JP7337304B1 - 窒化ケイ素粉末 - Google Patents

窒化ケイ素粉末 Download PDF

Info

Publication number
JP7337304B1
JP7337304B1 JP2023521359A JP2023521359A JP7337304B1 JP 7337304 B1 JP7337304 B1 JP 7337304B1 JP 2023521359 A JP2023521359 A JP 2023521359A JP 2023521359 A JP2023521359 A JP 2023521359A JP 7337304 B1 JP7337304 B1 JP 7337304B1
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
powder
mass
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023521359A
Other languages
English (en)
Other versions
JPWO2023120422A5 (ja
JPWO2023120422A1 (ja
Inventor
秀昭 河合
竜二 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Publication of JPWO2023120422A1 publication Critical patent/JPWO2023120422A1/ja
Application granted granted Critical
Publication of JP7337304B1 publication Critical patent/JP7337304B1/ja
Publication of JPWO2023120422A5 publication Critical patent/JPWO2023120422A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本発明は、β化率が80%以上であり、結晶歪が1.0×10-3以上であることを特徴とする窒化ケイ素粉末である。本発明によれば、1800℃程度の低温においても焼結性が高い窒化ケイ素粉末を提供することができる。

Description

本発明は、新規な窒化ケイ素粉末に関する。詳しくは、焼結性が改良されたβ型窒化ケイ素粉末を提供するものである。
窒化ケイ素粉末に各種の焼結助剤を添加し、高温で焼結させた窒化ケイ素焼結体は、各種セラミックス焼結体の中でも、軽量で且つ常温から高温までの機械的強度が強く、耐薬品性、電気絶縁性に優れる、等の特徴があり、ボールベアリング等の耐摩耗用部材、高温構造用部材として用いられている。また助剤の種類や焼結条件を工夫することにより、熱伝導性も高めることが可能であるため、薄くて強度の高い放熱用基板材料としても使用されるようになってきた。
窒化ケイ素粉末の結晶形態としては、α型とβ型とが存在することが知られている。そのうち、α型窒化ケイ素粉末は、焼結過程でβ型として再析出することで、緻密で熱伝導率の高い焼結体を得ることができるため、現在広く使用されている(非特許文献1参照)。
一方、燃焼合成法などで得られるβ型窒化ケイ素粉末は、α型窒化ケイ素粉末に比べて焼結性が悪いとされており、焼結体を製造する技術として、例えば、平均粒径0.5μmのβ型窒化ケイ素粉末と、酸化イッテルビウム及び窒化ケイ素マグネシウム粉末からなる焼結助剤とを含むグリーンシート(被焼成体)を、10気圧の加圧窒素中、1900℃で2~24時間焼結を行い、窒化ケイ素焼結体を得る方法が提案されている(特許文献1参照)。
上記のように、β型窒化ケイ素粉末を使用して焼結体を製造する場合は、高温、高圧を必要としていた。
上記問題に対して、窒化ケイ素粉末の粒度分布を調整することにより焼結性を向上させることも提案されている(特許文献2参照)が、工業的な実施において更なる焼結性の改良が望まれる。
特開2002-128569号公報 WO2021/107021号公報
日本舶用機関学会誌、1993年9月、第28巻、第9号、p548-556
従って、本発明の目的は、低温においても焼結性が高い窒化ケイ素粉末を提供することにある。
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、粉末を構成するβ型窒化ケイ素の結晶歪を制御することにより、前記目的を達成し得ることを見出し、本発明を完成するに至った。
即ち、本発明によれば、β化率が80%以上であり、結晶歪が1.0×10-3以上であることを特徴とする窒化ケイ素粉末が提供される。
