WO2021098357A1 - 基于火花识别的热轧卷取侧导板控制方法 - Google Patents

基于火花识别的热轧卷取侧导板控制方法 Download PDF

Info

Publication number
WO2021098357A1
WO2021098357A1 PCT/CN2020/115226 CN2020115226W WO2021098357A1 WO 2021098357 A1 WO2021098357 A1 WO 2021098357A1 CN 2020115226 W CN2020115226 W CN 2020115226W WO 2021098357 A1 WO2021098357 A1 WO 2021098357A1
Authority
WO
WIPO (PCT)
Prior art keywords
side guide
guide plate
hot
rolled strip
width
Prior art date
Application number
PCT/CN2020/115226
Other languages
English (en)
French (fr)
Inventor
李家波
孙红枫
陈建荣
张健民
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP20891214.7A priority Critical patent/EP4049769A4/en
Priority to JP2022527160A priority patent/JP7352026B2/ja
Priority to US17/776,892 priority patent/US11766706B2/en
Priority to KR1020227019542A priority patent/KR20220093223A/ko
Publication of WO2021098357A1 publication Critical patent/WO2021098357A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • B21C47/3408Feeding or guiding devices not specially adapted to a particular type of apparatus for monitoring the lateral position of the material
    • B21C47/3416Feeding or guiding devices not specially adapted to a particular type of apparatus for monitoring the lateral position of the material with lateral edge contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/14Guiding, positioning or aligning work

