WO2021098348A1 - 一种利用铟磷混合物制备磷化铟晶体的方法 - Google Patents

一种利用铟磷混合物制备磷化铟晶体的方法 Download PDF

Info

Publication number
WO2021098348A1
WO2021098348A1 PCT/CN2020/114333 CN2020114333W WO2021098348A1 WO 2021098348 A1 WO2021098348 A1 WO 2021098348A1 CN 2020114333 W CN2020114333 W CN 2020114333W WO 2021098348 A1 WO2021098348 A1 WO 2021098348A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium
phosphorus
crucible
preparing
melt
Prior art date
Application number
PCT/CN2020/114333
Other languages
English (en)
French (fr)
Inventor
孙聂枫
王书杰
史艳磊
邵会民
付莉杰
李晓岚
王阳
徐森锋
刘惠生
孙同年
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US17/415,952 priority Critical patent/US11781240B2/en
Publication of WO2021098348A1 publication Critical patent/WO2021098348A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/10Production of homogeneous polycrystalline material with defined structure from liquids by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of semiconductor technology, and relates to the preparation of indium phosphide, in particular to a method for synthesizing indium phosphide by using indium-phosphorus mixed balls.
  • Indium phosphide is a group III-V compound semiconductor material formed by the combination of group III element indium (In) and group V element phosphorus (P). It has a very important strategic position in the field of semiconductor materials. An irreplaceable semiconductor material for devices and microelectronics. Compared with germanium and silicon materials, InP has many advantages: direct transition band structure, high electro-optical conversion efficiency; high electron mobility, easy to be made into semi-insulating materials, suitable for making high-frequency microwave devices and circuits; working temperature High; strong radiation resistance; high conversion efficiency as a solar cell material.
  • InP and other materials are widely used in high-tech fields such as solid-state lighting, microwave communications, optical fiber communications, microwaves, millimeter wave devices, and radiation-resistant solar cells.
  • energy band engineering theory ultra-thin material process technology and deep sub-micron manufacturing technology
  • InP has increasingly shown its advantages in high-end microwave, millimeter wave electronic devices and optoelectronic devices, and has become a high-end millimeter wave device.
  • the material of choice is widely valued, and its development and application prospects are very broad.
  • the realization of high-end InP-based microelectronics and optoelectronic devices depends on the preparation of high-quality InP single crystals with good integrity, uniformity and thermal stability.
  • InP polycrystalline materials with high purity, different melt ratios and no inclusions are the prerequisites for the production of high-quality InP single crystals and the research on InP-related characteristics.
  • Many characteristics of InP single crystal are related to the characteristics of the starting material, that is, the polycrystalline material, such as the proportion of the polycrystalline material and the purity of the material.
  • the characteristics of polycrystalline materials have a great influence on crystal growth, crystal electrical performance, crystal integrity and uniformity.
  • Horizontal Bridgman method (HB) and horizontal gradient solidification method (HGF) are used to synthesize InP materials.
  • HB horizontal Bridgman method
  • HGF horizontal gradient solidification method
  • Phosphorus injection synthesis technology is to inject vaporized phosphorus vapor into the indium melt, accelerate the contact area of the phosphorus gas and the indium melt, and increase the convection in the indium melt through the rotation of the crucible , To accelerate the diffusion of solute in the solute diffusion layer, thereby speeding up the synthesis process. Because this method relies on the pressure difference between the inside and outside of the quartz phosphorus container to inject phosphorus vapor, once the pressure difference is not properly controlled, it is easy to explode.
  • part of the phosphorus vapor is not absorbed by the indium melt, which affects the synthesis effect on the one hand, and on the other On the one hand, the lost phosphorus vapor volatilizes into the furnace body, which brings great trouble to the furnace body cleaning. And it has very high requirements for the thermal field control in the synthesis system.
  • HB horizontal Bridgman method
  • HGF horizontal gradient solidification method
  • ultra-high pressure direct synthesis technology are all InP synthesis in the synthesis furnace, and then the synthesized InP polycrystalline material is taken out of the synthesis furnace , The polycrystalline material is cleaned and corroded, and then loaded into the high-pressure single crystal furnace for InP single crystal growth. Synthesis and crystal growth are carried out using a "two-step" method, which greatly increases the possibility of material contamination and increases the cost of material preparation.
  • the present invention provides a method for preparing indium phosphide using an indium-phosphorus mixture.
  • the indium-phosphorus mixture is quickly thrown into a crucible covered with liquid boron oxide. After the required synthesis amount is reached, the indium-phosphorus melt Pulling to form indium phosphide crystals has a faster synthesis speed and low control requirements for the synthesis system, which is beneficial to industrial production.
  • the technical scheme of the invention is: a method for preparing indium phosphide crystals by using an indium-phosphorus mixture, including the following steps:
  • indium-phosphorus mixed balls indium powder and red phosphorous powder are mixed uniformly according to the designed mass ratio and pressed into a spherical shape;
  • Melting covering agent heating the crucible to melt the boron oxide block, and the boron oxide liquid covers the bottom of the crucible;
  • Feeding, synthesis and crystal growth Put the mixture of indium-phosphorus mixed ball and boron oxide powder into the crucible below the boron oxide liquid surface, and control the temperature of the crucible to make indium-phosphorus react to synthesize indium phosphide, and the amount of indium phosphide melt After reaching the set amount, adjust the temperature and use the high-pressure liquid-sealed Czochralski method for crystal growth.
  • the method is to use a good ratio of indium-phosphorus mixed balls to directly melt for synthesis.
  • the indium powder and the phosphor powder are uniformly mixed and pressed into spherical indium-phosphorus mixed particles, and then the mixture of the indium-phosphorus mixed balls and the boron oxide powder is poured into the melt with the boron oxide coating agent. Due to the large contact area between the indium powder and the phosphor powder, the melting of the indium powder at high temperatures increases the local indium concentration and improves the local absorption capacity of the melt. The heating and volatilization of the phosphorus speed up the synthesis speed.
