WO2022252545A1 - 一种半绝缘磷化铟的制备装置及方法 - Google Patents

一种半绝缘磷化铟的制备装置及方法 Download PDF

Info

Publication number
WO2022252545A1
WO2022252545A1 PCT/CN2021/136320 CN2021136320W WO2022252545A1 WO 2022252545 A1 WO2022252545 A1 WO 2022252545A1 CN 2021136320 W CN2021136320 W CN 2021136320W WO 2022252545 A1 WO2022252545 A1 WO 2022252545A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing cover
crystal
furnace body
rod
semi
Prior art date
Application number
PCT/CN2021/136320
Other languages
English (en)
French (fr)
Inventor
王书杰
孙聂枫
徐森锋
孙同年
刘惠生
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110618255.4A external-priority patent/CN113308740B/zh
Priority claimed from CN202110618242.7A external-priority patent/CN113308744B/zh
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Publication of WO2022252545A1 publication Critical patent/WO2022252545A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Definitions

  • the invention belongs to the field of crystal preparation, and in particular relates to a preparation device and method of semi-insulating indium phosphide.
  • InP material is an important compound semiconductor material. It is one of the preferred materials for high-frequency and high-speed devices. It shows great advantages in the frequency band above 100GHz. InP-based microelectronic devices have high frequency, low noise, high efficiency, and radiation characteristics.
  • Semi-insulating indium phosphide substrates are widely used in 5G networks, terahertz communications, millimeter wave communications and detection and other fields. Usually, the semi-insulating properties of indium phosphide are achieved by doping iron, but iron will reduce the critical shear stress of the crystal, and there are many defects such as dislocations.
  • doping elements have a great influence on the dielectric constant of indium phosphide materials.
  • the higher the doping concentration the higher the dielectric constant and the lower the radiation frequency.
  • Indium phosphide can be semi-insulating by annealing.
  • the in-situ annealing or online annealing after the crystal growth is completed is done in the original growth environment by controlling the temperature gradient, such as the Chinese patent application number 201610950624.9 and the Chinese patent application number 201810801199.6.
  • P 4 (g), P 2 (g) and P(g), etc. P 4 (g), P 2 (g) and P(g) can be used as protective gases , if the annealing is still completed in the original growth environment, since the gas will spread throughout the space, when encountering the furnace wall with a relatively low temperature, the gas will become a solid and deposit on the furnace wall and lose its protective effect.
  • the invention provides a preparation device and method for semi-insulating indium phosphide, which can complete hydrogen atom diffusion, compound generation, crystal growth and in-situ annealing.
  • a preparation device for semi-insulating indium phosphide comprising a furnace body, a crucible, a heating and supporting system, a seed rod passing through the furnace body, a hydrogen pipe, an inert gas pipe, and an exhaust pipe are arranged on the side of the furnace body;
  • An injector is arranged in the furnace body, and an injection lifting rod connected with the injector protrudes out of the furnace body to connect with a driving device;
  • an in-situ annealing device is also arranged in the furnace body.
  • the in-situ annealing device includes an upper sealing cover, an upper sealing cover driving device, a lower sealing cover, and a lower sealing cover driving device.
  • the heating wire of the upper sealing cover is arranged, and the heating wire of the lower sealing cover is arranged outside the upper opening of the lower sealing cover.
  • the main body of the sealing cover and the upper opening of the lower sealing cover overlap to form an annealing space.
  • the present invention also proposes a method for preparing semi-insulating indium phosphide, comprising the following steps:
  • Step A heating indium to form an indium melt
  • Step B filling the furnace body with 0.02-0.3MPa hydrogen gas, keeping the pressure for 1-5 hours, so that the hydrogen atoms dissolve into the indium melt; covering the surface of the melt with liquid boron oxide;
  • Step C filling the furnace body with an inert gas of 6-15MPa;
  • Step D injecting phosphorus gas into the indium melt through an injector to obtain a phosphorus-rich indium phosphorus melt
  • Step F After the crystal growth is completed, the crystal is annealed in an in-situ annealing device to complete the preparation of semi-insulating indium phosphide.
  • Crystal growth first, diffuse hydrogen atoms into the indium melt under a hydrogen atmosphere, then cover the surface of the indium melt with boron oxide, and then quickly inject phosphorus into the indium melt under a certain pressure to form Phosphorus-rich indium phosphorus melt. After the melt is stable, the seed crystal is lowered to contact the melt for crystal growth.
  • the crystal grows in a phosphorus-rich and hydrogen-containing melt, the crystal is in a phosphorus-rich state, which will form more indium vacancies in the crystal and form V In H 4 complexes with solid-dissolved H atoms in the crystal.
  • In-situ annealing After the crystal growth is completed, the crystal is lifted into the upper sealing cover, the crystal is sealed through the upper sealing cover, liquid seal tank and lower sealing cover, and annealed in a phosphorus atmosphere to achieve low-doped or non-doped semi-insulating Crystal preparation.
  • V In H 4 is the main shallow donor defect in the indium phosphide crystal.
  • V In H 4 decomposes, hydrogen diffuses to the crystal surface and enters the atmosphere, and indium vacancies and phosphorus vacancies are regenerated in the crystal.
  • the generated vacancies Defects interact with indium and phosphorus in the crystal lattice to form deep-level defects inversion and phosphorus inversion respectively, which act as deep donors and deep donors to compensate shallow donors and shallow acceptors in the material, thereby realizing InP materials. semi-insulating properties.