本発明の窒化ケイ素粉末によれば、焼成温度が1800℃程度の低温においても良好な焼結性を発揮するため、窒化ケイ素の分解を防止するための加圧を殆ど行うことなく、緻密で、熱伝導性及び強度の高い焼結体を得ることが可能となる。
本発明の窒化ケイ素粉末は、β化率が80%以上、好ましくは85%以上、より好ましくは90%以上である。
なお、窒化ケイ素粉末のβ化率とは、窒化ケイ素粉末におけるα相とβ相の合計に対するβ相のピーク強度割合[100×(β相のピーク強度)/(α相のピーク強度+β相のピーク強度)]を意味し、CuKα線を用いた粉末X線回折(XRD)測定により求められる。より詳細には、C.P.Gazzara and D.R.Messier:Ceram.Bull.,56(1977),777-780に記載された方法により、窒化ケイ素粉末のα相とβ相の重量割合を算出することで求められる。
本発明の窒化ケイ素粉末は、結晶歪みが1.0×10-3以上に調整されたものであることが重要である。即ち、本発明者らの研究により、結晶歪が窒化ケイ素粉末の焼結性に影響を与えること、また、かかる結晶歪を特定値以上に調整することにより、焼結性の改良効果が顕著に表れることが判明した。
前記窒化ケイ素粉末の結晶歪は、焼結性の改良効果を高める観点から、好ましくは2.0×10-3以上であり、より好ましくは3.0×10-3以上であり、さらに好ましくは5.0×10-3以上である。また、結晶歪の上限値は特に限定されるものではないが、窒化ケイ素粉末の結晶歪は好ましくは5.0×10-2以下、より好ましくは3.0×10-2以下である。
前記窒化ケイ素粉末の結晶歪は、CuKα線を用いた粉末X線回折(XRD)により以下の手順で算定した値である。
即ち、2θが15~80°の範囲を0.02°のステップでX線検出器を走査して得られたX線回折パターンより、β相の(101)、(110)、(200)、(201)および(210)面の各々の積分幅を算出し、前記積分幅を下記の式2のWilliamson-Hall式に代入し、下記の式2における「2sinθ/λ」をX軸、「βcosθ/λ」をY軸としてプロットし、最小二乗法により得られた直線の傾きより結晶歪み(η)を算定する。
βcosθ/λ=η×(2sinθ/λ)+(1/Dc) (2)
(β:積分幅(rad)、θ:ブラッグ角度(rad)、η:結晶歪み、λ:X線波長、Dc:結晶径(nm))
本発明の窒化ケイ素粉末において、他の特性は特に制限されるものではなく、焼結に使用される公知の窒化ケイ素粉末の特性を有することができる。
例えば、窒化ケイ素粉末の平均粒径D50は、0.5~3μmであることが好ましく、0.7~1.7μmであることがより好ましい。このような平均粒径の窒化ケイ素粉末を用いると、焼結が一層進行し易くなる。平均粒径D50は、レーザー回折散乱法により測定して得られた粒度分布を示す体積基準の累積曲線における50%値である。また、上記窒化ケイ素粉末において、粒度分布を示す体積基準の累積曲線における90%値であるD90は、5μm以下、好ましくは、2~5μmであることが好ましい。
このような粒度分布を有する窒化ケイ素粉末を用いると、前記結晶歪を調整することによる効果と相俟って、緻密で、熱伝導性及び強度の高い窒化ケイ素焼結体を一層得易くなる。
また、窒化ケイ素粉末の比表面積は7~20m/gであることが好ましい。窒化ケイ素粉末の比表面積が20m/gを超えると、固溶酸素量が増大し易くなり、比表面積が7m/g未満であると、焼結性が低下し、緻密で、熱伝導性及び強度の高い窒化ケイ素焼結体が得難くなる傾向にある。窒化ケイ素粉末の比表面積は、より好ましくは12~15m/gである。
なお、本発明において比表面積は、窒素ガス吸着によるBET1点法を用いて測定したBET比表面積を意味する。
更に、本発明の窒化ケイ素粉末の全酸素量は、特に限定されないが1質量%以上であることが好ましい。全酸素量とは、上記した固溶酸素(内部酸素)量と、外部酸素量との合計である。全酸素量がこれら下限値以上であると、例えば、粒子表面の酸化ケイ素などにより焼結が促進されやすくなるという効果が発揮される。また、窒化ケイ素粉末の全酸素量は、10質量%以下であることが好ましい。
更にまた、本発明の窒化ケイ素粉末の固溶酸素量は、0.2質量%以下であることが好ましい。固溶酸素量が0.2質量%を超えると、本発明の特徴である焼成条件で焼成して得られる窒化ケイ素焼結体の熱伝導率が低くなる傾向にある。高熱伝導率の窒化ケイ素焼結体を得る観点から、窒化ケイ素粉末の固溶酸素量は、特に0.1質量%以下が好ましい。
ここで、固溶酸素量とは、窒化ケイ素粉末の粒子内部に固溶された酸素(以下、内部酸素ともいう)のことを意味し、粒子表面に不可避的に存在するSiOなどの酸化物由来の酸素(以下、外部酸素ともいう)は含まない。