  • the method has the advantages of short reaction time, high efficiency, and raw material saving, and can realize in-situ crystal growth after synthesis, can effectively reduce the risk of material contamination, save procedures, and reduce material preparation costs.
  • Boron oxide powder is used to prevent the adhesion between the indium and phosphorus mixed balls to keep it loose and easy to feed.
  • the step of maintaining the blast furnace pressure and the low temperature of the indium-phosphorus mixed ball includes: evacuating the furnace body to 10-10 -5 Pa, filling the low-temperature inert gas, and keeping the low-temperature inert gas flowing along the feeding path With delivery, from top to bottom to the top of the crucible, maintain the pressure in the furnace at 3.5-5.0MPa, and ensure that the pressure in the feeding space is higher than the pressure in the synthetic growth space by 0.05-0.1MPa.
  • the flow of low-temperature inert gas can keep the indium-phosphorus mixed ball from the feeder to the crucible at a low temperature. Indium or phosphorus does not melt or vaporize, so as to prevent indium from melting and sticking to the wall and phosphorus from volatilizing during the delivery process. Affect the synthesis ratio. Keep the pressure in the furnace at 3.5-5.0 MPa to avoid the dissociation of indium phosphide.
  • the pressure of the feeding space is higher than the pressure of the synthetic growth space by 0.05-0.1MPa, and the low-temperature gas enters from above, it can ensure that the indium-phosphorus mixed ball and the low-temperature gas enter the crucible above the synthetic growth space together to prevent the indium-phosphorus mixed ball "Indium or phosphorus melts and vaporizes" before entering the melt.
  • the temperature of the low-temperature inert gas is lower than 156°C. Keeping the temperature of the inert gas below the melting point of indium can prevent indium from melting and sticking to the wall during the delivery process and prevent phosphorus from gasifying.
  • the low-temperature inert gas adopts nitrogen or argon, which has relatively low cost and relatively stable properties.
  • the step of keeping the indium-phosphorus mixed ball at a low temperature further includes: passing a cooling liquid into the wall of the feeding tube that sends the indium-phosphorus mixed ball to the crucible.
  • the mass ratio of indium powder and phosphor powder is 3.7:1.0-1.5. With this ratio, the ratio of indium and phosphorus atoms in the melt after synthesis can reach 1:1, so that high-quality indium phosphide single crystals or polycrystals can be obtained.
  • the temperature in the crucible in the step 5) is 1080-1200°C.
  • the amount of indium phosphide melt is set such that the height of the indium phosphide melt accounts for 10%-80% of the height in the crucible.
  • the reaction process of the synthesis in step 5) includes the reaction of gaseous phosphorus and the indium-phosphorus melt and the fusion of liquid indium and the indium-phosphorus melt.
  • the indium in the indium-phosphorus mixed balls melts, and the phosphorus is heated to sublimate (P1, P2, P4) gas and form bubbles. These phosphorus gases react with the melt to The atomic form enters the indium-phosphorus melt.
  • the indium in the subsequent indium-phosphorus mixed ball is melted and fused with the indium-phosphorus melt, the phosphorus is heated to sublimate into the phosphorus gas, and the phosphorus gas reacts with the indium-phosphorus melt and is absorbed by it.
  • the step 5) also includes a feeding step.
  • the feeding step the indium-phosphorus mixed ball mixed boron oxide powder is placed in the feeder in the operating space and the synthesis and crystal growth space are isolated from each other. The two spaces are isolated, and the feed can be carried out at the same time as the synthesis, so as to avoid affecting the pressure, temperature and reaction state of the synthesis.
  • the beneficial effects of the present invention are: 1.
  • the indium-phosphorus mixed ball with a good proportion can be directly put into the crucible for melting and synthesis, and the crystal growth can be carried out in situ after synthesis; the operation process is simplified, and the Control requirements, faster synthesis speed and higher crystal preparation efficiency, which is conducive to industrial production.
  • 2. Using this method to prepare indium phosphide crystals can reduce the volatilization of phosphorus, reduce material pollution, improve crystal purity, reduce material costs, and facilitate the synthesis and growth of high-quality indium phosphide crystals with a ratio.
  • FIG. 1 is a schematic diagram of the structure of an indium phosphide crystal system prepared by an indium-phosphorus mixture in an embodiment
  • Figure 2 Mechanism diagram of the reaction process when the indium-phosphorus mixture is put into the In-P melt
  • Fig. 3 is a schematic diagram of the structure of the charging chamber in the embodiment during replenishment
  • Figure 4 is a schematic diagram of the structure of the flip feeder in the embodiment
  • Figure 5 is a schematic diagram of the connection structure of the motor and the material carrier in the embodiment
  • 1 represents the synthetic growth chamber
  • 2 represents the seed crystal rod
  • 3 represents the seed crystal
  • 4 represents the melt thermocouple
  • 5 represents the crystal
  • 6 represents the pressure gauge I
  • 7 represents the vacuum gauge I
  • 8 represents the insulation jacket
  • 9 stands for main heater
  • 10 stands for crucible
  • 11 stands for boron oxide covering agent
  • 12 stands for indium-phosphorus melt
  • 13 stands for crucible support
  • 14 stands for lower heater
  • 15 stands for exhaust port
  • 16 stands for crucible rod
  • 17 stands for The first observation window
  • 18 represents the feeding tube
  • 19 represents the feeding chamber
  • 20 represents the vacuum gauge II
  • 21 represents the pressure gauge II
  • 22 represents the insert plate
  • 22-1 represents the sealing ring I
  • 23 represents the indium-phosphorus mixed ball
  • 24 represents the carrier
  • 25 is the vacuum gauge III
  • 26 is the pressure gauge III
  • 27 is the charging chamber
  • 28 is the robotic arm
  • 29 is the charging door
  • 30 is the second observation window
  • 31 is the air in
  • the method is based on a system for preparing indium phosphide crystals using an indium-phosphorus mixture, which includes a vacuum system, a gas charging and discharging system, a temperature and pressure control system, an electrical control system, a cooling circulation system, and a weighing system.
  • a vacuum system which includes a vacuum system, a gas charging and discharging system, a temperature and pressure control system, an electrical control system, a cooling circulation system, and a weighing system.
