WO2021104046A1 - 钼铌合金靶材及其制备方法、黑化膜 - Google Patents

钼铌合金靶材及其制备方法、黑化膜 Download PDF

Info

Publication number
WO2021104046A1
WO2021104046A1 PCT/CN2020/128661 CN2020128661W WO2021104046A1 WO 2021104046 A1 WO2021104046 A1 WO 2021104046A1 CN 2020128661 W CN2020128661 W CN 2020128661W WO 2021104046 A1 WO2021104046 A1 WO 2021104046A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum
niobium alloy
target
niobium
alloy target
Prior art date
Application number
PCT/CN2020/128661
Other languages
English (en)
French (fr)
Inventor
程银兵
周钧
庄猛
庄志杰
Original Assignee
基迈克材料科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 基迈克材料科技(苏州)有限公司 filed Critical 基迈克材料科技(苏州)有限公司
Publication of WO2021104046A1 publication Critical patent/WO2021104046A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0042Matrix based on low melting metals, Pb, Sn, In, Zn, Cd or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Definitions

  • the invention relates to the field of molybdenum-niobium alloy materials for improving the effect of blackening film, in particular to a molybdenum-niobium alloy target material, a preparation method thereof, and a blackening film.
  • the blackening film is usually located on the surface of the glass panels of electronic products such as LCD TVs, flat-screen TVs, and mobile phones.
  • the blackening film is used for narrow-frame screens or anti-reflection films.
  • the preparation method is usually made by sputtering an alloy target.
  • the traditional blackened film covering the surface of the glass panel of an electronic product has a strong reflection of light, a small amount of light transmission, and a large amount of stray light is easily absorbed in the product. This not only affects the visual experience, but even causes damage to the eyes.
  • a blackening film that can reduce the reflectivity of the surface of the glass panel of the electronic product and reduce the absorption of a large amount of stray light.
  • a molybdenum-niobium alloy target material which comprises the following parts by mass of raw material components:
  • the metal oxide is selected from at least one of aluminum oxide and zinc oxide.
  • the raw material composition ratio of the above molybdenum-niobium alloy target is reasonable. On the basis of the traditional molybdenum-niobium alloy target, at least one of the above-mentioned metal oxides is added.
  • the chemical film can reduce or eliminate the reflected light on the surface of the electronic product, increase the amount of light transmitted, and reduce the absorption of stray light, thereby enhancing the visual experience and protecting the eyes.
  • the metal oxide is a mixed metal oxide composed of aluminum oxide and zinc oxide, and the mass ratio of the zinc oxide to the aluminum oxide is 1:99-99:1.
  • the aluminum oxide is aluminum oxide powder with an average particle size of 0.01 ⁇ m to 5 ⁇ m
  • the zinc oxide is zinc oxide powder with an average particle size of 0.01 ⁇ m to 10 ⁇ m.
  • the molybdenum is molybdenum powder with an average particle size of 0.1 ⁇ m-10 ⁇ m.
  • the niobium is niobium powder with an average particle size of 0.1 ⁇ m-150 ⁇ m.
  • the present invention also provides a method for preparing a molybdenum-niobium alloy target, which includes the following steps:
  • Hot isostatic pressing is performed on the molybdenum-niobium alloy tube target or the plain target blank to obtain the molybdenum-niobium alloy target.
  • the raw materials in the molybdenum-niobium alloy target in proportion and ball milling to obtain a premix the raw materials molybdenum and niobium in the molybdenum-niobium alloy target are mixed,
  • the molybdenum-niobium mixture is obtained by ball milling, and the remaining raw materials in the molybdenum-niobium alloy target are mixed with the molybdenum-niobium mixture, and the premix is obtained by ball milling.
  • the pressure of the cold isostatic pressing is 100Mpa-140Mpa, and/or the pressure of the hot isostatic pressing is 100Mpa-150Mpa, and the temperature of the hot isostatic pressing is 1000°C-1500°C .
  • the molybdenum-niobium alloy tube target or the plain target blank in the step of performing hot isostatic pressing on the molybdenum-niobium alloy tube target or the plain target blank, the molybdenum-niobium alloy tube target or the plain target blank is packed into the package.
