WO2021098686A1 - 一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法 - Google Patents

一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法 Download PDF

Info

Publication number
WO2021098686A1
WO2021098686A1 PCT/CN2020/129496 CN2020129496W WO2021098686A1 WO 2021098686 A1 WO2021098686 A1 WO 2021098686A1 CN 2020129496 W CN2020129496 W CN 2020129496W WO 2021098686 A1 WO2021098686 A1 WO 2021098686A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
preparation
delivery system
blood
brain barrier
Prior art date
Application number
PCT/CN2020/129496
Other languages
English (en)
French (fr)
Inventor
蔡林涛
邓冠军
孙枝红
龚萍
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2021098686A1 publication Critical patent/WO2021098686A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0097Cells, viruses, ghosts, red blood cells, viral vectors, used for imaging or diagnosis in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes

Definitions

  • the invention relates to the field of medicine, and in particular to a preparation method of a delivery system that crosses the blood-brain barrier and specifically targets glioma therapeutic drugs.
  • the Blood Brain Barrier refers to the barrier between the blood plasma and brain cells formed by the brain capillary wall and glial cells, and the barrier between the plasma formed by the choroid plexus and the cerebrospinal fluid. These barriers can prevent certain These substances enter the brain tissue from the blood. A variety of solutes in the blood enter the brain tissue from the brain capillaries, which is difficult and easy; some pass quickly, some are slower, and some cannot pass at all.
  • the blood-brain barrier is a general term for the three barriers of blood-brain, blood-cerebrospinal fluid and cerebrospinal fluid-brain.
  • Brain capillaries lack the holes that general capillaries have, or these holes are few and small. Endothelial cells overlap each other and are tightly connected, which can effectively prevent macromolecular substances from passing through the junction of endothelial cells. Many drugs and substances cannot easily enter the brain parenchyma from the blood.
  • Glioma is a typical central nervous system disease, which seriously endangers human health. Glioma is derived from glial cell pathology, which accounts for about 80% of intracranial malignant brain tumors.
  • the World Health Organization (WHO) divides brain gliomas into four levels according to their malignant degree. The malignant degree of gliomas from low to high is pilocytic astrocytoma, low-grade glioma, and anaplastic astrocyte. Tumors and glioblastoma multiforme. Among them, glioblastoma multiforme presents the characteristics of high recurrence rate, high mortality rate and low cure rate.
  • the clinical standard treatments mainly include surgical resection and chemotherapy.
  • the 2-year survival rate after treatment is less than 30%, the 5-year survival rate is less than 10%, and the median survival time is only 12-15 months. Because the growth characteristics of glioma are different from other tumors, it grows "crabfoot-like" into the normal brain tissue around the primary lesion, resulting in an unclear boundary between the tumor tissue and the normal brain tissue, so it is difficult to completely remove it by surgery. It is easy to relapse after operation. At the same time, gliomas are prone to occur in important functional areas of the brain, such as human cognition, movement, and language and other nerve central control areas. As a result, postoperative sequelae can be caused to patients and seriously affect the quality of life after surgery.
  • chemotherapy is an important supplement to the treatment of glioma, but due to the existence of the brain blood-brain barrier (BBB), most chemotherapy drugs are restricted from entering the brain tumor tissue Area, making it unable to reach the effective concentration of drug treatment, resulting in poor chemotherapy effect for glioma.
  • BBB brain blood-brain barrier
  • the purpose of the present invention is to provide a method for preparing a delivery system that crosses the blood-brain barrier and specifically targets glioma therapeutic drugs.
  • the prepared delivery system is a drug delivery carrier and is a versatility for brain tumor therapeutic drugs The delivery system can greatly improve the therapeutic effect of brain tumors.
  • a preparation method of a delivery system that crosses the blood-brain barrier and specifically targets glioma therapeutic drugs including the following steps:
  • Step 1) Preparation of NK cell membrane: NK cells are added to a cell lysis buffer containing protease inhibitors, and subjected to ultrasonic centrifugation to obtain NK cell membranes;
  • Step 2) Add 1,2-distearoyl-sn-glyceryl-3-phosphoethanolamine-N-[amino(polyethylene glycol) 2000] (ammonium salt) and the drug into pure water, and ultrasound to obtain lipid Plastid nanoparticles
  • Step 3 The NK cell membrane and liposome nanoparticles are co-extruded through a polycarbonate membrane to form a NK cell biomimetic nanocarrier, which is a delivery system that can cross the blood-brain barrier and specifically target glioma therapeutic drugs.
  • step 1) Preparation of NK cell membrane: Add NK cells to the cell lysis buffer containing protease inhibitors, and sonicate them in an ice bath for 20-30 minutes, and centrifuge the broken cells with a centrifugal force of 3000-5000g, The temperature is 4°C-10°C, the supernatant is collected after centrifugation for 10 minutes, and then the supernatant is centrifuged at a maximum centrifugal force of 20,000 g and the temperature is 4°C-10°C for 25 minutes, the supernatant is collected, and then the supernatant Centrifuge the solution at a maximum centrifugal force of 100000g and a temperature of 4°C-10°C for 50 minutes, and the resulting precipitate is NK cell membranes (NKCMs);