本発明の窒化ケイ素粉末は、後述のように、窒化ケイ素粉末の粉砕を比較的長時間行うことにより得ることができるが、粉砕によって混入し易い金属不純物の量が可及的に低く抑えたものであることが好ましい。具体的には、鉄、及びアルミニウムの含有量がそれぞれ500ppm以下、好ましくは、100ppm以下、更に好ましくは、50ppm以下、上記金属を含んだ不純物金属の総含有量が1000ppm以下、好ましくは300ppm以下、更に好ましくは、200ppm以下であることが好ましい。
<窒化ケイ素粉末の製造>
本発明の窒化ケイ素粉末の製造方法は、上述した特性を有する窒化ケイ素粉末を得られる方法であれば特に限定されない。窒化ケイ素粉末の製造方法としては、例えば、シリカ粉末を原料として、炭素粉末存在下において、窒素ガスを流通させて窒化ケイ素を生成させる還元窒化法、シリコン粉末と窒素とを高温で反応させる直接窒化法、ハロゲン化ケイ素とアンモニアとを反応させるイミド分解法などを適用できるが、上述した特性を有する窒化ケイ素粉末を製造しやすい観点から、直接窒化法が好ましく、中でも自己燃焼法を利用する直接窒化法(燃焼合成法)がより好ましい。
燃焼合成法は、シリコン粉末を原料として使用し、窒素雰囲気下で原料粉末の一部を強制着火し、原料化合物の自己発熱により窒化ケイ素を合成する方法である。燃焼合成法は、公知の方法であり、例えば、特開2000-264608号公報、国際公開第2019/167879号などを参照することができる。
上記燃焼合成法において使用する上記原料粉末は、シリコン粉末を少なくとも含み、好ましくはシリコン粉末及び希釈剤を含有する。以下のとおり、原料粉末を調製することにより、本発明の窒化ケイ素粉末を得やすくなる。
原料粉末に含まれるシリコン粉末の平均粒径は、好ましくは1~20μmであり、より好ましくは2~10μmである。
希釈剤としては、窒化ケイ素粉末を使用することが好ましい。該希釈剤として使用する窒化ケイ素粉末の平均粒径は、好ましくは0.1~10μmであり、より好ましくは0.5~5μmである。
なお、上記シリコン粉末及び窒化ケイ素粉末の平均粒径は、レーザー回折散乱法により測定して得られた粒度分布を示す体積基準の累積曲線における50%値である。
原料粉末におけるシリコン粉末の含有量は、好ましくは50~95質量%であり、より好ましくは70~90質量%である。また、原料粉末における希釈剤の含有量は、好ましくは5~50質量%であり、より好ましくは10~30質量%である。希釈剤の含有量がこれら下限値以上であると、原料粉末の発熱が低減されて、温度のコントロールが容易になる。希釈剤の含有量がこれら上限値以下であると、反応容器内に充填された原料粉末全般に金属の窒化燃焼熱を容易に伝播させることができる。
原料粉末には、シリコン粉末及び必要に応じて用いられる希釈剤以外のその他の成分を含んでもよい。その他の成分としては、例えば塩化ナトリウム、塩化アンモニウム等の塩化物、酸化カルシウム、酸化イットリウム、酸化マグネシウム等の酸化物などが挙げられる。その他の成分は、原料粉末全量基準で好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは1質量%以下、さらに好ましくは0質量%である。
前記窒化ケイ素粉末の製造方法において、高純度の原料を用いることにより、固溶酸素量を前記範囲に低く抑えることができる。例えば、直接窒化法により窒化ケイ素粉末を製造する場合は、使用する原料として、内部に酸素が固溶する要因が無いシリコン粉末を使用することが好ましく、具体的には、半導体グレードのシリコン由来、例えば、上記シリコンを切断等の加工する際に発生する切削粉を代表とするシリコン粉末を使用することが好ましい。上記半導体グレードのシリコンは、ベルジャー式反応容器内で、高純度のトリクロロシランと水素とを反応させる、いわゆる「ジーメンス法」により得られる多結晶シリコンが代表的である。
燃焼合成法において、上述した原料粉末は、反応容器(セッター)に充填される。反応容器は、セラミックス製、黒鉛製などの耐熱性の反応容器であることが好ましい。本発明の窒化ケイ素粉末を得やすくする観点から、反応容器内の原料粉末層の嵩密度は、好ましくは0.1~1.0g/cmの範囲、より好ましくは0.3~0.7g/cmの範囲に設定することが好ましい。
本発明の窒化ケイ素粉末の製造方法において、前記結晶歪みの調整方法は特に制限されるものではなく、また、前記燃焼合成法を採用することによりある程度大きい結晶歪みを有するβ型窒化ケイ素粉末が得られるが、更に特定の粉砕を比較的長時間行うことにより、結晶歪みを前記範囲まで大きくすることが可能である。上記粉砕方法としては、振動ボールミルのようにシェアが掛かり易い粉砕機を用いて、前記結晶歪となるまで粉砕する方法が挙げられる。