  • These systems are commonly used basic systems in the field, especially single crystal furnaces based on in-situ synthesis to prepare indium phosphide crystals.
  • These systems are basic configurations and will not be repeated here.
  • the system improves the furnace body.
  • the furnace body is divided into a synthetic growth chamber 1, a feeding chamber 19 and a charging chamber 27.
  • the charging chamber 27 and the charging chamber 19 are separated up and down by means of an insert plate 22, and a sealing ring is arranged between the insert plate 22 and the furnace wall I22-1, when the plug-in board is inserted, the charging chamber 27 and the feeding chamber 19 can be isolated and sealed.
  • An inverting feeder is arranged in the charging chamber 27, and a feeding tube 18 is arranged in the feeding chamber 19, one end of the feeding tube 18 is connected to the inverting feeder upward, and one end extends downward into the synthetic growth chamber 1.
  • the synthetic growth chamber 1 is provided with a lower heater 14, a main heater 9, an insulation jacket 8, a crucible 10, a supporting crucible support 13 and a crucible rod 16.
  • the crucible 10 is located on the graphite crucible support 13, and the crucible support 13 is fixedly connected to the crucible rod 16.
  • the lower heater 14 and the main heater 9 are arranged on the periphery of the crucible 10 and the crucible support 13, and an insulation jacket 8 is provided between the main heater 9 and the inner wall of the synthetic growth chamber 1.
  • the other end of the crucible rod 16 extends beyond the furnace bottom of the synthesis growth chamber 1 and is connected to the crucible rod rotating and lifting mechanism.
  • the crucible rod rotation lifting mechanism is a common basic mechanism for single crystal furnaces and synthesis furnaces in the field, and is used to drive the crucible to rise and fall and rotate, so that the indium and phosphorus are mixed uniformly and the reaction is sufficient, which will not be repeated here.
  • a seed crystal rod 2 is arranged above the crucible 10, a seed crystal 3 and a load cell are fixed on the seed crystal rod 2, and the seed crystal rod 2 penetrates the top cover of the synthetic growth chamber 1 to connect to the seed crystal rod lifting mechanism.
  • the seed crystal rod lifting mechanism can drive the seed crystal 3 up and down to lift and grow the crystal.
  • the load cell and weighing system can calculate the growth weight of the crystal.
  • the seed crystal rod 2, the weighing sensor and the weighing system, and the seed crystal rod lifting mechanism are common basic mechanisms of the single crystal furnace for pulling and growing crystals, and will not be repeated here.
  • the synthetic growth chamber 1 is also provided with a melt temperature measuring thermocouple 4, a pressure gauge I 6, and a vacuum gauge I 7, with an exhaust port 15 at the bottom and a first observation window 17 at the top.
  • a vacuum gauge II 20 and a pressure gauge II 21 are installed on the furnace wall of the feeding chamber 19.
  • the feeding pipe 18 includes a funnel section at the top and an oblique pipe section leading into the synthesis growth chamber 1 from the feeding chamber 19, and the oblique pipe section extends above the crucible 10.
  • a charging door 29 is provided on the top of the charging chamber, an air inlet 31 is provided on the furnace wall, a vacuum gauge III 25 and a pressure gauge III 26 are installed, and a second observation window 30 is provided on the charging door 29.
  • the overturning feeder in the loading chamber 27 includes a mechanical arm 28, a carrier 24, and a carrier overturning drive device 32. See Figures 4 and 5.
  • the upper end of the mechanical arm 28 is positioned on the top of the loading chamber 27, and the lower end is connected to the overturning drive.
  • the device 32 and the turning drive device 32 are connected to the carrier 24.
  • the feeder turning drive device 32 uses a motor 32-3 positioned at the bottom end of the mechanical arm 28, and the motor 32-3 shaft is connected to the feeder 24 by a pin 32-5.
  • the outside of the motor 32-3 is covered with a heat insulation layer 32-2 and a protective cover 32-1, the motor shaft is covered with a flange 34, and a sealing ring II 32-4 is provided.
  • the wire 33 passes through the robot arm 28 to connect to the electrical control system.
  • the charging and discharging system includes a low-temperature inert gas storage tank, an air inlet 31 and an air outlet 15.
  • the inert gas below 156° C. enters the feeding chamber 19 from the charging chamber 27, enters the synthetic growth chamber 1 through the feeding pipe 18, and is discharged from the exhaust port 15.
  • the pressure in the furnace body is 3.5-5.0MPa.
  • High-purity indium powder and high-purity phosphorous powder are mixed uniformly according to a mass ratio of 3.7:1.0-1.5, and pressed into spherical indium-phosphorus mixed balls 23.
  • the crucible 10 is heated by the main heater 9 and the lower heater 14, and the crucible 10 is adjusted to rotate to 5-35 revolutions per minute. After the massive boron oxide is melted, the whole crucible 10 is spread to form the boron oxide covering agent 11, and the melting The body thermocouple 4 is inserted into the interface between the boron oxide covering agent 11 and the bottom of the crucible 10.
  • the indium-phosphorus mixed ball 23 in the carrier 24 is sent to the feed pipe 18 through the mechanical arm 28, the indium-phosphorus mixed ball 23 falls into the crucible 10, and the indium phosphorus at the mouth of the feed pipe 18 is observed through the first observation window 17.
  • the drop of the mixing ball 23 Referring to Fig. 2, for the first or consecutive previous several indium-phosphorus mixed balls 23, the indium in the indium-phosphorus mixed balls 23 melts, and the phosphorus is heated to sublimate into phosphorus gas, and the phosphorus gas reacts with the indium melt and is absorbed by it to form Indium-phosphorus melt 12.
  • the indium in the subsequent indium-phosphorus mixed ball 23 melts and reacts with the indium-phosphorus melt 12 to form a new composition of indium-phosphorus melt 12.
  • the phosphorus of the indium-phosphorus mixed ball 23 is sublimated into phosphorus gas by heating, and the phosphorus gas and indium- The phosphorus melt 12 reacts and is absorbed by it. After the amount of indium-phosphorus melt 12 is synthesized to cover the bottom of the crucible, the seed crystal 3 is lowered and the boron oxide covering agent 11 is pulled out.
  • the port 31 is evacuated and filled with an inert gas below 156°C until the pressure in the charging chamber 27 is the same as the synthesis and growth chamber 1 and the feeding chamber 19, the plug 22 is opened, and the indium phosphorus in the carrier 24 is removed by the mechanical arm 28.
  • the mixing ball 23 is sent to the crucible 10 through the feed pipe 18 to continue the synthesis, and continues to be pulled to form the crystal 5.