  • hot isostatic pressing treatment remove the jacket to obtain a molybdenum-niobium alloy target.
  • the present invention also provides a blackened film, which is characterized in that a target prepared by using the molybdenum-niobium alloy target material according to any one of the present invention or the method for preparing the molybdenum-niobium alloy target material according to any one of the present invention Material splash target.
  • FIG. 1 is a comparison diagram of the reflectance at different wavelengths of the blackened films prepared in the embodiment of the present invention and the comparative example.
  • An embodiment of the present invention provides a molybdenum-niobium alloy target, which includes the following raw material components by mass:
  • the metal oxide is selected from at least one of zinc oxide and aluminum oxide. It can be understood that the metal oxide may be only aluminum oxide, or only zinc oxide, or may be composed of aluminum oxide and zinc oxide. Compositions.
  • the metal oxide is a mixed metal oxide composed of aluminum oxide and zinc oxide, and the mass ratio of the zinc oxide to the aluminum oxide is 1:99-99:1. Further, The mass ratio of the zinc oxide to the aluminum oxide is 1:4-20:1, and further, the mass ratio of the zinc oxide to the aluminum oxide is 1:4-10:1.
  • the molybdenum is molybdenum powder with an average particle size of 0.1 ⁇ m-10 ⁇ m.
  • the niobium is niobium powder with an average particle size of 0.1 ⁇ m-150 ⁇ m.
  • the alumina is alumina powder with an average particle size of 0.01 ⁇ m to 5 ⁇ m.
  • the zinc oxide is zinc oxide powder with an average particle size of 0.01 ⁇ m-10 ⁇ m.
  • the present invention also provides a method for preparing a molybdenum-niobium alloy target, which includes the following steps:
  • the raw material components in the molybdenum-niobium alloy target according to any embodiment of the present invention are mixed and ball milled to obtain a premix, and then the premix is cold isostatically pressed to obtain a molybdenum-niobium alloy tube target or plane
  • the target blank is subjected to hot isostatic pressing to the molybdenum-niobium alloy tube target or the flat target blank to obtain a molybdenum-niobium alloy target.
  • the raw materials in the molybdenum-niobium alloy target according to any embodiment of the present invention are mixed according to the ratio, and then ball milled to obtain a premix; cold isostatic pressing the premix to obtain molybdenum and niobium Then, the molybdenum-niobium alloy tube target or the plain target blank is put into the sheath, and the sheath is hot isostatically pressed to remove the sheath to obtain the molybdenum-niobium alloy target.
  • the raw material molybdenum and niobium in the molybdenum-niobium alloy target are first mixed and ball milled to obtain a molybdenum-niobium mixture, and then the molybdenum-niobium mixture is combined with the remaining metal oxides in the molybdenum-niobium alloy target
  • the raw materials are mixed according to the proportion, and the premix is obtained by ball milling.
  • step-by-step ball milling is that it is more conducive to the ball milling and mixing process of each raw material in the target material.
  • the pressure of the cold isostatic pressure is 100Mpa-140Mpa.
  • the pressure of the hot isostatic pressing is 100Mpa-150Mpa, and the temperature of the hot isostatic pressing is 1000°C-1500°C. Further, when the pressure of the cold isostatic pressing is 100Mpa-140Mpa, the pressure of the hot isostatic pressing is 100Mpa-150Mpa, and the temperature of the hot isostatic pressing is 1000°C-1500°C.
  • the present invention also provides a blackened film, which includes a target prepared by using the molybdenum-niobium alloy target material according to any embodiment of the present invention or the method for preparing the molybdenum-niobium alloy target material according to any embodiment of the present invention Material splash target.
  • the preparation process of the blackened film of the present invention is: sputtering the target material prepared by the present invention on flat glass to obtain the blackened film.