  • NKCMs NK cell membranes
  • step 2) the weight ratio of 1,2-distearoyl-sn-glyceryl-3-phosphoethanolamine-N-[amino (polyethylene glycol) 2000] (ammonium salt), drug and water is 10 : (1-5): 5000.
  • step 2) Add 1,2-distearoyl-sn-glyceryl-3-phosphoethanolamine-N-[amino (polyethylene glycol) 2000] (ammonium salt) and the drug into pure water, and then ultrasonic In 5 minutes, liposome nanoparticles were obtained.
  • the pore size of the polycarbonate membrane in step 3 is 220 nm.
  • the present invention provides a method for preparing a delivery system that crosses the blood-brain barrier and specifically targets glioma therapeutic drugs:
  • NK cell membranes 1) Preparation of NK cell membranes: add the collected NK cells to the cell lysis buffer containing protease inhibitors, and sonicate them in an ice bath for 20-30 minutes, and centrifuge the broken cells with a centrifugal force of 3000-5000g and temperature Centrifuge for 10 min at 4°C-10°C, collect the supernatant, then centrifuge the supernatant at a maximum centrifugal force of 20,000 g and a temperature of 4°C-10°C for 25 min, collect the supernatant, and then transfer the supernatant Centrifuge at a maximum centrifugal force of 100,000 g and a temperature of 4°C-10°C for 50 minutes, and the precipitate obtained is NK cell membranes (NKCMs);
  • NK cell membrane NKCMs and liposomal nanoparticle D-NPs are co-extruded through a polycarbonate membrane with a pore size of 220nm to form NK cell biomimetic nanocarriers (NK@D-NPs), which is a kind of A delivery system that specifically targets glioma therapeutic drugs.
  • the present invention wraps NK cell membranes with liposome nanoparticles to form NK cell biomimetic nanocarriers (NK@D-NPs), which is a kind of specific opening of the blood-brain barrier (BBB) and specific targeting of glioma Cellular drug delivery system, which can not only load chemotherapeutic drugs, but also radiotherapy drugs, contrast agents, etc. It is a universal delivery system for brain tumor treatment drugs.
  • BBB blood-brain barrier
  • glioma Cellular drug delivery system which can not only load chemotherapeutic drugs, but also radiotherapy drugs, contrast agents, etc. It is a universal delivery system for brain tumor treatment drugs.
  • a drug delivery system that crosses the blood-brain barrier and specifically targets glioma prepared by the present invention improves the therapeutic effect of glioma drugs; simplifies the complexity of the preparation process and reduces the cost of the drug delivery system for glioma treatment;
  • the drug delivery system can deliver not only small molecule drugs but also macromolecular drugs or polymer drugs, and is a universal delivery system for brain glial therapeutic drugs.
  • Figure 1 shows the near-infrared two-zone fluorescence imaging images of NK@D-NPs, D-NPs and NL-NPs;
  • Figure 2 is a diagram showing the circulation time of NK@D-NPs, D-NPs and NL-NPs drugs in the body;
  • Figure 3 shows the biocompatibility map of NK@D-NPs, D-NPs and NL-NPs.
  • the core of the present invention is to provide a method for preparing a delivery system that crosses the blood-brain barrier and specifically targets glioma therapeutic drugs.
  • the present invention will be further described in detail below in conjunction with specific embodiments.
  • NK cells were directly extracted and isolated from BALB/c mice; NK cells were isolated from BALB/c mouse spleen cell suspension using NK cell isolation kit (Mirteni Biotechnology, Germany). First, the spleen cell suspension was collected and centrifuged at 300g for 10 minutes. Aspirate the supernatant completely. 40 microliters of each buffer was resuspended 107 total cells, NK cells and antibody mixture was added biotin in 10 microliters per 107 total cells. Mixed well and incubated in a refrigerator (2-8 deg.] C) in the dark for 5 minutes, and then 107 cells per 2 ml of buffer cells were washed, and centrifuged for 10 minutes at 300g, the supernatant was aspirated and completely.
  • Per 107 total cells was added 80 microliters of buffer and 20 microliters of anti-biotin microspheres. Mix well and incubate for another 10 minutes in the dark in the refrigerator (2-8°C). Select the appropriate MACS separation column according to the total cell number and the number of NK cells to obtain mouse NK cells.
  • Cell lysis buffer containing protease inhibitors purchased from Biyuntian Biotechnology Co., Ltd., model: P1005.
  • AIEgens photothermal agent molecule an aggregated luminescent substance, from Sigma company.
  • NK cell membranes 1) Preparation of NK cell membrane: add the collected NK cells to the cell lysis buffer containing protease inhibitors, and sonicate them in an ice bath for 20-30 minutes.
  • the maximum centrifugal force of the broken cells is 3500g and the temperature is Centrifuge for 10 minutes at 4°C and collect the supernatant, then centrifuge the supernatant at a maximum centrifugal force of 20,000g and a temperature of 4°C for 25 minutes, collect the supernatant, and then place the supernatant at a maximum centrifugal force of 100,000g at a temperature Centrifuge for 50 minutes at 4°C, and the precipitate obtained is NK cell membranes (NKCMs);
  • NKCMs NK cell membranes
  • D-NPs liposomal nanoparticles
  • NK@D-NPs NK cell biomimetic nanocarriers
  • DPPC dipalmitoylphosphatidylcholine
  • DSPC distearoylphosphatidylcholine
  • DOPC 1,2-dioleoylphosphatidylcholine
  • cholesterol Advanti Polar Lipids
  • chloroform methanol (3:1 or 2:1 or 1:1, V/V) in a certain ratio (6:1:2:3), and at the same time add AIEgens photothermal agent molecules, and then rotate The solvent is evaporated in the evaporator to form a thin layer.
