WO2021243873A1 - 一种液态磷注入法合成磷化铟的方法 - Google Patents

一种液态磷注入法合成磷化铟的方法 Download PDF

Info

Publication number
WO2021243873A1
WO2021243873A1 PCT/CN2020/114332 CN2020114332W WO2021243873A1 WO 2021243873 A1 WO2021243873 A1 WO 2021243873A1 CN 2020114332 W CN2020114332 W CN 2020114332W WO 2021243873 A1 WO2021243873 A1 WO 2021243873A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
indium
liquid
furnace
condenser
Prior art date
Application number
PCT/CN2020/114332
Other languages
English (en)
French (fr)
Inventor
付莉杰
孙聂枫
王书杰
李晓岚
张鑫
张晓丹
史艳磊
邵会民
王阳
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US17/797,073 priority Critical patent/US20230055938A1/en
Publication of WO2021243873A1 publication Critical patent/WO2021243873A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Definitions

  • the invention belongs to the technical field of semiconductors, and relates to the preparation of indium phosphide, in particular to a method for synthesizing indium phosphide by using liquid phosphorus and liquid indium.
  • Indium phosphide is a group III-V compound semiconductor material formed by the combination of group III element indium (In) and group V element phosphorus (P). It has a very important strategic position in the field of semiconductor materials.
  • An irreplaceable semiconductor material for devices and microelectronics Compared with germanium and silicon materials, InP has many advantages: direct transition band structure, high electro-optical conversion efficiency; high electron mobility, easy to be made into semi-insulating materials, suitable for making high-frequency microwave devices and circuits; working temperature High; has strong anti-radiation ability; as a solar cell material, the conversion efficiency is high. Therefore, InP and other materials are widely used in high-tech fields such as solid-state lighting, microwave communications, optical fiber communications, microwaves, millimeter wave devices, and radiation-resistant solar cells.
  • InP has increasingly shown its advantages in high-end microwave, millimeter-wave electronic devices and optoelectronic devices, and has become a high-end millimeter-wave device.
  • the material of choice is widely valued, and its development and application prospects are very broad.
  • the realization of high-end InP-based microelectronics and optoelectronic devices depends on the preparation of high-quality InP single crystals with good integrity, uniformity and thermal stability, especially large-diameter high-pressure liquid-sealed Czochralski (HP-LEC) InP single crystals preparation.
  • HP-LEC large-diameter high-pressure liquid-sealed Czochralski
  • InP polycrystalline materials with high purity, different melt ratios and no inclusions are the prerequisites for the production of high-quality InP and the research on InP-related characteristics.
  • Many characteristics of InP crystals are related to the characteristics of the starting materials, namely polycrystalline materials, such as the proportion of polycrystalline materials and the purity of the materials.
  • the characteristics of polycrystalline materials have a great influence on crystal growth, crystal electrical performance, crystal integrity and uniformity. Therefore, the rapid and large-capacity synthesis of InP melt is an issue of great concern in the field of InP research.
  • Horizontal Bridgman method (HB) and horizontal gradient solidification method (HGF) are used to synthesize InP materials.
  • the larger the synthesis amount the longer the synthesis time.
  • the contamination of Si is also more obvious (the source is the quartz tube wall);
  • the carrier concentration of InP polycrystalline provided by industry is 6 ⁇ 1015cm-3, which has a bad effect on the preparation of high-performance microelectronic devices and optoelectronic devices, and the possibility of "explosion” is also high.
  • it is very difficult to increase the weight of In and increasing the diameter of the quartz tube will inevitably require a larger-caliber autoclave, and the cost will also increase rapidly.
  • Phosphorus injection synthesis technology is to inject vaporized phosphorus vapor into indium melt to synthesize indium phosphide melt, because this method relies on the pressure difference between the inside and outside of the quartz phosphorus container to inject phosphorus Steam, once the pressure difference is not properly controlled, frying bubbles are easy to occur; on the other hand, part of the phosphorus vapor is not absorbed by the indium melt, which affects the synthesis effect on the one hand, and on the other hand, the lost phosphorus vapor volatilizes into the furnace body and gives it to the furnace. Body cleaning brings a lot of trouble.
  • HB horizontal Bridgman method
  • HGF horizontal gradient solidification method
  • ultra-high pressure direct synthesis technology are all InP synthesis in the synthesis furnace, and then the synthesized InP polycrystalline material is taken out of the synthesis furnace , The polycrystalline material is cleaned and corroded, and then loaded into a high-pressure single crystal furnace for InP single crystal growth.
  • the synthesis and crystal growth are carried out using a "two-step" method, which greatly increases the possibility of contamination of the material and increases the cost of material preparation.
  • the purpose of the present invention is to provide a rapid, efficient and high-purity synthesis method of indium phosphide polycrystalline material.