  • Adopting the preparation device and method proposed by the present invention can complete the growth of the crystal, and realize the in-situ annealing of the crystal in a suitable space, especially when it is necessary to anneal in a phosphorus atmosphere, ensure that the phosphorus gas does not condense, and maintain the temperature in the annealing space. pressure to establish a good annealing environment.
  • V In H 4 achieved by conventional non-doped semi-insulation, it is proposed that the melt is first melted in a hydrogen atmosphere to realize hydrogen absorption, and then covered with boron oxide for implant synthesis, so that hydrogen-containing indium-phosphorus melt can be obtained , and then proceed to crystal growth, doping hydrogen atoms into the crystal, and then directly annealing and removing hydrogen in a sealed device to achieve semi-insulating properties.
  • the method achieves synthesis, crystal growth, and realization of non-doped semi-insulating properties in one device.
  • Fig. 1 is a figure of preparation device
  • Fig. 2 is a schematic diagram of injecting the lifting rod structure
  • Figure 3 is a schematic diagram of an in-situ annealing assembly
  • Fig. 4 is a schematic diagram of the lifting rod structure
  • Fig. 5 is a schematic diagram of the fixing structure of the lower sealing cover
  • Fig. 6 is a schematic diagram of the drive rod and its fixed structure
  • Fig. 7 is a schematic diagram of the structure of the upper sealing cover
  • Figure 8 is a schematic diagram of the structure of the seed rod
  • Fig. 9 is a schematic diagram of indium melt hydrogen treatment
  • Figure 10 is a schematic diagram of injection synthesis
  • Figure 11 is a schematic diagram of crystal growth.
  • 1 main furnace body; 1-1: chassis; 2: upper furnace body; 3: seed rod; 3-1: auxiliary seed rod; 3-2: liquid seal tank; 3-3: seed clamp head; 3-4: seed crystal; 4: upper sealing cover; 4-1: seed crystal opening; 4-2: upper sealing cover support; 4-3: liquid sealing cap; 4-4: upper sealing cover main body; 4 -5: storage tank; 5: lifting rod; 5-1: right support of lifting rod; 5-2: left support of lifting rod; 6: injection lifting rod; 6-1: right support of injection lifting rod; Right support of lifting rod; 7: Injector; 7-1: Injector heating wire; 7-2: Injection tube; 8: Crystal; 9: Lower sealing cover; 10: Boron oxide; 11: Crucible; 12: Insulation cover; 13: boron oxide; 14: indium phosphorus melt; 15: main heater; 16: graphite support; 17: crucible rod; 18: lower heater; 19: exhaust pipe; 20: boron oxide; 21: pressure gauge; 22: storage chamber; 23
  • a kind of preparation device of semi-insulating indium phosphide comprises a furnace body, a crucible 11 and a heating and support system, a seed rod 3 passing through the furnace body are arranged in the furnace body, a hydrogen pipe 25, an inert Gas pipe 26, exhaust pipe 19;
  • In-situ annealing device is also set in the furnace body.
  • the heating and supporting system of the crucible 11 includes a thermal insulation cover 12 , a main heater 15 , a graphite support 16 , a crucible rod 17 , and a lower heater 18 .
  • the lifting rod 6 is connected to the injector 7 through the right support 6-1 of the injection lifting rod and the left support 6-2 of the injection lifting rod.
  • the injector 7 is provided with an injector heating wire 7-1, and the injection pipe 7-2 communicates with the injector.
  • the in-situ annealing device comprises an upper sealing cover 4, an upper sealing cover driving device, a lower sealing cover 9, and a lower sealing cover driving device, the upper sealing cover 4 lower opening forms the upper sealing cover main body 4-4, and the lower sealing cover 9
  • the upper opening, the upper sealing cover heating wire 27 is set outside the upper sealing cover main body 4-4, and the lower sealing cover heating wire 28 is set outside the upper opening of the lower sealing cover 9.
  • the upper opening part of the sealing cover main body 4-4 and the lower sealing cover 9 overlaps to form an annealing space.
  • the upper sealing cover driving device includes the lifting rod 5 connected to the driving mechanism and the lifting rod support connected to the lifting rod 5, the lifting rod support is a semicircular lifting rod right support 5-1 and a lifting rod left support 5- 2.
  • the lifting rod supports connects and fixes the upper sealing cover 4, and the lifting rod 5 drives the upper sealing cover 4 to move up and down.
  • the lower sealing cover driving device includes a driving rod 24 connected to the driving mechanism, the driving rod 24 is connected to the lower sealing cover 9, and the driving rod 24 drives the lower sealing cover 9 to move left and right.
  • the fixed half circle I24-4 and the fixed half circle II24-5 are connected with the lower sealing cover support 24-1, and the lower sealing cover 9 is placed in the lower sealing cover support 24-1.
  • the fixed half circle I24-4 and the fixed half circle II24-5 cooperate with the fixed groove 24-3.
  • the fixed cover 24-2 fixes the lower sealing cover 9 in the lower sealing cover support 24-1.
  • the present invention sets a storage chamber 22 inside the furnace body, and the size of the storage chamber 22 is set according to the lower sealing cover 9 . See Figure 1.
  • the drive rod 24 passes through the storage chamber 22, and the outside is connected with the drive 23 of the lower sealing cover.
  • the driving rod 24 drives the lower sealing cover 9 to hide and stretch out from the storage chamber 22 .
  • the lower sealing cover 9 hides into the storage chamber 22 without causing any influence; during annealing, the lower sealing cover 9 extends out of the storage chamber 22 and cooperates with the upper sealing cover 4 to form an annealing space.
  • the top of the upper sealing cover 4 also includes a seed crystal port 4-1, the seed crystal rod 3 is connected to the auxiliary seed crystal rod 3-1, and the auxiliary seed crystal rod 3-1 passes through the seed crystal port 4-1 .