例えば、振動ボールミルによる粉砕の具体的な条件を挙げれば、直径10~20mmのボールを見掛け充填率で70~95%、好ましくは、75~90%となるように充填し、窒化ケイ素粉末を、ボールを充填後の空隙の50~100%、好ましくは、60~80%充填し、振動幅4~16mm、好ましくは、5~13mm、振動数600~2000回/分、好ましくは、1000~1500回/分、重力加速度倍率4~10G、好ましくは、4~7Gの条件とすることが好ましい。上記条件において、粉砕を5~20時間、好ましくは、10~15時間行うことが好ましい。また、粉砕中の温度は、50~120℃となるように調整することが更に好ましい。
更に、前記ボールとして、硬度がβ型窒化ケイ素とほぼ等しい材質のもの、具体的には、窒化ケイ素焼結体よりなるボールを使用することにより、粉砕を長時間行った場合の微粉の発生を適度に抑制しながら結晶歪みを調整することができ好ましい。また、共材の使用により、粉砕して得られる窒化ケイ素粉末のボールからの汚染を効果的に防止することも可能となる。
尚、粉砕においては、エタノール等の粉砕助剤を必要に応じて使用することができる。また、粉砕により生成した微粉は、前記粒度分布に調整するため、一部をカットすることも必要に応じて実施することができる。
[窒化ケイ素焼結体の製造方法]
本発明は、前記窒化ケイ素粉末の成形体を窒素雰囲気下で焼成することを特徴とする窒化ケイ素焼結体の製造方法をも提供する。上記焼結体の形状は特に制限されないが、基板が代表的であり、かかる窒化ケイ素焼結基板の代表的な製造方法を例示すれば、前記した本発明の窒化ケイ素粉末と焼結助剤とを含有し、アルミニウム元素の総含有量が800ppm以下に調整されたグリーンシートを、不活性ガス雰囲気及び0.1MPa・G以上0.5MPa・G未満の圧力下、1200~1800℃の温度に加熱して窒化ケイ素を焼結する方法が挙げられる。
上記方法においては、窒化ケイ素粉末のβ化率が高いにも拘わらず、特定の結晶歪みを有する本発明の窒化ケイ素粉を使用することにより、低温且つ低定圧で緻密な焼結を行うことを可能とし、高い熱伝導性及び強度を有する窒化ケイ素焼結基板を得ることができる。
前記窒化ケイ素焼結基板の製造方法において、焼結助剤は、公知のものが特に制限なく使用されるが、特に、酸素を持たない化合物を含む焼結助剤を含有することが好ましい。このような焼結助剤を用いることにより、得られる窒化ケイ素焼結体の熱伝導率の低下を防止することができる。
上記酸素を持たない化合物としては、希土類元素又はマグネシウム元素を含む炭窒化物系の化合物(以下、特定の炭窒化物系の化合物ともいう)が好ましい。このような、特定の炭窒化物系の化合物を用いることで、より効果的に熱伝導率が高い窒化ケイ素焼結体を得やすくなる。この理由は定かではないが、上記特定の炭窒化物系の化合物が、窒化ケイ素粉末に含まれる酸素を吸着するゲッター剤として機能し、結果として熱伝導率が高い窒化ケイ素焼結体が得られるものと推定される。
希土類元素を含む炭窒化物系の化合物において、希土類元素としては、Y(イットリウム)、La(ランタン)、Sm(サマリウム)、Ce(セリウム)などが好ましい。希土類元素を含む炭窒化物系の化合物としては、例えば、YSiC、YbSiC、CeSiC、などが挙げられ、これらの中でも、熱伝導率が高い窒化ケイ素焼結体を得やすくする観点から、YSiC、YbSiCが好ましい。マグネシウム元素を含む炭窒化物系の化合物としては、例えばMgSiN、MgSiCなどが挙げられる。また、これら特定の炭窒化物系の化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。
また、焼結助剤は、上記酸素を持たない化合物に加えて、さらに金属酸化物を含むことができる。焼結助剤が、金属酸化物を含有することで、窒化ケイ素粉末の焼結が進行しやすくなり、より緻密で強度が高い焼結体を得やすくなる。
金属酸化物としては、例えば、イットリア(Y)、マグネシア(MgO)、セリア(CeO)などが挙げられる。これらの中でも、イットリアが好ましい。金属酸化物は1種を単独で用いてもよいし、2種以上を併用してもよい。
焼結助剤に含まれる、前記特定の炭窒化物系の化合物を代表とする酸素を持たない化合物と金属酸化物との質量比(酸素を持たない化合物/金属酸化物)は、好ましくは0.2~4であり、より好ましくは0.6~2である。このような範囲であると、より緻密で、熱伝導率が高い窒化ケイ素焼結体を得易くなる。
また、前記グリーンシートにおける焼結助剤の含有量は、窒化ケイ素粉末100質量部に対して、好ましくは3~20質量部であり、より好ましくは7~10質量部である。
更に、前記グリーンシートは、バインダーを使用して成形することができる。この場合、グリーンシートは後述する成形用組成物をシート状に成形し、これを必要に応じて乾燥し、公知の条件にて脱脂を行うことによりバインダーを除去して焼成に供される。