Abstract

一种利用铟磷混合物制备磷化铟晶体的方法,属于半导体技术领域,包括制备铟磷混合球、装料、保持高炉压和铟磷混合球低温、熔化覆盖剂、投料、合成与晶体生长步骤,是利用配比好的铟磷混合球直接熔化进行合成。将铟粉和磷粉混和均匀并压制成球状铟磷混合颗粒,再将铟磷混合球与氧化硼粉的混合物投入到具有氧化硼覆盖剂的熔体中,合成后原位进行晶体生长。该方法具有反应时间短、效率高、节省原材料的优点,并且可有效降低材料被沾污的风险,节省工序,降低材料制备成本。

Description

一种利用铟磷混合物制备磷化铟晶体的方法 技术领域
本发明属于半导体技术领域,涉及磷化铟的制备,具体涉及利用铟磷混合球合成磷化铟的方法。
背景技术
磷化铟(InP)是由III族元素铟(In)和V族元素磷(P)化合而成的III-V族化合物半导体材料,在半导体材料领域具有非常重要的战略性地位,是目前光电器件和微电子器件不可替代的半导体材料。与锗、硅材料相比,InP具有许多优点:直接跃迁型能带结构,具有高的电光转换效率;电子迁移率高,易于制成半绝缘材料,适合制作高频微波器件和电路;工作温度高;具有强的抗辐射能力;作为太阳能电池材料的转换效率高等。因此,InP等材料被广泛应用在固态发光、微波通信、光纤通信、微波、毫米波器件、抗辐射太阳能电池等高技术领域。随着能带工程理论、超薄材料工艺技术及深亚微米制造技术的进展,InP也越来越显示出其在高端微波、毫米波电子器件和光电子器件方面的优势,成为毫米波高端器件的首选材料,受到广泛的重视,开发应用前景非常广阔。高端InP基微电子和光电子器件的实现取决于具有良好完整性、均匀性和热稳定性的高质量InP单晶的制备。高纯、不同熔体配比、无夹杂的InP多晶料是生产高质量InP单晶及进行InP相关特性研究的前提条件。InP单晶的很多特性都与起始原料,即多晶材料的特性相关,如多晶材料的配比度、材料的纯度。多晶材料的特性对晶体生长、晶体的电学表现、晶体的完整性、均匀性等都有很大的影响。
目前,几种常用的合成InP多晶料的方法及其存在的问题如下:
(1)水平Bridgman法(HB)和水平梯度凝固法(HGF):采用水平Bridgman法(HB)和水平梯度凝固法(HGF)合成InP材料,从工艺上讲,合成量越大则合成时间越长,一般用HB/HGF技术合成1.5KgInP多晶需24h左右,因此Si的沾污也越明显(其来源是石英管壁)。
(2)磷注入法合成技术:磷注入法合成技术是将气化的磷蒸气注入到铟熔体中,加速磷气体与铟熔体的接触面积、并通过坩埚旋转增加铟熔体内的对流,加快溶质扩散层中溶质的扩散,从而加快合成过程。由于该方法是依靠石英磷容器的内外压强差来注入磷蒸气,一旦压强差控制不当,很容易发生炸泡;另一方面,部分磷蒸气不被铟熔体吸收,一方面影响合成效果,另一方面,损失的磷蒸气挥发至炉体中,给炉体清洗带来很大的麻烦。而且其对合成系统中的热场控制要求非常高。
上述的水平Bridgman法(HB)、水平梯度凝固法(HGF)及超高压直接合成技术等合成方法,都是先在合成炉中进行InP合成,然后将合成的InP多晶料从合成炉中取出,对多晶材料进行清洗腐蚀处理,然后再装入高压单晶炉内进行InP单晶生长。合成与晶体生长是采用“两步”法进行的,这就大大增加了材料被沾污的可能性,并且增加了材料制备成本。
发明内容
本发明提供了一种利用铟磷混合物制备磷化铟的方法,通过将铟磷混合球快速投入到覆盖有液态氧化硼的坩埚中,待达到所需的合成量后,对铟-磷熔体提拉形成磷化铟晶体,该方法合成速度更快,对合成系统的控制要求低,利于产业化生产。
该发明的技术方案为:一种利用铟磷混合物制备磷化铟晶体的方法,包括以下步骤:
1)制备铟磷混合球:将铟粉和红磷粉按设计的质量比混合均匀并压制成球状;
2)装料:将铟磷混合球混合氧化硼粉置入炉体内的投料器中,将氧化硼块装入坩埚内;
3)保持高炉压和铟磷混合球低温:保持铟磷混合球从投料器投至坩埚过程中低温,铟或磷不熔化、不气化,保持炉内压力大于磷化铟的离解压;
4)熔化覆盖剂:给坩埚加热,熔化氧化硼块,氧化硼液覆盖坩埚底部;
5)投料、合成与晶体生长:将铟磷混合球与氧化硼粉的混合物投入氧化硼液面下的坩埚内,同时控制坩埚温度使铟磷反应合成磷化铟,待磷化铟熔体量达到设定量后,调节温度,采用高压液封直拉法进行晶体生长。
该方法是利用配比好的铟磷混合球直接熔化进行合成。首先,在高压系统中,将铟粉和磷粉混和均匀并压制成球状铟磷混合颗粒,再将铟磷混合球与氧化硼粉的混合物投入到具有氧化硼覆盖剂的熔体中。由于铟粉和磷粉的接触面积大,高温下,铟粉熔化增加了局部的铟的浓度,提高了熔体的局部吸收能力,而磷受热挥发又加快了合成速度。该方法具有反应时间短、效率高、节省原材料的优点,并且可以实现合成后原位晶体生长,可有效降低材料被沾污的风险,节省工序,降低材料制备成本。氧化硼粉用于防止铟磷混合球间粘连,以保持松散、易投料。