  • the lipid thin layer is rehydrated, the membrane protein extracted from the cells (dissolved in PBS) is added to the thin layer at a ratio of 1:100-1:800 (protein: membrane lipid), and hydrophilic is added during the rehydration process.
  • Small molecule drugs, mRNA, siRNA, plasmids, etc. Heat and vortex at 40-65°C for 2-6 minutes, repeat 2-5 times.
  • the protein is squeezed through 220nm cellulose acetate filter membrane or polycarbonate membrane at 40-65°C, repeated 10-20 times to reduce the pore size of liposomes and improve the uniformity of liposome particle size.
  • the unilamellar liposome membrane vesicles are purified by semi-permeable membrane dialysis overnight, or purified by Sephadex G-50 column or similar gel column to remove free unintegrated proteins and impurities to obtain liposomes (NL-NPs).
  • the NK cell biomimetic nanocarrier NK@D-NPs prepared in Example 1 was dissolved in a PBS solution to prepare a PBS solution A with a concentration of 100 ⁇ g/mL, and the liposome nanoparticles D-NPs prepared in Comparative Example 1 were dissolved in PBS solution, PBS solution B with a concentration of 100 ⁇ g/mL was prepared, liposome NL-NPs obtained in Comparative Example 2 were dissolved in PBS solution, and PBS solution C with a concentration of 100 ⁇ g/mL was prepared.
  • BEnd.3 cells (5 ⁇ 10 4 cells per well) were seeded in a trans-well (diameter 6.5 mm, pore diameter 0.4 ⁇ m) and cultured for 5 days.
  • the NK cell biomimetic nanocarrier NK@D-NPs prepared in Example 1, the liposomal nanoparticle D-NPs prepared in Comparative Example 1 and the liposomal NL-NPs obtained in Comparative Example 2 were respectively dissolved in cell culture medium.
  • the NK cell biomimetic nanocarrier NK@D-NPs prepared in Example 1, the liposomal nanoparticle D-NPs prepared in Comparative Example 1 and the liposomal NL-NPs obtained in Comparative Example 2 are in the cell culture medium.
  • the concentration is 15 ⁇ g/mL.
  • Cross-BBB efficiency amount of biomaterial in the low base chamber/amount of biomaterial in the top chamber ⁇ 100%.
  • the experimental results show that the liposome nanocarriers (D-NPs) made in Comparative Example 1 have an efficiency of only 3% across the BBB, and the liposomes (NL-NPs) made in Comparative Example 2 have an efficiency of only 8% across the BBB.
  • the efficiency of NK cell bionic nanocarriers (NK@D-NPs) across the BBB is as high as 24%, which is 8 times that of Comparative Example 1 liposome nanocarriers across the BBB.
  • This experimental result shows that the present invention prepares NK cell bionic nanocarriers (NK@D-NPs). @D-NPs) has high efficiency across the BBB, further improving the delivery efficiency of glioma treatment drugs.
  • mice 15 BALB/c mice were randomly divided into 3 groups, with 5 mice in each experimental group.
  • the NK cell biomimetic nanocarrier NK@D-NPs prepared in Example 1 was dissolved in a PBS solution to prepare a PBS solution A with a concentration of 100 ⁇ g/mL, and the liposomal nanoparticles D-NPs prepared in Comparative Example 1 were dissolved in PBS solution, PBS solution B with a concentration of 100 ⁇ g/mL was prepared, liposome NL-NPs obtained in Comparative Example 2 were dissolved in PBS solution, and PBS solution C with a concentration of 100 ⁇ g/mL was prepared. Then 100 ⁇ L of PBS solution A, PBS solution B, and PBS solution C were injected from the tail vein of the mouse, and then the blood of the mice was collected at different time points to measure the concentration of nanomaterials.
  • the in vivo circulation time of NK@D-NPs prepared in Example 1, D-NPs prepared in Comparative Example 1 and NL-NPs prepared in Comparative Example 2 is recorded in FIG. 2.
  • the half-life of D-NPs is 1.5h
  • the half-life of NL-NPs is 5.5h
  • the half-life of NK@D-NPs is 9.5h.
  • the NK cell biomimetic nanocarrier NK@D-NPs prepared in Example 1, the liposomal nanoparticle D-NPs prepared in Comparative Example 1 and the liposome NL-NPs obtained in Comparative Example 2 were respectively dissolved in In the cell culture fluid, cell culture fluids with different concentrations are prepared.
  • the concentration of the NK cell biomimetic nanocarrier NK@D-NPs prepared in Example 1, the liposomal nanoparticle D-NPs prepared in Comparative Example 1 and the liposomal NL-NPs obtained in Comparative Example 2 in the cell culture medium It is 10 ⁇ g/mL, 20 ⁇ g/mL, 40 ⁇ g/mL, 80 ⁇ g/mL and 160 ⁇ g/mL.
  • the tumor cells were seeded in a 96-well plate (the number of cells per well was 1 ⁇ 10 5 ), and the NK cell bionic nanocarrier NK@D-NPs prepared in Example 1 and the lipid prepared in Comparative Example 1 were added respectively.
  • the cell culture medium of different concentrations of the liposome NL-NPs obtained from the somatic nanoparticle D-NPs and the comparative example 2 were cultured and incubated for 24 hours. The cell viability was then determined using the CCK-8 analysis method according to the instructions provided by the manufacturer (Dojindo Molecular Technologies, USA).
  • NK@D-NPs As shown in Figure 3, the cell survival rate of NK@D-NPs is almost 100%, even when the material concentration reaches 160 ⁇ g/mL, it still has no effect on the cell survival rate.
  • the liposomes (NL-NPs) prepared by D-NPs and Comparative Example 2 decreased with the increase of the material concentration, indicating that these materials are toxic to cells. This result shows that NK@D-NPs has high biocompatibility.
  • the NK cell biomimetic nanocarrier (NK@D-NPs) prepared by the invention has a simplified preparation process, high efficiency of NK-related protein coating on the surface of nanoparticles, easy storage, specific opening of BBB, high efficiency of spanning BBB and specific targeting of tumor cells,
  • the medicine circulates for a long time in the body and has high biocompatibility.