  • the raw material composition ratio of the above molybdenum-niobium alloy target is reasonable. On the basis of the traditional molybdenum-niobium alloy target, at least one of the above-mentioned metal oxides is added.
  • the chemical film can reduce or eliminate the reflected light on the surface of the electronic product, increase the amount of light transmitted, and reduce the absorption of stray light, thereby enhancing the visual experience and protecting the eyes.
  • a preparation method of molybdenum-niobium alloy target :
  • the premix is cold isostatically pressed to obtain a molybdenum-niobium alloy tube target, wherein the process parameter of the cold isostatic pressing is: the pressure of the cold isostatic pressing is 120Mpa.
  • the process parameters of the hot isostatic pressing are: the pressure of the hot isostatic pressing is 200Mpa, and the hot isostatic pressing is 200Mpa.
  • the temperature is 1400°C and the sintering time is 3h.
  • a preparation method of molybdenum-niobium alloy target :
  • a mixed ball mill of 7.2 kg of molybdenum powder with an average particle size of 3 ⁇ m and 0.8 kg of niobium powder with an average particle size of 70 ⁇ m was used, and the mixture was placed in a roller ball mill for roller ball milling.
  • a mixture of molybdenum and niobium is obtained, wherein the abrasive is 16kg of zirconia balls and the ball milling time is 12h.
  • alumina powder with an average particle diameter of 1 ⁇ m and 0.4kg of zinc oxide powder with 5 ⁇ m into a roller ball mill for 16h. After ball milling, the slurry is taken out and dried in a resistance furnace to obtain a dried product. The drying temperature is 120°C, smashed through a 200-mesh sieve after drying.
  • the molybdenum and niobium mixture and the dried material after ball milling are added to a drum ball mill, and the ball milling process is performed again.
  • the milling time is 12 hours, and then the molybdenum-niobium alloy tube target is obtained by cold isostatic pressing.
  • the process parameters of cold isostatic pressing are: cold
  • the isostatic pressure is 120Mpa.
  • the process parameters of the hot isostatic pressing are: the pressure of the hot isostatic pressing is 200Mpa, and the hot isostatic pressing is 200Mpa.
  • the temperature is 1400°C and the sintering time is 3h.
  • a method for preparing a molybdenum-niobium alloy target is substantially the same as in Example 1, except that zinc oxide powder is not added.
  • a preparation method of molybdenum-niobium alloy target :
  • the premix is cold isostatically pressed to obtain a molybdenum-niobium alloy tube target, wherein the process parameter of the cold isostatic pressing is: the pressure of the cold isostatic pressing is 120Mpa.
  • the process parameters of the hot isostatic pressing are: the pressure of the hot isostatic pressing is 200Mpa, and the hot isostatic pressing is 200Mpa.
  • the temperature is 1400°C and the sintering time is 3h.
  • a preparation method of molybdenum-niobium alloy target :
  • Vacuum hot press sintering titanium carbide with an average particle size of 15 ⁇ m and 8kg The process parameters of vacuum hot press sintering are as follows: sintering temperature is 1800°C, sintering time is 2h, sintering pressure is 40Mpa, and the titanium carbide target is machined. . Finally, a titanium carbide target is obtained.
  • Example 2 and Comparative Examples 1-3 were sputtered on flat glass to obtain a blackened film. And measure the reflectance of the blackened film, where the ratio of the reflected energy to the incident energy is called the reflectance of the object.
  • Example 2 As shown in Figure 1, under the same wavelength, the reflectance of Example 2 is the smallest, which is significantly better than those of the comparative examples. Furthermore, it shows that the blackening film of the present invention can reduce or eliminate the reflected light on the surface of electronic products and increase the light transmission. Volume, reduce stray light absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种钼铌合金靶材及其制备方法、黑化膜。其中,钼铌合金靶材包括如下质量份的原料组分:钼45-89.1份、铌5-9.9份以及金属氧化物1-50份;其中,所述金属氧化物选自氧化铝和氧化锌中的至少一种。上述钼铌合金靶材的原料组分配比合理,在传统的钼铌合金靶材的基础上,添加至少一种上述金属氧化物,经实验验证,经上述钼铌合金靶材最终制得的黑化膜可以减少或消除电子产品表面的反射光,增加透光量,减少杂散光吸收。