バインダーとしては、特に限定されないが、ポリビニルアルコール、ポリビニルブチラール、メチルセルロース、アルギン酸、ポリエチレングリコール、カルボキシメチルセルロース、エチルセルロース、アクリル樹脂などが挙げられる。
グリーンシートの製造に使用するバインダーの含有量は、窒化ケイ素粉末100質量部に対して、好ましくは1~30質量部であり、成形方法に応じて適宜その割合を決定すればよい。
前記グリーンシートのアルミニウム元素の総含有量(質量)は800ppm以下であることが好ましい。すなわち、本発明において使用するグリーンシートは、アルミニウム元素の量が非常に少ないものであり、これにより得られる窒化ケイ素焼結体のアルミニウム元素の含有量をかかる範囲に低く抑えることができ、高い熱伝導率を発揮することが可能となる。グリーンシートのアルミニウム元素の総含有量は、好ましくは700ppm以下であり、より好ましくは600ppm以下である。
本発明において使用するグリーンシートの製造方法は特に限定されず、例えば、窒化ケイ素粉末、及び焼結助剤を少なくとも含有する成形用組成物を、公知の成形手段によって成形する方法が挙げられる。公知の成形手段としては、例えば、プレス成形法、押出し成形法、射出成形法、ドクターブレード法などが挙げられるが、特に、ドクターブレード法が好適である。
また、成形用組成物には、取り扱い易さや、成形のし易さなどの観点から、溶剤を含有させてもよい。溶剤としては、特に限定されず、アルコール類、炭化水素類などの有機溶剤、水などを挙げることができるが、本発明においては、水を用いることが好ましい。すなわち、窒化ケイ素粉末、焼結助剤、及び水を含む成形用組成物を成形して、グリーンシートを得ることが好ましい。溶剤として水を用いる場合は、有機溶剤を用いる場合と比較して、環境負荷が低減され好ましい。
前記窒化ケイ素焼結体の製造方法においては、上記したグリーンシートを必要に応じて脱脂後、一定の条件下で焼成し、窒化ケイ素を焼結させる。上記焼成においてグリーンシートには予め窒化ホウ素粉末よりなる離型材を塗布するのが一般的である。
上記焼成は、不活性ガス雰囲気下において行う。不活性ガス雰囲気下とは、例えば、窒素雰囲気下、又はアルゴン雰囲気下などを意味する。また、焼成は上記不活性ガス雰囲気下において、0MPa・G以上0.1MPa・G未満の圧力下で行うことが好ましい。また、圧力は、好ましくは0MPa・G以上0.05MPa・G以下であることが好ましい。ここで、圧力単位のMPa・Gの末尾のGはゲージ圧力を意味する。
かかる焼成条件においては高圧を必要としないため、マッフル炉、管状炉などのバッチ炉で行うこともできるし、プッシャー炉などの連続炉で行うことも可能である。
グリーンシートは、1500~1800℃の温度に加熱して焼成させる。温度が1500℃未満であると窒化ケイ素の焼結が進行し難くなり、1800℃を超えると窒化ケイ素が分解しやすくなる。このような観点から、焼成させる際の加熱温度は、1600~1800℃が好ましい。また、焼成時間は、特に限定されないが、3~20時間程度とすることが好ましい。
尚、前記グリーンシートの形成にバインダーを使用する場合、バインダーなどの有機成分の除去は、脱脂工程を設けて行うことが好ましい。上記脱脂条件は、特に限定されないが、例えば、グリーンシートを空気中又は窒素、アルゴン等の不活性雰囲気下で450~650℃に加熱することにより行えばよい。
尚、窒化ケイ素焼結基板は、焼成後、必要に応じてブラスト処理を行い付着する窒化ホウ素粉末よりなる離型材等の付着物を除去して製品とされる。
以下、本発明をさらに具体的に説明するため実施例を示すが、本発明はこれらの実施例に限定されるものではない。実施例において、各種物性の測定は以下の方法によって行ったものである。
(1)窒化ケイ素粉末のβ化率
窒化ケイ素粉末のβ化率は、CuKα線を用いた粉末X線回折(XRD)測定により求めた。具体的には、C.P.Gazzara and D.R.Messier:Ceram.Bull.,56(1977),777-780に記載された方法により、窒化ケイ素粉末のα相とβ相の重量割合を算出し、β化率を求めた。
(2)窒化ケイ素粉末の結晶歪み
CuKα線を用いた粉末X線回折(XRD)により次の手順で算定した。2θが15~80°の範囲を0.02°のステップでX線検出器を走査して得られた試料粉末のX線回折パターンより、β相の(101)、(110)、(200)、(201)および(210)面の各々の積分幅を算出し、前記積分幅を下記の式2のWilliamson-Hall式に代入。下記の式2における「2sinθ/λ」をX軸、「βcosθ/λ」をY軸としてプロットし、最小二乗法により得られた直線の傾きより結晶歪み(η)を算定した。
βcosθ/λ=η×(2sinθ/λ)+(1/Dc) (2)
(β:積分幅(rad)、θ:ブラッグ角度(rad)、η:結晶歪み、λ:X線波長、Dc:結晶径(nm))