Abstract

一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法,包括以下步骤:步骤1)NK细胞膜的制备:将NK细胞加入含有蛋白酶抑制剂的细胞裂解缓冲液中,经过超声离心处理,得到NK细胞膜;步骤2)将1,2一二硬脂酰基一sn一甘油基一3一磷酸乙醇胺一N一[氨基(聚乙二醇)2000](铵盐)和药物加入纯水中,超声,获得脂质体纳米颗粒;步骤3)通过220nm孔径的聚碳酸酯膜将NK细胞膜和脂质体纳米颗粒共挤压形成NK细胞仿生纳米载体,制备得到的NK细胞仿生纳米载体是一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统。

Description

一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法 技术领域
本发明涉及医药领域,尤其涉及一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法。
背景技术
血脑屏障(Blood Brain Barrier,BBB)是指脑毛细血管壁与神经胶质细胞形成的血浆与脑细胞之间的屏障和由脉络丛形成的血浆和脑脊液之间的屏障,这些屏障能够阻止某些物质由血液进入脑组织。血液中多种溶质从脑毛细血管进入脑组织,有难有易;有些很快通过,有些较慢,有些则完全不能通过。
血脑屏障是血-脑、血-脑脊液和脑脊液-脑三种屏障的总称。脑毛细血管缺少一般毛细血管所具有的孔,或者这些孔既少且小。内皮细胞彼此重叠覆盖,而且连接紧密,能有效地阻止大分子物质从内皮细胞连接处通过,许多药物和物质都不易从血液中进入脑实质中去。
脑胶质瘤是一种典型的中枢神经系统疾病,它严重危害人类健康。脑胶质瘤是来源于神经胶质细胞病变,它约占颅内恶性脑肿瘤的80%。世界卫生组织(WHO)根据脑胶质瘤的恶性程度将其分为四级,其恶性程度从低到高依次为毛细胞性星形细胞瘤、低度恶性胶质瘤、间变星形细胞瘤和多形性胶质母细胞瘤。其中多形性胶质母细胞瘤呈现出高复发率、高死亡率和低治愈率等特点。目前,临床标准疗法主要有手术切除和化疗,其治疗后2年生存率低于30%,5年生存率不足10%,中位生存时间仅为12-15个月。由于脑胶质瘤和其它肿瘤生长特性不一样,它是呈“蟹足样”向原发病灶周边正常脑组织浸润性生长,导致肿瘤组织和正常脑组织边界不清,因而手术难以彻底切除,导致术后极易复发。与此同时,脑胶质瘤易发生在大脑重要功能区,如人的认知、运动和语言等神经中枢控制区,因而术后给患者带来很大后遗症,严重影响术后生活质量。因为手术不能完全清除脑质瘤细胞,所以化学治疗(化疗)是脑胶质瘤治疗的重要补充手段,但是由于大脑血脑屏障(BBB)的存在,限制了绝大部分化疗药物进入脑肿瘤组织区域,使其无法达到药物治疗的有效浓度,导致脑胶 质瘤化疗效果不好。
目前主要通过超声、病毒、跨膜多肽和抗体等方法解决脑胶质瘤治疗药物的跨越BBB和特异靶向肿瘤细胞等限制性问题,但这些技术有一些局限性,包括仪器价格昂贵、操作复杂、合作过程繁琐、打开BBB效率低、肿瘤靶向性差及安全问题等缺点。
综上所述,目前尚无彻底杀死脑胶质瘤细胞的治疗方法。主要原因是BBB阻止了大部分治疗药物进入脑胶质瘤组织和药物靶向性差。因此,亟需开发一种跨越BBB和特异靶向脑胶质瘤的药物投递系统,实现脑胶质瘤的精准治疗。
发明内容
本发明的目的是提供一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法,制得的投递系统是药物投递载体,是一个脑质瘤治疗药物的通用性投递系统,能极大的提高脑质瘤药物治疗效果。
一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法,包括以下步骤:
步骤1)NK细胞膜的制备:将NK细胞加入含有蛋白酶抑制剂的细胞裂解缓冲液中,经过超声离心处理,得到NK细胞膜;
步骤2)将1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)和药物加入纯水中,超声,获得脂质体纳米颗粒;
步骤3)通过聚碳酸酯膜将NK细胞膜和脂质体纳米颗粒共挤压形成NK细胞仿生纳米载体,是一种具有跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统。
其中,步骤1)NK细胞膜的制备:将NK细胞加入含有蛋白酶抑制剂的细胞裂解缓冲液中,并在冰浴中超声处理20-30min,将破碎的细胞离心破碎机的离心力为3000-5000g,温度为4℃-10℃,离心10min后收集上清液,然后将上清液在最大离心力为20000g,温度为4℃-10℃的条件下继续离心25min,收集上清液,然后将上清液在最大离心力为100000g,温度为4℃-10℃条件下离心50min,得到的沉淀物即为NK细胞膜(NKCMs);
其中,步骤2)中1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚 乙二醇)2000](铵盐)、药物和水的重量比为10:(1-5):5000。
其中,步骤2)将1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)和药物加入纯水中,然后超声5min,获得脂质体纳米颗粒。
其中,步骤3)中聚碳酸酯膜的孔径为220nm。
综上所述,本发明提供一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法:
1)NK细胞膜的制备:将收集的NK细胞加入含有蛋白酶抑制剂的细胞裂解缓冲液中,并在冰浴中超声处理20-30min,将破碎的细胞离心破碎机的离心力为3000-5000g,温度为4℃-10℃,离心10min后收集上清液,然后将上清液在最大离心力为20000g,温度为4℃-10℃的条件下继续离心25min,收集上清液,然后将上清液在最大离心力为100000g,温度为4℃-10℃条件下离心50min,得到的沉淀物即为NK细胞膜(NKCMs);
2)将1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)和药物加入纯水中,1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)、药物和水的重量比为10:(1-5):5000,然后超声5min,获得脂质体纳米颗粒(D-NPs);
3)通过孔径为220nm的聚碳酸酯膜将NK细胞膜NKCMs和脂质体纳米颗粒D-NPs共挤压形成NK细胞仿生纳米载体(NK@D-NPs),是一种具有跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统。
相对上述背景技术,本发明将NK细胞膜包裹脂质体纳米颗粒形成NK细胞仿生纳米载体(NK@D-NPs),是一种具有特异打开血脑屏障(BBB)和特异靶向脑胶质瘤细胞的药物投递系统,该投递系统不仅可以负载化疗药物,而且还可以负载放疗药物、造影剂等,它是一个脑质瘤治疗药物的通用性投递系统。本发明制得的一种跨越血脑屏障和特异靶向脑胶质瘤的药物投递系统提高脑质瘤药物治疗效果;简化脑胶质瘤治疗药物投递系统的制备过程复杂性和降低成本;所述药物投递系统不仅可以投递小分子药物而且可以投递大分子药物或者多聚物药物,是一种脑胶质治疗药物的通用性投递系统。
附图说明
图1为NK@D-NPs、D-NPs和NL-NPs的近红外二区荧光成像图;
图2为NK@D-NPs、D-NPs和NL-NPs的药物在体内循环时间图;
图3为NK@D-NPs、D-NPs和NL-NPs的生物相容性图。
具体实施方式
本发明的核心是提供一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法。为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施方式对本发明作进一步的详细说明。
原料来源说明:
NK细胞直接从BALB/c小鼠体内提取分离;用NK细胞分离试剂盒(德国米尔特尼生物技术公司)从BALB/c小鼠脾细胞悬液中分离NK细胞。首先收集脾脏细胞悬液,并以300g离心10分钟。完全吸取上清液。用每40微升的缓冲液重悬10 7个总细胞,并在每10 7个总细胞中添加10微升的NK细胞生物素抗体混合物。充分混合并在冰箱(2-8℃)中黑暗中孵育5分钟,然后以每10 7个细胞加入2毫升缓冲液洗涤细胞,并在300g下离心10分钟,并完全吸出上清液。每10 7个总细胞添加80微升缓冲液和20微升抗生物素微球。充分混合并在冰箱(2-8℃)中黑暗中再培养10分钟。根据总细胞数和NK细胞数选择合适的MACS分离柱,获得小鼠NK细胞。