  • This structure can ensure that after the crystal growth is completed, the crystal enters the main body 4-4 of the sealing cover to complete the annealing.
  • the upper sealing cover 4 also includes a liquid sealing cap 4-3.
  • a liquid seal groove 3-2 is provided on the auxiliary seed rod 3-1 at a position below the upper sealing cover 4, as shown in FIG. 8 .
  • the sealing cover main body 4-4 overlaps with the upper opening of the lower sealing cover 9, the liquid sealing cap 4-3 enters the liquid sealing groove 3-2.
  • a storage tank 4-5 is arranged in the main body 4-4 of the upper sealing cover, and red phosphorus and other materials for maintaining the atmosphere are placed in the storage tank 4-5. After heating by heating, the gasified red phosphorus fills the entire annealing space.
  • the preparation method of semi-insulating indium phosphide is as follows.
  • the upper sealing cover 4 is lifted into the upper furnace body 2 through the elevating rod 5 .
  • the injector 7 that red phosphorus I30 is housed is injected on the lifting rod 6 by injecting the right support 6-1 of the lifting rod and injecting the left support 6-2 of the lifting rod.
  • the auxiliary seed rod 3-1 is equipped with a seed chuck 3-3 and a seed crystal 3-4, and the auxiliary seed rod 3-1 is connected to the seed rod 3 through the seed opening 4-1. Keep the liquid seal tank 3-2 out of contact with the liquid seal cap 4-3.
  • the furnace body is evacuated to 10 -3 Pa.
  • the high-purity indium in the crucible 11 is heated to 1100-1300° C. by the main heater 15 and the lower heater 18 to form an indium melt 29 .
  • the lower sealing cover 9 is rotated back to the initial position, and put into the storage chamber 22 to keep the boron oxide 10 in a liquid state.
  • Inert gas of 6-15MPa is charged into the furnace body through the inert gas pipe 26 .
  • the injector 7 and its injection tube 7 - 2 are moved away from the crucible 11 by rising and rotating the injector lifting rod 6 .
  • the auxiliary seed rod 3-1 is lowered so that the seed crystal 3-4 is in contact with the indium phosphorus melt 14, and then the main heater 15 and the lower heater 18 are adjusted to grow the crystal to obtain the crystal 8.
  • the crystal grows in a phosphorus-rich and hydrogen-containing melt, the crystal is in a phosphorus-rich state, which will form more indium vacancies in the crystal and form V In H 4 complexes with solid-dissolved H atoms in the crystal.
  • the auxiliary seed rod 3-1 is raised to lift the crystal 8 to the highest position; the lower sealing cover drive 23 is started, and the lower sealing cover 9 is sent to the right below the crystal 8 through the driving rod 24, and the upper sealing cover 4 Directly above. Keep the centers of the auxiliary seed crystal rod 3-1, the upper sealing cover 4 and the lower sealing cover 9 on a central line.
  • the heating wire 27 of the upper sealing cover is heated to 500° C., so that the boron oxide 20 in the liquid seal tank 3-2 is melted.
  • the heating of the main heater 15 and the lower heater 18 is stopped, so that the indium phosphorus melt 14 is solidified.
  • Exhaust pipe 19 is deflated to normal pressure.
  • the auxiliary seed rod 3-1, the upper sealing cover 4 and the lower sealing cover 9 form an annealing sealing system, and the crystal 8 is sealed in the system.
  • Adjust the power of the heating wire 27 of the upper sealing cover raise the temperature to an annealing temperature of 850-980° C. at a rate of 10° C. per hour, and treat at a constant temperature for 10-200 hours.
  • the furnace body is filled with inert gas to 1 atm according to the formula (1).
  • the red phosphorus II31 in the storage tank 4-5 begins to sublime at about 590°C.
  • the pressure in the annealing sealing system is greater than the pressure in the furnace body, the phosphorus gas overflows through boron oxide 10 and boron oxide 20 until the annealing sealing system and the furnace body pressure balance.
  • the phosphorus in indium phosphide will decompose under high temperature and high pressure. This can be prevented by creating a phosphorus atmosphere and maintaining a certain pressure.
  • Equation (1) is the relationship between the saturated vapor pressure of indium phosphide crystal and temperature.
  • the red phosphorus placed in the annealing area first decomposes, and then the internal pressure increases, and the pressure is P; by filling the inert gas outside the in-situ annealing device, the pressure in the furnace is also close to P, and the internal and external pressure can be established balance, to prevent excess phosphorus from overflowing through the boron oxide 10 and boron oxide 20 while maintaining the phosphorus atmosphere.
  • V In H 4 is the main shallow donor defect in the indium phosphide crystal.
  • V In H 4 decomposes, hydrogen diffuses to the crystal surface and enters the atmosphere, and indium vacancies and phosphorus vacancies are regenerated in the crystal.
  • the generated vacancies Defects interact with indium and phosphorus in the crystal lattice to form deep-level defects inversion and phosphorus inversion respectively, which act as deep donors and deep donors to compensate shallow donors and shallow acceptors in the material, thereby realizing InP materials. semi-insulating properties.
  • the upper sealing cover 4 is raised to separate the lower sealing cover 9 from the upper sealing cover main body 4-4, and the liquid seal groove 3-2 is separated from the liquid sealing cap 4-3, and the separation distance is 5-10mm.
  • the upper sealing cover 4 cools down to room temperature, then starts the lower sealing cover drive 23, and the lower sealing cover 9 is sent to the storage chamber 22 by the driving rod 24, and stops heating it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种半绝缘磷化铟的制备装置及方法,属于晶体制备领域,所述制备装置包括炉体及炉体内的坩埚(11)、注入器(7)和原位退火装置,所述方法包括:A、加热铟,形成铟熔体;B、炉体内充入0.02-0.3MPa的氢气,保压1-5小时;将液态氧化硼覆盖在熔体表面;C、炉体内充入6-15MPa的惰性气体;D、通过注入器(7),向铟熔体内注入磷气体;E、晶体生长;F、晶体在原位退火装置内退火。采用上述装置和方法,可以完成晶体的生长,并且在合适的空间内实现晶体的原位退火,尤其是需要在磷气氛下退火时,保证磷气体不凝结,维持退火空间内的压力,建立良好的退火环境,保证半绝缘磷化铟晶体质量。