(3)窒化ケイ素粉末の粒子径
(i)試料の前処理
試料の窒化ケイ素粉末の前処理として、窒化ケイ素粉末を空気中で約500℃の温度で2時間焼成処理を行った。上記焼成処理は、粒子径測定において、窒化ケイ素粉末の表面酸素量が少ないか、粉砕時の粉砕助剤等によって粒子表面が疎水性物質で覆われ、粒子そのものが疎水性を呈している場合があり、このような場合、水への分散が不十分となって再現性のある粒子径測定が困難となることがある。そのため、試料の窒化ケイ素粉末を空気中で200℃~500℃程度の温度で数時間焼成処理することによって窒化ケイ素粉末に親水性を付与し、水溶媒に分散しやすくなって再現性の高い粒子径測定が可能となる。この際、空気中で焼成しても測定される粒子径にはほとんど影響がないことを確認している。
(ii)粒子径の測定
最大100mLの標線を持つビーカー(内径60mmφ、高さ70mm)に、45mLの水と濃度5質量%のピロリン酸ナトリウム5mLを入れてよく撹拌した後、耳かき一杯程度の試料の窒化ケイ素粉末を投入し、超音波ホモイナイザー((株)日本精機製作所製US-300E、チップ径26mm)によってAMPLITUDE(振幅)50%(約2アンペア)で2分間、窒化ケイ素粉末を分散させた。上記チップは、その先端がビーカーの20mLの標線の位置まで挿入して分散を行った。次いで、得られた窒化ケイ素粉末の分散液について、レーザー回折・散乱法粒度分布測定装置(マイクロトラック・ベル(株)製マイクロトラックMT3300EXII)を用いて粒度分布を測定した。測定条件は、溶媒は水(屈折率1.33)を選択し、粒子特性は屈折率2.01、粒子透過性は透過、粒子形状は非球形を選択した。上記の粒子径分布測定で測定された体積基準の粒子径分布の累積曲線が50%になる粒子径をD50、90%になる粒子径をD90とした。
(4)窒化ケイ素粉末の比表面積
窒化ケイ素粉末の比表面積は、(株)マウンテック製のBET法比表面積測定装置(Macsorb HM model-1201)を用いて、窒素ガス吸着によるBET1点法を用いて測定した。
尚、上述した比表面積測定を行う前に、測定する窒化ケイ素粉末は事前に空気中で600℃、30分熱処理を行い、粉末表面に吸着している有機物を除去した。
(5)窒化ケイ素粉末の全酸素量、固溶酸素量
窒化ケイ素粉末の固溶酸素量は、不活性ガス融解-赤外線吸収法により測定した。測定は、酸素・窒素分析装置(HORIBA社製「EMGA-920」)により行った。
試料として各実施例、比較例で使用した窒化ケイ素粉末25mgをスズカプセルに封入(スズカプセルはLECO製のTin Cupsuleを使用)しグラファイト坩堝に導入し、5.5kWで20秒間加熱し、吸着ガスの脱ガスを行った後、0.8kWで10秒、0.8kWから4kWまで350秒かけて昇温しその間に発生した二酸化炭素の量を測定し、酸素含有量に換算した。350秒の昇温中、初期に発生する酸素が、窒化ケイ素粒子の表面に存在する酸化物由来の酸素(外部酸素)であり、遅れて発生する酸素が窒化ケイ素の結晶に固溶する固溶酸素(内部酸素)に相当することから、予め測定したバックグランドを差し引いたこれら2つの測定ピークの谷に相当する部分から垂線を引き、2つのピークを分離した。それぞれのピーク面積を比例配分することより、固溶酸素(内部酸素)量と、外部酸素量とを算出した。
(6)窒化ケイ素粉末中、成形体中の不純物金属量
窒化ケイ素粉末中、成形体中の鉄、アルミニウム元素及びその他の不純物金属量は、誘導結合プラズマ発光分光分析装置(サーモフィッシャーサイエンティフック社製「iCAP 6500 DUO」)を用いて測定した。
(7)窒化ケイ素焼結基板の細孔の積算容積
試料として、2×2×(0.04)cmの大きさのものを窒化ケイ素焼結基板より任意に20枚切り出し、各試料について、側面からの圧入の影響を無くするため、試料の側面を平面の周縁が0.1mm没するように、細孔に浸入しない高粘度樹脂(エポキシ樹脂)にディップして側面を封止した。このようにして得られた試料について、水銀ポロシメーター(Micromeritics社製、商品名:オートポアIV9520)により細孔径分布曲線を得、これより、所定の範囲の積算容積を求め、試料の平均値として示した。
(8)成形体の密度
自動比重計(新光電子(株)製:DMA-220H型)を使用してそれぞれの成形体について密度を測定し、15ピースの平均値を成形体の密度とした。
(9)窒化ケイ素焼結基板の熱伝導率
試料の窒化ケイ素焼結体の熱伝導率は、NETZCH製 LFA467を用いたフラッシュ法により測定した。熱伝導率は、熱拡散率と焼結体密度と焼結体比熱の掛け算によって求められる。尚、窒化ケイ素焼結体の比熱は0.68(J/g・K)の値を採用した。焼結体密度は、自動比重計(新光電子(株)製:DMA-220H型)を用いて測定した。
上記熱伝導率の測定は、窒化ケイ素焼結体の表面をブラスト処理した後、表面にAuコート及びカーボンコートをした後に行った。
(10)3点曲げ強度
ISO DIS 23242:2019に準拠して、窒化ケイ素焼結基板の3点曲げ強度を測定した。
<実施例1>(窒化ケイ素粉末A)
シリコン粉末(半導体グレード、平均粒径5μm)と、希釈剤である窒化ケイ素粉末(平均粒径1.5μm)とを混合し、原料粉末(Si:80質量%、Si:20質量%)を得た。該原料粉末を反応容器に充填し、原料粉末層を形成させた。次いで、該反応容器を着火装置とガスの給排機構を有する耐圧性の密閉式反応器内に設置し、反応器内を減圧して脱気後、窒素ガスを供給して窒素置換した。その後、窒素ガスを除々に供給し、0.7MPaまで上昇せしめた。所定の圧力に達した時点(着火時)での原料粉末の嵩密度は0.5g/cmであった。
その後、反応容器内の原料粉末の端部に着火し、燃焼合成反応を行い、窒化ケイ素よりなる塊状生成物を得た。得られた塊状生成物を、お互いに擦り合わせることで解砕した後、振動ボールミルに適量を投入して12時間粉砕を行った。上記振動ボールミルによる粉砕は、直径15mmの窒化ケイ素焼結体よりなるボールを、見掛け充填率85%充填し、窒化ケイ素粗粉を空隙に対して70%となるように充填し、振動幅8mm、振動数1200回/分、重力加速度倍率5.6Gとし、また、粉砕中の温度は、約100℃となるように調整した。
尚、重力加速度倍率は、振動数と振幅の遠心効果の相関関係により算出した値である。また、上記粉砕機は、重金属汚染防止対策として容器内部はウレタンライニングを施した。また微粉砕開始直前に粉砕助剤としてエタノールを1質量%添加して行った。
このようにして得られた窒化ケイ素粉末Aの測定結果を表1に示した。
更に、上記得られた窒化ケイ素粉末Aを使用して、以下の方法により窒化ケイ素焼結基板を製造した。
窒化ケイ素粉末Aを100質量部、焼結助剤として、後述の方法により製造した、YSiC 2質量部、MgSiC 4質量部、及びイットリア3質量部を秤量し、水を分散媒として樹脂ポットと窒化ケイ素ボールを用いたボールミルにより、24時間混合を行った。なお、水はスラリーの濃度が60wt%となるように予め秤量し、樹脂ポット内に投入した。粉砕混合後、ポリビニルアルコール樹脂を22質量部添加し、さらに12時間混合を行いスラリー状の成形用組成物を得た。次いで、該成形用組成物を、真空脱泡機を用いて粘度調整して塗工用スラリーを作製した。その後、この粘度調整した成形用組成物をドクターブレード法によりシート成形を行い、幅75cm、厚さ0.35mmtのシート成形体を得た。
上記の通り得られたシート成形体を、乾燥空気中550℃の温度で脱脂処理し、脱脂された成形体を得た。その後、該脱脂後の成形体を焼成容器に入れて、窒素雰囲気及び0.02MPa・Gの圧力下において、1780℃で9時間焼成を行い、窒化ケイ素焼結体を得た。得られた窒化ケイ素焼結基板の物性を表2に示した。
<焼結助剤の製造方法>
・YSiC粉末: イットリア(信越化学工業株式会社製)、前記方法にて得られた窒化ケイ素粉末および炭素粉末(三菱化学製)を、下記反応式を用い加熱合成を行い作製した。
8Si+6Y+15C+2N→6YSiC+9CO
・MgSiN粉末: マグネシウム粉末(山石金属株式会社)、前記方法にて得られた窒化ケイ素粉末および金属ケイ素粉末(自社保有)を、下記反応式を用い加熱合成を行い作製した。
Si+Si+4Mg+2N→4MgSiN
・イットリア(Y2O3)粉末: 信越化学工業株式会社製
<実施例2>(窒化ケイ素粉末B)
結晶歪みの相違による焼結性の違いを確認するために、後述の比較例1で得られる窒化ケイ素粉末Cに粒度分布を極力合わせるよう、窒化ケイ素粉末Aの製造方法において、振動ボールミルによる粉砕後の粉末について、微粉の一部をカットした窒化ケイ素粉末を製造した。
このようにして得られた窒化ケイ素粉末Bの測定結果を表1に示した。
更に、上記得られた窒化ケイ素粉末Bを使用して、実施例1と同様な方法により窒化ケイ素焼結基板を製造した。得られた窒化ケイ素焼結基板の物性を表2に示した。
尚、前記得られた窒化ケイ素粉末、窒化ケイ素焼結体のTh(トリウム)、U(ウラン)の存在量を前記方法で測定した結果、定量下限(0.5ppbw)以下であった。
<比較例1>(窒化ケイ素粉末C)
窒化ケイ素粉末Aの製造方法において、粉砕時間を4時間とした以外は同様にして窒化ケイ素粉末を製造した。
このようにして得られた窒化ケイ素粉末Cの測定結果を表1に示した。
更に、上記得られた窒化ケイ素粉末Cを使用して、実施例1と同様な方法により窒化ケイ素焼結基板を製造した。得られた窒化ケイ素焼結基板の物性を表2に示した。
Figure 0007337304000001
Figure 0007337304000002

Claims (5)

  1. β化率が80%以上であり、全酸素量が1.55~10質量%であり、結晶歪が1.0×10-3以上であることを特徴とする窒化ケイ素粉末。
  2. レーザー回折散乱法により測定して得られた粒度分布を示す体積基準の累積曲線における50%値(D50)が0.5~3μm、上記累積曲線における90%値(D90)が5μm以下である請求項1記載の窒化ケイ素粉末。
  3. BET1点法により測定される比表面積が7~20m/gである請求項1又は2記載の窒化ケイ素粉末。
  4. 鉄、及びアルミニウムの含有量がそれぞれ500ppm以下、上記金属を含んだ不純物金属の総含有量が1000ppm以下である請求項1又は2に記載の窒化ケイ素粉末。
  5. 請求項1又は2に記載された窒化ケイ素粉末の成形体を窒素雰囲気下で焼成することを特徴とする窒化ケイ素焼結体の製造方法。
JP2023521359A 2021-12-22 2022-12-16 窒化ケイ素粉末 Active JP7337304B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021207697 2021-12-22
JP2021207697 2021-12-22
PCT/JP2022/046411 WO2023120422A1 (ja) 2021-12-22 2022-12-16 窒化ケイ素粉末

Publications (3)

Publication Number Publication Date
JPWO2023120422A1 JPWO2023120422A1 (ja) 2023-06-29
JP7337304B1 true JP7337304B1 (ja) 2023-09-01
JPWO2023120422A5 JPWO2023120422A5 (ja) 2023-11-22

Family

ID=86902645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023521359A Active JP7337304B1 (ja) 2021-12-22 2022-12-16 窒化ケイ素粉末

Country Status (4)

Country Link
JP (1) JP7337304B1 (ja)
KR (1) KR20240125576A (ja)
CN (1) CN118401467A (ja)
WO (1) WO2023120422A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648838A (ja) * 1992-07-29 1994-02-22 Denki Kagaku Kogyo Kk 窒化珪素粉末
JP2020023406A (ja) * 2016-12-12 2020-02-13 宇部興産株式会社 高純度窒化ケイ素粉末の製造方法
JP2021113138A (ja) * 2020-01-17 2021-08-05 株式会社トクヤマ 窒化ケイ素の製造方法
WO2022004755A1 (ja) * 2020-06-30 2022-01-06 株式会社トクヤマ 窒化ケイ素焼結基板
WO2022034810A1 (ja) * 2020-08-12 2022-02-17 株式会社Fjコンポジット 回路基板用積層体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256012B2 (ja) 1999-03-23 2009-04-22 修 山田 燃焼合成反応によるBN、AlN又はSi3N4の製造方法
JP3648541B2 (ja) 2000-10-19 2005-05-18 独立行政法人産業技術総合研究所 高熱伝導窒化ケイ素セラミックス並びにその製造方法
KR102643831B1 (ko) 2018-02-28 2024-03-07 가부시끼가이샤 도꾸야마 질화규소 분말의 제조 방법
KR20220106119A (ko) 2019-11-28 2022-07-28 가부시끼가이샤 도꾸야마 질화규소 소결체의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648838A (ja) * 1992-07-29 1994-02-22 Denki Kagaku Kogyo Kk 窒化珪素粉末
JP2020023406A (ja) * 2016-12-12 2020-02-13 宇部興産株式会社 高純度窒化ケイ素粉末の製造方法
JP2021113138A (ja) * 2020-01-17 2021-08-05 株式会社トクヤマ 窒化ケイ素の製造方法
WO2022004755A1 (ja) * 2020-06-30 2022-01-06 株式会社トクヤマ 窒化ケイ素焼結基板
WO2022034810A1 (ja) * 2020-08-12 2022-02-17 株式会社Fjコンポジット 回路基板用積層体

Also Published As

Publication number Publication date
WO2023120422A1 (ja) 2023-06-29
JPWO2023120422A1 (ja) 2023-06-29
CN118401467A (zh) 2024-07-26
KR20240125576A (ko) 2024-08-19

Similar Documents

Publication Publication Date Title
KR102643831B1 (ko) 질화규소 분말의 제조 방법
CN114728855B (zh) 氮化硅烧结体的制造方法
TWI573757B (zh) A silicon nitride powder manufacturing method and a silicon nitride powder, and a silicon nitride sintered body and a circuit board using the same
Solodkyi et al. Synthesis of B6O powder and spark plasma sintering of B6O and B6O–B4C ceramics
CN115702130A (zh) 氮化硅烧结基板
CN115443258B (zh) 烧结用氮化硅粉末
KR101859818B1 (ko) 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법
JP7337304B1 (ja) 窒化ケイ素粉末
WO2023176893A1 (ja) 窒化ケイ素粉末、および窒化ケイ素質焼結体の製造方法
WO2022004754A1 (ja) 窒化ケイ素焼結体の連続製造方法
WO2022210369A1 (ja) 窒化ケイ素焼結体の製造方法
JP3827360B2 (ja) 窒化けい素の製造法
EP4071110A1 (en) Metal nitride prodcution method
WO2021112146A1 (ja) 金属窒化物の製造方法
JP7437570B1 (ja) 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法
WO2023176889A1 (ja) 窒化ケイ素粉末、および窒化ケイ素質焼結体の製造方法
WO2024095834A1 (ja) 窒化ケイ素焼結体
Guo et al. Study of the sintering properties of plasma synthesized ultrafine SiC powders
Abraamyan et al. Mechanically Stimulated Low-Temperature Synthesis of Aluminium Nitride

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7337304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150