Definitions

  • the invention relates to a hot-rolled plate coiling device, in particular to a method for controlling a side guide plate of a hot-rolled coil based on spark recognition.
  • the existing hot-rolled strip 20 coiling related equipment can refer to Figure 1 (except the industrial camera 9), along the running direction of the rolling mill, including the hot rolling mill stand, the width gauge 8, the laser detector 10, the side guide 11,
  • the coiling pinch roller 12 and the coiling machine 16, the coiling machine 16 and the coiling pinch roller 12 are used to coil the hot-rolled strip 20, and the side guide 11 is used to guide the hot-rolled strip 20 to enter the coiling pinch correctly
  • the width gauge 8 is used to measure the width of the hot-rolled strip 20
  • the laser detector 10 is used to detect the position of the hot-rolled strip 20
  • the length of the parallel section is 4-8m.
  • the coiling equipment of the hot-rolled strip 20 also includes a detection system.
  • the detection system is used to collect data information fed back by the hardware and perform relevant data analysis.
  • the detection system is usually implemented by an industrial computer. After the hot-rolled strip 20 comes out of the tail roll of the hot-rolling mill, it enters the coiling process.
  • the side guide control is a very important link, which is directly related to the quality of the edge of the hot-rolled strip 20 and the quality of the coil shape.
  • the existing control system mainly controls the opening of the side guides through a short-stroke preset method, that is, at different stages of the winding process, the opening between the side guides 11 on both sides is adjusted to a preset opening.
  • the side guide opening is controlled too small, on the one hand, it is easy to cause serious strip edge damage and even steel jam. On the other hand, it will cause local wear of the side guide and shorten its service period. If the side guide opening is controlled too large , It will cause problems such as steel coil tower shape and staggered layer.
  • the patents CN200810037476 and CN201410442427 adopt the alternate control of the pressure and position of the side guides to ensure the stable clamping force of the side guides on both sides of the strip;
  • the patent KR900675B1 combines the standard rolling force and the preset noise with the measured rolling The braking force and noise are compared to determine whether the strip is twisted, so as to finally control the position of the side guide;
  • the patent JP2006263779A obtains the bending amount of the strip through the difference in opening or load between the driving side and the working side of the pinch roller, and Correct the opening of the side guides according to the amount of bending.
  • these patents are all indirect control methods, and it is impossible to know the true clamping force of the side guides on the strip and the position of the strip centerline.
  • the purpose of the present invention is to provide a method for controlling the side guides of hot rolling and coiling based on spark recognition.
  • the method keeps the hot-rolled strips always in the relative center of the steel coils, reduces the wear of the side guides, and avoids the individual steel coils. This kind of defect problem makes the coil shape good.
  • a method for controlling a side guide plate of a hot rolling coil based on spark recognition comprising:
  • Preliminary opening adjustment step before the hot-rolled strip enters the side guide area, adjust the opening of the side guide to the preliminary opening;
  • Installation steps Install the industrial camera obliquely above the entrance of the two side guides.
  • the camera's imaging range includes the entire area of each side guide.
  • the industrial camera transmits the captured images to the inspection system in real time through the communication line;
  • Image analysis step For each one-sided side guide plate, the detection system performs real-time analysis on the spark image produced by the friction between the one-sided side guide plate and the hot-rolled strip captured by the industrial camera, so as to identify the one-sided side guide plate
  • the single spark with the largest lateral width generated, and the lateral width of the spark is recorded as the spark width M S ;
  • Dynamic adjustment step This step starts from the head of the hot-rolled strip reaching the coiling pinch roll until the tail of the hot-rolled strip exits the coiling pinch roll; this step includes: setting the target spark width M aim , for each order
  • the side guides perform the dynamic adjustment process of the side guides;
  • the control adjustment mode when the strip thickness of the hot-rolled strip is h strip > h, the side guide plate control adjustment mode is the pressure control adjustment mode, where h is the preset reference thickness;
  • the position control adjustment mode includes: According to the second formula, the side guide plate position adjustment amount ⁇ W S of the one-sided side guide plate is obtained
  • the target position W S of the side guide plate of the unilateral side guide plate is obtained.
  • K total2 is the total gain
  • K P2 is the proportional coefficient
  • K I2 is the integral coefficient
  • s is the Laplace operator.
  • the dynamic adjustment step specifically includes:
  • the first dynamic adjustment step starts from the head of the hot-rolled strip reaching the coiling pinch roll until the tail of the hot-rolled strip exits the F1 stand; this step includes: setting the target spark width M aim as the first target Spark width M aim1, when the head of the hot-rolled strip reaches the coiling pinch roller, the dynamic adjustment process of the side guide is performed for each single-sided side guide until the length of the hot-rolled strip head exiting the coiling pinch roller reaches L head , where L head is the pre-set length of the strip head; this step also includes: when the length of the hot-rolled strip head out of the coiling pinch roller exceeds the strip head length L head, the The real-time position of the one-sided side guide is recorded as the target locking position W LK , and then the position of the one-sided side guide is adjusted to W LK + ⁇ W 3 , and then the position of the one-sided side guide is locked until the tail of the hot-rolled strip comes out Up to F1 frame, where ⁇ W 3 is the preset target position margin.
  • the dynamic adjustment step further includes:
  • the second dynamic adjustment step starts from the end of the hot-rolled strip exiting the F1 stand until the end of the hot-rolled strip exiting the F7 stand; this step includes: setting the target spark width M aim to the second target spark width M aim2 , and then perform the dynamic adjustment process of the side guide for each one-sided side guide.
  • the dynamic adjustment step further includes:
  • the third dynamic adjustment step starts from the tail of the hot-rolled strip exiting the F7 stand until the tail of the hot-rolled strip reaches X meters before the side guide, where X is the length parameter set in advance; this step includes: The target spark width M aim is set to the third target spark width M aim3 , and then the side guide dynamic adjustment process is performed for each one-sided side guide.
  • the dynamic adjustment step further includes:
  • the fourth dynamic adjustment step starts at X meters before the tail of the hot-rolled strip reaches the side guide, until the tail of the hot-rolled strip exits the coiling pinch roller; this step includes: setting the target spark width M aim Is the fourth target spark width M aim4 , and then the dynamic adjustment process of the side guide is performed for each one-sided side guide.
  • the dynamic adjustment process of the side guide plate in the dynamic adjustment step further includes: setting a position amplitude limit on the one-sided side guide plate, and the position amplitude limit includes a position upper limit LIM up1 and a position lower limit LIM low1 .
  • the position upper limit LIM up1 is obtained according to the sixth formula
  • the position lower limit LIM low1 is obtained according to the seventh formula;
  • the sixth formula is The seventh formula is In the formula, Wave is the average width within the length range of L1 after the hot-rolled strip is taken out of the width gauge, where L1 is the pre-set width measuring length; the width gauge is set on the back side of the hot rolling mill stand to measure The width meter measures the width of the hot-rolled strip after the rolling mill in real time.
  • the step of adjusting the opening degree of the side guide to the preliminary opening degree specifically includes:
  • the step of adjusting the opening degree of the side guide to the preliminary opening degree specifically includes:
  • the second preliminary opening adjustment step when the head of the hot-rolled strip reaches the laser detector, the opening of the side guide is adjusted to the second preliminary opening W2, and for each unilateral guide, the unilateral The position of the guide plate is adjusted to
  • the side guide plate control method further includes:
  • End opening adjustment step After the tail of the hot-rolled strip exits the coiling pinch roll, if there is no subsequent hot-rolled strip to be coiled, adjust the opening control of the side guide to the end opening W7, and the end opening The degree W7 is equal to the first preliminary opening degree W1 mentioned in the first preliminary opening degree adjustment step, and the position of each one-sided side guide is adjusted to
  • an industrial camera is installed obliquely above the side guide plate.
  • the industrial camera is a key device for realizing control and adjustment of the side guide plate.
  • the main function of the industrial camera is to capture the image of the side guide plate, especially to obtain the hot-rolled strip and The spark image generated when the side guide plate touches the friction, and the image is transmitted to the detection system in real time through the communication line; the detection system performs real-time analysis of the spark image generated by the friction between the side guide plate and the hot-rolled strip captured by the industrial camera, thereby The width of the spark generated on the side guide is identified, and then the side guides on both sides are controlled and adjusted according to the width of the spark.
  • the present invention judges the frictional contact between the side guides and the hot-rolled strips by judging the frictional contact between the side guides and the hot-rolled strips based on the spark width generated by the friction between the hot-rolled strips and the side guides, and controls and adjusts the side guides based on this. Therefore, the control method of the side guide is optimized, the hot-rolled strip is always at the relative center of the steel coil, the wear of the side guide is reduced, various defects of the steel coil are avoided, and the coil shape is good.
  • Figure 1 is a schematic diagram of the arrangement of the hot-rolled plate and strip from the hot-rolling production line to the strip coiling equipment, and the arrow in the figure is the operating direction of the rolling mill;
  • Figure 2 is a schematic diagram of the location of an industrial camera
  • Figure 3 is a top view of the side guide area
  • Fig. 4 is a flow chart of the method for controlling the coiling side guide plate of hot rolling based on spark recognition according to the present invention.
  • this embodiment provides a method for controlling side guides for hot rolling and coiling based on spark recognition.
  • the method for controlling side guides for side guides is based on the hot rolling and coiling equipment shown in FIG. 1, as shown in FIG. It is the equipment arrangement structure from the hot rolling production line to the coiling of the strip.
  • the hot-rolled strip 20 is guided by the side guide 11 after exiting the hot rolling mill, and finally enters the coiler 16 for coiling and forming.
  • the hot rolling and coiling equipment in turn includes a hot rolling mill stand, a width gauge 8, an industrial camera 9, a laser detector 10, a side guide 11, a coiling pinch roll 12, and a coiler 16.
  • the coiler 16 and the coiling pinch roller 12 are used to coil the hot-rolled strip 20, and the side guide plate 11 is used to guide the hot-rolled strip 20 to correctly enter the coiling pinch roller 12 and the coiler 16 to prevent hot rolling
  • the strip 20 runs off, the width gauge 8 is set on the back side of the hot rolling mill stand, the width gauge 8 measures the width of the hot rolled strip 20 after the rolling mill in real time, and the industrial camera 9 is used to photograph the side guide 11 Image, the laser detector 10 is used to detect the position of the hot-rolled strip 20, the length of the parallel section of the side guide plate is 4-8m.
  • the hot-rolled coiling equipment is also provided with a position tracking system for the hot-rolled strip 20 to track and determine the specific position of the hot-rolled strip 20, including the specific positions of its head and tail.
  • the coiling equipment of the hot-rolled strip 20 also includes a detection system.
  • the image data of the side guide 11 obtained by the industrial camera 9 is transmitted to the detection system through the communication line for analysis.
  • the detection system is usually implemented by an industrial computer.
  • a position sensor and a pressure sensor are provided on the driving side of the side guide 11. These sensors can obtain the position of the side guide 11 and the pressure on the side guide 11, and transmit the position and pressure information of the side guide 11 to the industry. Control PLC.
  • Preliminary opening degree adjustment step before the hot-rolled strip 20 enters the area of the side guide plate 11, the opening degree of the side guide plate 11 is controlled and adjusted to the preparatory opening degree.
  • controlling and adjusting the opening degree of the side guide 11 to the preliminary opening degree specifically includes a first preliminary opening degree adjustment step and a second preliminary opening degree adjustment step.
  • the opening degree of the side guide 11 can be controlled and adjusted to the preliminary opening degree by a motor or a hydraulic device.
  • the opening of the side guide 11 must be adjusted to the preliminary opening. This is mainly to make the opening of the side guide 11 roughly match the hot-rolled strip 20 Width, so as to prepare for the subsequent fine adjustment.
  • the opening degree control of the side guide 11 is adjusted to the first preliminary opening degree W1, and the first preliminary opening degree is based on the hot-rolled strip 20 target issued by the process control computer
  • the width value W ref is determined; when the head of the hot-rolled strip 20 reaches the laser detector 10, the opening degree control of the side guide 11 is adjusted to the second preliminary opening degree W2, and the second preliminary opening degree is based on the actual width gauge 8 It depends on the measured width of the hot-rolled strip 20.
  • Installation steps install the industrial camera 9 obliquely above the entrance of the two side guides 11, the camera range of the industrial camera 9 includes the entire area of each side guide 11, and the industrial camera 9 transmits the captured images to the inspection system in real time through the communication line;
  • an industrial camera 9 is installed obliquely above the entrance of the two side guides 11.
  • the camera range of the industrial camera 9 includes the entire area of each side guide 11.
  • the industrial camera 9 realizes the control and adjustment of the side guides 11
  • the key device, the main function of the industrial camera 9 is to capture the image of the side guide 11, especially to obtain the spark image generated when the hot-rolled strip 20 and the side guide 11 contact and rub, and transmit the image to the detection system in real time through the communication line
  • the communication line may be an optical fiber communication line or a twisted pair communication line.
  • the detection system is specifically an industrial computer.
  • the industrial camera 9 is a high-speed CCD industrial camera, which can capture images at a speed of more than 25 frames per second;
  • the framing range can cover the entire area of the side guide 11, and at this position, the influence of water mist on the camera can be avoided to the greatest extent.
  • usually two industrial cameras 9 can be set, each aimed at the side guide 11 on one side.
  • Image analysis step For each one-sided side guide plate 11, the detection system performs real-time analysis on the sparks generated by the friction between the one-sided side guide plate 11 and the hot-rolled strip 20 captured by the industrial camera 9, so as to identify the single side guide plate 11