Description

一种半绝缘磷化铟的制备装置及方法 技术领域
本发明属于晶体制备领域,具体涉及一种半绝缘磷化铟的制备装置和方法。
背景技术
InP材料是一种重要的化合物半导体材料,是制备高频和高速器件的首选材料之一,在100GHz以上频段体现出巨大的优势,InP基微电子器件具有高频、低噪声、高效率、抗辐照等特点。半绝缘磷化铟衬底在5G网络、太赫兹通信、毫米波通信与探测等领域应用广泛。通常磷化铟的半绝缘特性是通过掺杂铁来实现,但是铁会降低晶体的临界剪切应力,位错等缺陷较多。
另外,在太赫兹器件中,掺杂元素对磷化铟材料的介电常数影响较大。通常掺杂浓度越高、介电常数增大,辐射频率降低。为了获得高频低损耗的太赫兹器件,需要开发稳定电学特性的低掺杂或者非掺杂半绝缘磷化铟晶体的制备技术。
磷化铟可以通过退火实现半绝缘。当前技术中,晶体生长完成后的原位退火或在线退火是通过控制温度梯度,在原生长环境装完成,如申请号为201610950624.9的中国专利、申请号201810801199.6的中国专利申请。
申请号为200610002268.4的中国专利提出了《半绝缘性GaAs晶片及其制造方法》,披露了制作工艺,但没有披露相关的设备。
由于磷化铟易于分解,形成铟和P 4(g)、P 2(g)和P(g)等,因此可以使用P 4(g)、P 2(g)和P(g)作为保护气体,如果还在原生长环境下完成退火,由于气体会在整个空间内蔓延,遇到温度比较低的炉壁时,气体会成为固体沉积在炉壁上而失去保护作用。
传统的直接炉内原位退火技术不适用于磷化铟,目前关于磷化铟直接炉内退火的技术还非常少。
发明内容
本发明提出了一种半绝缘磷化铟的制备装置和方法,完成氢原子扩散、化合物生成、晶体生长以及原位退火。
为实现发明目的,本发明采用以下技术方案。
一种半绝缘磷化铟的制备装置,包括炉体,炉体内设置坩埚及加热和支持系统、穿过炉体的籽晶杆,在炉体侧面设置氢气管、惰性气体管、排气管;在炉体内设置有注入器,连接注入器的注入升降杆探出炉体外连接驱动装置;在炉体内还设置原位退火装置。
所述原位退火装置包括上密封罩、上密封罩驱动装置、下密封罩、下密封罩驱动装置,上密封罩下部开口形成上密封罩主体,下密封罩上部开口,上密封罩主体外设置上密封罩加热丝,下密封罩上部开口外设置下密封罩加热丝。
在上密封罩驱动装置和下密封罩驱动装置驱动下,密封罩主体和下密封罩的上部开口部分重叠,形成退火空间。
基于上述装置,本发明还提出了一种半绝缘磷化铟的制备方法,包括以下步骤:
步骤A、加热铟,形成铟熔体;
步骤B、炉体内充入0.02-0.3MPa的氢气,保压1-5小时,使得氢原子溶解到铟熔体中;将液态氧化硼覆盖在熔体表面;
步骤C、炉体内充入6-15MPa的惰性气体;
步骤D、通过注入器,向铟熔体内注入磷气体,获得富磷的铟磷熔体;
步骤E、晶体生长;
步骤F、晶体生长完成后,将晶体在原位退火装置内退火,完成半绝缘磷化铟的制备。
晶体生长:首先对在氢气氛下将氢原子扩散至铟熔体中,然后将氧化硼覆盖至铟熔体表面,再在一定压力下通过磷注入的方法快速将磷注入到铟熔体中形成富磷的铟磷熔体。待熔体稳定后,下降籽晶接触熔体进行晶体生长。
由于晶体在富磷且含氢的熔体中生长,因此晶体处于富磷状态,会在晶体中形成较多的铟空位并与晶体中固溶的H原子形成V InH 4复合体。
原位退火:晶体生长完毕后,将晶体升至上密封罩中,通过上密封罩、液封槽和下密封罩将晶体密封,并在磷气氛下退火,实现低掺杂或者非掺杂半绝缘晶体的制备。
V InH 4在磷化铟晶体中占主要地位的浅施主缺陷,在退火过程中V InH 4发生分解,氢扩散至晶体表面进入气氛,晶体中重新生成铟空位、磷空位,生成的空位缺陷,分别又与晶格中的铟、磷作用形成深能级缺陷铟反位和磷反位,作为深受主和深施主共同补偿材料中的浅施主,浅受主,从而实现InP材料的半绝缘性能。
采用本发明提出的制备装置和方法,可以完成晶体的生长,并且在合适的空间内实现晶体的原位退火,尤其是需要在磷气氛下退火时,保证磷气体不凝结,维持退火空间内的压力,建立良好的退火环境。根据常规非掺杂半绝缘实现的V InH 4相关理论,提出了熔体首先在氢气氛下熔炼,实现吸氢,然后覆盖氧化硼进行注入合成,这样可获得含氢的铟-磷熔体,然后再进行晶体生长,将氢原子掺杂进入晶体,然后再一个密封装置中直接退火除氢,实现半绝缘特性。该方法在一个设备中实现合成、晶体生长、及非掺杂半绝缘特性的实现。
附图说明
图1为制备装置之一图;
图2为注入升降杆结构示意图;
图3为原位退火装配示意图;
图4为升降杆结构示意图;
图5为下密封罩的固定结构示意图;