  • the method liquefies the vaporized phosphorus vapor to participate in the reaction, realizes the instantaneous reaction of liquid phosphorus and liquid indium melt, can synthesize with high efficiency and high purity, and is beneficial to crystal growth.
  • the technical scheme of the present invention is: a method for synthesizing indium phosphide by liquid phosphorus injection, based on a synthesis system including quartz phosphor bubbles, condenser, phosphorus source furnace, lifting crucible, low-temperature inert gas delivery system, and single crystal furnace, The method includes the following steps:
  • Furnace Put the quartz phosphor bubbles into the phosphorus source furnace for heating; then put the phosphorus source furnace with quartz phosphor bubbles, condenser, seed crystal, crucible with indium, supporting graphite holder, insulation sleeve, The heater is installed in the hearth of the single crystal furnace, and boron oxide protective agent is put into it;
  • the low-temperature inert gas is flowed into the furnace through the condenser through the condenser to keep the pressure in the furnace greater than the dissociation pressure of indium phosphide;
  • the phosphorus source furnace is heated to vaporize the phosphorus in the quartz phosphor bubble, and the vaporized phosphorus vapor is condensed into liquid white phosphorus through the condenser, and the liquid white phosphorus flows into the indium melt to react to synthesize indium phosphide;
  • the cleaning of indium in the step 1) is to remove oxides and residual impurities on the surface of the indium. After cleaning, the indium reaches a purity of 6N, and the surface is dust-free. Impurities.
  • the purity of the phosphorus in the step 2) is 6N.
  • the vacuum degree in the phosphorus source furnace in the step 5) is 30-100 Pa.
  • the temperature of the low-temperature inert gas in the step 5) is lower than 156°C.
  • the low-temperature inert gas is filled with 2 MPa nitrogen or argon with the delivery system.
  • the accompanying delivery of low-temperature inert gas can ensure that the liquefied white phosphorus is not vaporized during the process of injecting the indium melt.
  • one end of the condenser connected to the quartz phosphor bubble is also connected to the external argon cylinder.
  • the vaporized phosphorus vapor enters the condenser together with argon.
  • the liquefied phosphorus and argon are injected into the indium melt together.
  • the argon can continuously cool the liquid white phosphorus, and on the other hand, it can flow down with the liquid white phosphorus to ensure It is not vaporized during the descending process.
  • the heating power of the phosphorus source furnace is increased from 0W to 3000W within 2 hours, and the phosphorus gradually vaporizes when it reaches 770K.
  • Red phosphorus and white phosphorus are allotropes of phosphorus (P).
  • red phosphorus is the most commonly used in the synthesis of indium phosphide.
  • the red phosphorus in the phosphorus bubble is vaporized into phosphorus vapor, and the vaporized phosphorus is condensed into liquid white phosphorus at low temperature through the condenser. Raise the temperature in the quartz phosphorous bubble to 770K.
  • the red phosphorus can be sublimated into gas.
  • the gas will become It can continue to be supercooled and become liquid white phosphorus.
  • the temperature in the crucible in the step 5) is 1300-1400K.
  • the condensing medium in the condenser is gallium indium alloy.
  • Gallium-indium alloy has stable performance, low melting point, good fluidity, and small shrinkage, which can ensure the condensation of vaporized phosphorus.
  • the condensing medium can also be made of other materials with good thermal conductivity and fluidity that are liquid at a temperature above 20°C and do not vaporize at a temperature below 500°C.
  • the low-temperature inert gas delivery system includes a pressure difference controller that controls pressure.
  • the pressure difference controller can prevent the unbalanced pressure difference between the inside and the outside from causing upside-down frying bubbles.
  • the beneficial effects of the present invention are as follows: 1.
  • the method converts gaseous phosphorus into liquid phosphorus, and the liquid phosphorus is injected into the indium solution, so that the liquid phosphorus and the liquid indium melt react instantaneously, which can produce high efficiency and high purity at a lower temperature.
  • the proportion and large-capacity synthesis of indium phosphide solution is beneficial to the growth of phosphorus-rich indium phosphide polycrystals and the growth of indium phosphide single crystals. 2. It solves the problems of indium phosphide synthesis, which is easy to suck up and blow up, reduce high-temperature contamination, and improve the purity of the material. 3.
  • liquid phosphorus to participate in the reaction, the amount of phosphorus volatilization is greatly reduced, saving raw material costs to a certain extent, and using in-situ synthesis technology, continuous crystal growth after synthesis, reducing the risk of material contamination, saving material costs, and simplifying operations.
  • the liquid-liquid reaction is an instantaneous reaction, which solves the problem that indium phosphide is not easy to proportion, and can synthesize high-quality indium phosphide in a short time.