  • the single spark with the largest lateral width generated on the side guide 11, and the lateral width of the spark is recorded as the spark width M S.
  • the above-mentioned lateral direction coincides with the width direction of the hot-rolled strip 20.
  • the spark width M S mentioned here indicates the largest single spark lateral width generated on the one-sided side guide 11.
  • the spark width M S is used as a quantified value representing the spark level.
  • many other measurement methods can also be used, such as measuring the spark area in the image, or classifying the above-mentioned analog quantity such as the width or area, and constructing the spark level Grade classification table, and then determine the grade corresponding to the spark according to the table, and use the grade to measure the spark.
  • the measurement value of sparks should adopt a quantitative value that can truly reflect the amount of sparks produced.
  • Dynamic adjustment step this step starts from the head of the hot-rolled strip 20 reaching the coiling pinch roller 12, until the tail of the hot-rolled strip 20 exits the coiling pinch roller 12;
  • This step includes: setting a target spark width M aim , and performing a side guide dynamic adjustment process for each one-sided side guide 11, where the target spark width M aim is usually set in an industrial control PLC. Specifically, the value of the target spark width M aim can be set according to actual conditions.
  • the spark width deviation ⁇ M S implements the side guide plate control adjustment method for the single side guide plate 11;
  • the side guide plate control adjustment mode is a position control adjustment mode, and when the strip thickness of the hot-rolled strip 20 is h strip
  • the side guide plate control adjustment mode is a pressure control adjustment mode, where h is the preset reference thickness
  • the position control adjustment method includes: obtaining the side guide plate position adjustment amount ⁇ W S of the one-sided side guide plate 11 according to a second formula, and the second formula is
  • K total1 is the total gain
  • the value of K total1 mainly considers the response ability of the side guide position actuator
  • K P1 is the proportional coefficient
  • the value of K P1 mainly considers the unit width deviation for the spark
  • the position size of K I1 is the integral coefficient.
  • the value of K I1 needs to consider the speed and stability of the control system. Among them, the specific values of K total1 , K P1 and K I1 can be adjusted according to the actual adjustment effect during the implementation process.
  • Adjusting said pressure control mode comprises: the results of unilateral guide plate 11 guides the side pressure adjustment amount ⁇ P S according to the formula IV, said formula IV
  • K total2 is the total gain
  • the value of K total2 mainly considers the response ability of the side guide pressure actuator
  • K P2 is the proportional coefficient
  • the value of K P2 mainly considers the unit width deviation of the spark and the adjustment required by the side guide.
  • K I2 is the integral coefficient.
  • the value of K I2 needs to consider the speed and stability of the control system. Among them, the specific values of K total2 , K P2 and K I2 can be adjusted according to the actual adjustment effect during the implementation process.
  • the calculation and control process of the dynamic adjustment step is usually completed by the industrial control PLC.
  • the detection system sends the spark width M S to the industrial control PLC.
  • the PLC is based on the single-sided side guide 11
  • the spark width M S is calculated by formula to obtain the position or pressure adjustment amount, and then the one-side guide plate 11 is controlled and adjusted.
  • the one-sided guide plate 11 is controlled and adjusted according to the spark width M S , which is the core part of the present invention.
  • the frictional contact between the side guide plate 11 and the hot-rolled strip 20 is judged by the spark generated by the friction between the hot-rolled strip 20 and the side guide plate 11, and the side guide plate 11 is controlled and adjusted based on this Therefore, the control method of the side guide 11 is optimized, so that the hot-rolled strip 20 is always at the relatively center position of the steel coil, which reduces the wear of the side guide and avoids various defects of the steel coil.
  • the specific method of this embodiment includes two methods. One is the position control adjustment method, which is to control and adjust the position of the side guides 11 on both sides.
  • the other is the pressure control adjustment method, which is to control and adjust the pressure of the side guides 11 on both sides.
  • the side guide 11 is controlled and adjusted according to the spark width generated by the friction between the side guide 11 and the hot-rolled strip 20.
  • the main difference is that the position control adjustment method is The spark width deviation is converted into the position adjustment amount of the opposite side guide plate 11, and the pressure control adjustment method is to convert the spark width deviation into the pressure adjustment amount of the opposite side guide plate 11.
  • the position control adjustment method is mainly for the thinner hot-rolled strip 20, and the pressure control adjustment method is mainly for the thicker hot-rolled strip 20. Because the thinner hot-rolled strip 20 adopts the pressure control adjustment method, it is easy to produce For edge cracks, it is necessary to adopt a position control adjustment method to minimize the degree of contact between the side guide 11 and the hot-rolled strip 20.
  • the position of the one-sided side guide plate refers to the distance between the side guide plate and the center line of the hot-rolled roller table, as shown in Figure 3, the double arrows corresponding to W DS and W WS , W DS Represents the position of the side guide on the transmission side, W WS represents the position of the side guide on the working side, and the opening of the side guide refers to the distance between the side guides on both sides.
  • W DS and W WS it is the sum of W DS and W WS;
  • the pressure on the one-sided side guide plate refers to the pressure on the side guide plate when the side guide plate is in contact with the hot-rolled strip 20, and the pressure on the side guide plate will be driven by the pressure on the side guide plate.
  • the sensor senses and transmits to the industrial control PLC.
  • the dynamic adjustment step specifically includes a first dynamic adjustment step, a second dynamic adjustment step, a third dynamic adjustment step, and a fourth dynamic adjustment step:
  • the first dynamic adjustment step starts from the head of the hot-rolled strip 20 reaching the coiling pinch roll 12, until the tail of the hot-rolled strip 20 exits the F1 stand 1; this step includes: setting the target spark width M aim Set as the first target spark width M aim1 , when the head of the hot-rolled strip 20 reaches the coiling pinch roller 12, the side guide dynamic adjustment process is performed for each single-sided side guide 11 until the hot-rolled strip 20 a winding head pinch roller 12 reaches the length L head, wherein the lead plate L head degree Minister preset range of the lead is long plate L head 10 ⁇ 40m; further comprising the step of : When the length of the unwinding pinch roller 12 at the head of the hot-rolled strip 20 exceeds the length L head of the strip head, the real-time position of the one-sided side guide 11 is recorded as the target locking position W LK , and then The position of the one-sided guide plate 11 is adjusted to W LK + ⁇ W 3 , and then the position of the one-sided guide plate 11 is locked until the
  • the second dynamic adjustment step starts from the end of the hot-rolled strip 20 exiting the F1 stand 1 until the end of the hot-rolled strip 20 exits the F7 stand 7; this step includes: setting the target spark width M aim to the first Two target spark widths M aim2 , and then perform the dynamic adjustment process of the side guide plate for each one-sided side guide plate 11.
  • the third dynamic adjustment step starts from the tail of the hot-rolled strip 20 exiting the F7 stand 7 until the tail of the hot-rolled strip 20 reaches X meters before the side guide 11, where X is the length parameter set in advance, The value range of the length parameter X is 20-30m; this step includes: setting the target spark width M aim to the third target spark width M aim3 , and then performing the side guide dynamic adjustment process for each one-sided side guide 11 .
  • This step starts at X meters before the tail of the hot-rolled strip 20 reaches the side guide 11, until the tail of the hot-rolled strip 20 exits the coiling pinch roller 12; this step includes: changing the target spark width M aim is set as the fourth target spark width M aim4 , and then the side guide dynamic adjustment process is performed for each one-sided side guide 11.
  • the first target spark width to the fourth target spark width can be set according to factors such as the thickness of the hot-rolled strip 20 and its influence on the coil shape and strip edge wear during the production process.
  • a certain limit must be set on the amplitude of the control adjustment. This is mainly to prevent the center line of the hot-rolled strip 20 from deviating from the center line of the coiler 16 too far. Resulting in coiling failure.
  • the dynamic adjustment process of the side guide plate in the step of dynamic adjustment further includes: setting a position amplitude limit on the one-sided side guide plate 11, and the position amplitude limit includes a position upper limit LIM up1 and a position lower limit LIM low1 .
  • the upper limit LIM up1 is obtained according to the sixth formula
  • the lower position limit LIM low1 is obtained according to the seventh formula;
  • the sixth formula is The seventh formula is In the formula, Wave is the average width within the length range of L1 after the hot-rolled strip 20 exits the width gauge 8, where L1 is the preset width measurement length, and the value range of L1 is 20-50m.
  • the pressure control adjustment method in the dynamic adjustment step further includes: setting a pressure amplitude limit on the one-sided guide plate 11, and the pressure amplitude limit includes a pressure upper limit LIM up2 and a pressure lower limit LIM low2 ,
  • the upper pressure limit LIM up2 is obtained according to the eighth formula
  • the lower pressure limit LIM low2 is obtained according to the ninth formula;
  • the target control pressure is determined according to the production process, mainly considering factors such as final roll shape, strip edge wear, and side guide liner wear.
  • End opening adjustment step After the tail of the hot-rolled strip 20 exits the coiling pinch roller 12, if there is no subsequent hot-rolled strip 20 to be coiled, the opening control of the side guide 11 is adjusted to the end opening W7, The end opening degree W7 is equal to the first preliminary opening degree W1 in the first preliminary opening degree adjustment step, and the position of each one-sided guide plate 11 is adjusted to If there is a subsequent hot-rolled strip 20 to be coiled, the preliminary opening adjustment step is repeated to the end of the opening adjustment step.
  • This implementation mode provides Example 1 and Example 2 for specific description.
  • the opening of the side guide 11 is controlled and adjusted to the preliminary opening
  • the target width W ref of the hot-rolled strip 20 issued by the process control computer is 1200mm.
  • the side guide opening margin l 1 is set to 50mm.
  • the detection system calculates according to the real-time measurement of the width gauge 8 that the length of the hot-rolled strip 20 is within the length range of L1 (the value is 30m) after exiting the width gauge 8.
  • the average width Wave is 1210mm
  • the deviation l dev within the length of L1 (the value is 30m) after the hot-rolled strip 20 exits the width gauge 8 is 10mm
  • the side guide opening margin l 2 is taken as 20mm.
  • An industrial camera 9 is installed obliquely above the entrances of the two side guides 11.
  • the photographing range of the industrial camera 9 includes the entire area of each side guide 11.
  • the industrial camera 9 transmits the captured images to the inspection system in real time through the communication line.
  • the industrial camera 9 The vertical distance H from the hot-rolled strip 20 is 4.18m, and the distance L from the end of the side guide plate 11 is 8m;
  • the detection system For each one-sided side guide plate 11, the detection system performs real-time analysis on the sparks generated by the friction between the one-sided side guide plate 11 and the hot-rolled strip 20 taken by the industrial camera 9 to identify the one-sided side guide plate 11
  • the single spark with the largest lateral width generated on the above, and the lateral width of the spark is recorded as the spark width M S.
  • the detection system transmits the identified spark width M S to the industrial control PLC to identify the delay time Control within 50ms.
  • the dynamic adjustment step specifically includes a first dynamic adjustment step, a second dynamic adjustment step, a third dynamic adjustment step, and a fourth dynamic adjustment step;
  • the first dynamic adjustment step :
  • the strip thickness of the hot-rolled strip 20 is h strip ⁇ h, so the position control adjustment method is adopted;
  • the second dynamic adjustment step :
  • the calculation and control method is the same as the first target spark width M aim1 .
  • the target position W S of the side guide plate is continuously and dynamically calculated, and then the position of the one-sided side guide plate 11 is adjusted to the target position W S of the side guide plate until the tail of the hot-rolled strip 20 exits the coiling pinch roller 12.
  • the calculation control method is the same The first target spark width M aim1 .
  • the opening of the side guide 11 is controlled and adjusted to the preliminary opening
  • the detection system calculates according to the real-time measurement of the width gauge 8 that the length of the hot-rolled strip 20 is within the length range of L1 (the value is 30m) after exiting the width gauge 8.
  • the average width W ave is 1012mm
  • An industrial camera 9 is installed obliquely above the entrances of the two side guides 11.
  • the photographing range of the industrial camera 9 includes the entire area of each side guide 11.
  • the industrial camera 9 transmits the captured images to the inspection system in real time through the communication line.
  • the industrial camera 9 The vertical distance H from the hot-rolled strip 20 is 4.18m, and the distance L from the end of the side guide plate 11 is 8m;
  • the detection system For each one-sided side guide plate 11, the detection system performs real-time analysis on the sparks generated by the friction between the one-sided side guide plate 11 and the hot-rolled strip 20 taken by the industrial camera 9 to identify the one-sided side guide plate 11
  • the single spark with the largest lateral width generated on the above, and the lateral width of the spark is recorded as the spark width M S.
  • the detection system transmits the identified spark width M S to the industrial control PLC to identify the delay time Control within 50ms.
  • the dynamic adjustment step specifically includes a first dynamic adjustment step, a second dynamic adjustment step, a third dynamic adjustment step, and a fourth dynamic adjustment step;
  • the first dynamic adjustment step :
  • the strip thickness of the hot-rolled strip 20 is h strip > h, so the pressure control adjustment method is adopted;
  • the target pressure P S of the side guide plate is obtained by dynamic calculation, and then the pressure of the one-sided side guide plate 11 is adjusted to the same as the target pressure P S of the side guide plate; it should be noted that the spark width of the one-sided side guide plate 11 is determined by this When the spark width of the one-side guide plate 11 is greater than the first target spark width M aim1 , it can be approximately regarded as the one-side guide plate 11 and the hot-rolled plate.
  • the pressure between the belts (20) is too high, so the pressure P S on the one-side guide plate 11 needs to be reduced.
  • the second dynamic adjustment step :
  • the calculation control method is the same as that of the first The target spark width M aim1 .
  • the calculation control method is the same as the first target spark width M aim1 .
  • the calculation and control method is the same as the first target spark width M aim1 .
  • the pressure adjustment setting limit of the side guide is as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