Description

钼铌合金靶材及其制备方法、黑化膜
本申请要求2019年11月28日向中国国家知识产权局的申请号为201911190147.0的专利申请的优先权。
技术领域
本发明涉及改善黑化膜效果的钼铌合金材料领域,特别是涉及一种钼铌合金靶材及其制备方法、黑化膜。
背景技术
黑化膜通常位于液晶电视、平板电视、手机等电子产品玻璃面板的表面,黑化膜用于窄边框屏或减反射膜,其制备方法通常采用合金靶材溅靶制得。
传统的覆于电子产品玻璃面板表面的黑化膜对光的反射强,透光量少,产品中易吸收大量的杂散光。这样不仅影响视觉体验,甚至对眼睛造成伤害。亟需一种能够降低电子产品玻璃面板表面的反光率,减少吸收大量的杂散光的黑化膜。
发明内容
基于此,有必要提供一种能够降低反光率、增大透光量且减少杂散光吸收的钼铌合金靶材及其制备方法、黑化膜。
一种钼铌合金靶材,其包括如下质量份的原料组分:
钼            45-89.1份、
铌            5-9.9份、以及
金属氧化物    1-50份;
其中,所述金属氧化物选自氧化铝和氧化锌中的至少一种。
上述钼铌合金靶材的原料组分配比合理,在传统的钼铌合金靶材的基础上,添加至少一种上述金属氧化物,经实验验证,经上述钼铌合金靶材最终制得的黑化膜可以减少或消除电子产品表面的反射光,增加透光量,减少杂散光吸收,从而提升视觉体验,对眼睛起到保护作用。
在其中一个实施例中,所述金属氧化物为氧化铝和氧化锌构成的混合金属氧化物,所述氧化锌与所述氧化铝的质量比为1:99-99:1。
在其中一个实施例中,所述氧化铝为平均粒径为0.01μm-5μm的氧化铝粉,和/或所述氧化锌为平均粒径为0.01μm-10μm的氧化锌粉。
在其中一个实施例中,所述钼为平均粒径为0.1μm-10μm的钼粉。
在其中一个实施例中,所述铌为平均粒径为0.1μm-150μm的铌粉。
本发明还提供一种钼铌合金靶材的制备方法,其包括如下步骤:
将本发明任一项所述的钼铌合金靶材中的原料组分按配比混合和球磨处理得到预混料;
将所述预混料冷等静压处理,得到钼铌合金管靶或平面靶材素坯;
对所述钼铌合金管靶或平面靶材素坯进行热等静压处理,得到钼铌合金靶材。
在其中一个实施例中,在将所述钼铌合金靶材中的原料按配比混合和球磨处理得到预混料的步骤中,是将所述钼铌合金靶材中的原料钼和铌混合、球磨处理得到钼铌混料,对所述钼铌混料与所述钼铌合金靶材中的其余原料混合,球磨处理得到预混料。
在其中一个实施例中,所述冷等静压的压力为100Mpa-140Mpa,和/或所述热等静压的压力为100Mpa-150Mpa,所述热等静压的温度为1000℃-1500℃。
在其中一个实施例中,在对所述钼铌合金管靶或平面靶材素坯进行热等静 压处理的步骤中,是将所述钼铌合金管靶或平面靶材素坯装入包套中,热等静压处理,去除包套得到钼铌合金靶材。
本发明还提供一种黑化膜,其特征在于,将本发明任一项所述的钼铌合金靶材或将本发明任一项所述的钼铌合金靶材的制备方法制得的靶材溅靶制得。
附图说明
图1为本发明实施例和对比例制得的黑化膜在不同波长下的反射比的比较图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明一实施例中提供了一种钼铌合金靶材,其包括如下质量份的原料组分:
钼            45-89.1份、
铌            5-9.9份、以及
金属氧化物     1-50份;
其中,所述金属氧化物选自氧化锌和氧化铝中的至少一种,可以理解,所述金属氧化物可以仅为氧化铝、也可以仅为氧化锌,还可以为氧化铝和氧化锌构成的组合物。
在其中一个实施例中,所述金属氧化物为氧化铝和氧化锌构成的混合金属氧化物,所述氧化锌与所述氧化铝的质量比为1:99-99:1,进一步地,所述氧化锌与所述氧化铝的质量比为1:4-20:1,更进一步地,所述氧化锌与所述氧化铝的质量比为1:4-10:1。
在其中一个实施例中,所述钼为平均粒径为0.1μm-10μm的钼粉。
在其中一个实施例中,所述铌为平均粒径为0.1μm-150μm的铌粉。