  • the crystal grown by the high-pressure liquid-sealed Czochralski method has good integrity, uniformity and thermal stability, and can prepare high-quality single crystals, especially large-diameter single crystals. It is beneficial to prepare InP polycrystalline materials with high purity, different melt ratios and no inclusions.
  • FIG. 1 is a schematic structural diagram of a system for synthesizing indium phosphide by liquid phosphorus injection method in an embodiment
  • 1 represents the single crystal furnace
  • 11 represents the quartz phosphor bubble
  • 12 represents the phosphorus source furnace
  • 13 represents the gas outlet
  • 14 represents the seed rod
  • 15 represents the crucible
  • 16 represents the coolant pump
  • 17 represents the coolant pool
  • 18 Represents the graphite holder
  • 19 represents the heater
  • 2 represents the outlet
  • 21 represents the cooling box
  • 22 represents the spiral tube
  • 23 represents the pressure difference controller
  • 24 represents the pressure gauge
  • 3 represents the insulation sleeve
  • 4 represents the seed crystal
  • 5 represents the gas cylinder
  • 6 represents indium melt
  • 7 represents pallet.
  • a method for synthesizing indium phosphide by liquid phosphorus injection method which is based on a system for synthesizing indium phosphide by liquid phosphorus injection method.
  • the system includes an InP single crystal furnace 1 based on an in-situ synthesis method.
  • the single crystal furnace 1 includes a vacuum system, charging and discharging Gas system, temperature and pressure control system, electrical control system, cooling cycle system, weighing system, seed rod 14 lifting mechanism, crucible 15 and crucible 15 supporting heating, heat preservation, and lifting mechanism.
  • the crucible 15 is located on the graphite holder 18, the heater 19 is arranged on the periphery of the graphite holder 18, and the heater 19 is provided with an insulating sleeve 3 on the periphery.
  • the bottom end of the graphite holder 18 extends to the outside of the furnace bottom, and is connected with the crucible rod rotating and lifting mechanism.
  • the crucible rod rotating lifting mechanism is a common basic mechanism for single crystal furnaces and synthesis furnaces in the field, and is used to drive the crucible to lift and rotate so that indium and phosphorus are mixed uniformly and fully reacted, which will not be repeated here.
  • the crucible 15 is provided with a seed crystal rod 14 on which a seed crystal 4 and a load cell are fixed.
  • the seed crystal rod 14 penetrates the furnace cover and is connected to the seed crystal rod lifting mechanism.
  • the seed crystal rod lifting mechanism can drive the seed crystal 4 up and down to lift and grow the crystal.
  • the load cell and weighing system can calculate the growth weight of the crystal.
  • the seed rod 14, the weighing sensor and the weighing system, and the seed rod lifting mechanism are common basic mechanisms of the single crystal furnace for pulling and growing crystals, and will not be repeated here.
  • the single crystal furnace 1 has been improved.
  • a condenser is provided in the single crystal furnace 1.
  • the condenser includes a cooling box 21 filled with cooling liquid and a spiral tube 22 immersed in the cooling liquid.
  • the inlet of the spiral tube 22 communicates with the mouth of the quartz phosphor bubble 11, the outlet 2 of the spiral tube 22 is inserted into the indium melt 6 in the crucible 15, and the quartz phosphor bubble 11 is set in the phosphorus source furnace 12.
  • the phosphorus source furnace 12 and the cooling box 21 are arranged on a supporting plate 7, the supporting plate 7 is connected to the furnace wall of the single crystal furnace 1, and the seed crystal rod 14 is located on the side of the supporting plate 7.
  • the cooling box 21 is connected to the cooling liquid pump 16 and the cooling liquid pool 17 located outside the single crystal furnace 1 via pipelines.
  • the coolant is gallium indium alloy.
  • the cooling box 21 is made of stainless steel.
  • the low-temperature inert gas delivery system includes a gas cylinder 5, a gas outlet 13, a pressure gauge 24, a pressure difference controller 23 and supporting pipelines.
  • the inlet of the spiral tube 22 is simultaneously connected with a gas cylinder 5 arranged outside the single crystal furnace 1, and the gas cylinder 5 is filled with inert gas.
  • the inert gas is argon with a temperature lower than 156°C.
  • a pressure gauge 24 and a pressure difference controller 23 are provided on the connecting pipeline between the gas cylinder 5 and the spiral tube 22 outside the single crystal furnace 1.
  • An air outlet 13 is provided on the top of the single crystal furnace 1, and the inert gas flows along the spiral tube 22 and is fed into the indium melt 6 in the crucible 15, and flows out from the air outlet 13.
  • the method includes the following steps:
  • Furnace loading Put the quartz phosphorous bubble 11 into the phosphorus source furnace 12 for heating; then put the phosphorous source furnace 12 containing the quartz phosphorous bubble 11, the condenser, the seed crystal 4, the crucible 15 containing indium and the supporting equipment The graphite holder 18, the insulation cover 3, and the heater 19 are installed in the single crystal furnace 1, and the boron oxide protective agent is placed;