一种基于火花识别的热轧卷取侧导板控制方法,根据热轧板带(20)与侧导板(11)摩擦产生的火花宽度调节侧导板(11);在侧导板(11)的斜上方设置工业相机(9),检测系统对工业相机(9)拍摄获取图像实时分析,对照所述火花宽度,判断得出两侧侧导板(11)上产生的火花量级,对于每一个单侧侧导板(11),根据该单侧侧导板(11)所对应的火花宽度M S,对该单侧侧导板(11)进行控制调节;对于所述单侧侧导板(11),由ΔM S=M S-M aim获得该单侧火花宽度偏差ΔM S,根据公式 (I)得出该单侧侧导板(11)位置调节量ΔW S,根据公式(II)得出该单侧侧导板(11)压力调节量ΔP S。该方法可以使热轧板带(20)一直处于钢卷的相对中心位置,减少了侧导板(11)磨损,同时避免了钢卷的各种缺陷问题,能够使钢卷卷形良好。

Description

基于火花识别的热轧卷取侧导板控制方法 技术领域
本发明涉及热轧板卷取设备,尤其涉及一种基于火花识别的热轧卷取侧导板控制方法。
背景技术
现有的热轧板带20卷取相关设备可参考图1(除去工业相机9),顺轧机运行方向,依次包括热轧机机架、测宽仪8、激光检测仪10、侧导板11、卷取夹送辊12和卷取机16,卷取机16和卷取夹送辊12用于卷取热轧板带20,侧导板11用于引导热轧板带20正确进入卷取夹送辊12和卷取机16中,防止热轧板带20跑偏,测宽仪8用于测量热轧板带20的宽度,激光检测仪10用于检测热轧板带20的位置,侧导板平行段长度为4~8m。另外,热轧板带20的卷取设备中还包括检测系统,检测系统用于收集硬件反馈的数据信息并进行相关数据分析,该检测系统通常由工控机实施。热轧板带20自热轧机尾辊出来后则进入到卷取过程。
在热连轧卷取控制过程中,侧导板控制是一个十分重要的环节,它直接关系到热轧板带20边部质量和卷形质量。现有控制系统主要是通过短行程预设定的方式进行侧导板开度控制,即在卷取过程的不同阶段,将两侧侧导板11之间的开度调整到一个预设的开度,在整个控制过程中,如果侧导板开度控制过小,一方面容易造成带钢边损严重,甚至卡钢,一方面造成侧导板局部磨损,缩短其服役周期,如果侧导板开度控制过大,则会导致钢卷塔形、错层等问题。存在这些问题的根本原因在于热轧板带20进入卷取夹送辊12后,很难保证侧导板11施加给热轧板带20两侧的压力对称且大小适中,以及在后续卷取过程中,带钢一直沿着前面的中心线运行。
针对上述的情况,专利CN200810037476、CN201410442427采用侧导板压力和位置交替控制的方式,以保证侧导板对带钢两侧夹紧力稳定;专利KR900675B1将标准轧制力和预先设定的噪声与实测轧制力和噪声进行了比较,判断条带是否扭曲,从而最终控制侧导板的位置;专利JP2006263779A通过夹送辊传动侧与工作侧 侧的开度差或负载差来获得带钢的弯曲量,并根据弯曲量修正侧导板的开度。然而这些专利均属于间接控制方式,无法获知侧导板对带钢的真正夹紧力以及带钢中心线的位置。
发明内容
本发明的目的在于提供一种基于火花识别的热轧卷取侧导板控制方法,该方法使热轧板带一直处于钢卷的相对中心位置,减少了侧导板磨损,同时避免了钢卷的各种缺陷问题,使钢卷卷形良好。
为了实现上述技术目的,本发明采用如下技术方案:
一种基于火花识别的热轧卷取侧导板控制方法,所述控制方法包括:
预备开度调整步骤:在热轧板带进入到侧导板区域之前,将侧导板的开度控制调节到预备开度;
安装步骤:在两个侧导板入口的斜上方安装工业相机,工业相机的摄像范围包含每个侧导板全域,工业相机通过通信线路将拍摄的图像实时传送给检测系统;
图像分析步骤:对于每一个单侧侧导板,检测系统对工业相机拍摄获取的该单侧侧导板上与热轧板带摩擦产生的火花图像进行实时分析,从而识别得出该单侧侧导板上产生的横向宽度最大的单个火花,并将该火花的横向宽度记录为火花宽度M S
动态调整步骤:该步骤由热轧板带头部到达卷取夹送辊开始,直到热轧板带尾部出卷取夹送辊为止;该步骤包括:设定目标火花宽度M aim,对于每一个单侧侧导板执行侧导板动态调节过程;所述侧导板动态调节过程包括:根据第一公式得到该单侧侧导板的火花宽度偏差ΔM S,所述第一公式为ΔM S=M S-M aim,根据该单侧侧导板的火花宽度偏差ΔM S对该单侧侧导板实施侧导板控制调节方式;当热轧板带的板带厚度h strip≤h时,所述侧导板控制调节方式为位置控制调节方式,当热轧板带的板带厚度h strip>h时,所述侧导板控制调节方式为压力控制调节方式,其中h为事先设定的参照厚度;所述位置控制调节方式包括:根据第二公式得出该单侧侧导板的侧导板位置调节量ΔW S,所述第二公式为
Figure PCTCN2020115226-appb-000001
式中,K total1为总增益,K P1为比例系数,K I1为积分系数,s为拉普拉斯算子,然后,根据第三公式得出该单侧侧导板的侧导板目 标位置W S,所述第三公式为W S=W S'+ΔW S,式中W S'为该单侧侧导板调节前的位置,然后,将该单侧侧导板的位置调节至侧导板目标位置W S;所述压力控制调节方式包括:根据第四公式得出该单侧侧导板的侧导板压力调节量ΔP S,所述第四公式为
Figure PCTCN2020115226-appb-000002
式中K total2为总增益,K P2为比例系数,K I2为积分系数,s为拉普拉斯算子,然后,根据第五公式得出该单侧侧导板的侧导板目标压力P S,所述第五公式为P S=P S'+ΔP S,式中P S'为该单侧侧导板调节前的压力,然后,调节该单侧侧导板的位置,使该单侧侧导板上的压力与侧导板目标压力P S一致。
进一步地,所述动态调整步骤具体包括:
第一动态调整步骤:该步骤由热轧板带头部到达卷取夹送辊开始,直到热轧板带尾部出F1机架为止;该步骤包括:将目标火花宽度M aim设定为第一目标火花宽度M aim1,当热轧板带头部到达卷取夹送辊后,对于每一个单侧侧导板执行所述侧导板动态调节过程,直到热轧板带头部出卷取夹送辊的长度达到L head为止,其中L head为事先设定的板带头部长度;该步骤还包括:当热轧板带头部出卷取夹送辊的长度超过所述板带头部长度L head时,将所述单侧侧导板的实时位置记录为目标锁定位置W LK,然后将所述单侧侧导板的位置调节为W LK+ΔW 3,然后锁定所述单侧侧导板的位置直到热轧板带尾部出F1机架为止,其中ΔW 3为事先设定的目标位置余量。
进一步地,所述动态调整步骤中还包括:
第二动态调整步骤:该步骤由热轧板带尾部出F1机架开始,直到热轧板带尾部出F7机架为止;该步骤包括:将目标火花宽度M aim设定为第二目标火花宽度M aim2,然后对于每一个单侧侧导板执行所述侧导板动态调节过程。
进一步地,所述动态调整步骤中还包括:
第三动态调整步骤:该步骤由热轧板带尾部出F7机架开始,直到热轧板带尾部到达侧导板之前的X米处为止,其中X为事先设定的长度参数;该步骤包括:将目标火花宽度M aim设定为第三目标火花宽度M aim3,然后对于每一个单侧侧导板执行所述侧导板动态调节过程。
进一步地,所述动态调整步骤中还包括:
第四动态调整步骤:该步骤由热轧板带尾部到达侧导板之前的X米处开始,直到热轧板带尾部出卷取夹送辊为止;该步骤包括:将目标火花宽度M aim设定为第四目标火花宽度M aim4,然后对于每一个单侧侧导板进行所述侧导板动态调节过程。
进一步地,所述动态调整步骤中的侧导板动态调节过程还包括:对所述单侧侧导板设置位置幅度限制,所述位置幅度限制包括位置上限LIM up1和位置下限LIM low1,所述位置上限LIM up1根据第六公式得出,所述位置下限LIM low1根据第七公式得出;所述第六公式为
Figure PCTCN2020115226-appb-000003
所述第七公式为
Figure PCTCN2020115226-appb-000004
式中,W ave为热轧板带出测宽仪后L1长度范围内的平均宽度,其中L1为事先设定的测宽长度;所述测宽仪设置在热轧机机架后侧,测宽仪对出轧机后的热轧板带实时测量宽度。
进一步地,所述动态调整步骤中的压力控制调节方式还包括:对所述单侧侧导板设置压力幅度限制,所述压力幅度限制包括压力上限LIM up2和压力下限LIM low2,所述压力上限LIM up2根据第八公式得出,所述压力下限LIM low2根据第九公式得出;所述第八公式为LIM up2=(1+k1)P S_aim;所述第九公式为LIM low2=(1-k1)P S_aim;式中,k1取值范围为0~0.5,P S_aim为事先设定的目标控制压力。
进一步地,预备开度调整步骤中所述将侧导板的开度控制调节到预备开度具体包括:
第一预备开度调整步骤:当热轧板带头部出F3机架时,将侧导板的开度控制调节为第一预备开度W1,并且对于每一个单侧侧导板,所述单侧侧导板的位置则调节为
Figure PCTCN2020115226-appb-000005
第一预备开度W1根据第十公式得出;所述第十公式为W1=W ref+l 1,式中,W ref为过程控制计算机下发的热轧板带目标宽度值,l 1为侧导板打开余量,l 1的取值范围为40~60mm。
进一步地,预备开度调整步骤中所述将侧导板的开度控制调节到预备开度具体还包括:
第二预备开度调整步骤:当热轧板带头部到达激光检测仪时,将侧导板的开 度控制调节为第二预备开度W2,并且对于每一个单侧侧导板,所述单侧侧导板的位置则调节为
Figure PCTCN2020115226-appb-000006
第二预备开度W2根据第十一公式得出;所述第十一公式为W2=W ave+l dev+l 2,式中,W ave为热轧板带出测宽仪后L1长度范围内的平均宽度,l dev为热轧板带出测宽仪后L1长度范围内的跑偏量,其中L1为事先设定的测宽长度,l 2为侧导板打开余量,l 2的取值范围为15~30mm。
进一步地,所述侧导板控制方法还包括:
结束开度调整步骤:当热轧板带尾部出卷取夹送辊后,若无后续热轧板带要卷取,则将侧导板的开度控制调节到结束开度W7,所述结束开度W7等于第一预备开度调整步骤中所述第一预备开度W1,每个单侧侧导板的位置则调节为
Figure PCTCN2020115226-appb-000007
本发明的方法,在侧导板的斜上方设置工业相机,该工业相机是实现对侧导板进行控制调节的关键装置,工业相机的主要功能是摄取侧导板的图像,尤其是获取热轧板带与侧导板接触摩擦时产生的火花图像,并将该图像通过通信线路实时地传输至检测系统中;检测系统对工业相机拍摄获取的侧导板与热轧板带摩擦产生的火花图像进行实时分析,从而识别得出该侧导板上产生的火花宽度,再根据该火花宽度对两侧侧导板进行控制调节。也就是说,本发明是通过对热轧板带与侧导板摩擦产生的火花宽度来判断侧导板与热轧板带之间的摩擦接触的情况,并以此为依据对侧导板进行控制调节,从而优化了侧导板的控制方法,使热轧板带一直处于钢卷的相对中心位置,减少了侧导板磨损,同时避免了钢卷的各种缺陷问题,使钢卷卷形良好。
附图说明
图1为热轧板带由热轧生产线至板带卷取的设备布置结构示意图,图中箭头为轧机运行方向;
图2为工业相机的位置示意图;
图3为侧导板区域的俯视图;
图4为根据本发明基于火花识别的热轧卷取侧导板控制方法的流程图。
图中:1 F1机架、3 F3机架、7 F7机架、8测宽仪、9工业相机、10激光检测仪、11侧导板、12卷取夹送辊、16卷取机、20热轧板带。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明:
参见图1至图4,本实施方式提供了一种基于火花识别的热轧卷取侧导板控制方法,所述侧导板控制方法基于如图1所示的热轧卷取设备,图1所展示的是由热轧生产线至板带卷取的设备布置结构,热轧板带20出热轧机后经侧导板11导向,最终进入卷取机16中卷取成型。顺轧机运行方向,所述热轧卷取设备依次包括热轧机机架、测宽仪8、工业相机9、激光检测仪10、侧导板11、卷取夹送辊12和卷取机16,卷取机16和卷取夹送辊12用于卷取热轧板带20,侧导板11用于引导热轧板带20正确进入卷取夹送辊12和卷取机16中,防止热轧板带20跑偏,所述测宽仪8设置在热轧机机架后侧,测宽仪8对出轧机后的热轧板带20实时测量宽度,工业相机9用于拍摄侧导板11的图像,激光检测仪10用于检测热轧板带20的位置,侧导板平行段长度为4~8m。