1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐):CAS:474922-26-4,来自Avanti Polar Lipids,Inc.,
英文名称:1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000](ammonium salt);
含有蛋白酶抑制剂的细胞裂解缓冲液:购买于碧云天生物技术有限公司,型号为:P1005。
AIEgens光热剂分子:具有聚集态发光物质,来自于Sigma公司。
实施例1
1)NK细胞膜的制备:将收集的NK细胞加入含有蛋白酶抑制剂的细胞裂解缓冲液中,并在冰浴中超声处理20-30min,将破碎的细胞离心破碎机的最大离心力为3500g,温度为4℃,离心10min后收集上清液,然后将上清液在最大离心力为20000g,温度为4℃的条件下继续离心25min,收集上清液,然后将上清液在最大离心力为100000g,温度为4℃的条件下离心50min,得到的沉淀物即为NK细胞膜(NKCMs);
2)称量10mg 1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)和2mg AIEgens光热剂分子加入5mL纯水中混匀,然后超声5min,获得负载光热剂分子的脂质体纳米颗粒(D-NPs);
3)通过孔径为220nm的聚碳酸酯膜将NK细胞膜(NKCMs)和脂质体纳米颗粒(D-NPs)共挤压形成NK细胞仿生纳米载体(NK@D-NPs)。
对比例1
称量10mg 1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)和2mg AIEgens光热剂分子加入5mL纯水中混匀,然后超声5min,获得负载光热剂分子的脂质体纳米颗粒D-NPs。
对比例2
薄膜法制备脂质体纳米颗粒:二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酰磷脂酰胆碱(DSPC)、1,2-二油酰基磷脂酰胆碱(DOPC)、胆固醇(Avanti Polar Lipids),按一定比例(6:1:2:3)溶于氯仿:甲醇(3:1或者2:1或者1:1,V/V),同时加入AIEgens光热剂分子,然后在旋转蒸发器中蒸发溶剂,形成薄层。然后脂质薄层复水,从细胞中提取的膜蛋白(溶于PBS)以1:100-1:800比例(蛋白:膜脂)加入到薄层中,复水过程中加入亲水性的小分子药物、mRNA、siRNA、质粒等。40-65℃加热涡旋处理2-6分钟,重复2-5次。蛋白在40-65℃下挤过220nm孔径的醋酸纤维素滤膜或者聚碳酸酯膜,反复进行10-20次,以降低脂质体的孔径和提高脂质体的粒径均匀度,所获的单层脂质体膜泡经过半透膜透析过夜纯化,或者经过SephadexG-50柱或者类似凝胶柱纯化,以除去游离的未整合蛋白和杂质,得到脂质体(NL-NPs)。
验证实验:
1、通过生物发光成像(Bioluminescence imaging)鉴定脑胶质瘤原位模型(通过IVIS光谱系统(Caliper Life Sciences,Hopkinton,MA,USA)的生物发光成像验证原位脑质瘤建模成功)。将实施例1制得的NK细胞仿生纳米载体NK@D-NPs溶于PBS溶液,制备浓度为100μg/mL的PBS溶液A,将对比例1制得的脂质体纳米颗粒D-NPs溶于PBS溶液,制备浓度为100μg/mL的PBS溶液B,将对比例2得到的脂质体NL-NPs溶于PBS溶液,制备浓度为100μg/mL的PBS溶液C。
然后从小鼠尾静脉分别注射100μL的PBS溶液A、PBS溶液B和PBS溶液C,随后分别在0h、3h、6h、12h、24h和48h等时间点进行近红外二区荧光成像拍照,选择每组中一个小鼠荧光成像照片,比对图如附图1所示。
附图1的实验结果表明对比例1脂质体纳米颗粒和对比例2制备的脂质体几乎不能进入小鼠大脑内和特异靶向脑胶质瘤区,而本发明制备的NK细胞仿生纳米颗粒(NK@D-NPs)不仅能进入小鼠大脑区,而且还能特异靶向脑胶质瘤的位置。这些结果说明本发明制备的NK细胞仿生纳米载体能穿越BBB而到达大脑区和特异靶向脑胶质瘤,可以投递脑胶质瘤治疗药物。
2、体外血脑屏障(BBB)模拟模型实验,
将bEnd.3细胞(每孔5×10 4个细胞)接种在trans-well中(直径6.5mm,孔径0.4μm)并培养5天后。将实施例1制得的NK细胞仿生纳米载体NK@D-NPs、对比例1制得的脂质体纳米颗粒D-NPs和对比例2得到的脂质体NL-NPs分别溶于细胞培养液中,实施例1制得的NK细胞仿生纳米载体NK@D-NPs、对比例1制得的脂质体纳米颗粒D-NPs和对比例2得到的脂质体NL-NPs在细胞培养液中的浓度均为15μg/mL。
将三种浓度为15μg/mL的细胞培养液分别加人到顶室中并孵育3小时,然后收低基室中的培养基,通过UV-Vis分光光度计(Lambda 750,PerkinElmer)测量生物材料浓度。
跨越BBB效率=低基室中生物材料的量/顶室中生物材料的量×100%。将 实施例1制得的NK@D-NPs、对比例1制得的D-NPs和对比例2制得的NL-NPs,其按上述方法测得的效度如表1所示。
表1跨越BBB效率
  实施例1 对比例1 对比例2
跨越BBB效率 24% 3% 8%
实验结果显示对比例1制得脂质体纳米载体(D-NPs)跨越BBB效率只有3%,对比例2制得的脂质体(NL-NPs)跨越BBB效率只有8%,而本发明制备NK细胞仿生纳米载体(NK@D-NPs)跨越BBB的效率高达24%,是对比例1脂质体纳米载体穿越BBB效率的8倍,这实验结果表明本发明制备NK细胞仿生纳米载体(NK@D-NPs)具有高效跨越BBB,进一步提高脑胶质瘤治疗药物投递效率。
3、药物在体内循环时间长
实验方法:15只BALB/c小鼠随机分成3组,每个实验组5只小鼠。
将实施例1制得的NK细胞仿生纳米载体NK@D-NPs溶于PBS溶液,制备浓度为100μg/mL的PBS溶液A,将对比例1制得的脂质体纳米颗粒D-NPs溶于PBS溶液,制备浓度为100μg/mL的PBS溶液B,将对比例2得到的脂质体NL-NPs溶于PBS溶液,制备浓度为100μg/mL的PBS溶液C。然后从小鼠尾静脉分别注射100μL的PBS溶液A、PBS溶液B和PBS溶液C,随后在不同时间点采集小鼠血液测其纳米材料浓度。
将实施例1制得的NK@D-NPs、对比例1制得的D-NPs和对比例2制得的NL-NPs在体内循环时间记录在图2中。D-NPs的半衰期为1.5h,NL-NPs的半衰期为5.5h,NK@D-NPs半衰期为9.5h。
4、生物相容性高
实验方法:将实施例1制得的NK细胞仿生纳米载体NK@D-NPs、对比例1制得的脂质体纳米颗粒D-NPs和对比例2得到的脂质体NL-NPs分别溶于细胞培养液中,制得浓度不同的细胞培养液。实施例1制得的NK细胞仿生纳米载体NK@D-NPs、对比例1制得的脂质体纳米颗粒D-NPs和对比例2得到的脂质体NL-NPs在细胞培养液中的浓度为10μg/mL、20μg/mL、40μg/mL、80μg/mL 和160μg/mL。
将肿瘤细胞接种在96孔板中(每孔细胞数量为1×10 5个),分别加入含有实施例1制得的NK细胞仿生纳米载体NK@D-NPs、对比例1制得的脂质体纳米颗粒D-NPs和对比例2得到的脂质体NL-NPs的不同浓度的细胞培养液,培养孵育24小时。然后根据制造商(Dojindo Molecular Technologies,美国)提供的说明使用CCK-8分析法测定细胞活力。
如图3所示,NK@D-NPs的细胞生存率几乎为100%,即使材料浓度达到160μg/mL时,仍然对细胞生存率没有影响。而D-NPs和对比例2制得的脂质体(NL-NPs)随着材料浓度增加,细胞存活率却降低,说明这些材料对细胞具有一定毒性。这结果说明NK@D-NPs的生物相容性高。
本发明制备的NK细胞仿生纳米载体(NK@D-NPs)制备过程简化,NK相关蛋白覆在纳米颗粒表面效率高,保存容易,特异打开BBB、跨越BBB效率和特异靶向肿瘤细胞效率高、药物在体内循环时间长、生物相容性高。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