Abstract

一种液态磷注入法合成磷化铟的方法,属于半导体技术领域,该方法将气态磷经冷凝器转化为液态磷,液态磷注入铟溶体中,同时借助低温惰性气体的流动随送防止磷气化,使液态磷与液态铟熔体瞬时反应,能够在较低温度下、高效率、高纯度的配比、大容量合成磷化铟溶体,利于生长富磷磷化铟多晶,易于磷化铟单晶的生长。包括:铟的清理、装磷、装炉、连通冷凝器、合成、晶体制备等步骤。

Description

一种液态磷注入法合成磷化铟的方法 技术领域
本发明属于半导体技术领域,涉及磷化铟的制备,具体涉及利用液态磷与液态铟合成磷化铟的方法。
背景技术
磷化铟(InP)是由III族元素铟(In)和V族元素磷(P)化合而成的III-V族化合物半导体材料,在半导体材料领域具有非常重要的战略性地位,是目前光电器件和微电子器件不可替代的半导体材料。与锗、硅材料相比,InP具有许多优点:直接跃迁型能带结构,具有高的电光转换效率;电子迁移率高,易于制成半绝缘材料,适合制作高频微波器件和电路;工作温度高;具有强的抗辐射能力;作为太阳能电池材料的转换效率高等。因此,InP等材料被广泛应用在固态发光、微波通信、光纤通信、微波、毫米波器件、抗辐射太阳能电池等高技术领域。
随着能带工程理论、超薄材料工艺技术及深亚微米制造技术的进展,InP也越来越显示出其在高端微波、毫米波电子器件和光电子器件方面的优势,成为毫米波高端器件的首选材料,受到广泛的重视,开发应用前景非常广阔。高端InP基微电子和光电子器件的实现取决于具有良好完整性、均匀性和热稳定性的高质量InP单晶的制备,尤其是大直径高压液封直拉(HP-LEC)InP单晶的制备。高纯、不同熔体配比、无夹杂的InP多晶料是生产高质量InP及进行InP相关特性研究的前提条件。InP晶体的很多特性都与起始原料,即多晶材料的特性相关,如多晶材料的配比度、材料的纯度。多晶材料的特性对晶体生长、晶体的电学表现、晶体的完整性、均匀性等都有很大的影响。因此,InP熔体的快速大容量合成是InP研究领域非常受关注的问题。
目前,几种常用的合成InP多晶料的方法及其存在的问题如下:
(1)水平Bridgman法(HB)和水平梯度凝固法(HGF):采用水平Bridgman法(HB)和水平梯度凝固法(HGF)合成InP材料,从工艺上讲,合成量越大则合成时间越长,一般用HB/HGF技术合成1.5KgInP多晶需24h左右,因此Si的沾污也越明显(其来源是石英管壁);工业上提供的InP多晶的载流子浓度最低为6×1015cm-3,这对于制备高性能微电子器件和光电器件都有不良的影响,并且“炸管”的可能性也大。无论什么形式的合成舟,增加In的重量都非常困难,而且增加石英管的直径,势必要求更大口径的高压釜,成本也将迅速增加。
(2)磷注入法合成技术:磷注入法合成技术是将气化的磷蒸气注入到铟熔体中化合成磷化铟熔体,由于该方法是依靠石英磷容器的内外压强差来注入磷蒸气,一旦压强差控制不当,很容易发生炸泡;另一方面,部分磷蒸气不被铟熔体吸收,一方面影响合成效果,另一方面,损失的磷蒸气挥发至炉体中,给炉体清洗带来很大的麻烦。
上述的水平Bridgman法(HB)、水平梯度凝固法(HGF)及超高压直接合成技术等合成方法,都是先在合成炉中进行InP合成,然后将合成的InP多晶料从合成炉中取出,对多晶材料进行清洗腐蚀处理,然后再装入高压单晶炉内进行InP单晶生长。合成与晶体生长是采用“两步”法进行的,这就大大增加了材料被沾污的可能性,并且增加了材料制备成本。
发明内容
本发明的目的是提供一种磷化铟多晶材料的快速、高效、高纯合成方法。该方法将气化的磷蒸气液化后参与反应,实现液态磷与液态铟熔体的瞬时反应,能够高效率、高纯度的合成,利于晶体生长。