进一步的,所述步骤3)中,保持高炉压和铟磷混合球低温的步骤包括:将炉体内抽真空至10-10 -5Pa,充入低温惰性气体,保持低温惰性气体沿投料路径流动随送,自上而下送至坩埚的上方,保持炉内压力为3.5-5.0MPa,并保证投料空间的压力高于合成生长空间的压力0.05-0.1MPa。
低温惰性气体的流动随送,可以保持铟磷混合球从投料器投至坩埚过程中低温,铟或磷不熔化、不气化,以避免铟熔化粘壁和磷在投送过程中挥发,避免影响合成配比。保持 炉内压力为3.5-5.0MPa,可以避免磷化铟离解。同时,因投料空间的压力高于合成生长空间的压力0.05-0.1MPa,且低温气体从上方进入,能够保证铟磷混合球和低温的气体一起进入合成生长空间的坩埚上方,防止铟磷混合球在进入熔体前“铟或磷熔化、气化”。
进一步的,低温惰性气体的温度低于156℃。保持惰性气体的温度低于铟的熔点,可以避免铟在投送过程中熔化粘壁,防止磷气化。
进一步的,所述低温惰性气体采用成本较低、性质较稳定的氮气或氩气。
进一步的,为了给铟磷混合球降温和防止送料管过热损坏,所述保持铟磷混合球低温的步骤还包括:在将铟磷混合球送至坩埚的送料管管壁内通入冷却液。
进一步的,所述步骤1)中,铟粉和磷粉的质量比为3.7:1.0-1.5。这样配比,可以使合成后熔体中的铟和磷原子的配比达到1:1,从而制得高质量的磷化铟单晶或者多晶。
进一步的,为了保证合成速率和效果,所述步骤5)中坩埚内的温度为1080-1200℃。
进一步的,为了保证晶体提拉生长的效果,所述步骤5)中,磷化铟熔体量的设定量为磷化铟熔体的液面高度占坩埚内高的10%-80%。
进一步的,所述步骤5)中合成的反应过程包括气态磷与铟-磷熔体的反应及液态铟与铟-磷熔体的熔合。对于第一个或连续前面几个铟磷混合球来说,铟磷混合球中的铟熔化,磷受热升华为(P1,P2,P4)气体,并形成气泡,这些磷气体与熔体反应以原子形式进入铟-磷熔体。后续的铟磷混合球中的铟熔化并与铟-磷熔体熔合,磷受热升华为磷气体,磷气体与铟-磷熔体反应并被其吸收。
进一步的,所述步骤5)中还包括补料步骤,补料步骤中,将铟磷混合球混合氧化硼粉置入投料器中的操作空间和合成与晶体生长空间相互隔离。两空间隔离,可以在合成的同时进行补料,避免影响合成的压力、温度、反应状态。
本发明的有益效果为:1、采用该方法,可以将配比好的铟磷混合球直接投入坩埚内进行熔化、合成,并能在合成后原位进行晶体生长;简化了操作流程,降低了控制要求,合成速度更快,晶体的制备效率更高,利于产业化生产。2、采用该方法制备磷化铟晶体,可降低磷的挥发量,减少材料污染,提高晶体纯度,降低材料成本,便于合成和生长配比的高质量磷化铟晶体。
附图说明
图1为实施例中铟磷混合物制备磷化铟晶体系统的结构示意图;
图2铟磷混合物投入到In-P熔体时的反应过程机理图;
图3为实施例中装料室补料时的结构示意图;
图4为实施例中翻转投料器的结构示意图;
图5为实施例中电机与载料器的连接结构示意图;
附图中,1代表合成生长室,2代表籽晶杆,3代表籽晶,4代表熔体测温热偶,5代表晶体,6代表压力表I,7代表真空计I,8代表保温套,9代表主加热器,10代表坩埚,11代表氧化硼覆盖剂,12代表铟-磷熔体,13代表坩埚支撑,14代表下加热器,15代表排气口,16代表坩埚杆,17代表第一观察窗,18代表送料管,19代表投料室,20代表真空计II,21代表压力表II,22代表插板,22-1代表密封圈I,23代表铟磷混合球,24代表载料器,25代表真空计III,26代表压力表III,27代表装料室,28代表机械臂,29代表装料门,30代表第二观察窗,31代表进气口。32代表翻转驱动装置,32-1代表保护罩,32-2代表隔热层,32-3代表电机,32-4代表密封圈II,32-5代表销钉,33代表导线,34代表法兰。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
该方法基于利用铟磷混合物制备磷化铟晶体的系统,此系统包括真空系统、充放气系统、温度与压力控制系统、电气控制系统、冷却循环系统和称重系统。这些系统是本领域的常用基础系统,尤其是基于原位合成法制备磷化铟晶体的单晶炉,这些系统是基础配置,在此不做赘述。为了实现利用铟磷混合球制备磷化铟晶体,该系统对炉体进行改进。
