Si 3 N 4
WO2023176893A1 (ja) 窒化ケイ素粉末、および窒化ケイ素質焼結体の製造方法
WO2024095834A1 (ja) 窒化ケイ素焼結体
JP2008273752A (ja) 炭化硼素質焼結体および防護部材
JP2008297135A (ja) 炭化硼素質焼結体およびその製法ならびに防護部材
JP2006104060A (ja) 黒色AlN系セラミックス
EP3659991A1 (en) Aluminum nitride sintered compact and method for producing same
Guo et al. Study of the sintering properties of plasma synthesized ultrafine SiC powders
Kleebe et al. Organometallic precursors, an alternative route for the doping of silicon nitride powders?
JP2017193479A (ja) 窒化アルミニウム焼結体の製造方法、並びに窒化アルミニウム焼結体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892132

Country of ref document: EP

Effective date: 20220628