  1. 一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法,包括以下步骤:
    步骤1)NK细胞膜的制备:将NK细胞加入含有蛋白酶抑制剂的细胞裂解缓冲液中,经过超声离心处理,得到NK细胞膜;
    步骤2)将1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)和药物加入纯水中,超声,获得脂质体纳米颗粒;
    步骤3)通过聚碳酸酯膜将NK细胞膜和脂质体纳米颗粒共挤压形成NK细胞仿生纳米载体。
  2. 如权利要求1所述的跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法,其特征在于:
    步骤1)NK细胞膜的制备:将NK细胞加入含有蛋白酶抑制剂的细胞裂解缓冲液中,并在冰浴中超声处理20-30min,将破碎的细胞离心破碎机的离心力为3000-5000g,温度为4℃-10℃,离心10min后收集上清液,然后将上清液在最大离心力为20000g,温度为4℃-10℃的条件下继续离心25min,收集上清液,然后将上清液在最大离心力为100000g,温度为4℃-10℃条件下离心50min,得到的沉淀物即为NK细胞膜(NKCMs)。
  3. 如权利要求1所述的跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法,其特征在于:
    步骤2)中1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)、药物和水的重量比为10:(1-5):5000。
  4. 如权利要求3所述的跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法,其特征在于:
    步骤2)将1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)2000](铵盐)和药物加入纯水中,然后超声5min,获得脂质体纳米颗粒。
  5. 如权利要求3所述的跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法,其特征在于:
    步骤3)中聚碳酸酯膜的孔径为220nm。
PCT/CN2020/129496 2019-11-18 2020-11-17 一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法 WO2021098686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911128402.9A CN112823811B (zh) 2019-11-18 2019-11-18 一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法
CN201911128402.9 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021098686A1 true WO2021098686A1 (zh) 2021-05-27