图6为驱动杆及其固定结构示意图;
图7为上密封罩结构示意图;
图8为籽晶杆结构示意图;
图9为铟熔体氢处理示意图;
图10为注入合成示意图;
图11为晶体生长示意图。
其中,1:主炉体;1-1:底盘;2:上炉体;3:籽晶杆;3-1:辅助籽晶杆;3-2:液封槽;3-3:籽晶夹头;3-4:籽晶;4:上密封罩;4-1:籽晶口;4-2:上密封罩支撑;4-3:液封帽;4-4:上密封罩主体;4-5:储存槽;5:升降杆;5-1:升降杆右支撑;5-2:升降杆左支撑;6:注入升降杆;6-1:注入升降杆右支撑;6-2:注入升降杆右支撑;7:注入器;7-1:注入器加热丝;7-2:注入管;8:晶体;9:下密封罩;10:氧化硼;11:坩埚;12:保温套;13:氧化硼;14:铟磷熔体;15:主加热器;16:石墨支撑;17:坩埚杆;18:下加热器;19:排气管;20:氧化硼;21:压力表;22:储存室;23:下密封罩驱动;24:驱动杆;24-1:下密封罩支撑;24-2:固定盖;24-3:固定槽;24-4:固定半圈I;24-5:固定半圈II;25:氢气管;26:惰性气体管;27:上密封罩加热丝;28:下密封罩加热丝;29:铟熔体;30:红磷I;31:红磷II。
具体实施方式
下面结合附图对本发明做进一步说明。
参看图1,一种半绝缘磷化铟的制备装置,包括炉体,炉体内设置坩埚11及加热和支持系统、穿过炉体的籽晶杆3,在炉体侧面设置氢气管25、惰性气体管26、排气管19;在炉体内设置有注入器7,连接注入器7的注入升降杆6探出炉体外连接驱动装置(图中为标明);在炉体内还设置原位退火装置。
坩埚11的加热和支持系统包括保温套12、主加热器15、石墨支撑16、坩埚杆17、下加热器18。
参看图2,升降杆6通过注入升降杆右支撑6-1和注入升降杆左支撑6-2连接注入器7,注入器7外围设置注入器加热丝7-1,注入管7-2连通注入器7和炉体内部空间。
参看图3,原位退火装置包括上密封罩4、上密封罩驱动装置、下密封罩9、下密封罩驱动装置,上密封罩4下部开口形成上密封罩主体4-4,下密封罩9上部开口,上密封罩主体4-4外设置上密封罩加热丝27,下密封罩9上部开口外设置下密封罩加热丝28。
在上密封罩驱动装置和下密封罩驱动装置驱动下,密封罩主体4-4和下密封罩9的上部开口部分重叠,形成退火空间。
参看图4,上密封罩驱动装置包括连接驱动机构的升降杆5和连接到升降杆5的升降杆支撑,升降杆支撑为半圆形的升降杆右支撑5-1和升降杆左支撑5-2,升降杆支撑连接固定上密封罩4,升降杆5驱动上密封罩4上下运动。
参看图5、图6,下密封罩驱动装置包括连接驱动机构的驱动杆24,驱动杆24连接下密封罩9,驱动杆24驱动下密封罩9左右运动。
固定半圈I24-4和固定半圈II24-5与下密封罩支撑24-1相连,下密封罩9放置在下密封罩支撑24-1中。固定半圈I24-4和固定半圈II24-5与固定槽24-3配合。固定盖24-2将下密封罩9固定在下密封罩支撑24-1中。
为了不影响晶体的正常生长,本发明在炉体内部设置了储存室22,储存室22空间大小根据下密封罩9设定。参看图1。
驱动杆24穿过储存室22,外部与下密封罩驱动23相连。驱动杆24驱动下密封罩9隐入和伸出储存室22。
晶体生长时,下密封罩9隐入储存室22,不造成影响;退火时,下密封罩9伸出储存室22,与上密封罩4配合,形成退火空间。
参看图7、图1,上密封罩4顶部设置还包括籽晶口4-1,籽晶杆3连接辅助籽晶杆3-1,辅助籽晶杆3-1穿过籽晶口4-1。这种结构可以保证晶体生长完成后,晶体进入密封罩主体4-4,完成退火。
上密封罩4还包括液封帽4-3。
辅助籽晶杆3-1上在位于上密封罩4下面的位置设置液封槽3-2,如图8所示。密封罩主体4-4和下密封罩9的上部开口部分重叠时,液封帽4-3进入液封槽3-2。
上密封罩主体4-4内设置储存槽4-5,储存槽4-5内放置红磷等保持气氛的物质,在加热器化后,使气化的红磷充满整个退火空间。
在制备半绝缘磷化铟时,半绝缘磷化铟的制备方法如下。
准备:
参看图9。
将坩埚11中装入高纯铟;下密封罩9放置氧化硼10,液封槽3-2放置氧化硼20。
将上密封罩4通过升降杆5提升至上炉体2中。
将装有红磷I30的注入器7通过注入升降杆右支撑6-1和注入升降杆左支撑6-2到注入升降杆6上。
辅助籽晶杆3-1上装配籽晶夹头3-3和籽晶3-4,将辅助籽晶杆3-1穿过籽晶口4-1与籽晶杆3相连。保持液封槽3-2与液封帽4-3不接触。
熔体合成:
参看图10。
炉体抽真空至10 -3Pa。