参见图1,炉体分隔为合成生长室1、投料室19及装料室27,装料室27和投料室19借助插板22上、下分隔,插板22与炉壁之间设置密封圈Ⅰ22-1,插板插入时,可隔离、密封装料室27和投料室19。装料室27内设置翻转投料器,投料室19内设置送料管18,送料管18一端向上对接翻转投料器,一端向下延伸至合成生长室1内。
合成生长室1内设有下加热器14、主加热器9、保温套8、坩埚10及配套坩埚支撑13和坩埚杆16。坩埚10位于石墨坩埚支撑13上,坩埚支撑13与坩埚杆16固定连接。下加热器14和主加热器9布置在坩埚10和坩埚支撑13的外围,主加热器9与合成生长室1内壁之间设有保温套8。坩埚杆16的另一端延伸至合成生长室1的炉底之外,连接坩埚杆旋转升降机构。坩埚杆旋转升降机构为本领域单晶炉和合成炉的常用基础机构,用于带动坩埚升降和旋转,以使铟、磷混合均匀、反应充分,在此不再赘述。坩埚10上方设有籽晶杆2,籽晶杆2上固定有籽晶3和称重传感器,籽晶杆2穿出合成生长室1顶盖连接籽晶杆升降机构。籽晶杆升降机构可带动籽晶3升降,以提拉生长晶体。称重传感器和称重系统可以计算晶体的生长重量。籽晶杆2、称重传感器及称重系统、籽晶杆升降机构为提拉生长晶体的单晶炉的常用基础机构,在此不再赘述。合成生长室1还设置有熔体测温热偶4、压力表 I 6、真空计I 7,底部开有排气口15、顶部开有第一观察窗17。投料室19炉壁上安装真空计II 20、压力表II 21。送料管18包括位于顶部的漏斗段和从投料室19通入合成生长室1内的斜管段,斜管段延伸至坩埚10上方。
装料室的顶部设置有装料门29,炉壁上开设进气口31,并安装真空计III 25,压力表III 26,装料门29上开设第二观察窗30。装料室27内的翻转投料器包括机械臂28、载料器24及载料器翻转驱动装置32,参见图4、图5,机械臂28上端定位在装料室27顶部、下端连接翻转驱动装置32,翻转驱动装置32与载料器24连接。载料器翻转驱动装置32采用定位于机械臂28底端的电机32-3,电机32-3轴与载料器24通过销钉32-5连接。电机32-3的外部包覆有隔热层32-2和保护罩32-1,电机轴外包覆法兰34,并设置密封圈II 32-4。导线33穿过机械臂28连接电气控制系统。
充放气系统包括低温惰性气体储罐、进气口31和排气口15。低于156℃的惰性气体从装料室27进入投料室19,并经送料管18进入合成生长室1从排气口15排出。炉体内的压力值为3.5-5.0MPa。
该方法的具体步骤为:
1)将高纯铟粉和高纯磷粉,按着3.7:1.0-1.5的质量比混合均匀,压制成球状的铟磷混合球23。
2)将铟磷混合球23混合氧化硼粉置入装料室27中的载料器24中,将块状氧化硼放入坩埚10中。
3)通过进气口31给整个系统抽真空至10-10 -5Pa,再通过进气口31将低于156℃的惰性气体充入至投料室19和投料室27中,低温惰性气体通过送料管18进入合成与生长室1,使得铟磷混合球23始终保持低温。整个合成过程保持进气口31与排气口15之间气体流动且气压稳定,压力值在3.5-5.0MPa之间,投料室19的压力高于合成生长室1的压力0.05-0.1MPa。
4)通过主加热器9和下加热器14给坩埚10加热,调节坩埚10旋转至5-35转/分钟,待块状氧化硼熔化后铺满整个坩埚10形成氧化硼覆盖剂11,将熔体测温热偶4插入氧化硼覆盖剂11与坩埚10底界面处。
5)通过机械臂28将载料器24中的铟磷混合球23送至送料管18中,铟磷混合球23落入坩埚10中,通过第一观察窗17观察送料管18口的铟磷混合球23掉落情况。参见图2,对于第一个或连续前面几个铟磷混合球23来说,铟磷混合球23中的铟熔化,磷受热升华为磷气体,磷气体与铟熔体反应并被其吸收形成铟-磷熔体12。后续的铟磷混合球23中的铟熔 化并与铟-磷熔体12反应形成新的成分的铟-磷熔体12,铟磷混合球23的磷受热升华为磷气体,磷气体与铟-磷熔体12反应并被其吸收。待合成到铟-磷熔体12量达到覆盖满坩埚底部后,将籽晶3降下、提拉出氧化硼覆盖剂11。
6)通过第二观察窗30观察载料器24内的铟磷混合球23的数量。待载料器24中的铟磷混合球23投送完毕后,参见图3,插入插板22,使得投料室19与装料室27分离,合成与生长室1内继续进行提拉生长。同时将装料室27中的高压气体从进气口31放出至大气压力,然后打开装料门29,将铟磷混合球23投入到载料器24中,关闭装料门29,从进气口31抽真空、充入低于156℃的惰性气体,至装料室27压力与合成与生长室1和投料室19相同,打开插22,通过机械臂28将载料器24中的铟磷混合球23通过送料管18送至坩埚10中继续合成,并继续提拉形成晶体5。