在其中一个实施例中,所述氧化铝为平均粒径为0.01μm-5μm的氧化铝粉。
在其中一个实施例中,所述氧化锌为平均粒径为0.01μm-10μm的氧化锌粉。
本发明还提供一种钼铌合金靶材的制备方法,其包括如下步骤:
将本发明任一实施例所述的钼铌合金靶材中的原料组分按配比混合和球磨处理得到预混料,之后将所述预混料冷等静压得到钼铌合金管靶或平面靶材素坯,对所述钼铌合金管靶或平面靶材素坯进行热等静压处理,得到钼铌合金靶材。
在其中一个实施例中,将本发明任一实施例所述的钼铌合金靶材中的原料按配比混合、之后球磨处理得到预混料;将所述预混料冷等静压得到钼铌合金管靶或平面靶材素坯,之后将所述钼铌合金管靶或平面靶材素坯装入包套中,热等静压处理,去除包套得到钼铌合金靶材。进一步地,先将所述钼铌合金靶材中的原料钼和铌混合、球磨处理得到钼铌混料,之后将所述钼铌混料与所述钼铌合金靶材中的其余金属氧化物原料按配比混合,球磨处理得到预混料。分 步球磨处理的好处是更利于靶材中各原料球磨和混匀过程更加充分。
在其中一个实施例中,所述冷等静压的压力为100Mpa-140Mpa。
在其中一个实施例中,所述热等静压的压力为100Mpa-150Mpa,所述热等静压的温度为1000℃-1500℃。进一步地,当所述冷等静压的压力为100Mpa-140Mpa时,所述热等静压的压力为100Mpa-150Mpa,所述热等静压的温度为1000℃-1500℃。
本发明还提供一种黑化膜,其包括将本发明任一实施例所述的钼铌合金靶材或将本发明任一实施例所述的钼铌合金靶材的制备方法制得的靶材溅靶制得。
具体地,本发明黑化膜的制备过程为:将本发明制得的靶材溅射于平面玻璃上,得到黑化膜。
上述钼铌合金靶材的原料组分配比合理,在传统的钼铌合金靶材的基础上,添加至少一种上述金属氧化物,经实验验证,经上述钼铌合金靶材最终制得的黑化膜可以减少或消除电子产品表面的反射光,增加透光量,减少杂散光吸收,从而提升视觉体验,对眼睛起到保护作用。
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种钼铌合金靶材的制备方法:
采用平均粒径为3μm的7.2kg钼粉与平均粒径为70μm的0.8kg铌粉混合,将混合物置于滚筒式球磨机中进行滚筒式球磨处理,其中,磨料为16kg氧化锆 球,球磨时间为12h,之后加入平均粒径为4μm的2kg氧化锌粉,继续球磨12h,制得预混料。
将所述预混料冷等静压得到钼铌合金管靶,其中,冷等静压的工艺参数为:冷等静压的压力为120Mpa。
再将所述钼铌合金管靶装入包套中,之后进行热等静压处理,其中,热等静压的工艺参数为:热等静压的压力为200Mpa,所述热等静压的温度为1400℃,烧结时间为3h。
最后,去除包套得到钼铌合金靶材。
实施例2
一种钼铌合金靶材的制备方法:
本例采用平均粒径为3μm的钼粉7.2kg和平均粒径为70μm的铌粉0.8kg混合球磨,将混合物置于滚筒式球磨机中进行滚筒式球磨处理。得到钼铌混合物,其中,磨料为16kg氧化锆球,球磨时间为12h。
将平均粒径为1μm的氧化铝粉1.96kg和5μm的氧化锌粉0.4kg放入滚筒式球磨机中球磨16h,球磨后取出浆液在电阻炉内进行烘干,得到烘干物,烘干温度为120℃,烘干后粉碎过200目筛。
将球磨后钼铌混合物和烘干物均加入滚筒式球磨机中,再次球磨处理,球磨时间为12h,之后冷等静压得到钼铌合金管靶,其中,冷等静压的工艺参数为:冷等静压的压力为120Mpa。
再将所述钼铌合金管靶装入包套中,之后进行热等静压处理,其中,热等静压的工艺参数为:热等静压的压力为200Mpa,所述热等静压的温度为1400℃,烧结时间为3h。
最后,去除包套得到钼铌合金靶材。
对比例1
一种钼铌合金靶材的制备方法,其大体上与实施例1相同,不同之处在于不添加氧化锌粉。
对比例2
一种钼铌合金靶材的制备方法:
采用平均粒径为3μm的7.2kg钼粉与平均粒径为70μm的0.8kg钽粉混合,将混合物置于滚筒式球磨机中进行滚筒式球磨处理,其中,磨料为16kg氧化锆球,球磨时间为12h,制得预混料。