通过主加热器15和下加热器18加热坩埚11内的高纯铟至1100-1300℃,形成铟熔体29。
关闭真空系统,再通过氢气管25向炉体内充入0.02-0.1MPa的氢气,保压1-5小时,使得氢原子溶解到铟熔体中。
启动下密封罩驱动23,通过驱动杆24将下密封罩9送至坩埚11正上方,通过下密封罩加热丝28给氧化硼10加热至其呈现液态;通过驱动杆24旋转将部分氧化硼10倒入坩埚11中形成覆盖铟熔体29的氧化硼13。
将下密封罩9旋转回初始位置,并置入储存室22中,保持氧化硼10为液态。
通过惰性气体管26向炉体内充入6-15MPa的惰性气体。
下降并旋转升降杆6将注入器7的注入管7-2插入铟熔体29中,通过注入器加热丝7-1进行加热,使得红磷I30升华注入到铟熔体29中。
由于环境气氛惰性气体的的压力大于配比铟磷熔体的饱和蒸气压,因此可以获得富磷的铟磷熔体14。
晶体生长:
参看图11。
待合成完毕,上升并旋转注入升降杆6将注入器7及其注入管7-2远离坩埚11。下降辅助籽晶杆3-1,使得籽晶3-4与铟磷熔体14接触,然后调节主加热器15和下加热器18进行晶体生长,获得晶体8。
由于晶体在富磷且含氢的熔体中生长,因此晶体处于富磷状态,会在晶体中形成较 多的铟空位并与晶体中固溶的H原子形成V InH 4复合体。
原位退火:
参看图1。
待晶体生长完毕,上升辅助籽晶杆3-1,将晶体8提升至最高位置;启动下密封罩驱动23,通过驱动杆24将下密封罩9送至晶体8正下方,上密封罩4的正上方。保持辅助籽晶杆3-1、上密封罩4和下密封罩9的中心在一条中线上。
通过升降杆5下降下上密封罩4,待液封槽3-2进入上密封罩主体4-4加热区域后,停止上密封罩4的下降。
通过上密封罩加热丝27加热500℃,使得液封槽3-2内氧化硼20熔化。
继续下降上密封罩4直至上密封罩主体4-4插入下密封罩9中的氧化硼10中。
提升辅助籽晶杆3-1,使得液封帽4-3至液封槽3-2中的氧化硼20上方5-10mm处。
停止主加热器15和下加热器18的加热,使得铟磷熔体14凝固。
排气管19放气至常压。
抽真空至10 -3Pa,然后继续提升辅助籽晶杆3-1,使得液封帽4-3插入液封槽3-2中的氧化硼20中。
此时辅助籽晶杆3-1、上密封罩4和下密封罩9形成退火密封系统,并将晶体8封闭在该系统内。
调节上密封罩加热丝27的功率,按每小时10℃的速率升温至退火温度至850-980℃,恒温处理10-200小时。升温阶段同时给炉体内按着公式(1)充入惰性气体至1atm。储存槽4-5内的红磷II31在约590℃开始升华,当退火密封系统内的压力大于炉体内压力后,磷气体通过氧化硼10和氧化硼20处溢出,直至退火密封系统与炉体内压力平衡。
Figure PCTCN2021136320-appb-000001
式中:T为退火区域内温度,单位为K;P为炉内压力,单位为atm。
磷化铟在高温高压下,其中的磷会分解出来。通过营造磷气氛并维持一定压力,可以防止这种情况的发生。
公式(1)为磷化铟晶体的饱和蒸气压随温度的变化关系。
随着温度的增加,退火区域放置的红磷首先分解,随之内部压力增大,压力为P;通过给原位退火装置外部充入惰性气体,使炉内压力也接近P,可以建立内外压力平衡,实现在保持磷气氛的同时,防止过多的磷通过氧化硼10和氧化硼20溢出。
V InH 4在磷化铟晶体中占主要地位的浅施主缺陷,在退火过程中V InH 4发生分解,氢扩散至晶体表面进入气氛,晶体中重新生成铟空位、磷空位,生成的空位缺陷,分别又与晶格中的铟、磷作用形成深能级缺陷铟反位和磷反位,作为深受主和深施主共同补偿材料中的浅施主,浅受主,从而实现InP材料的半绝缘性能。
拆炉:
退火完毕后,以每小时10-50℃的降温速率降温至500℃。上升上密封罩4使得下密封罩9和上密封罩主体4-4脱离,液封槽3-2与液封帽4-3脱离,脱离距离为5-10mm。
上密封罩4降温直至室温,然后启动下密封罩驱动23,通过驱动杆24将下密封罩9送至储存室22中,停止对其加热。
通过升降杆5上升上密封罩4至上炉体2中;通过排气管19放入空气至常压。拆开上炉体2与主炉体1,上升上炉体2,取出晶体8。
利用该方法可以获得半绝缘特性,其电参数:电阻率>2×107(Ω.cm),迁移率>1500(cm2/V.s),总受主杂质含量:约3×1014(cm-3)。而传统掺杂铁以后,能够实现其电参数:除了获得上述的电阻率和迁移率外,总受主杂质含量:>1×1016(cm-3)。可以发现该发明不仅可以实现半绝缘特性,材料的杂质浓度也非常低,低于传统制备方法的杂质浓度,而且可以降低位错密度30%左右。