Family

ID=75906665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129496 WO2021098686A1 (zh) 2019-11-18 2020-11-17 一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法

Country Status (2)

Country Link
CN (1) CN112823811B (zh)
WO (1) WO2021098686A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113952461A (zh) * 2021-09-07 2022-01-21 浙江大学 一种仿中性粒细胞纳米递药系统及其制备方法和应用
CN114469889A (zh) * 2021-12-17 2022-05-13 浙江大学 特异靶向脉冲电场消融术后炎症区的仿生载药纳米粒及制备方法
CN114557978A (zh) * 2022-01-20 2022-05-31 澳门科技大学 靶向缺血性脑卒中仿生脂质体递药系统、制备方法及应用
CN114948852A (zh) * 2022-05-26 2022-08-30 深圳先进技术研究院 一种用于脑部疾病诊断和治疗的微针系统及其制备方法
CN115068444A (zh) * 2022-06-28 2022-09-20 南通大学 一种巨噬细胞膜包裹的脂质体纳米粒及其制备方法
CN115154472A (zh) * 2022-07-27 2022-10-11 北京大学第三医院(北京大学第三临床医学院) 一种具有靶向功能的治疗脑卒中的氢化可的松多功能超声微泡
CN114948852B (zh) * 2022-05-26 2024-05-17 深圳先进技术研究院 一种用于脑部疾病诊断和治疗的微针系统及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113975244B (zh) * 2021-09-18 2023-05-09 上海交通大学医学院附属第九人民医院 一种仿生磁靶向阳离子脂质体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105939699A (zh) * 2013-12-03 2016-09-14 西北大学 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途
CN106176609A (zh) * 2016-08-22 2016-12-07 李因传 一种nk细胞膜仿生脂质体药物载体、制作方法及其应用
CA3003267A1 (en) * 2015-10-26 2017-05-04 Translate Bio Ma, Inc. Nanoparticle formulations for delivery of nucleic acid complexes
CN107595865A (zh) * 2017-09-25 2018-01-19 青海七彩花生物科技有限公司 一种ccr5表达促进剂及在制备促进nk细胞穿透血脑屏障的药物中的应用
CN107936122A (zh) * 2017-12-29 2018-04-20 河南省华隆生物技术有限公司 一种慢病毒及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558117B (zh) * 2013-10-25 2018-01-16 复旦大学 一种乙酰胆碱受体介导靶向的d构型多肽及其应用
CN104367546B (zh) * 2014-11-13 2017-03-15 中国人民解放军第四军医大学 一种靶向温控的载水飞蓟宾热敏脂质体‑微泡复合体递药系统的制备方法
NZ738149A (en) * 2015-06-10 2024-02-23 Univ Texas Use of exosomes for the treatment of disease
CN106333926A (zh) * 2015-07-10 2017-01-18 复旦大学 一种稳定性多肽介导跨屏障膜的脑部肿瘤多重靶向递药系统
CN107029239B (zh) * 2016-02-03 2020-06-09 复旦大学 一种多功能靶向分子及其用途
CN109893660B (zh) * 2019-03-25 2021-03-30 河南大学 一种用于脑胶质瘤治疗的仿生纳米载体及其制备方法
CN110859826B (zh) * 2019-12-09 2022-04-05 深圳先进技术研究院 一种脑肿瘤靶向的仿生载药纳米颗粒及其制备方法和用途
CN112716915A (zh) * 2021-02-03 2021-04-30 中国药科大学 仿生纳米载体及其在制备脑胶质瘤治疗药物的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105939699A (zh) * 2013-12-03 2016-09-14 西北大学 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途
CA3003267A1 (en) * 2015-10-26 2017-05-04 Translate Bio Ma, Inc. Nanoparticle formulations for delivery of nucleic acid complexes
CN106176609A (zh) * 2016-08-22 2016-12-07 李因传 一种nk细胞膜仿生脂质体药物载体、制作方法及其应用
CN107595865A (zh) * 2017-09-25 2018-01-19 青海七彩花生物科技有限公司 一种ccr5表达促进剂及在制备促进nk细胞穿透血脑屏障的药物中的应用
CN107936122A (zh) * 2017-12-29 2018-04-20 河南省华隆生物技术有限公司 一种慢病毒及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO ZHANG, TAO FENG, ZHU HONG-YAN, GUANG-YOU WANG, DAN-DAN WANG, LI HU-LUN: "Chemotactic Effect of IP-10 to Natural Killer Cells Getting Through Blood Brain Barrier after Cerebral Ischemia", JOURNAL OF HARBIN MEDICAL UNIVERSITY, vol. 48, no. 6, 1 December 2014 (2014-12-01), pages 449 - 459, XP055813534 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113952461A (zh) * 2021-09-07 2022-01-21 浙江大学 一种仿中性粒细胞纳米递药系统及其制备方法和应用
CN113952461B (zh) * 2021-09-07 2024-03-22 浙江大学 一种仿中性粒细胞纳米递药系统及其制备方法和应用
CN114469889A (zh) * 2021-12-17 2022-05-13 浙江大学 特异靶向脉冲电场消融术后炎症区的仿生载药纳米粒及制备方法
CN114557978A (zh) * 2022-01-20 2022-05-31 澳门科技大学 靶向缺血性脑卒中仿生脂质体递药系统、制备方法及应用
CN114557978B (zh) * 2022-01-20 2023-03-03 澳门科技大学 靶向缺血性脑卒中仿生脂质体递药系统、制备方法及应用
CN114948852A (zh) * 2022-05-26 2022-08-30 深圳先进技术研究院 一种用于脑部疾病诊断和治疗的微针系统及其制备方法
CN114948852B (zh) * 2022-05-26 2024-05-17 深圳先进技术研究院 一种用于脑部疾病诊断和治疗的微针系统及其制备方法
CN115068444A (zh) * 2022-06-28 2022-09-20 南通大学 一种巨噬细胞膜包裹的脂质体纳米粒及其制备方法
CN115068444B (zh) * 2022-06-28 2023-09-19 南通大学 一种巨噬细胞膜包裹的脂质体纳米粒及其制备方法
CN115154472A (zh) * 2022-07-27 2022-10-11 北京大学第三医院(北京大学第三临床医学院) 一种具有靶向功能的治疗脑卒中的氢化可的松多功能超声微泡
CN115154472B (zh) * 2022-07-27 2024-05-07 北京大学第三医院(北京大学第三临床医学院) 一种具有靶向功能的治疗脑卒中的氢化可的松多功能超声微泡