另外,在所述热轧卷取设备中还设置有热轧板带20的位置跟踪系统,用以跟踪确定热轧板带20的具体位置,包括其头部和尾部的具体位置。热轧板带20的卷取设备中还包括检测系统,工业相机9拍摄获得的侧导板11图像数据通过通讯线路传输到检测系统中进行分析,该检测系统通常由工控机实施。
在所述侧导板11的驱动侧设置有位置传感器和压力传感器,这些传感器能获取到侧导板11的位置及侧导板11上所受到的压力,并将侧导板11的位置和压力信息传输给工业控制PLC。
本实施方式的侧导板控制方法包括如下步骤:
预备开度调整步骤:在热轧板带20进入到侧导板11区域之前,将侧导板11的开度控制调节到预备开度。
更具体地,所述将侧导板11的开度控制调节到预备开度具体包括第一预备开度调整步骤和第二预备开度调整步骤。具体地,可以通过电机或液压装置将侧导板11的开度控制调节到预备开度。
第一预备开度调整步骤:当热轧板带20头部出F3机架3时,将侧导板11的开度控制调节为第一预备开度W1,并且对于每一个单侧侧导板11,所述单侧侧导板11的位置则调节为
Figure PCTCN2020115226-appb-000008
第一预备开度W1根据第十公式得出,所述第十公式为:W1=W ref+l 1,式中,W ref为过程控制计算机下发的热轧板带20目标宽度值, l 1为侧导板11打开余量,l 1的取值范围为40~60mm。
第二预备开度调整步骤:当热轧板带20头部到达激光检测仪10时,将侧导板11的开度控制调节为第二预备开度W2,并且对于每一个单侧侧导板11,所述单侧侧导板11的位置则调节为
Figure PCTCN2020115226-appb-000009
第二预备开度W2根据第十一公式得出,所述第十一公式为:W2=W ave+l dev+l 2,式中,W ave为热轧板带20出测宽仪8后L1长度范围内的平均宽度,l dev为热轧板带20出测宽仪8后L1长度范围内的跑偏量,其中L1为事先设定的测宽长度,L1的取值范围为20~50m,l 2为侧导板11打开余量,l 2的取值范围为15~30mm。具体地,上述跑偏量是指热轧板带20的中心线相对于卷取夹送辊12中心线的偏差量。
在热轧板带20进入到侧导板11区域之前,须先将侧导板11的开度控制调节到预备开度,这主要是为了使侧导板11的开度能够粗略地匹配热轧板带20的宽度,从而为后续的精细调节作好准备。
当热轧板带20头部出F3机架3时,将侧导板11的开度控制调节为第一预备开度W1,第一预备开度依据过程控制计算机下发的热轧板带20目标宽度值W ref而定;当热轧板带20头部到达激光检测仪10时,将侧导板11的开度控制调节为第二预备开度W2,第二预备开度依据测宽仪8实际测得的热轧板带20宽度而定。
安装步骤:在两个侧导板11入口的斜上方安装工业相机9,工业相机9的摄像范围包含每个侧导板11全域,工业相机9通过通信线路将拍摄的图像实时传送给检测系统;
参见图1至图3,在两个侧导板11入口的斜上方安装工业相机9,工业相机9的摄像范围包含每个侧导板11全域,该工业相机9是实现对侧导板11进行控制调节的关键装置,工业相机9的主要功能是摄取侧导板11的图像,尤其是获取热轧板带20与侧导板11接触摩擦时产生的火花图像,并将该图像通过通信线路实时地传输至检测系统中,所述通信线路可以是光纤通信线路也可以是双绞线通信线路。在本实施方式中,检测系统具体来说就是工控机。在本实施方式中工业相机9是一台高速CCD工业相机,能够以每秒25帧以上的速度摄取图像;
参见图2,工业相机9所安装的位置相对于热轧板带20的垂直高度H=2~5m,与侧导板11之间的水平距离L=2~10m,这样一来,工业相机9的取景范围能够覆盖侧导板11全域,并且在该位置上能最大程度地避免水雾对摄像的影响。为了能 保证更好地摄像效果,通常可以设置两台工业相机9,每台对准一侧的侧导板11。
图像分析步骤:对于每一个单侧侧导板11,检测系统对工业相机9拍摄获取的该单侧侧导板11上与热轧板带20摩擦产生的火花图像进行实时分析,从而识别得出该单侧侧导板11上产生的横向宽度最大的单个火花,并将该火花的横向宽度记录为火花宽度M S。具体地,上面提及的横向与热轧板带20的宽度方向一致。
这里所述的火花宽度M S所指示的是单侧侧导板11上产生的最大的单个火花横向宽度,在本实施方式的后续步骤中以该火花宽度M S作为表示火花量级的量化数值。而除了用火花宽度来量化火花量级外,还可以采用其它多种计量方式,比如用图像中的火花面积来计量,或者对上述的宽度或面积这样的模拟量进行等级划分,并构建火花程度等级划分表,然后依据该表来确定火花所对应的等级,并用该等级来计量火花。总体来说,火花的计量值应采用可以真实反映火花产生量大小的量化数值。
动态调整步骤:该步骤由热轧板带20头部到达卷取夹送辊12开始,直到热轧板带20尾部出卷取夹送辊12为止;
该步骤包括:设定目标火花宽度M aim,对于每一个单侧侧导板11执行侧导板动态调节过程,这里的目标火花宽度M aim通常是设定在工业控制PLC中。具体地,目标火花宽度M aim的数值可以根据实际情况进行设定。
所述侧导板动态调节过程包括:根据第一公式得到该单侧侧导板11的火花宽度偏差ΔM S,所述第一公式为ΔM S=M S-M aim,根据该单侧侧导板11的火花宽度偏差ΔM S对该单侧侧导板11实施侧导板控制调节方式;
当热轧板带20的厚度(即热连轧精轧出口的目标厚度)h strip≤h时,所述侧导板控制调节方式为位置控制调节方式,当热轧板带20的板带厚度h strip>h时,所述侧导板控制调节方式为压力控制调节方式,其中h为事先设定的参照厚度;
所述位置控制调节方式包括:根据第二公式得出该单侧侧导板11的侧导板位置调节量ΔW S,所述第二公式为
Figure PCTCN2020115226-appb-000010
式中,K total1为总增益,K total1的取值主要考虑侧导板位置执行机构的响应能力,K P1为比例系数,K P1的取值主要考虑针对火花的单位宽度偏差,侧导板所需要移动的位置大小,K I1为积分系数,K I1的取值需要综合考虑控制系统的快速性和稳定性,其中,K total1、 K P1以及K I1的具体取值可以根据实施过程中实际的调节效果进行选取,s为拉普拉斯算子,
Figure PCTCN2020115226-appb-000011
表示对火花宽度偏差ΔM S进行积分,然后,根据第三公式得出该单侧侧导板11的侧导板目标位置W S,所述第三公式为W S=W S'+ΔW S,式中W S'为该单侧侧导板11调节前的位置,然后,将该单侧侧导板11的位置调节至侧导板目标位置W S
所述压力控制调节方式包括:根据第四公式得出该单侧侧导板11的侧导板压力调节量ΔP S,所述第四公式为
Figure PCTCN2020115226-appb-000012
式中K total2为总增益,K total2的取值主要考虑侧导板压力执行机构的响应能力,K P2为比例系数,K P2的取值主要考虑针对火花的单位宽度偏差,侧导板所需要的调节的压力大小,K I2为积分系数,K I2的取值需要综合考虑控制系统的快速性和稳定性,其中,K total2、K P2以及K I2的具体取值可以根据实施过程中实际的调节效果进行选取,s为拉普拉斯算子,
Figure PCTCN2020115226-appb-000013
表示对火花宽度偏差ΔM S进行积分,然后,根据第五公式得出该单侧侧导板11的侧导板目标压力P S,所述第五公式为P S=P S'+ΔP S,式中P S'为该单侧侧导板11调节前的压力,然后,调节该单侧侧导板11的位置,使该单侧侧导板11上的压力与侧导板目标压力P S一致。
动态调整步骤的计算控制过程通常是由工业控制PLC完成的,检测系统将火花宽度M S送至工业控制PLC,在热轧板带20卷取过程中,PLC则根据该单侧侧导板11的火花宽度M S,通过公式计算得出位置或压力调节量,然后对该单侧侧导板11进行控制调节。在本实施方式中,对于每一个单侧侧导板11,根据火花宽度M S对该单侧侧导板11进行控制调节,这是本发明中最核心部分。本实施方式是通过对热轧板带20与侧导板11摩擦产生的火花来判断侧导板11与热轧板带20之间的摩擦接触的情况,并以此为依据对侧导板11进行控制调节,从而优化了侧导板11的控制方法,使热轧板带20一直处于钢卷的相对中心位置,减少了侧导板磨损,同时避免了钢卷的各种缺陷问题。针对根据火花宽度M S对两侧侧导板11进行控制调节,本实施方式的具体做法包括两种方式,一种是位置控制调节方式,该方式是对两侧侧导板11的位置进行控制调节,另一种是压力控制调节方式,该方式是对两侧侧导板11的压力进行控制调节。无论是位置控制调节方式还是压力 控制调节方式,都是依据侧导板11与热轧板带20之间的摩擦产生的火花宽度来控制调节侧导板11的,其主要区别在于,位置控制调节方式是将火花宽度偏差转换成对侧导板11的位置调节量,而压力控制调节方式则是将火花宽度偏差转换成对侧导板11的压力调节量。位置控制调节方式主要针对较薄规格的热轧板带20,压力控制调节方式主要针对较厚规格的热轧板带20,由于较薄的热轧板带20采用压力控制调节方式的话,容易产生边裂现象,因此需要采用位置控制调节方式以尽量减少侧导板11与热轧板带20之间的接触程度。
参见图3,需要说明的是,所述单侧侧导板的位置是指该侧导板与热轧辊道中心线之间的距离,如图3中W DS和W WS所对应的双箭头,W DS代表传动侧侧导板位置,W WS代表工作侧侧导板位置,而侧导板开度则是指两侧侧导板之间的距离,在图3中则为W DS与W WS之和;还需要说明的是,所述单侧侧导板上的压力是指侧导板与热轧板带20接触时,热轧板带20反作用在侧导板上的压力,该压力会被所述侧导板驱动侧的压力传感器感知并传送至工业控制PLC中。
更具体地,所述动态调整步骤具体包括第一动态调整步骤、第二动态调整步骤、第三动态调整步骤和第四动态调整步骤:
第一动态调整步骤:该步骤由热轧板带20头部到达卷取夹送辊12开始,直到热轧板带20尾部出F1机架1为止;该步骤包括:将目标火花宽度M aim设定为第一目标火花宽度M aim1,当热轧板带20头部到达卷取夹送辊12后,对于每一个单侧侧导板11执行所述侧导板动态调节过程,直到热轧板带20头部出卷取夹送辊12的长度达到所述L head为止,其中L head为事先设定的板带头部长度,板带头部长度L head的取值范围为10~40m;该步骤还包括:当热轧板带20头部出卷取夹送辊12的长度超过所述板带头部长度L head时,将所述单侧侧导板11的实时位置记录为目标锁定位置W LK,然后将所述单侧侧导板11的位置调节为W LK+ΔW 3,然后锁定所述单侧侧导板11的位置直到热轧板带20尾部出F1机架1为止,其中ΔW 3为事先设定的目标位置余量,目标位置余量ΔW 3的取值范围为1~5mm。在该步骤过程中,侧导板11与热轧板带20脱离接触,从而减少侧导板11磨损,并可改善热轧板带20边部质量。
第二动态调整步骤:该步骤由热轧板带20尾部出F1机架1开始,直到热轧板带20尾部出F7机架7为止;该步骤包括:将目标火花宽度M aim设定为第二目 标火花宽度M aim2,然后对于每一个单侧侧导板11执行所述侧导板动态调节过程。
第三动态调整步骤:该步骤由热轧板带20尾部出F7机架7开始,直到热轧板带20尾部到达侧导板11之前的X米处为止,其中X为事先设定的长度参数,长度参数X的取值范围为20~30m;该步骤包括:将目标火花宽度M aim设定为第三目标火花宽度M aim3,然后对于每一个单侧侧导板11执行所述侧导板动态调节过程。
第四动态调整步骤:该步骤由热轧板带20尾部到达侧导板11之前的X米处开始,直到热轧板带20尾部出卷取夹送辊12为止;该步骤包括:将目标火花宽度M aim设定为第四目标火花宽度M aim4,然后对于每一个单侧侧导板11进行所述侧导板动态调节过程。
具体地,第一目标火花宽度至第四目标火花宽度可以根据热轧板带20的厚度以及其在生产过程中对卷形、带钢边部磨损的影响等因素进行设定。
此外,无论是位置控制调节方式还是压力控制调节方式,都需要对控制调节的幅度设置一定的限制,这主要是为了防止热轧板带20中心线偏离卷取机16的中心线距离太大,导致卷取失败。
为此,所述动态调整步骤中侧导板动态调节过程中还包括:对所述单侧侧导板11设置位置幅度限制,所述位置幅度限制包括位置上限LIM up1和位置下限LIM low1,所述位置上限LIM up1根据第六公式得出,所述位置下限LIM low1根据第七公式得出;所述第六公式为