本发明的技术方案为:一种液态磷注入法合成磷化铟的方法,基于包括石英磷泡、冷凝器、磷源炉、升降坩埚、低温惰性气体随送系统和单晶炉的合成系统,所述方法包括以下步骤:
1)铟的清理:对铟进行表面清洗处理,将清洗后的铟烘干备用;
2)装磷:在氮气气氛保护下,将红磷装入石英磷泡内;
3)装炉:将石英磷泡放入加热用的磷源炉内;再将装有石英磷泡的磷源炉、冷凝器、籽晶、装有铟的坩埚及配套石墨托、保温套、加热器装进单晶炉炉膛内,放入氧化硼保护剂;
4)连通冷凝器:将冷凝器的入口与低温惰性气体随送系统和石英磷泡的口部连通,并检查是否漏气;
5)合成:
A、关闭炉门,对炉内抽真空,低温惰性气体随送系统经冷凝器向炉内流动随送低温惰性气体,保持炉内压力大于磷化铟的离解压;
B、将坩埚内铟加热至铟熔化,
C、上升坩埚,使冷凝器出口端插入铟溶体,向冷凝器通入循环冷却液;
D、磷源炉加热将石英磷泡内的磷汽化,气化的磷蒸气经过冷凝器凝结为液态白磷,液态白磷流入铟熔体中反应合成配比磷化铟;
6)晶体制备:石英磷泡内的磷全部气化注入铟溶体内以后,下降坩埚远离冷凝器出口,然后下降籽晶进行高压液封直拉法(HP-LEC)晶体生长。
进一步的,为了提高磷化铟溶体的纯度和保证配比精确度,所述步骤1)中铟的清理为去除铟表面的氧化物和残余杂质,清理后铟达到6N纯净度,且表面无尘土杂质。
进一步的,为了提高磷化铟溶体的纯度和保证配比精确度,所述步骤2)中磷的纯净度为6N。
进一步的,为了保证炉内压力,所述步骤5)中磷源炉内的真空度为30-100Pa。
进一步的,为了便于磷的液化和避免液态磷注入过程气化,以实现液态磷与液态铟熔体瞬时反应,所述步骤5)中低温惰性气体的温度低于156℃。
进一步的,所述步骤5)中低温惰性气体随送系统充入的为2MPa的氮气或氩气。低温惰性气体的随送,可以确保液化后的白磷在注入铟熔体的过程中不被气化,所述步骤5)中冷凝器连接石英磷泡的一端同时与外置的氩气瓶相连,气化的磷蒸气与氩气一起进入冷凝器,液化后的磷与氩气一起注入铟熔体,氩气一方面可以持续给液态白磷降温,另一方面可以带着液态白磷往下流动,确保其在下降过程中不被气化。
进一步的,所述步骤5)中磷源炉加热的功率在2小时内从0W增加至3000W,至770K时磷逐渐气化。红磷和白磷是磷(P)的同素异形体。出于安全考虑,红磷是合成磷化铟时最常用的一种。磷泡中的红磷气化成磷蒸气,气化的磷经冷凝器在低温下凝结为液态白磷。将石英磷泡内的温度升至770K,可在加热至416℃(升华温度)以上时,使红磷升华成为气体,当在较低温度冷却并凝缩(低于300℃)时,气体就可以继续过冷而变成液态白磷。
进一步的,为了保证液态磷与液态铟熔体瞬时反应,所述步骤5)中坩埚内的温度为1300-1400K。
进一步的,所述冷凝器中的冷凝介质为镓铟合金。镓铟合金性能稳定,熔点低,流动性好,收缩性小,可以很好的保证对气化的磷的冷凝。冷凝介质也可采用在20℃以上为液态,且在500℃以下基本不气化的导热性和流动性好的其它材料。
进一步的,所述低温惰性气体随送系统包括控制压力的压差控制器。压差控制器可以防止内外压差不平衡造成倒吸炸泡。
本发明的有益效果为:1、该方法将气态磷转化为液态磷,液态磷注入铟溶体中,使液态磷与液态铟熔体瞬时反应,能够在较低温度下、高效率、高纯度的配比、大容量合成磷化铟溶体,利于生长富磷磷化铟多晶,易于磷化铟单晶的生长。2、解决了磷化铟合成易倒吸、炸泡的问题,减少了高温沾污,可提高材料纯度。3、采用液态磷参与反应,磷的挥发量大大降低,一定程度上节约原材料成本,并采用原位合成技术,合成后可连续晶体生长, 减少材料沾污的风险,节省材料成本,简化操作。4、液-液反应为瞬时反应,解决了磷化铟不易配比的问题,可以在短时间内合成配比的高质量磷化铟。5、高压液封直拉法生长的晶体具有良好的完整性、均匀性和热稳定性,能制备高质量的单晶,尤其是大直径的单晶。利于制备高纯度、不同熔体配比、无夹杂的InP多晶料。