Claims (10)

  1. 一种半绝缘磷化铟的制备装置,包括炉体,炉体内设置坩埚(11)及加热和支持系统、穿过炉体的籽晶杆(3),其特征在于:在炉体侧面设置氢气管(25)、惰性气体管(26)、排气管(19);在炉体内设置有注入器(7),连接注入器(7)的注入升降杆(6)探出炉体外连接驱动装置;在炉体内还设置原位退火装置;
    所述原位退火装置包括上密封罩(4)、上密封罩驱动装置、下密封罩(9)、下密封罩驱动装置,上密封罩(4)下部开口形成上密封罩主体(4-4),下密封罩(9)上部开口,上密封罩主体(4-4)外设置上密封罩加热丝(27),下密封罩(9)上部开口外设置下密封罩加热丝(28);
    在上密封罩驱动装置和下密封罩驱动装置驱动下,密封罩主体(4-4)和下密封罩的上部开口部分重叠,形成退火空间。
  2. 根据权利要求1所述的半绝缘磷化铟的制备装置,其特征在于:所述注入器(7)外围设置注入器加热丝(7-1),注入管(7-2)连通注入器(7)和炉体内部空间。
  3. 根据权利要求1所述的半绝缘磷化铟的制备装置,其特征在于:所述的上密封罩驱动装置包括连接炉体外驱动机构的升降杆(5)和连接到升降杆(5)的升降杆支撑,升降杆支撑连接上密封罩(4),升降杆(5)驱动上密封罩(4)上下运动;所述的下密封罩驱动装置包括连接驱动机构的驱动杆(24),驱动杆(24)连接下密封罩(9),驱动杆(24)驱动下密封罩(9)左右运动;在炉体内部设置储存室(22),其空间大小根据下密封罩(9)设定;驱动杆(24)驱动下密封罩(9)隐入和伸出储存室(22)。
  4. 根据权利要求3所述的半绝缘磷化铟的制备装置,其特征在于:所述上密封罩(4)还包括籽晶口(4-1),籽晶杆(3)连接辅助籽晶杆(3-1),辅助籽晶杆(3-1)穿过籽晶口(4-1);所述上密封罩(4)还包括液封帽(4-3),在辅助籽晶杆(3-1)上设置液封槽(3-2),密封罩主体(4-4)和下密封罩的上部开口部分重叠时,液封帽(4-3)进入液封槽(3-2)。
  5. 根据权利要求4所述的半绝缘磷化铟的制备装置,其特征在于:工作时,下密封罩(9)和液封槽(3-2)内设置氧化硼,密封罩主体(4-4)的下部和液封帽(4-3)的下部分别浸入液化氧化硼,形成液封结构;上密封罩主体(4-4)内设置储存槽(4-5)。
  6. 一种半绝缘磷化铟的制备方法,基于权利要求1-5任一所述的半绝缘磷化铟的制备装置完成,其特征在于包括以下步骤:
    步骤A、加热铟,形成铟熔体;
    步骤B、炉体内充入0.02-0.3MPa的氢气,保压1-5小时,使得氢原子溶解到铟熔体中;将液态氧化硼覆盖在熔体表面;
    步骤C、炉体内充入6-15MPa的惰性气体;
    步骤D、通过注入器,向铟熔体内注入磷气体,获得富磷的铟磷熔体;
    步骤E、晶体生长;
    步骤F、晶体生长完成后,将晶体在原位退火装置内退火,完成半绝缘磷化铟的制备。
  7. 根据权利要求6所述的半绝缘磷化铟的制备方法,其特征在于:
    步骤D中,下降并旋转升降杆(6)将注入器(7)的注入管(7-2)插入铟熔体中,通过注入器加热丝(7-1)进行加热,使得注入器(7)中的红磷升华注入到铟熔体中。
  8. 根据权利要求6所述的半绝缘磷化铟的制备方法,其特征在于:
    步骤F中,将晶体置入退火空间完成退火。
  9. 根据权利要求8所述的半绝缘磷化铟的制备方法,其特征在于:
    步骤F中,下密封罩(9)和液封槽(3-2)内设置氧化硼,密封罩主体(4-4)的下部和液封帽(4-3)的下部分别浸入液化氧化硼,形成液封结构。
  10. 根据权利要求9所述的半绝缘磷化铟的制备方法,其特征在于:
    步骤F具体为:
    步骤F-1、将晶体放置在原位退火装置内,形成密封结构,包括:
    晶体生长完毕,将晶体提升至最高位置;
    启动下密封罩驱动(23),将下密封罩(9)送至晶体正下方,上密封罩(4)的正上方;
    下降下上密封罩(4),待液封槽(3-2)进入上密封罩主体(4-4)加热区域后,停止上密封罩(4)的下降;
    加热使液封槽(3-2)内氧化硼熔化;
    下降上密封罩(4)直至上密封罩主体(4-4)插入下密封罩(9)中的氧化硼;
    提升辅助籽晶杆(3-1),液封帽(4-3)升至液封槽(3-2)中的氧化硼上方5-10mm处;
    停止坩埚的加热,铟磷熔体凝固;
    放气,炉体内至常压;
    炉体抽真空至10 -3Pa,继续提升辅助籽晶杆(3-1),使液封帽(4-3)插入液封槽(3-2)中的氧化硼中;
    步骤F-2、退火,包括:
    调节上密封罩加热丝27的功率,按每小时10℃的速率升温至退火温度至850-980℃,恒温处理10-200小时;
    升温阶段同时给炉体内按着公式(1)充入惰性气体至1atm;
    Figure PCTCN2021136320-appb-100001
    式中:T为退火区域内温度,单位为K;P为炉内压力,单位为atm。
PCT/CN2021/136320 2021-06-03 2021-12-08 一种半绝缘磷化铟的制备装置及方法 WO2022252545A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110618255.4A CN113308740B (zh) 2021-06-03 2021-06-03 一种半绝缘磷化铟的制备方法
CN202110618255.4 2021-06-03
CN202110618242.7A CN113308744B (zh) 2021-06-03 2021-06-03 一种半绝缘磷化铟的制备装置
CN202110618242.7 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022252545A1 true WO2022252545A1 (zh) 2022-12-08