Figure PCTCN2020115226-appb-000014
所述第七公式为
Figure PCTCN2020115226-appb-000015
式中,W ave为热轧板带20出测宽仪8后L1长度范围内的平均宽度,其中L1为事先设定的测宽长度,L1的取值范围为20~50m。
除了设置位置幅度限制外,所述动态调整步骤中的压力控制调节方式还包括:对所述单侧侧导板11设置压力幅度限制,所述压力幅度限制包括压力上限LIM up2和压力下限LIM low2,所述压力上限LIM up2根据第八公式得出,所述压力下限LIM low2根据第九公式得出;所述第八公式为LIM up2=(1+k1)P S_aim;所述第九公式为LIM low2=(1-k1)P S_aim;式中,k1取值范围为0~0.5,P S_aim为事先设定的目标控制压力。具体地,目标控制压力根据生产工艺确定,主要考虑最终卷形、带钢边部磨损、侧导板衬板损耗等因素。
本实施方式的侧导板控制方法还包括:
结束开度调整步骤:当热轧板带20尾部出卷取夹送辊12后,若无后续热轧板带20要卷取,则将侧导板11的开度控制调节到结束开度W7,所述结束开度W7等于第一预备开度调整步骤中所述第一预备开度W1,每个单侧侧导板11的位置则调节为
Figure PCTCN2020115226-appb-000016
若有后续热轧板带20要卷取,则重复预备开度调整步骤至结束开度调整步骤。
本实施方式提供实施例一和实施例二来具体说明。
实施例一:
预备开度调整步骤:
参见图4,在热轧板带20进入到侧导板11区域之前,将侧导板11的开度控制调节到预备开度;
第一预备开度调整步骤:
过程控制计算机下发的热轧板带20目标宽度W ref=1200mm,当热轧板带20头部出F3机架3时,侧导板打开余量l 1设定为50mm,根据第十公式,W1=W ref+l 1=1250mm,将侧导板11的开度控制调节为第一预备开度W1,并且对于每一个单侧侧导板11,所述单侧侧导板11的位置则调节为
Figure PCTCN2020115226-appb-000017
第二预备开度调整步骤:
当热轧板带20头部到达激光检测仪10时,检测系统根据测宽仪8的实时测量计算得出热轧板带20出测宽仪8后L1(取值为30m)长度范围内的平均宽度W ave为1210mm,热轧板带20出测宽仪8后L1(取值为30m)长度范围内的跑偏量l dev为10mm,侧导板打开余量l 2取为20mm,根据第十一公式,W2=W ave+l dev+l 2=1240mm,将侧导板11的开度控制调节为第二预备开度W2,而单侧侧导板11的位置则调节为
Figure PCTCN2020115226-appb-000018
安装步骤:
在两个侧导板11入口的斜上方安装工业相机9,工业相机9的摄像范围包含每个侧导板11全域,工业相机9通过通信线路将拍摄的图像实时传送给检测系统,所述工业相机9距离热轧板带20的垂直距离H为4.18m,距离侧导板11末端距离L为8m;
图像分析步骤:
对于每一个单侧侧导板11,检测系统对工业相机9拍摄获取的该单侧侧导板11上与热轧板带20摩擦产生的火花图像进行实时分析,从而识别得出该单侧侧导板11上产生的横向宽度最大的单个火花,并将该火花的横向宽度记录为火花宽度M S,在本实施例中,检测系统将识别得出的火花宽度M S传送给工业控制PLC,识别延迟时间控制在50ms以内。
动态调整步骤:
该步骤由热轧板带20头部到达卷取夹送辊12开始,直到热轧板带20尾部出卷取夹送辊12为止,设定参照厚度h为3mm,热轧板带20厚度h strip=2.5mm;
动态调整步骤具体包括第一动态调整步骤、第二动态调整步骤、第三动态调整步骤和第四动态调整步骤;
第一动态调整步骤:
热轧板带20的板带厚度h strip<h,故采用位置控制调节方式;
当热轧板带20头部到达卷取夹送辊12时,将目标火花宽度M aim设定为第一目标火花宽度M aim1=10mm,依据第一公式、第二公式和第三公式,不断动态计算得出侧导板目标位置W S,然后将单侧侧导板11的位置调节为侧导板目标位置W S;比如检测系统分析单侧侧导板11图像得出该单侧侧导板11的火花宽度M S=11mm,依据第一公式,ΔM S=M S-M aim=1mm,然后再依据第二公式,
Figure PCTCN2020115226-appb-000019
进行动态比例和积分控制,最终得到ΔW S值为0.3mm,若之前的侧导板位置W S'=620mm,依据第三公式,W S=W S'+ΔW S=620.3mm,这样的动态调节过程直到热轧板带20头部出卷取夹送辊12的长度达到板带头部长度L head为止,其中L head为事先设定的板带头部长度L head事先设定为30m。
当热轧板带20头部出卷取夹送辊12的长度超过所述板带头部长度L head时,将所述单侧侧导板11的实时位置,比如实时位置为622mm,记录为目标锁定位置W LK=622mm,将目标位置余量ΔW 3事先设定为2mm,然后将所述单侧侧导板11的位置调节为W LK+ΔW 3=624mm,然后锁定所述单侧侧导板11的位置直到热轧板带20尾部出F1机架1为止。
第二动态调整步骤:
当热轧板带20尾部出F1机架1时,将目标火花宽度M aim设定为第二目标火花宽度M aim2=10mm,依据第一公式、第二公式和第三公式,不断动态计算得出侧导板目标位置W S,然后将单侧侧导板11的位置调节为侧导板目标位置W S,直到热轧板带20尾部出F7机架7为止,计算控制方法同第一目标火花宽度M aim1
第三动态调整步骤:
设定长度参数X=25m,当热轧板带20尾部出F7机架7时,将目标火花宽度M aim设定为第三目标火花宽度M aim3=10mm,依据第一公式、第二公式和第三公式,不断动态计算得出侧导板目标位置W S,然后将单侧侧导板11的位置调节为侧导板目标位置W S,直到热轧板带20尾部到达侧导板11之前的X米处为止,计算控制方法同第一目标火花宽度M aim1
第四动态调整步骤:
当热轧板带20尾部到达侧导板11之前的X米处时,将目标火花宽度M aim设定为第四目标火花宽度M aim4=20mm,依据第一公式、第二公式和第三公式,不断动态计算得出侧导板目标位置W S,然后将单侧侧导板11的位置调节为侧导板目标位置W S,直到热轧板带20尾部出卷取夹送辊12为止,计算控制方法同第一目标火花宽度M aim1
结束开度调整步骤:
热轧板带20尾部出卷取夹送辊12后,无后续热轧板带20要卷取,则将侧导板11的开度控制调节到结束开度W7=W1=1250mm,每个单侧侧导板11的位置则调节为
Figure PCTCN2020115226-appb-000020
在侧导板位置控制调节过程中,对侧导板的调节位置设置幅度限制:
热轧板带20出测宽仪8后L1(取值为30m)长度范围内的平均宽度W ave为1210mm,根据第六公式,单侧侧导板的位置上限
Figure PCTCN2020115226-appb-000021
根据第七公式,单侧侧导板的位置下限
Figure PCTCN2020115226-appb-000022
位置幅度限制范围则为555~655mm。
实施例二:
预备开度调整步骤:
参见图4,在热轧板带20进入到侧导板11区域之前,将侧导板11的开度控制调节到预备开度;
第一预备开度调整步骤:
过程控制计算机下发的热轧板带20目标宽度W ref=1000mm;当热轧板带20头部出F3机架3时,侧导板打开余量l 1设定为40mm,依据第十公式W1=W ref+l 1=1040mm,将侧导板11的开度控制调节为第一预备开度W1,并且对于每一个单侧侧导板11,所述单侧侧导板11的位置则调节为
Figure PCTCN2020115226-appb-000023
第二预备开度调整步骤:
当热轧板带20头部到达激光检测仪10时,检测系统根据测宽仪8的实时测量计算得出热轧板带20出测宽仪8后L1(取值为30m)长度范围内的平均宽度W ave为1012mm,热轧板带20出测宽仪8后L1(取值为30m)长度范围内的跑偏量l dev为8mm,侧导板打开余量l 2取为16mm,根据第十一公式,W2=W ave+l dev+l 2=1036mm,将侧导板11的开度控制调节为第二预备开度W2,而单侧侧导板11的位置则调节为
Figure PCTCN2020115226-appb-000024
安装步骤:
在两个侧导板11入口的斜上方安装工业相机9,工业相机9的摄像范围包含每个侧导板11全域,工业相机9通过通信线路将拍摄的图像实时传送给检测系统,所述工业相机9距离热轧板带20的垂直距离H为4.18m,距离侧导板11末端距离L为8m;
图像分析步骤:
对于每一个单侧侧导板11,检测系统对工业相机9拍摄获取的该单侧侧导板11上与热轧板带20摩擦产生的火花图像进行实时分析,从而识别得出该单侧侧导板11上产生的横向宽度最大的单个火花,并将该火花的横向宽度记录为火花宽度M S,在本实施例中,检测系统将识别得出的火花宽度M S传送给工业控制PLC,识别延迟时间控制在50ms以内。
动态调整步骤:
该步骤由热轧板带20头部到达卷取夹送辊12开始,直到热轧板带20尾部出卷取夹送辊12为止,设定参照厚度h为3mm,热轧板带20厚度h strip=4mm;
动态调整步骤具体包括第一动态调整步骤、第二动态调整步骤、第三动态调整步骤和第四动态调整步骤;
第一动态调整步骤:
热轧板带20的板带厚度h strip>h,故采用压力控制调节方式;
当热轧板带20头部到达卷取夹送辊12时,将目标火花宽度M aim设定为第一目标火花宽度M aim1=10mm,依据第一公式、第四公式和第五公式,不断动态计算得出侧导板目标压力P S,然后将单侧侧导板11调节到其上的压力与侧导板目标压力P S一致;需要注意的是,由于单侧侧导板11的火花宽度是由该单侧侧导板11上与热轧板带20摩擦产生的,当该单侧侧导板11的火花宽度大于第一目标花火宽度M aim1时,可以近似认为该单侧侧导板11上与热轧板带(20)之间压力过大,因此需要减小单侧侧导板11上的压力P S。比如检测系统分析单侧侧导板11图像得出该单侧侧导板11的火花宽度M S=11mm,依据第一公式,ΔM S=M S-M aim=1mm,然后再依据第四公式,
Figure PCTCN2020115226-appb-000025
进行动态比例和积分控制,最终得到ΔP S值为-0.8kN,如果之前的侧导板压力P S'=11kN,依据第五公式P S=P S'+ΔP S=10.2kN,这样的动态调节过程直到热轧板带20头部出卷取夹送辊12的长度达到板带头部长度L head为止,板带头部长度L head事先设定为30m。
当热轧板带20头部出卷取夹送辊12的长度超过所述板带头部长度L head时,将所述单侧侧导板11的实时位置,比如实时位置为622mm,记录为目标锁定位置W LK=622mm,将目标位置余量ΔW 3事先设定为2mm,然后将所述单侧侧导板11的位置调节为W LK+ΔW 3=624mm,然后锁定所述单侧侧导板11的位置直到热轧板带20尾部出F1机架1为止。
第二动态调整步骤:
当热轧板带20尾部出F1机架1时,将目标火花宽度M aim设定为第二目标火花宽度M aim2=10mm,依据第一公式、第四公式和第五公式,不断动态计算得出侧导板目标压力P S,然后将单侧侧导板11调节到其上的压力与侧导板目标压力P S 一致,直到热轧板带20尾部出F7机架7为止,计算控制方法同第一目标火花宽度M aim1
第三动态调整步骤:
设定长度参数X=25m,当热轧板带20尾部出F7机架7时,将目标火花宽度M aim设定为第三目标火花宽度M aim3=10mm,依据第一公式、第四公式和第五公式,不断动态计算得出侧导板目标压力P S,然后将单侧侧导板11调节到其上的压力与侧导板目标压力P S一致,直到热轧板带20尾部到达侧导板11之前的X米处为止,计算控制方法同第一目标火花宽度M aim1
第四动态调整步骤:
当热轧板带20尾部到达侧导板11之前的X米处时,将目标火花宽度M aim设定为第四目标火花宽度M aim4=20mm,依据第一公式、第四公式和第五公式,不断动态计算得出侧导板目标压力P S,然后将单侧侧导板11调节到其上的压力与侧导板目标压力P S一致,直到热轧板带20尾部出卷取夹送辊12为止,计算控制方法同第一目标火花宽度M aim1