将所述预混料冷等静压得到钼铌合金管靶,其中,冷等静压的工艺参数为:冷等静压的压力为120Mpa。
再将所述钼铌合金管靶装入包套中,之后进行热等静压处理,其中,热等静压的工艺参数为:热等静压的压力为200Mpa,所述热等静压的温度为1400℃,烧结时间为3h。
最后,去除包套得到钼铌合金靶材。
对比例3
一种钼铌合金靶材的制备方法:
将平均粒径为15μm,8kg的碳化钛真空热压烧结,其中,真空热压烧结的工艺参数为:烧结温度为1800℃,烧结时间为2h,烧结压力为40Mpa,取出碳化钛靶材机加工。最后得到碳化钛靶材。
效果验证
将实施例2和对比例1-3中制得的靶材溅射于平面玻璃上,得到黑化膜。并测定黑化膜的反射比,其中,反射的能量与入射的能量之比称为物体的反射比。
由图1所示,相同波长情况下,实施例2的反射比最小,明显优于对比例各组,进而说明,本发明的黑化膜可以减少或消除电子产品表面的反射光,增加透光量,减少杂散光吸收。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种钼铌合金靶材,其特征在于,包括如下质量份的原料组分:
    钼          45-89.1份、
    铌            5-9.9份、以及
    金属氧化物    1-50份;
    其中,所述金属氧化物选自氧化铝和氧化锌中的至少一种。
  2. 根据权利要求1所述的钼铌合金靶材,其特征在于,所述金属氧化物为氧化铝和氧化锌构成的混合金属氧化物,所述氧化锌与所述氧化铝的质量比为1:99-99:1。
  3. 根据权利要求1所述的钼铌合金靶材,其特征在于,所述氧化铝为平均粒径为0.01μm-5μm的氧化铝粉,和/或所述氧化锌为平均粒径为0.01μm-10μm的氧化锌粉。
  4. 根据权利要求1-3任一项所述的钼铌合金靶材,其特征在于,所述钼为平均粒径为0.1μm-10μm的钼粉。
  5. 根据权利要求1-3任一项所述的钼铌合金靶材,其特征在于,所述铌为平均粒径为0.1μm-150μm的铌粉。
  6. 一种钼铌合金靶材的制备方法,其特征在于,包括如下步骤:
    将权利要求1-5任一项所述的钼铌合金靶材中的原料组分按配比混合和球磨处理得到预混料;
    将所述预混料冷等静压处理,得到钼铌合金管靶或平面靶材素坯;
    对所述钼铌合金管靶或平面靶材素坯进行热等静压处理,得到钼铌合金靶材。
  7. 根据权利要求6所述的钼铌合金靶材的制备方法,其特征在 于,在将所述钼铌合金靶材中的原料按配比混合和球磨处理得到预混料的步骤中,是将所述钼铌合金靶材中的原料钼和铌混合、球磨处理得到钼铌混料,对所述钼铌混料与所述钼铌合金靶材中的其余原料混合,球磨处理得到预混料。
  8. 根据权利要求6所述的钼铌合金靶材的制备方法,其特征在于,所述冷等静压的压力为100Mpa-140Mpa,和/或所述热等静压的压力为100Mpa-150Mpa,所述热等静压的温度为1000℃-1500℃。
  9. 根据权利要求6-8任一项所述的钼铌合金靶材的制备方法,其特征在于,在对所述钼铌合金管靶或平面靶材素坯进行热等静压处理的步骤中,是将所述钼铌合金管靶或平面靶材素坯装入包套中,热等静压处理,去除包套得到钼铌合金靶材。
  10. 一种黑化膜,其特征在于,将权利要求1-5任一项所述的钼铌合金靶材或将权利要求6-9任一项所述的钼铌合金靶材的制备方法制得的靶材溅靶制得。
PCT/CN2020/128661 2019-11-28 2020-11-13 钼铌合金靶材及其制备方法、黑化膜 WO2021104046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911190147.0A CN111058003B (zh) 2019-11-28 2019-11-28 钼铌合金靶材及其制备方法、黑化膜
CN201911190147.0 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021104046A1 true WO2021104046A1 (zh) 2021-06-03