Also Published As

Publication number Publication date
CN112823811B (zh) 2022-07-29
CN112823811A (zh) 2021-05-21

Similar Documents

Publication Publication Date Title
WO2021098686A1 (zh) 一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法
US20210212948A1 (en) Nanovesicles derived from cell membrane, and use thereof
Sun et al. Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma
Guo et al. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer
JP2021107463A (ja) 疾患の処置のためのエキソソームの使用
CN101439182B (zh) 一种生长抑素受体介导的肿瘤靶向药物组合物
Yue et al. Ultrasound-triggered effects of the microbubbles coupled to GDNF plasmid-loaded PEGylated liposomes in a rat model of Parkinson's disease
Allahverdiyev et al. Current aspects in treatment of breast cancer based of nanodrug delivery systems and future prospects
Li et al. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin
Guo et al. Direct site-specific treatment of skin cancer using doxorubicin-loaded nanofibrous membranes
KR20160110410A (ko) 하이브리도좀, 이를 포함하는 조성물, 이의 제조 방법 및 이의 용도
CN112076158B (zh) 一种治疗慢性肾炎的脂质体-纳米粒复合体
Yin et al. Biomimetic neutrophil and macrophage dual membrane-coated nanoplatform with orchestrated tumor-microenvironment responsive capability promotes therapeutic efficacy against glioma
CN109666695A (zh) 一种靶向整合素αvβ3的外泌体载体及其制备方法和应用
WO2017044940A1 (en) Cell membrane-formed nanoscale vesicles and methods of using thereof
CN113952461B (zh) 一种仿中性粒细胞纳米递药系统及其制备方法和应用
Wang et al. Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier
Yu et al. G250 antigen-targeting drug-loaded nanobubbles combined with ultrasound targeted nanobubble destruction: a potential novel treatment for renal cell carcinoma
EP3834844A1 (en) AMYLOID ß SHORT PEPTIDE MEDIATED BRAIN TARGETED DELIVERY SYSTEM, PREPARATION METHOD THEREFOR AND USE THEREOF
CN110898231B (zh) 一种功能化拉洛他赛脂质体及其制备方法与应用
CN110559272B (zh) 一种抗乳腺癌纳米药物及其制备方法
CN115177742B (zh) 一种载药脑靶向外泌体的制备方法及其应用
CN102614126A (zh) 一种热敏脂质体及其用途
Li et al. Vincristine-doxorubicin co-loaded artificial low-density lipoproteins towards solid tumours
CN104224718B (zh) 一种多功能靶向异长春花碱脂质体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890083

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20890083

Country of ref document: EP

Kind code of ref document: A1