Claims (10)

  1. 一种利用铟磷混合物制备磷化铟晶体的方法,其特征在于包括以下步骤:
    1)制备铟磷混合球:将铟粉和红磷粉按设计的质量比混合均匀并压制成球状;
    2)装料:将铟磷混合球混合氧化硼粉置入炉体内的投料器中,将氧化硼块装入坩埚内;
    3)保持高炉压和铟磷混合球低温:保持铟磷混合球从投料器投至坩埚过程中低温,铟或磷不熔化、不气化,保持炉内压力大于磷化铟的离解压;
    4)熔化覆盖剂:给坩埚加热,熔化氧化硼块,氧化硼液覆盖坩埚底部;
    5)投料、合成与晶体生长:将铟磷混合球与氧化硼粉的混合物投入氧化硼液面下的坩埚内,同时控制坩埚温度使铟磷反应合成磷化铟,待磷化铟熔体量达到设定量后,调节温度,采用高压液封直拉法进行晶体生长。
  2. 根据权利要求1所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于所述步骤3)中,保持高炉压和铟磷混合球低温的步骤包括:将炉体内抽真空至10-10 -5Pa,充入低温惰性气体,保持低温惰性气体沿投料路径流动随送,自上而下送至坩埚的上方,保持炉内压力为3.5-5.0MPa,并保证投料空间的压力高于合成生长空间的压力0.05-0.1MPa。
  3. 根据权利要求2所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于:所述低温惰性气体的温度低于156℃。
  4. 根据权利要求2或3所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于:所述低温惰性气体为氮气或氩气。
  5. 根据权利要求2所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于所述保持铟磷混合球低温的步骤还包括:在将铟磷混合球送至坩埚的送料管管壁内通入冷却液。
  6. 根据权利要求1所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于:所述步骤1)中,铟粉和磷粉的质量比为3.7:1.0-1.5。
  7. 根据权利要求1所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于:所述步骤5)中坩埚内的温度为1080-1200℃。
  8. 根据权利要求1所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于:所述步骤5)中,磷化铟熔体量的设定量为磷化铟熔体的液面高度占坩埚内高的10%-80%。
  9. 根据权利要求1所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于:所述步骤5)中合成的反应过程包括气态磷与铟-磷熔体的反应及液态铟与铟-磷熔体的熔合。
  10. 根据权利要求1所述的利用铟磷混合物制备磷化铟晶体的方法,其特征在于:所述步骤5)中还包括补料步骤,补料步骤中,将铟磷混合球混合氧化硼粉置入投料器中的操作空间和合成与晶体生长空间相互隔离。
PCT/CN2020/114333 2019-11-22 2020-09-10 一种利用铟磷混合物制备磷化铟晶体的方法 WO2021098348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/415,952 US11781240B2 (en) 2019-11-22 2020-09-10 Method for preparing indium phosphide crystal by utilizing indium-phosphorus mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911155615.0A CN110760932B (zh) 2019-11-22 2019-11-22 一种利用铟磷混合物制备磷化铟晶体的方法
CN201911155615.0 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021098348A1 true WO2021098348A1 (zh) 2021-05-27

Family

ID=69338868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114333 WO2021098348A1 (zh) 2019-11-22 2020-09-10 一种利用铟磷混合物制备磷化铟晶体的方法

Country Status (3)