结束开度调整步骤:
热轧板带20尾部出卷取夹送辊12后,无后续热轧板带20要卷取,则将侧导板11的开度控制调节到结束开度W7=W1=1040mm,每个单侧侧导板的位置调节为
Figure PCTCN2020115226-appb-000026
在侧导板位置控制调节过程中,对侧导板的压力调节设置幅度限制:
设定目标控制压力P S_aim为10kN,k1取值为0.5,根据第八公式,则单侧侧导板11的压力上限LIM up2=(1+k1)P S_aim=15kN,根据第九公式,压力下限LIM low2=(1-k1)P S_aim=5kN,位置幅度限制范围则为5~15kN。
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于火花识别的热轧卷取侧导板控制方法,所述控制方法包括:
    预备开度调整步骤:在热轧板带(20)进入到侧导板(11)区域之前,将所述侧导板(11)的开度控制调节到预备开度;
    其特征在于:所述控制方法还包括:
    安装步骤:在两个侧导板(11)入口的斜上方安装工业相机(9),所述工业相机(9)的摄像范围包含每个侧导板(11)全域,所述工业相机(9)通过通信线路将拍摄的图像实时传送给检测系统;
    图像分析步骤:对于每一个单侧侧导板(11),所述检测系统对所述工业相机(9)拍摄获取的该单侧侧导板(11)上与所述热轧板带(20)摩擦产生的火花图像进行实时分析,从而识别得出该单侧侧导板(11)上产生的横向宽度最大的单个火花,并将该火花的横向宽度记录为火花宽度M S
    动态调整步骤:该步骤由所述热轧板带(20)头部到达卷取夹送辊(12)开始,直到所述热轧板带(20)尾部出所述卷取夹送辊(12)为止;
    所述动态调整步骤包括:设定目标火花宽度M aim,对于每一个单侧侧导板(11)执行侧导板动态调节过程;
    所述侧导板动态调节过程包括:根据第一公式得到该单侧侧导板(11)的火花宽度偏差ΔM S,所述第一公式为ΔM S=M S-M aim,根据该单侧侧导板(11)的火花宽度偏差ΔM S对该单侧侧导板(11)实施侧导板控制调节方式;
    当所述热轧板带(20)的板带厚度h strip≤h时,所述侧导板控制调节方式为位置控制调节方式,当所述热轧板带(20)的板带厚度h strip>h时,所述侧导板控制调节方式为压力控制调节方式,其中h为事先设定的参照厚度;
    所述位置控制调节方式包括:根据第二公式得出该单侧侧导板(11)的侧导板位置调节量ΔW S,所述第二公式为
    Figure PCTCN2020115226-appb-100001
    式中,K total1为总增益,K P1为比例系数,K I1为积分系数,s为拉普拉斯算子,然后,根据第三公式得出该单侧侧导板(11)的侧导板目标位置W S,所述第三公式为W S=W S'+ΔW S,式中W S'为该单侧侧导板(11)调节前的位置,然后,将该单侧侧导板(11)的位置调节至所述侧导板目标位置W S
    所述压力控制调节方式包括:根据第四公式得出该单侧侧导板(11)的侧导板压力调节量ΔP S,所述第四公式为
    Figure PCTCN2020115226-appb-100002
    式中K total2为总增益,K P2为比例系数,K I2为积分系数,s为拉普拉斯算子,然后,根据第五公式得出该单侧侧导板(11)的侧导板目标压力P S,所述第五公式为P S=P S'+ΔP S,式中P S'为该单侧侧导板(11)调节前的压力,然后,调节该单侧侧导板(11)的位置,使该单侧侧导板(11)上的压力与所述侧导板目标压力P S一致。
  2. 根据权利要求1所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述动态调整步骤具体包括:
    第一动态调整步骤:该步骤由所述热轧板带(20)头部到达所述卷取夹送辊(12)开始,直到所述热轧板带(20)尾部出F1机架(1)为止;
    所述第一动态调整步骤包括:将所述目标火花宽度M aim设定为第一目标火花宽度M aim1,当所述热轧板带(20)头部到达所述卷取夹送辊(12)后,对于每一个单侧侧导板(11)执行所述侧导板动态调节过程,直到所述热轧板带(20)头部出所述卷取夹送辊(12)的长度达到L head为止,其中L head为事先设定的板带头部长度;
    所述第一动态调整步骤还包括:当所述热轧板带(20)头部出所述卷取夹送辊(12)的长度超过所述板带头部长度L head时,将所述单侧侧导板(11)的实时位置记录为目标锁定位置W LK,然后将所述单侧侧导板(11)的位置调节为W LK+ΔW 3,然后锁定所述单侧侧导板(11)的位置直到所述热轧板带(20)尾部出F1机架(1)为止,其中ΔW 3为事先设定的目标位置余量。
  3. 根据权利要求2所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述动态调整步骤还包括:
    第二动态调整步骤:该步骤由所述热轧板带(20)尾部出所述F1机架(1)开始,直到所述热轧板带(20)尾部出F7机架(7)为止;
    所述第二动态调整步骤包括:将所述目标火花宽度M aim设定为第二目标火花宽度M aim2,然后对于每一个单侧侧导板(11)执行所述侧导板动态调节过程。
  4. 根据权利要求3所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述动态调整步骤还包括:
    第三动态调整步骤:该步骤由所述热轧板带(20)尾部出所述F7机架(7)开始,直到所述热轧板带(20)尾部到达所述侧导板(11)之前的X米处为止,其中X为事先设定的长度参数;
    所述第三动态调整步骤包括:将所述目标火花宽度M aim设定为第三目标火花宽度M aim3,然后对于每一个单侧侧导板(11)执行所述侧导板动态调节过程。
  5. 根据权利要求4所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述动态调整步骤还包括:
    第四动态调整步骤:该步骤由所述热轧板带(20)尾部到达所述侧导板(11)之前的X米处开始,直到所述热轧板带(20)尾部出所述卷取夹送辊(12)为止;
    所述第四动态调整步骤包括:将所述目标火花宽度M aim设定为第四目标火花宽度M aim4,然后对于每一个单侧侧导板(11)进行所述侧导板动态调节过程。
  6. 根据权利要求1所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述动态调整步骤中的侧导板动态调节过程还包括:对所述单侧侧导板(11)设置位置幅度限制,所述位置幅度限制包括位置上限LIM up1和位置下限LIM low1,所述位置上限LIM up1根据第六公式得出,所述位置下限LIM low1根据第七公式得出;
    所述第六公式为
    Figure PCTCN2020115226-appb-100003
    所述第七公式为
    Figure PCTCN2020115226-appb-100004
    式中,W ave为所述热轧板带(20)出测宽仪(8)后L1长度范围内的平均宽度,其中L1为事先设定的测宽长度;
    所述测宽仪(8)设置在热轧机机架后侧,所述测宽仪(8)对出轧机后的所述热轧板带(20)实时测量宽度。
  7. 根据权利要求1或6所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述动态调整步骤中的压力控制调节方式还包括:对所述单侧侧导板(11)设置压力幅度限制,所述压力幅度限制包括压力上限LIM up2和压力下限LIM low2,所述压力上限LIM up2根据第八公式得出,所述压力下限LIM low2根据第九公式得出;
    所述第八公式为LIM up2=(1+k1)P S_aim;所述第九公式为LIM low2=(1-k1)P S_aim;式中,k1取值范围为0~0.5,P S_aim为事先设定的目标控制压力。
  8. 根据权利要求1所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述预备开度调整步骤中所述将侧导板(11)的开度控制调节到预备开度具 体包括:
    第一预备开度调整步骤:当所述热轧板带(20)头部出F3机架(3)时,将所述侧导板(11)的开度控制调节为第一预备开度W1,并且对于每一个单侧侧导板(11),所述单侧侧导板(11)的位置则调节为
    Figure PCTCN2020115226-appb-100005
    所述第一预备开度W1根据第十公式得出;
    所述第十公式为W1=W ref+l 1,式中,W ref为过程控制计算机下发的热轧板带(20)目标宽度值,l 1为侧导板打开余量,l 1的取值范围为40~60mm。
  9. 根据权利要求8所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述预备开度调整步骤中所述将侧导板(11)的开度控制调节到所述预备开度具体还包括:
    第二预备开度调整步骤:当所述热轧板带(20)头部到达激光检测仪(10)时,将所述侧导板(11)的开度控制调节为第二预备开度W2,并且对于每一个单侧侧导板(11),所述单侧侧导板(11)的位置则调节为
    Figure PCTCN2020115226-appb-100006
    所述第二预备开度W2根据第十一公式得出;
    所述第十一公式为W2=W ave+l dev+l 2,式中,W ave为热所述轧板带(20)出测宽仪(8)后L1长度范围内的平均宽度,l dev为热轧板带(20)出测宽仪(8)后L1长度范围内的跑偏量,其中L1为事先设定的测宽长度,l 2为侧导板打开余量,l 2的取值范围为15~30mm。
  10. 根据权利要求8或9所述基于火花识别的热轧卷取侧导板控制方法,其特征在于:所述侧导板控制方法还包括:
    结束开度调整步骤:当所述热轧板带(20)尾部出所述卷取夹送辊(12)后,若无后续热轧板带(20)要卷取,则将所述侧导板(11)的开度控制调节到结束开度W7,所述结束开度W7等于所述第一预备开度调整步骤中所述第一预备开度W1,每个单侧侧导板(11)的位置则调节为
    Figure PCTCN2020115226-appb-100007
PCT/CN2020/115226 2019-11-21 2020-09-15 基于火花识别的热轧卷取侧导板控制方法 WO2021098357A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20891214.7A EP4049769A4 (en) 2019-11-21 2020-09-15 SPARK RECOGNITION BASED HOT ROLLED WINDING SIDE GUIDE PLATE CONTROL METHOD
JP2022527160A JP7352026B2 (ja) 2019-11-21 2020-09-15 火花の識別による熱延巻取サイドガイドの制御方法
US17/776,892 US11766706B2 (en) 2019-11-21 2020-09-15 Spark recognition-based hot-rolled coiling side guide plate control method
KR1020227019542A KR20220093223A (ko) 2019-11-21 2020-09-15 스파크 인식 기반 열간 압연 코일러 측면 가이드의 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911149731.1 2019-11-21
CN201911149731.1A CN112823941B (zh) 2019-11-21 2019-11-21 基于火花识别的热轧卷取侧导板控制方法