Family

ID=70299192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128661 WO2021104046A1 (zh) 2019-11-28 2020-11-13 钼铌合金靶材及其制备方法、黑化膜

Country Status (2)

Country Link
CN (1) CN111058003B (zh)
WO (1) WO2021104046A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637945A (zh) * 2021-07-26 2021-11-12 洛阳爱科麦钨钼科技股份有限公司 一种大规格钼铌合金靶材的轧制制备方法
CN114959596A (zh) * 2021-12-23 2022-08-30 常州苏晶电子材料有限公司 钼合金包覆热成型工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111058003B (zh) * 2019-11-28 2021-10-08 基迈克材料科技(苏州)有限公司 钼铌合金靶材及其制备方法、黑化膜
CN116121716B (zh) * 2023-04-14 2023-07-04 广州市尤特新材料有限公司 一种防变色陶瓷膜用靶材及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214308A (ja) * 1999-01-25 2000-08-04 Asahi Glass Co Ltd ブラックマトリックス薄膜、多層ブラックマトリックス、カラ―フィルタ基板、ブラックマトリックス薄膜形成用タ―ゲットおよび基板の製造方法
CN102321871A (zh) * 2011-09-19 2012-01-18 基迈克材料科技(苏州)有限公司 热等静压生产平板显示器用钼合金溅射靶材的方法
KR20150005316A (ko) * 2013-07-05 2015-01-14 (주)브이앤아이솔루션 스퍼터 타겟 및 그 제조방법
CN105143931A (zh) * 2013-04-11 2015-12-09 贺利氏德国有限及两合公司 光吸收层及含该层层系统、层系统制造方法及适用溅镀靶
CN108070832A (zh) * 2016-11-14 2018-05-25 宁波江丰电子材料股份有限公司 钼铌靶坯的制造方法
CN109280892A (zh) * 2018-11-13 2019-01-29 江苏迪丞光电材料有限公司 平板显示器用钼合金溅射靶材的制备方法及靶材
CN111058003A (zh) * 2019-11-28 2020-04-24 基迈克材料科技(苏州)有限公司 钼铌合金靶材及其制备方法、黑化膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128743A (ja) * 1992-09-04 1994-05-10 Mitsubishi Materials Corp 透明導電膜とその製造方法およびそれに用いるターゲット
KR101099927B1 (ko) * 2003-05-20 2011-12-28 이데미쓰 고산 가부시키가이샤 비정질 투명 도전막, 그 원료 스퍼터링 타겟, 비정질 투명 전극 기판, 그 제조방법, 및 디스플레이용 컬러 필터
US8784700B2 (en) * 2006-12-13 2014-07-22 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
US8449817B2 (en) * 2010-06-30 2013-05-28 H.C. Stark, Inc. Molybdenum-containing targets comprising three metal elements
KR101512819B1 (ko) * 2013-02-27 2015-04-16 삼성코닝어드밴스드글라스 유한회사 산화아연계 스퍼터링 타겟, 그 제조방법 및 이를 통해 증착된 차단막을 갖는 박막트랜지스터
JP2015190017A (ja) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 軟磁性薄膜形成用スパッタリングターゲット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214308A (ja) * 1999-01-25 2000-08-04 Asahi Glass Co Ltd ブラックマトリックス薄膜、多層ブラックマトリックス、カラ―フィルタ基板、ブラックマトリックス薄膜形成用タ―ゲットおよび基板の製造方法
CN102321871A (zh) * 2011-09-19 2012-01-18 基迈克材料科技(苏州)有限公司 热等静压生产平板显示器用钼合金溅射靶材的方法
CN105143931A (zh) * 2013-04-11 2015-12-09 贺利氏德国有限及两合公司 光吸收层及含该层层系统、层系统制造方法及适用溅镀靶
KR20150005316A (ko) * 2013-07-05 2015-01-14 (주)브이앤아이솔루션 스퍼터 타겟 및 그 제조방법
CN108070832A (zh) * 2016-11-14 2018-05-25 宁波江丰电子材料股份有限公司 钼铌靶坯的制造方法
CN109280892A (zh) * 2018-11-13 2019-01-29 江苏迪丞光电材料有限公司 平板显示器用钼合金溅射靶材的制备方法及靶材
CN111058003A (zh) * 2019-11-28 2020-04-24 基迈克材料科技(苏州)有限公司 钼铌合金靶材及其制备方法、黑化膜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637945A (zh) * 2021-07-26 2021-11-12 洛阳爱科麦钨钼科技股份有限公司 一种大规格钼铌合金靶材的轧制制备方法
CN114959596A (zh) * 2021-12-23 2022-08-30 常州苏晶电子材料有限公司 钼合金包覆热成型工艺
CN114959596B (zh) * 2021-12-23 2023-12-05 常州苏晶电子材料有限公司 钼合金包覆热成型工艺