Country Link
US (1) US11781240B2 (zh)
CN (1) CN110760932B (zh)
WO (1) WO2021098348A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760932B (zh) * 2019-11-22 2021-02-23 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的方法
CN111424310B (zh) * 2020-06-02 2022-02-15 中国电子科技集团公司第十三研究所 一种液态磷注入法合成磷化铟的方法
CN112680790A (zh) * 2020-12-07 2021-04-20 宁波建锡新材料有限公司 一种磷化铟半导体材料的合成方法
CN115142121B (zh) * 2021-03-31 2023-06-20 晶科能源股份有限公司 提高复投单晶硅成晶率的方法及单晶硅制备装置
CN113308740B (zh) * 2021-06-03 2022-06-24 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备方法
WO2022252545A1 (zh) * 2021-06-03 2022-12-08 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备装置及方法
CN115198369A (zh) * 2022-07-15 2022-10-18 中国电子科技集团公司第十三研究所 一种磷化铟合成与vgf晶体制备的装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118696A (ja) * 1983-11-26 1985-06-26 Showa Denko Kk リン化インジウム単結晶の育成方法
JPS62246899A (ja) * 1986-04-17 1987-10-28 Nec Corp 化合物半導体結晶成長方法
EP1739210A1 (de) * 2005-07-01 2007-01-03 Freiberger Compound Materials GmbH Verfahren zur Herstellung von dotierten Halbleiter-Einkristallen, und III-V-Halbleiter-Einkristall
CN102628180A (zh) * 2012-04-23 2012-08-08 南京金美镓业有限公司 一种高纯度磷化铟多晶棒的制备方法
CN102965734A (zh) * 2012-12-04 2013-03-13 中国电子科技集团公司第十三研究所 磷化铟多晶材料的快速合成方法及其多管石英磷泡
CN106206841A (zh) * 2016-07-21 2016-12-07 江西德义半导体科技有限公司 砷化镓衬底材料制备方法
CN110760931A (zh) * 2019-11-22 2020-02-07 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的系统
CN110760932A (zh) * 2019-11-22 2020-02-07 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的方法
CN211112317U (zh) * 2019-11-22 2020-07-28 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2133875A1 (de) * 1971-07-07 1973-01-18 Siemens Ag Verfahren zum ziehen von einkristallen, insbesondere fuer keimkristalle
JPS61222911A (ja) * 1985-03-28 1986-10-03 Toshiba Corp 燐化化合物の合成方法
US5252175A (en) * 1990-06-29 1993-10-12 The United States Of America As Represented By The Secretary Of The Air Force Capillary pressure relief for magnetic Kyropoulos growth of semiconductor crystals
EP0476389A3 (en) * 1990-08-30 1993-06-09 The Furukawa Electric Co., Ltd. Method of growing single crystal of compound semiconductors
US5431125A (en) * 1991-06-14 1995-07-11 The United States Of America As Represented By The Secretary Of The Air Force Twin-free crystal growth of III-V semiconductor material
DE19747996C1 (de) * 1997-10-17 1999-03-04 Armin Dadgar Verfahren zur epitaktischen Herstellung von semiisolierenden III-V Verbindungshalbleitern
JP2005298254A (ja) * 2004-04-09 2005-10-27 Hitachi Cable Ltd 化合物半導体単結晶成長用容器及びそれを用いた化合物半導体単結晶の製造方法
WO2012084761A1 (en) * 2010-12-21 2012-06-28 Akzo Nobel Coatings International B.V. Paint chip dispenser
CN109402722B (zh) * 2018-12-14 2020-09-01 中国电子科技集团公司第十三研究所 一种反式注入合成连续vgf晶体生长装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118696A (ja) * 1983-11-26 1985-06-26 Showa Denko Kk リン化インジウム単結晶の育成方法
JPS62246899A (ja) * 1986-04-17 1987-10-28 Nec Corp 化合物半導体結晶成長方法
EP1739210A1 (de) * 2005-07-01 2007-01-03 Freiberger Compound Materials GmbH Verfahren zur Herstellung von dotierten Halbleiter-Einkristallen, und III-V-Halbleiter-Einkristall
CN102628180A (zh) * 2012-04-23 2012-08-08 南京金美镓业有限公司 一种高纯度磷化铟多晶棒的制备方法
CN102965734A (zh) * 2012-12-04 2013-03-13 中国电子科技集团公司第十三研究所 磷化铟多晶材料的快速合成方法及其多管石英磷泡
CN106206841A (zh) * 2016-07-21 2016-12-07 江西德义半导体科技有限公司 砷化镓衬底材料制备方法
CN110760931A (zh) * 2019-11-22 2020-02-07 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的系统
CN110760932A (zh) * 2019-11-22 2020-02-07 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的方法
CN211112317U (zh) * 2019-11-22 2020-07-28 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的系统

Also Published As

Publication number Publication date
CN110760932B (zh) 2021-02-23
US20220081799A1 (en) 2022-03-17
CN110760932A (zh) 2020-02-07
US11781240B2 (en) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2021098347A1 (zh) 一种利用铟磷混合物制备磷化铟晶体的系统
WO2021098348A1 (zh) 一种利用铟磷混合物制备磷化铟晶体的方法
WO2021243873A1 (zh) 一种液态磷注入法合成磷化铟的方法
JP5075122B2 (ja) 半導体化合物を化合、均質化、および圧密化するためのコールドウォール容器法
JP6837566B2 (ja) 水平注入合成後回転連続vgf結晶成長装置及び方法
JP4083449B2 (ja) CdTe単結晶の製造方法
CN110257901B (zh) 大直径高效n型单晶硅的制备工艺
WO2019109366A1 (zh) 利用承载气体进行磷化物原位注入合成的方法
JP4815003B2 (ja) シリコン結晶成長用ルツボ、シリコン結晶成長用ルツボ製造方法、及びシリコン結晶成長方法
CN102965734A (zh) 磷化铟多晶材料的快速合成方法及其多管石英磷泡
TWI825959B (zh) 氮摻雜p型單晶矽製造方法
CN112359409A (zh) 一种砷化镓单晶生长装置及生长方法
CN211112317U (zh) 一种利用铟磷混合物制备磷化铟晶体的系统
CN113638048B (zh) 一种vgf法生长磷化铟单晶的方法
CN212895088U (zh) 一种液态磷注入法合成磷化铟的系统
WO2024012520A1 (zh) 一种离心合成与生长化合物晶体的装置及方法
WO2024011843A1 (zh) 一种垂直温度梯度凝固制备磷化铟晶体的装置及方法
CN111647947B (zh) 一种锑化镓多晶原料的合成装置及方法
CN111549376A (zh) 一种掺铈溴化镧闪烁晶体及其生长方法
CN114481327B (zh) 一种采用pbn坩埚合成碲锌镉晶体的方法及装置
CN116695246A (zh) 一种制备碲锌镉或碲化镉多晶料的装置及方法
KR20110039146A (ko) 갈륨-비소 단결정 성장에 있어 비소 원료 장입 장치
CN112760704A (zh) 硼-镓共掺单晶制备设备及其制备方法
CN115233305A (zh) Vb法制备超高纯多晶锗的方法
KR20140048742A (ko) 실리콘 단결정 잉곳 성장장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890406

Country of ref document: EP

Kind code of ref document: A1