附图说明
图1为实施例中液态磷注入法合成磷化铟的系统的结构示意图;
附图中,1代表单晶炉,11代表石英磷泡,12代表磷源炉,13代表出气口,14代表籽晶杆,15代表坩埚,16代表冷却液泵,17代表冷却液池,18代表石墨托,19代表加热器,2代表出口,21代表冷却箱,22代表螺旋管,23代表压差控制器,24代表压力表,3代表保温套,4代表籽晶,5代表气瓶,6代表铟熔体,7代表托板。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
液态磷注入法合成磷化铟的方法,该方法基于液态磷注入法合成磷化铟的系统,该系统包括基于原位合成法的InP单晶炉1,单晶炉1包括真空系统、充放气系统、温度与压力控制系统、电气控制系统、冷却循环系统、称重系统、籽晶杆14提拉升降机构、坩埚15及坩埚15配套的加热、保温、升降机构。坩埚15位于石墨托18上,加热器19布置在石墨托18的外围,加热器19外围设有保温套3。石墨托18的底端延伸至炉底之外,连接坩埚杆旋转升降机构。坩埚杆旋转升降机构为本领域单晶炉和合成炉的常用基础机构,用于带动坩埚升降和旋转,以使铟、磷混合均匀、反应充分,在此不再赘述。坩埚15上方设有籽晶杆14,籽晶杆14上固定有籽晶4和称重传感器,籽晶杆14穿出炉盖连接籽晶杆升降机构。籽晶杆升降机构可带动籽晶4升降,以提拉生长晶体。称重传感器和称重系统可以计算晶体的生长重量。籽晶杆14、称重传感器及称重系统、籽晶杆升降机构为提拉生长晶体的单晶炉的常用基础机构,在此不再赘述。
对单晶炉1进行了改进,在单晶炉1内设置冷凝器,冷凝器包括充有冷却液的冷却箱21和浸在冷却液内的螺旋管22。螺旋管22的入口与石英磷泡11的口部连通,螺旋管22的出口2插入坩埚15内的铟熔体6中,石英磷泡11设置在磷源炉12内。磷源炉12和冷却箱21设置在托板7上,托板7连接在单晶炉1的炉壁上,籽晶杆14位于托板7的侧面。冷却箱21借助管路连接位于单晶炉1外的冷却液泵16和冷却液池17。冷却液为镓铟合金。冷却箱21为不锈钢材质。低温惰性气体随送系统包括气瓶5、出气口13、压力表24、压差控制器23和配套管路。螺旋管22的入口同时连通设置在单晶炉1外的气瓶5,气瓶5内充 有惰性气体。惰性气体为温度低于156℃的氩气。在单晶炉1外的气瓶5与螺旋管22的连接管路上设置压力表24和压差控制器23。单晶炉1的顶部设置出气口13,惰性气体沿螺旋管22流动随送入坩埚15内的铟熔体6中,从出气口13流出。
该方法包括以下步骤:
1)铟的清理:去除铟表面的氧化物和残余杂质,清理后铟达到6N纯净度,且表面无尘土杂质;将清洗后的铟烘干备用。
2)装磷:在氮气气氛保护下,将6N红磷装入石英磷泡11内。
3)装炉:将石英磷泡11放入加热用的磷源炉12内;再将装有石英磷泡11的磷源炉12、冷凝器、籽晶4、装有铟的坩埚15及配套石墨托18、保温套3、加热器19装进单晶炉1内,放入氧化硼保护剂;
4)连通冷凝器:将螺旋管22的入口与气瓶5和石英磷泡11的口部连通,并检查是否漏气;
5)合成:
A、关闭炉门,对炉内抽真空,真空度达到60Pa后,停止抽真空,充2MPa的高纯氩气;
B、将坩埚15内铟加热至1373K,
C、上升坩埚15,使螺旋管22出口2插入铟溶体,向冷却箱21通入循环冷却液;
D、.将磷源炉12加热的功率从0W缓慢增加至3000W,至770K时固态磷逐渐气化,气化的磷经冷凝器在低温下凝结为液态白磷,液态白磷在自身重力和氩气的双重力量下注入坩埚15内,与铟熔体发生反应,合成配比磷化铟。
6)晶体制备:石英磷泡11内的磷全部气化注入铟溶体内以后,下降坩埚15远离冷凝器出口2,然后下降籽晶4进行高压液封直拉法(HP-LEC)晶体生长。

Claims (10)

  1. 一种液态磷注入法合成磷化铟的方法,基于包括石英磷泡、冷凝器、磷源炉、升降坩埚、低温惰性气体随送系统和单晶炉的合成系统,其特征在于所述方法包括以下步骤:
    1)铟的清理:对铟进行表面清洗处理,将清洗后的铟烘干备用;
    2)装磷:在氮气气氛保护下,将红磷装入石英磷泡内;
    3)装炉:将石英磷泡放入加热用的磷源炉内;再将装有石英磷泡的磷源炉、冷凝器、籽晶、装有铟的坩埚及配套石墨托、保温套、加热器装进单晶炉炉膛内,放入氧化硼保护剂;
    4)连通冷凝器:将冷凝器的入口与低温惰性气体随送系统和石英磷泡的口部连通,并检查是否漏气;
    5)合成:
    A、关闭炉门,对炉内抽真空,低温惰性气体随送系统经冷凝器向炉内流动随送低温惰性气体,保持炉内压力大于磷化铟的离解压;
    B、将坩埚内铟加热至铟熔化,
    C、上升坩埚,使冷凝器出口端插入铟溶体,向冷凝器通入循环冷却液;
    D、磷源炉加热将石英磷泡内的磷汽化,气化的磷蒸气经过冷凝器凝结为液态白磷,液态白磷流入铟熔体中反应合成配比磷化铟;
    6)晶体制备:石英磷泡内的磷全部气化注入铟溶体内以后,下降坩埚远离冷凝器出口,然后下降籽晶进行高压液封直拉法(HP-LEC)晶体生长。
  2. 根据权利要求1所述的液态磷注入法合成磷化铟的方法,其特征在于:所述步骤1)中铟的清理为去除铟表面的氧化物和残余杂质,清理后铟达到6N纯净度,且表面无尘土杂质。
  3. 根据权利要求1所述的液态磷注入法合成磷化铟的方法,其特征在于:所述步骤2)中磷的纯净度为6N。
  4. 根据权利要求1所述的液态磷注入法合成磷化铟的方法,其特征在于:所述步骤5)中磷源炉内的真空度为30-100Pa。
  5. 根据权利要求4所述的液态磷注入法合成磷化铟的方法,其特征在于:所述步骤5)中低温惰性气体的温度低于156℃。
  6. 根据权利要求5所述的液态磷注入法合成磷化铟的方法,其特征在于:所述步骤5)中低温惰性气体随送系统充入的为2MPa的氮气或氩气。
  7. 根据权利要求1所述的液态磷注入法合成磷化铟的方法,其特征在于:所述步骤5)中磷源炉加热的功率在2小时内从0W增加至3000W,至770K时磷逐渐气化。
  8. 根据权利要求1所述的液态磷注入法合成磷化铟的方法,其特征在于:所述步骤5)中坩 埚内的温度为1300-1400K。
  9. 根据权利要求1-8任一项所述的液态磷注入法合成磷化铟的方法,其特征在于:所述冷凝器中的冷凝介质为镓铟合金。
  10. 根据权利要求9所述的液态磷注入法合成磷化铟的方法,其特征在于:所述低温惰性气体随送系统包括控制压力的压差控制器。
PCT/CN2020/114332 2020-06-02 2020-09-10 一种液态磷注入法合成磷化铟的方法 WO2021243873A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/797,073 US20230055938A1 (en) 2020-06-02 2020-09-10 Process for synthesizing indium phosphide by liquid phosphorus injection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010487276.2 2020-06-02
CN202010487276.2A CN111424310B (zh) 2020-06-02 2020-06-02 一种液态磷注入法合成磷化铟的方法

Publications (1)

Publication Number Publication Date
WO2021243873A1 true WO2021243873A1 (zh) 2021-12-09

Family

ID=71557253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114332 WO2021243873A1 (zh) 2020-06-02 2020-09-10 一种液态磷注入法合成磷化铟的方法

Country Status (3)

Country Link
US (1) US20230055938A1 (zh)
CN (1) CN111424310B (zh)
WO (1) WO2021243873A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680790A (zh) * 2020-12-07 2021-04-20 宁波建锡新材料有限公司 一种磷化铟半导体材料的合成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111424310B (zh) * 2020-06-02 2022-02-15 中国电子科技集团公司第十三研究所 一种液态磷注入法合成磷化铟的方法
CN113308740B (zh) * 2021-06-03 2022-06-24 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备方法
WO2022252545A1 (zh) * 2021-06-03 2022-12-08 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备装置及方法
CN113308744B (zh) * 2021-06-03 2022-02-15 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备装置
CN113502546B (zh) * 2021-07-06 2022-08-19 中国电子科技集团公司第十三研究所 一种磁场下合成及连续生长磷化物的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD232576A1 (de) * 1984-11-05 1986-01-29 Spurenelemente Freiberg Veb Verfahren zur herstellung und anwendung von testkristallen
JP2004338960A (ja) * 2003-05-13 2004-12-02 Hitachi Cable Ltd InP単結晶の製造方法
CN1978714A (zh) * 2005-11-30 2007-06-13 中国科学院半导体研究所 用固态磷裂解源炉分子束外延磷化铟材料的方法
CN102965734A (zh) * 2012-12-04 2013-03-13 中国电子科技集团公司第十三研究所 磷化铟多晶材料的快速合成方法及其多管石英磷泡
CN110268035A (zh) * 2017-01-25 2019-09-20 日立化成株式会社 半导体纳米粒子的制造方法
CN111424310A (zh) * 2020-06-02 2020-07-17 中国电子科技集团公司第十三研究所 一种液态磷注入法合成磷化铟的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252175A (en) * 1990-06-29 1993-10-12 The United States Of America As Represented By The Secretary Of The Air Force Capillary pressure relief for magnetic Kyropoulos growth of semiconductor crystals
CN105543949B (zh) * 2016-03-10 2018-02-13 中国电子科技集团公司第十三研究所 注入原位合成连续vgf/vb生长化合物半导体单晶的制备方法
CN207596997U (zh) * 2017-12-08 2018-07-10 中国电子科技集团公司第十三研究所 用于化合物半导体多晶料成型的装置
CN110760932B (zh) * 2019-11-22 2021-02-23 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD232576A1 (de) * 1984-11-05 1986-01-29 Spurenelemente Freiberg Veb Verfahren zur herstellung und anwendung von testkristallen
JP2004338960A (ja) * 2003-05-13 2004-12-02 Hitachi Cable Ltd InP単結晶の製造方法
CN1978714A (zh) * 2005-11-30 2007-06-13 中国科学院半导体研究所 用固态磷裂解源炉分子束外延磷化铟材料的方法
CN102965734A (zh) * 2012-12-04 2013-03-13 中国电子科技集团公司第十三研究所 磷化铟多晶材料的快速合成方法及其多管石英磷泡
CN110268035A (zh) * 2017-01-25 2019-09-20 日立化成株式会社 半导体纳米粒子的制造方法
CN111424310A (zh) * 2020-06-02 2020-07-17 中国电子科技集团公司第十三研究所 一种液态磷注入法合成磷化铟的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680790A (zh) * 2020-12-07 2021-04-20 宁波建锡新材料有限公司 一种磷化铟半导体材料的合成方法

Also Published As

Publication number Publication date
CN111424310B (zh) 2022-02-15
US20230055938A1 (en) 2023-02-23
CN111424310A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2021243873A1 (zh) 一种液态磷注入法合成磷化铟的方法
WO2021098347A1 (zh) 一种利用铟磷混合物制备磷化铟晶体的系统
WO2021098348A1 (zh) 一种利用铟磷混合物制备磷化铟晶体的方法
CN101498047B (zh) 一种砷化镓多晶无液封合成方法和装置
CN102758249B (zh) 一种无色刚玉单晶的制备方法
CN102965734A (zh) 磷化铟多晶材料的快速合成方法及其多管石英磷泡
CN113638048B (zh) 一种vgf法生长磷化铟单晶的方法
US10648100B1 (en) Method for carrying out phosphide in-situ injection synthesis by carrier gas
CN212895088U (zh) 一种液态磷注入法合成磷化铟的系统
JP4815003B2 (ja) シリコン結晶成長用ルツボ、シリコン結晶成長用ルツボ製造方法、及びシリコン結晶成長方法
JP2009167073A (ja) 単結晶成長装置及び単結晶成長方法
TWI825959B (zh) 氮摻雜p型單晶矽製造方法
CN113061978A (zh) 一种用于连续直拉单晶的熔融硅加料器
CN110484965A (zh) 一种氧化镓晶体及其生长方法和生长装置
CN211112317U (zh) 一种利用铟磷混合物制备磷化铟晶体的系统
WO2023221667A1 (zh) 一种半绝缘砷化镓单晶体及其制备方法和生长装置
CN115478324A (zh) 一种助溶剂法生长单晶或多晶SiC晶体的方法
CN212404352U (zh) 气体搅拌装置及铸锭炉
US20130008372A1 (en) Method for purifying silicon
CN113716566A (zh) 高纯碳化硅源粉制备方法
CN114250503A (zh) 一种零位错p型锗单晶制备方法
TW201317407A (zh) 真空循環精煉太陽能級多晶矽設備及太陽能級多晶矽提煉方法
TW201241249A (en) Single crystal growth method for vertical high temperature and high pressure group III-V compound
CN102040204A (zh) 磷化镓多晶铸锭的方法
CN218521366U (zh) 一种单晶硅制备用拉晶炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939087

Country of ref document: EP

Kind code of ref document: A1