Family

ID=84322559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136320 WO2022252545A1 (zh) 2021-06-03 2021-12-08 一种半绝缘磷化铟的制备装置及方法

Country Status (1)

Country Link
WO (1) WO2022252545A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544417A (en) * 1983-05-27 1985-10-01 Westinghouse Electric Corp. Transient capless annealing process for the activation of ion implanted compound semiconductors
US4704257A (en) * 1983-08-31 1987-11-03 Research Development Corporation Of Japan Apparatus for growing single crystals of dissociative compounds
CN110760932A (zh) * 2019-11-22 2020-02-07 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的方法
CN111424310A (zh) * 2020-06-02 2020-07-17 中国电子科技集团公司第十三研究所 一种液态磷注入法合成磷化铟的方法
CN113308740A (zh) * 2021-06-03 2021-08-27 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备方法
CN113308744A (zh) * 2021-06-03 2021-08-27 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544417A (en) * 1983-05-27 1985-10-01 Westinghouse Electric Corp. Transient capless annealing process for the activation of ion implanted compound semiconductors
US4704257A (en) * 1983-08-31 1987-11-03 Research Development Corporation Of Japan Apparatus for growing single crystals of dissociative compounds
CN110760932A (zh) * 2019-11-22 2020-02-07 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的方法
CN111424310A (zh) * 2020-06-02 2020-07-17 中国电子科技集团公司第十三研究所 一种液态磷注入法合成磷化铟的方法
CN113308740A (zh) * 2021-06-03 2021-08-27 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备方法
CN113308744A (zh) * 2021-06-03 2021-08-27 中国电子科技集团公司第十三研究所 一种半绝缘磷化铟的制备装置

Similar Documents

Publication Publication Date Title
CN108060454B (zh) 一种vgf法制备砷化镓晶体的装置及方法
CN107723798B (zh) 一种高效率制备高纯半绝缘碳化硅单晶生长装置及方法
CN111424310B (zh) 一种液态磷注入法合成磷化铟的方法
CN113308740B (zh) 一种半绝缘磷化铟的制备方法
JP4135239B2 (ja) 半導体結晶およびその製造方法ならびに製造装置
JP2020079192A (ja) 単結晶成長炉の反射スクリーン及び単結晶成長炉
CN112359409A (zh) 一种砷化镓单晶生长装置及生长方法
WO2023051347A1 (zh) 氮掺杂p型单晶硅制造方法
CN114959870B (zh) 一种高温加压掺铁硒化锌晶体的制备方法
JP5453749B2 (ja) 垂直シリコンデバイス用シリコンウェーハの製造方法及び垂直シリコンデバイス用シリコン単結晶引き上げ装置
CN109629003B (zh) 一种低浓度p型磷化铟单晶的制备方法
WO2019095632A1 (zh) 一种半绝缘碳化硅单晶的制备方法
KR102375530B1 (ko) 소량의 바나듐이 도핑된 반절연 탄화규소 단결정, 기판, 제조 방법
WO2022252545A1 (zh) 一种半绝缘磷化铟的制备装置及方法
CN113308744B (zh) 一种半绝缘磷化铟的制备装置
TW201426877A (zh) 藉由活化非活性氧沉澱核製造高沉澱密度晶圓
JP2010030891A (ja) 化合物半導体結晶
EP3666935B1 (en) High-purity silicon carbide single crystal substrate and preparation method therefor
JPH09246196A (ja) シリコン単結晶およびシリコン単結晶薄膜の製造方法
US20240209546A1 (en) Preparation device and method for semi-insulating indium phosphide
CN211620660U (zh) 基于vgf法晶体生长用石英封帽以及晶体生长装置
KR101395392B1 (ko) 실리콘 단결정 잉곳의 성장방법
JP2002255697A (ja) ガリウム砒素単結晶及びガリウム砒素ウェハ並びにガリウム砒素単結晶の製造方法
TWI769943B (zh) 磷化銦基板、半導體磊晶晶圓、磷化銦單晶錠之製造方法及磷化銦基板之製造方法
CN114150374B (zh) 一种高产量氮化铝单晶的液相生长结构及生长方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18293137

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21943897

Country of ref document: EP

Kind code of ref document: A1