Also Published As

Publication number Publication date
CN111058003A (zh) 2020-04-24
CN111058003B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2021104046A1 (zh) 钼铌合金靶材及其制备方法、黑化膜
JP5586752B2 (ja) 高密度の耐熱金属及び合金のスパッタリングターゲット
US8466077B2 (en) Sputtering target for forming ZrO2-In2O3 based protective film for optical storage medium
JP2010180449A (ja) 複合タングステン酸化物ターゲット材とその製造方法
JP2009510263A (ja) スパッタリングターゲット、低い抵抗性の透明な導電性被膜、このような被膜の形成法および該導電性被膜に使用するための組成物
WO2019176552A1 (ja) 酸化物薄膜及び該薄膜を製造するためのスパッタリングターゲット用酸化物焼結体
TWI564250B (zh) Oxide sintered body, sputtering target and oxide film
KR20220062050A (ko) 지르코니아 세라믹, 지르코니아 세라믹을 제조하는 방법, 및 그의 적용 및 조성물
CN101198565A (zh) Izo溅射靶的制造方法
CN107207356B (zh) 氧化物烧结体、氧化物溅射靶和氧化物薄膜
JP2009256762A (ja) スパッタリングターゲットおよびその製造方法
JP4711619B2 (ja) 導電性酸化チタン焼結体、スパッタリングターゲット、透光性部材、および画像表示装置
WO2021111970A1 (ja) 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
WO2005031028A1 (ja) スパッタリングターゲットとそれを用いたSi酸化膜の製造方法
JP3358548B2 (ja) スパッタ割れのない光記録媒体保護膜形成用スパッタリングターゲット
CN110257773B (zh) 一种用于蒸镀高吸收膜层的蒸镀材料及其制备方法
CN109082632B (zh) 一种红外低折射率混合镀膜材料及制备方法
JP2001099789A (ja) 焼結体の観察法、ito焼結体、itoスパッタリングターゲット及びito焼結体の製造法
KR20120132247A (ko) 내플라즈마 특성을 갖는 희토류 산화물-알루미나계 세라믹 및 그 제조방법
WO2016174877A1 (ja) Itoスパッタリングターゲット材
JP2005068507A (ja) 酸化膜形成用スパッタリングターゲットとそれを用いた酸化膜の製造方法
JP2005001918A (ja) ホウ化物微粒子の製造方法、ホウ化物微粒子および日射遮蔽体形成用分散液
JP2000297363A (ja) 光記録保護膜形成用スパッタリングターゲット及びその製造方法
WO2021112006A1 (ja) 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
JP4121022B2 (ja) ターゲットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894620

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20894620

Country of ref document: EP

Kind code of ref document: A1