Publications (1)

Publication Number Publication Date
WO2021098357A1 true WO2021098357A1 (zh) 2021-05-27

Family

ID=75907363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115226 WO2021098357A1 (zh) 2019-11-21 2020-09-15 基于火花识别的热轧卷取侧导板控制方法

Country Status (6)

Country Link
US (1) US11766706B2 (zh)
EP (1) EP4049769A4 (zh)
JP (1) JP7352026B2 (zh)
KR (1) KR20220093223A (zh)
CN (1) CN112823941B (zh)
WO (1) WO2021098357A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113399470A (zh) * 2021-07-12 2021-09-17 重庆钢铁股份有限公司 一种侧导板开口度的控制方法及系统
JP7447924B2 (ja) 2021-07-02 2024-03-12 Jfeスチール株式会社 サイドガイドの開度制御方法、金属帯の巻取方法、サイドガイドの開度制御装置及び金属帯の巻取装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263779A (ja) 2005-03-24 2006-10-05 Jfe Steel Kk 熱間圧延設備のサイドガイド制御方法
CN101224471A (zh) * 2007-01-18 2008-07-23 宝山钢铁股份有限公司 一种粗轧中间坯镰刀弯的控制方法
KR100900675B1 (ko) 2002-10-31 2009-06-01 주식회사 포스코 스트립 꼬임에 의한 롤손상 방지기능을 갖는 스트립 권취제어방법
CN101581944A (zh) * 2008-05-15 2009-11-18 宝山钢铁股份有限公司 一种热轧卷取机的侧导板交替压力控制方法
CN102120224A (zh) * 2010-01-08 2011-07-13 宝山钢铁股份有限公司 热连轧机轧制时自动纠偏的控制方法
CN102896180A (zh) * 2011-07-29 2013-01-30 上海梅山钢铁股份有限公司 一种提高热轧卷形质量的热轧卷取侧导板控制方法
CN102989839A (zh) * 2011-09-16 2013-03-27 宝山钢铁股份有限公司 热连轧卷取机平行侧导板控制方法
CN103801566A (zh) * 2013-12-26 2014-05-21 宝钢发展有限公司 一种减少热轧钢板轧线卷取边部缺陷的控制方法
CN104254409A (zh) * 2012-04-24 2014-12-31 新日铁住金株式会社 轧制装置以及轧制监视方法
CN106238473A (zh) * 2016-08-29 2016-12-21 山东钢铁股份有限公司 一种卷取机侧导板压力控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327684Y2 (zh) * 1986-06-26 1991-06-14
JPH0513605U (ja) * 1991-07-29 1993-02-23 東芝エンジニアリング株式会社 圧延機設備のサイドガイド制御装置
JPH07294437A (ja) * 1994-04-22 1995-11-10 Toshiba Eng Co Ltd 検査装置
JP2966743B2 (ja) * 1994-12-26 1999-10-25 新日本製鐵株式会社 圧延ラインにおけるサイドガイド制御方法
JP4258588B2 (ja) 1999-08-06 2009-04-30 株式会社Ihi 圧延材の油圧サイドガイド制御装置及び制御方法
CN106269994B (zh) * 2015-05-27 2017-10-31 宝山钢铁股份有限公司 一种热连轧卷取侧导板控制方法
JP6428669B2 (ja) 2016-02-15 2018-11-28 東芝三菱電機産業システム株式会社 ポーリングリールの速度制御装置
WO2018095717A1 (de) 2016-11-24 2018-05-31 Primetals Technologies Germany Gmbh Bandlageregelung mit kraftbegrenzter anstellung von seitenführungen an das metallband und korrektur der walzenanstellung
CN107597880A (zh) * 2017-09-15 2018-01-19 首钢京唐钢铁联合有限责任公司 一种降低耐磨板磨损的卷取机侧导板控制方法
CN108714629B (zh) 2018-06-13 2020-04-21 武汉钢铁有限公司 一种热连轧卷取侧导板压力位置综合控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900675B1 (ko) 2002-10-31 2009-06-01 주식회사 포스코 스트립 꼬임에 의한 롤손상 방지기능을 갖는 스트립 권취제어방법
JP2006263779A (ja) 2005-03-24 2006-10-05 Jfe Steel Kk 熱間圧延設備のサイドガイド制御方法
CN101224471A (zh) * 2007-01-18 2008-07-23 宝山钢铁股份有限公司 一种粗轧中间坯镰刀弯的控制方法
CN101581944A (zh) * 2008-05-15 2009-11-18 宝山钢铁股份有限公司 一种热轧卷取机的侧导板交替压力控制方法
CN102120224A (zh) * 2010-01-08 2011-07-13 宝山钢铁股份有限公司 热连轧机轧制时自动纠偏的控制方法
CN102896180A (zh) * 2011-07-29 2013-01-30 上海梅山钢铁股份有限公司 一种提高热轧卷形质量的热轧卷取侧导板控制方法
CN102989839A (zh) * 2011-09-16 2013-03-27 宝山钢铁股份有限公司 热连轧卷取机平行侧导板控制方法
CN104254409A (zh) * 2012-04-24 2014-12-31 新日铁住金株式会社 轧制装置以及轧制监视方法
CN103801566A (zh) * 2013-12-26 2014-05-21 宝钢发展有限公司 一种减少热轧钢板轧线卷取边部缺陷的控制方法
CN106238473A (zh) * 2016-08-29 2016-12-21 山东钢铁股份有限公司 一种卷取机侧导板压力控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447924B2 (ja) 2021-07-02 2024-03-12 Jfeスチール株式会社 サイドガイドの開度制御方法、金属帯の巻取方法、サイドガイドの開度制御装置及び金属帯の巻取装置
CN113399470A (zh) * 2021-07-12 2021-09-17 重庆钢铁股份有限公司 一种侧导板开口度的控制方法及系统

Also Published As

Publication number Publication date
JP2023502354A (ja) 2023-01-24
US20220402008A1 (en) 2022-12-22
JP7352026B2 (ja) 2023-09-27
EP4049769A1 (en) 2022-08-31
CN112823941B (zh) 2022-02-22
EP4049769A4 (en) 2023-04-26
KR20220093223A (ko) 2022-07-05
CN112823941A (zh) 2021-05-21
US11766706B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2021098357A1 (zh) 基于火花识别的热轧卷取侧导板控制方法
EP0864847B1 (de) Verfahren zum Messen der Planheit eines bewegten Metallbands oder der Stirnfläche eines Coils
CN104307892B (zh) 连轧穿带过程中带材头部纠偏的方法
US20090113968A1 (en) Method for Detecting Strip Edges
KR102615075B1 (ko) 열간 압연 강대의 사행 제어 방법, 사행 제어 장치 및 열간 압연 설비
CN110153196B (zh) 一种厚板轧制翘扣头的控制方法
JP6828730B2 (ja) 圧延材の反り量測定方法及び反り量測定装置
JP6772756B2 (ja) 鋼板形状の矯正装置、矯正方法、および、鋼板の連続酸洗装置
JP6863532B1 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
CN113877968A (zh) 一种防止定宽机打滑的方法
CN105290116A (zh) 中厚板横纵轧的宽度控制方法
KR100862778B1 (ko) 열간압연 권취설비 제어장치
JP7222415B2 (ja) 熱間圧延鋼帯の蛇行量測定装置及び熱間圧延鋼帯の蛇行量測定方法
KR20140118051A (ko) 강판 선단부 벤딩 방지 장치 및 그 방법
US6349581B1 (en) Method for controlling the tension between roll stands of mill trains for steel bars, wire or profiles
JP5459599B2 (ja) 熱延板の製造方法
CN112439793A (zh) 一种基于分析板坯中心线偏差的镰刀弯控制方法
JP6354068B2 (ja) 熱間圧延ラインおよび熱間圧延ラインの制御方法
KR100558787B1 (ko) 조질압연에서의 연신율 제어 방법
JP2019505385A (ja) ストリップ形状矯正装置及び方法
CN102141780B (zh) 薄带连铸活套检测和控制方法
KR101322120B1 (ko) 강판의 웨지 및 캠버의 제어 방법 및 장치
CN113953332A (zh) 一种热连轧机架间带钢单边浪形的控制方法
KR20020051075A (ko) 롤 갭 보상을 통한 열간 사상압연 폭제어장치 및 그 방법
KR20010054957A (ko) 씨씨디카메라와 레이저 슬릿광을 이용한 열연판의 도그본프로파일 측정장치 및 그 측정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527160

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020891214

Country of ref document: EP

Effective date: 20220523

ENP Entry into the national phase

Ref document number: 20227019542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE