WO2021096154A1 - 자성 플라즈몬 입자 및 이를 포함하는 구조체 - Google Patents

자성 플라즈몬 입자 및 이를 포함하는 구조체 Download PDF

Info

Publication number
WO2021096154A1
WO2021096154A1 PCT/KR2020/015355 KR2020015355W WO2021096154A1 WO 2021096154 A1 WO2021096154 A1 WO 2021096154A1 KR 2020015355 W KR2020015355 W KR 2020015355W WO 2021096154 A1 WO2021096154 A1 WO 2021096154A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
particles
magnetic
shell
magnetic field
Prior art date
Application number
PCT/KR2020/015355
Other languages
English (en)
French (fr)
Inventor
이재범
정기재
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to US17/775,858 priority Critical patent/US20220388061A1/en
Publication of WO2021096154A1 publication Critical patent/WO2021096154A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/007Processes for preserving or protecting existing structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a particle having both plasmon and magnetic properties and a structure including the same, and provides nanoparticles that can be widely applied in various technical fields based on the structure and composition thereof.
  • nanoparticles have various and unique properties due to advances in analysis technology.
  • These nanoparticles are themselves or a three-dimensional structure made of them depending on their composition and structure, and can be used in various technical fields such as optics, biotechnology, and catalysts.
  • the nanoscience field is recently spotlighted as a new next-generation industrial field, demand for nanoparticles of various compositions and structures is increasing.
  • this technical airflow researches for synthesizing a three-dimensional structure using nanoparticles of a specific composition and structure are actively being conducted, and chemical synthesis methods are mainly used.
  • An embodiment of the present invention is to provide magnetic plasmon particles that exhibit immediate self-assembly by showing physical reactivity to a magnetic field, that is, array variability.
  • it can be manufactured into a 3D structure through a significantly simplified process compared to the prior art based on the variability of the arrangement by applying a magnetic field, and it is easy to further change or adjust the geometric structure of such a 3D structure, so it can be used in various technical fields. It is intended to provide magnetic plasmon particles that can be used.
  • the core (Core); And a shell surrounding at least a part of the surface of the core and including a component of the core and a component of a different kind; including core-shell particles, and having an array variability by applying a magnetic field Provides magnetic plasmon particles.
  • the core-shell particles may include spherical core-shell particles or rod-shaped core-shell particles.
  • the spherical core-shell particles the diameter of the core is 0.01nm to 300nm, the thickness of the shell is 1nm to 150nm, defined as the ratio (L/S) of the long diameter (L) and the short diameter (S) of the core
  • the resulting aspect ratio may be in the range of 1.00 to 2.00.
  • the rod-shaped core-shell particles the width of the core is 0.01nm to 100nm, the thickness of the shell is 1nm to 150nm, the ratio of the length (L) and width (W) of the core (L / W)
  • the defined aspect ratio may be greater than 2.00 and less than or equal to 40.00.
  • one of the core and the shell may include a magnetic component, and the other may include a metal component.
  • the magnetic component is from the group consisting of iron oxide (Fe 3 O 4 ), nickel oxide (NiO), cobalt oxide (Co 3 O 4 ), iron (Fe), nickel (Ni), cobalt (Co), and combinations thereof. It may contain a selected one.
  • the metal components are silver (Ag), gold (Au), platinum (Pt), copper (Cu), palladium (Pd), iridium, osmium, rhodium, ruthenium, Nickel (Ni), cobalt (Co), iron (Fe), manganese (Mn), chromium (Cr), vanadium (V), titanium (Ti), aluminum (Al), zinc (Zn), cadmium (Cd) and It may include one selected from the group consisting of a combination of these.
  • the arrangement variability of the magnetic plasmon particles by the application of the magnetic field may include arrangement variability by the application of the helical magnetic field.
  • the core-shell particles may include spherical core-shell particles, and the spherical core-shell particles may have a standard deviation of a core particle diameter of 20 or less for a 1 mg amount of powder.
  • the core-shell particles may include rod-shaped core-shell particles, and the rod-shaped core-shell particles may have a standard deviation of a core width of 1 mg of powder having a standard deviation of 20 or less.
  • the magnetic plasmon particles form a particle arrangement structure through an arrangement change when a magnetic field is applied by the variability of the arrangement by the application of the magnetic field, and the nanostructure including at least one particle arrangement structure exhibits chirality in the overall structure. I can take it.
  • the applied magnetic field may be a spiral magnetic field.
  • the nanoparticle array structure includes two or more, wherein the nanoparticle array structure includes a first structure including at least one nanoparticle; And a second structure including at least one nanoparticle and spaced apart from the first structure, wherein the nanoparticles include magnetic plasmonic particles, and the entire structure has chirality. , Provides a chiral nanostructure.
  • the chirality of the chiral nanostructure may have a variable characteristic by applying a helical magnetic field.
  • the chiral nanostructure has a time (T2-T1) from 0.01 ms to a point in time (T2-T1) when the change is completed so as to exhibit chirality corresponding to the applied spiral magnetic field (T1) from the application point of the spiral magnetic field (T1). It can be 20ms.
  • the linear distance between the first structure and the second structure may be 0.01 nm to 50 ⁇ m.
  • the magnetic plasmon particles exhibit physical reactivity to a magnetic field, that is, arrangement variability, thereby realizing immediate self-assembly.
  • the magnetic plasmon particles can be manufactured into a three-dimensional structure through a significantly simplified process compared to the prior art based on the variability of the arrangement by the application of a magnetic field, and additional changes or adjustments to the geometric structure of the three-dimensional structure are easy. It has an advantage that can be used in various technical fields.
  • FIG. 1 is a schematic cross-sectional view of the magnetic plasmon particle according to an embodiment.
  • FIG. 2 is a photograph showing the spherical core-shell particles according to an embodiment.
  • FIG. 3 is a photograph of the rod-shaped core-shell particles according to an embodiment.
  • FIG. 4 is a perspective view schematically showing a part of the nanostructure according to an embodiment.
  • FIG. 5 schematically shows the arrangement of each component in a measurement example for evaluating the variability of the magnetic plasmon particles due to the application of a magnetic field.
  • FIG. 6 schematically shows a one-way perspective view of rotation of a magnetic body for applying a magnetic field in a measurement example for evaluating the variability of the magnetic plasmon particles by applying a magnetic field.
  • FIG. 7 schematically illustrates a process of applying a helical magnetic field in a measurement example for evaluating the variability of the magnetic plasmon particles due to the application of a magnetic field.
  • FIG. 8 shows circular dichroism spectroscopy (CD) for each concentration and rotation angle of the nanostructure prepared using the magnetic plasmon particles of Example 1.
  • FIG. 9 shows circular dichroism spectroscopy (CD) for each concentration and rotation angle of a nanostructure prepared using the magnetic plasmon particles of Example 2.
  • FIG. 10 shows circular dichroism spectroscopy (CD) for each concentration and rotation angle of a nanostructure prepared using the magnetic plasmon particles of Example 3.
  • CD circular dichroism spectroscopy
  • FIG. 11 shows circular dichroism spectroscopy (CD) for each concentration and rotation angle of the nanostructure prepared using the magnetic plasmon particles of Example 4.
  • CD circular dichroism spectroscopy
  • the core (Core); And a shell surrounding at least a part of the surface of the core and including a component of the core and a component of a different kind; including core-shell particles, and having an array variability by applying a magnetic field Provides magnetic plasmon particles.
  • the nanoparticle array structure includes two or more, wherein the nanoparticle array structure includes a first structure including at least one nanoparticle; And a second structure including at least one nanoparticle and spaced apart from the first structure, wherein the nanoparticles include magnetic plasmonic particles, and the entire structure has chirality. , Provides a chiral nanostructure.
  • the core (Core); And a shell surrounding at least a part of the surface of the core and including a component of the core and a component of a different kind; including core-shell particles, and having an array variability by applying a magnetic field , Provides magnetic plasmon particles.
  • Plasmon refers to a phenomenon in which free electrons inside a metal collectively vibrate.
  • plasmons may exist locally on the surface, which may be referred to as surface plasmon.
  • SPR surface plasmon resonance
  • the magnetic plasmon particles are magnetic plasmon particles, and may be arranged in a predetermined arrangement in a magnetic field by magnetism, and at the same time, they may be colored by a plasmon phenomenon.
  • the magnetic plasmon particles have an array variability due to the application of a magnetic field.
  • The'arrangement variability due to the application of a magnetic field' refers to a characteristic of being arranged in a predetermined arrangement according to the applied magnetic field when a magnetic field is applied to the magnetic plasmon particles. Based on this arrangement variability, the magnetic plasmon particles can manufacture a three-dimensional structure having a predetermined alignment structure constituting the magnetic plasmon particles by a relatively simple means of applying a magnetic field.
  • the nanoparticle arrangement structure is a first structure including at least one nanoparticle; And a second structure including at least one nanoparticle and spaced apart from the first structure, wherein the entire structure is chiral.
  • Chirality refers to an asymmetric property.
  • the particulated structure having structural chirality can be usefully applied to an optical technology field such as a liquid crystal display (LCD) or a bio field such as a pharmaceutical.
  • the chiral nanostructure may realize a high level of chiral modulation performance through simple structural processing and modification.
  • the chiral modulation performance can realize very high performance in the nano-science field where an immediate and fast reaction speed is required.
  • the chirality of the nanostructure may exhibit variable properties by applying a helical magnetic field.
  • the chirality of the nanostructure is derived from the overall structural characteristics of the nanostructure.
  • the structural characteristics of the nanostructure can be immediately and rapidly deformed by a relatively simple means of applying a helical magnetic field, and as a result, it is possible to secure variability in which the chirality of the nanostructure changes immediately and rapidly.
  • the nanostructure has a time (T2-) from the time point T1 of the helical magnetic field to the point at which the structural change is completed (T2) so as to exhibit chirality corresponding to the chirality of the applied helical magnetic field.
  • T1 may be from about 0.01 ms to about 20 ms, for example, from about 0.01 ms to about 10 ms. This, as compared to a chiral modulation function using a conventional template, etc., exhibits a much faster response speed, and can be applied to various industrial fields such as medicine and optics, thereby realizing excellent functions.
  • the magnetic plasmon particles may be core-shell particles including a core 14 and a shell 15.
  • the shell 15 surrounds at least a part of the surface of the core 14 and may include components different from the core 14. That the shell includes the components of the core and the components of different types should be interpreted as including a case where all components are different from each other, as well as a case where the overall composition is different even if some of the same components are included.
  • one of the core 14 and the shell 15 may include a magnetic component, and the other may include a metal component.
  • the variability of the arrangement by applying the magnetic field of the magnetic plasmon particles can be realized immediately and quickly, and the desired color can be expressed. It can be advantageous to secure technical advantages in the back.
  • the metal component is, for example, silver (Ag), gold (Au), platinum (Pt), copper (Cu), palladium (Pd), iridium, osmium, rhodium, ruthenium.
  • ruthenium nickel (Ni), cobalt (Co), iron (Fe), manganese (Mn), chromium (Cr), vanadium (V), titanium (Ti), aluminum (Al), zinc (Zn), cadmium It may include one selected from the group consisting of (Cd) and combinations thereof.
  • the magnetic component is, for example, iron oxide (Fe 3 O 4 ), nickel oxide (NiO), cobalt oxide (Co 3 O 4 ), iron (Fe), nickel (Ni), cobalt (Co), and combinations thereof It may include one selected from the group consisting of.
  • the core is silver (Ag), gold (Au), platinum (Pt), copper (Cu), palladium (Pd), iridium, osmium, rhodium. , Ruthenium, nickel (Ni), cobalt (Co), iron (Fe), manganese (Mn), chromium (Cr), vanadium (V), titanium (Ti), aluminum (Al), zinc (Zn) , Cadmium (Cd) and a combination thereof, and the shell is iron oxide (Fe 3 O 4 ), nickel oxide (NiO), cobalt oxide (Co 3 O 4 ), iron ( It may include one selected from the group consisting of Fe), nickel (Ni), cobalt (Co), and combinations thereof.
  • the core is iron oxide (Fe 3 O 4 ), nickel oxide (NiO), cobalt oxide (Co 3 O 4 ), iron (Fe), nickel (Ni), cobalt (Co), and these Includes one selected from the group consisting of a combination of silver (Ag), gold (Au), platinum (Pt), copper (Cu), palladium (Pd), iridium, osmium ( osmium), rhodium, ruthenium, nickel (Ni), cobalt (Co), iron (Fe), manganese (Mn), chromium (Cr), vanadium (V), titanium (Ti), aluminum ( Al), zinc (Zn), cadmium (Cd), and may include one selected from the group consisting of a combination thereof.
  • the core-shell particles may include spherical core-shell particles or rod-shaped core-shell particles. That is, the core-shell particles may be formed of only spherical core-shell particles, only rod-shaped core-shell particles, or may be formed of a combination of spherical core-shell particles and rod-shaped core-shell particles.
  • the core-shell particles may include spherical core-shell particles.
  • the core-shell particles may include core-shell particles having a spherical shape.
  • the spherical core-shell particle may have a structure including the core 14 and a shell 15 substantially surrounding the entire surface thereof, as shown in FIG. 1(a), and FIG. 2(b) As shown in FIG. 1, it may have a half-shell structure including the core 14 and a shell 15 surrounding a part of the surface thereof.
  • the term'spherical' will be interpreted as including a range that can be recognized as a shape of a sphere in the overall three-dimensional structure within a predetermined error range even if the cross section is geometrically perfect circular, as well as an elliptical shape. I can.
  • the core-shell particles may include rod-shaped core-shell particles.
  • the core-shell particles may include core-shell particles having a rod-shaped three-dimensional shape.
  • the rod-shaped core-shell particle may also have a structure including the core 14 and a shell 15 substantially surrounding the entire surface thereof, as in the case of the spherical core-shell particle, or the core 14 It may be a half-shell structure (not shown) including a shell 15 surrounding at least a portion of the surface.
  • the term'bar shape' is a generic term for a shape in which the length and width form a predetermined aspect ratio with respect to its cross-section, and can be understood as encompassing all three-dimensional shapes in which the ratio of the length to the width exceeds 2.00. have.
  • the core-shell particles include spherical core-shell particles or rod-shaped core-shell particles, and the spherical core-shell particles or rod-shaped core-shell particles are core 14 ); And a shell 15 surrounding the entire surface of the core and including components of the core and different kinds of components, and the core 14 includes silver (Ag), gold (Au), platinum (Pt), and copper ( Cu), palladium (Pd), iridium, osmium, rhodium, ruthenium, nickel (Ni), cobalt (Co), iron (Fe), manganese (Mn), chromium ( Cr), vanadium (V), titanium (Ti), aluminum (Al), zinc (Zn), cadmium (Cd), and one selected from the group consisting of a combination thereof, and the shell 15 is iron oxide (Fe 3 O 4 ), nickel oxide (NiO), cobalt oxide (Co 3 O 4 ), iron (Fe), nickel (Ni), cobalt (Co), and may include
  • the core 14 may include silver (Ag), gold (Au), or a combination thereof
  • the shell 15 may include iron oxide (Fe 3 O 4 ).
  • the core-shell particles include spherical core-shell particles or rod-shaped core-shell particles, and the spherical core-shell particles or rod-shaped core-shell particles are core 14 ) And a half-shell 15 that surrounds a part of the surface of the core and includes components of the core 14 and different kinds of components, and the core 14 includes iron oxide (Fe 3 O 4 ), nickel oxide (NiO), cobalt oxide (Co 3 O 4 ), iron (Fe), nickel (Ni), cobalt (Co), and the shell 15 Silver silver (Ag), gold (Au), platinum (Pt), copper (Cu), palladium (Pd), iridium, osmium, rhodium, ruthenium, nickel (Ni) , Cobalt (Co), iron (Fe), manganese (Mn), chromium (Cr), vanadium (V), titanium (Ti), aluminum (Al), zinc (Zn), cadmium (Cd) and combinations thereof It may include one
  • the core 14 may include iron oxide (Fe 3 O 4 ), and the shell 15 may include silver (Ag), gold (Au), or a combination thereof.
  • the magnetic plasmon particles can be arranged in a precisely designed arrangement under the condition of applying a magnetic field, and as a result, it can be more advantageous in forming a desired three-dimensional structure. .
  • FIG. 2 is a photograph of the spherical core-shell particles according to an embodiment
  • FIG. 3 is a photograph of the rod-shaped core-shell particles according to an embodiment.
  • the spherical core-shell particles, the average particle diameter of the core 14 is about 0.01nm to about 300nm, for example, about 5nm to about 250nm, for example, about 5nm to about 100nm, for example
  • it may be from about 5 nm to about 90 nm, such as from about 5 nm to about 80 nm, such as from about 20 nm to about 80 nm, such as from about 40 nm to 80 nm.
  • the average thickness of the shell 15 of the spherical core-shell particles is about 1 nm to about 150 nm, for example, about 1 nm to about 120 nm, for example, about 1 nm to about 100 nm, for example about 1 nm to about 80 nm, e.g., about 5 nm to about 80 nm, e.g., about 10 nm to about 80 nm, e.g., about 10 nm to about 70 nm, e.g., about 20 nm to about 60 nm, e.g., about 30 nm to about 60 nm, such as about 40 nm to about 60 nm.
  • an aspect ratio defined as the ratio (L/S) of the long diameter (L) and the short diameter (S) of the core 14 based on the cross section is about 1.00 to about 2.00 ,
  • about 1.00 to about 1.80, for example, about 1.00 to about 1.75, for example, about 1.00 to about 1.70, for example, about 1.00 to about 1.65, for example about 1.00 to about 1.60 Can be
  • the spherical core-shell particles may have a standard deviation of the particle diameter of the core 14 for a powder of 1 mg quantity of about 30 nm or less, for example, about 25 nm or less, and for example, about 20 nm to about 10 can be nm.
  • the magnetic plasmon particles may be used as a powder, that is, an aggregate including a plurality of particles. In this case, the plurality of magnetic plasmon particles may be aligned to have a predetermined spacing and relative positional relationship with each other under a magnetic field application condition to form a desired three-dimensional structure.
  • the standard deviation range for the quantity of powder satisfies the above-described range, the structural regularity and accuracy of the three-dimensional structure manufactured using the magnetic plasmon particles may be improved, and it may be more advantageous in terms of mass design.
  • the rod-shaped core-shell particles, the average width (width) of the core 14 is about 0.01nm to about 100nm, for example, about 5nm to about 100nm, for example, about 5nm to It may be about 90 nm, such as about 5 nm to about 80 nm, such as about 20 nm to about 80 nm, such as about 40 nm to 80 nm.
  • the average thickness of the shell 15 of the rod-shaped core-shell particles is about 1 nm to about 150 nm, for example, about 1 nm to about 120 nm, for example, about 1 nm to about 100 nm, for example, about 1 nm to About 80 nm, e.g., about 5 nm to about 80 nm, e.g., about 10 nm to about 80 nm, e.g., about 10 nm to about 70 nm, e.g., about 20 nm to about 60 nm, such as about 30 nm to It may be about 60 nm, for example about 40 nm to about 60 nm.
  • the aspect ratio defined as the ratio (L/W) of the length (L) and the width (W) of the core 14 is greater than about 2.00 and less than about 40.00, eg For example, it may be about 5.00 to about 40.00, for example about 10.00 to about 40.00, for example about 15.00 to about 35.00.
  • the rod-shaped core-shell particles may have a standard deviation of the width of the core 14 for a 1 mg amount of powder of about 30 nm or less, for example, about 25 nm or less, and, for example, about 20 nm to about May be 10 nm.
  • the magnetic plasmon particles may be used as a powder, that is, an aggregate including a plurality of particles.
  • the plurality of magnetic plasmon particles may be aligned to have a predetermined spacing and relative positional relationship with each other under a magnetic field application condition to form a desired three-dimensional structure.
  • the standard deviation range for the quantity of powder satisfies the above-described range, the structural regularity and accuracy of the three-dimensional structure manufactured using the magnetic plasmon particles may be improved, and it may be more advantageous in terms of mass design.
  • the particle diameter and/or average particle diameter of the core, the width and/or average width of the core, the average thickness of the shell, the long diameter of the core, and The short diameter, the length and width of the core are all two-dimensional values measured with respect to the cross section of the particle, and can be obtained from a projection image obtained through a means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the average particle diameter of the core, the average width of the core, and the average thickness of the shell 'average' means'number average'.
  • the longest particle diameter is defined as the longest diameter of the core
  • the shortest particle diameter is defined as the shortest diameter of the core.
  • the thickness of the shell means a vertical linear distance from the interface between the core and the shell to the outer surface of the shell.
  • the magnetic plasmon particles have an array variability due to the application of a magnetic field.
  • The'arrangement variability due to the application of a magnetic field' refers to a characteristic of being arranged in a predetermined arrangement according to the applied magnetic field when a magnetic field is applied to the magnetic plasmon particles. Based on this arrangement variability, the magnetic plasmon particles can manufacture a three-dimensional structure having a predetermined alignment structure constituting the magnetic plasmon particles by a relatively simple means of applying a magnetic field.
  • the magnetic plasmon particles may form a particle arrangement structure when a magnetic field is applied.
  • the entire structure of the nanostructure including at least one particle arrangement structure may exhibit chirality. That is, the magnetic plasmon particles may function as a component of a chiral nanostructure.
  • the magnetic plasmon particles 22 may form a particle array structure 210 having a predetermined arrangement by applying a magnetic field.
  • the magnetic plasmon particles 22 may be arranged in an arrangement corresponding to an applied magnetic field to form the particle arrangement structure 210.
  • the nanostructure 200 including at least one particle arrangement structure 210 may exhibit chirality in terms of the overall structure.
  • the nanostructure 200 may include at least one particle arrangement structure 210, and specifically, may include two or more.
  • the particle arrangement structure 210 includes a first structure 201 including at least one magnetic plasmon particle 22; And a second structure 202 including at least one of the magnetic plasmon particles 22 and spaced apart from the first structure 201.
  • the first structure 201 and the second structure 202 mean any two adjacent structures among the two or more particle arrangement structures 210.
  • the magnetic plasmon particles 22 included in the first structure 201 and the magnetic plasmon particles 22 included in the second structure 202 may have the same composition and structure, or may be different. .
  • the spaced linear distance between the first structure 201 and the second structure 202 may be about 0.01 nm to about 50 ⁇ m.
  • the nanostructure 200 including the particles in one configuration can exhibit excellent structural chirality due to the application of a magnetic field.
  • the chirality can also be adjusted in an immediate/real-time manner.
  • the magnetic field applied to the magnetic plasmon particles 22 may be a spiral magnetic field. That is, the variability of the magnetic plasmon particles 22 due to the application of a magnetic field may be, specifically, variability due to the application of a helical magnetic field.
  • the nanostructure 200 having a chirality of the entire structure can be efficiently obtained. .
  • the nanostructure 200 is chirality produced by applying a helical magnetic field to a non-chirality particle dispersion in which the magnetic plasmon particles 22 are irregularly dispersed. It may be a structure having. That is, not only the existing chirality of the nanostructure 200 is variable by the application of a helical magnetic field, but also the initial chirality itself may be imparted by the application of a helical magnetic field. More specifically, the first nanostructure with chirality is imparted by arranging the dispersion in which the magnetic plasmon particles 22 are dispersed in a dispersion medium in a helical magnetic field formed between two magnetic bodies that rotate relative to each other at a predetermined angle ( ⁇ ). 200) can be prepared.
  • the nanostructure 200 may have a form in which two or more of the particle arrangement structures 210 are present in a solvent or a dispersion medium.
  • the value of Equation 1 below of the nanostructure 200 may be about 0 to about 20.
  • A is the ratio of the average core particle diameter (nm) to the average thickness (nm) of the shell of the magnetic plasmon particles; Or the ratio of the average core width (nm) to the average thickness (nm) of the shell, B is the concentration ( ⁇ g/mL) of the magnetic plasmon particles, and C is the rotation angle of the spiral magnetic field ( ⁇ ) Is the ratio of the relative chirality when the chirality ( ⁇ ) is set to 1.0 at 45°, and P max is circularly polarized light under the conditions B and C of the nanostructure that satisfies A It is the absolute value of the maximum peak value of Circular Dichroism Spectroscopy.
  • the value of Equation 1 of the nanostructure may be a result when B is any one of about 25 to about 200, and C is any one of about 0 to about 1.0. .
  • the value of Equation 1 derived from such concentration and angular conditions satisfies the range of about 0 to about 20, the reliability of the correlation between the value of Equation 1 and the array variability due to the magnetic field of the magnetic plasmon particles It can be improved, and the structural integrity of the nanostructure can be greatly improved in terms of securing chirality.
  • Equation 1 does not have to satisfy about 0 to about 20 in all the aforementioned ranges of B and C, but any one value of B and any one value of C in each of the aforementioned ranges.
  • the chirality of the nanostructure may be an index indicating that the desired real-time variability and structural integrity are secured.
  • the real-time variability of the magnetic plasmon particle arrangement and the chirality of the nanostructure It shows a correlation that improves structural integrity.
  • A is a value of the ratio (D/T) of the average core particle diameter (D) to the average shell thickness (T).
  • A is a value of the ratio (W/T) of the average core width (W) to the average shell thickness (T).
  • B is the concentration (( ⁇ g/mL) of the magnetic plasmon particles in the nanostructure.
  • the nanostructure may be present in a solvent or a dispersion medium, that is, a type of colloidal solution.
  • B may be defined as the concentration value ( ⁇ g/mL) of the magnetic plasmon particles in this colloidal solution.
  • the initial chirality is imparted from the irregularly dispersed non-chiral particle dispersion of the magnetic plasmon particles.
  • C is the ratio of the relative chirality when the chirality ⁇ is 1.0 when the rotation angle ⁇ of the helical magnetic field applied to the magnetic plasmon particles is 45°.
  • the helical magnetic field may be formed by arranging two magnetic bodies to face each other and then rotating them relative to the same angle, and the rotation angle ⁇ is each of the two magnetic bodies that rotate relative to form the helical organ field. It may mean the rotation angle ( ⁇ ) of.
  • the magnitude of the chirality ( ⁇ ) of the spiral magnetic field may be proportional to the magnitude value of sin(2 ⁇ ).
  • the Pmax is the maximum peak value when a circular dichroism spectroscopy is measured for the nanostructure manufactured based on the variability of the arrangement by the magnetic field of the magnetic plasmon particles as one configuration ( mdeg). For example, when two or more peaks are derived in different wavelength ranges, the absolute value of the peak value means a value for one peak with the largest value.
  • the Pmax is an absolute value and is expressed as a positive (+) value.
  • the chiral modulation rate may be significantly faster than the conventional effect, and substantially As a result, real-time variable self-assembly can be implemented.
  • the value of Equation 1 is about 0 to about 3.0, for example, it may be about 0 to about 2.5, for example about 0 to about 1.5, for example about 0 to about 1.0.
  • the magnetic plasmon particles may include a core containing a metal component; And it may be a core-shell particle having a shell containing a magnetic component.
  • the shell has a structure that substantially surrounds the entire surface of the core, and the C is any one value greater than 0 (zero), the value of Equation 1 It may be about 0.01 to about 3.5, for example about 0.01 to about 3.0, for example about 0.01 to about 2.5, for example about 0.01 to about 1.5, for example about 0.01 to about 1.0.
  • the magnetic plasmon particles include spherical core-shell particles, the shell has a structure substantially surrounding the entire surface of the core, the C is any one value greater than 0 (zero), the B is 50 to In the case of any one value in the range of 200, the value of Equation 1 may be about 0.01 to about 1.0, for example, about 0.01 to about 0.80, and for example, about 0.01 to about 0.50.
  • the value of Equation 1 is about 0 to about It may be 19.00, for example, from about 0 to about 18.00, and for example, from about 0 to about 17.00.
  • the magnetic plasmon particles may include a core containing a magnetic component; And it may be a core-shell particle having a shell containing a metal component.
  • the shell has a half-shell structure substantially surrounding a part of the surface of the core, and the C is any one value greater than 0 (zero)
  • the The value of Equation 1 may be about 1.00 to about 19.00, for example, about 1.50 to about 19.00, for example, about 2.00 to about 18.00, for example, about 2.50 to about 17.00 days. I can.
  • the magnetic plasmon particles include spherical core-shell particles, the shell has a half-shell structure substantially surrounding a part of the surface of the core, the C is any one value greater than 0 (zero), the When B is any one value in the range of 50 to 200, the value of Equation 1 may be about 1.00 to about 17.00, for example, about 1.00 to 15.00, and for example, about 1.00 to 14.00. have.
  • the magnetic plasmon particles when the magnetic plasmon particles include rod-shaped core-shell particles, and the shell has a structure that substantially surrounds the entire surface of the core, the value of Equation 1 is about 0 to about 3.0 days.
  • the magnetic plasmon particles may include a core containing a metal component; And it may be a core-shell particle having a shell containing a magnetic component.
  • the shell has a structure that substantially surrounds the entire surface of the core, and the C is any one value greater than 0 (zero), the formula 1
  • the value is about 0.1 to about 3.5, e.g., about 0.1 to about 3.0, e.g., about 0.2 to about 3.5, e.g., about 0.2 to about 3.5, e.g., about 0.3 to about 3.5, e.g. For example, it may be about 0.3 to about 3.0.
  • the magnetic plasmon particles include rod-shaped core-shell particles, the shell has a structure substantially surrounding the entire surface of the core, the C is any one value greater than 0 (zero), and B is 75
  • the value of Equation 1 may be about 0.1 to about 3.0, for example, about 0.1 to about 2.0, for example, about 0.1 to about 1.8.
  • the nanostructure may satisfy the value of Equation 1 within the above-described range, thereby implementing excellent chirality imparting/changing performance.
  • the manufacturing process Efficiency can be greatly improved, and structural precision and reliability can be improved.
  • the nanostructures containing the magnetic plasmon particles as a constituent unit can secure instant real-time properties in imparting or modulating chirality.
  • nanostructures can be widely used in various optical devices and biosensors that require polarization functions, and in particular, since precise and immediate modulation of chiral characteristics is possible, 3D, which requires ultra-fast conversion, real-time adjustment, and precise color realization, It can serve as an active and dynamic optical activation means for next-generation displays such as holographic displays.
  • Preparing a raw material component for the magnetic plasmon particles core (Core); Preparing a raw material component for a shell (Shell); And mixing and reacting the raw material components for the core and the raw material components for the shell.
  • the raw material component for the shell may include a raw material component for the core and a different type of component.
  • the raw material component for the core includes a first metal or a salt thereof
  • the raw material component for the shell includes a second metal or a salt thereof
  • the first metal and the first metal 2 The metals may be different metals.
  • the first metal and the second metal are each independently, silver (Ag), gold (Au), platinum (Pt), copper (Cu), palladium (Pd), iridium, osmium, rhodium (rhodium), ruthenium, nickel (Ni), cobalt (Co), iron (Fe), manganese (Mn), chromium (Cr), vanadium (V), titanium (Ti), aluminum (Al), zinc It may include one selected from the group consisting of (Zn), cadmium (Cd), and combinations thereof.
  • the first metal includes one selected from silver (Ag), gold (Au), and combinations thereof
  • the second metal is nickel (Ni), cobalt (Co), iron (Fe), and It may include one selected from a combination of these.
  • the first metal includes one selected from nickel (Ni), cobalt (Co), iron (Fe), and combinations thereof
  • the second metal is (Ag), gold (Au), and these It may include one selected from a combination of.
  • the shape of the magnetic plasmon particles to be manufactured by the manufacturing method may be a core-shell particle including a core and including a shell surrounding at least a part of the surface of the core. .
  • the shape, structure, and component of the core-shell particle all the above-described matters regarding the magnetic plasmon particle may be applied in the same manner.
  • the shape of the magnetic plasmon particles to be manufactured by the above manufacturing method may be spherical core-shell particles or rod-shaped core-shell particles.
  • the spherical core-shell particles and the rod-shaped core-shell particles all of the above-described matters regarding the magnetic plasmon particles may be applied in the same manner.
  • the step of reacting after mixing the raw material component for the core and the raw material component for the shell may be a step of reacting at about 100° C. to about 300° C. for about 1 hour to about 15 hours. It may be more advantageous to process core-shell particles having a desired shape and size by mixing and reacting each raw material component of the core and the shell in the temperature range and the time range.
  • a core-shell including a core and a shell surrounding at least a part of the surface thereof through the step of mixing and reacting the raw material components of the core and the raw material components of the shell -Shell) particles can be made.
  • the method of manufacturing the magnetic plasmon particles may further include surface treatment of the core-shell particles.
  • a predetermined physical property may be provided to the surface of the core-shell particles, so that necessary functions can be secured in terms of dispersibility and agglomeration prevention of the magnetic plasmon particles in a subsequent process.
  • the surface treatment step may be a step of imparting hydrophilicity to the surface of the core-shell particles.
  • the magnetic plasmon particles can secure dispersibility in a hydrophilic solvent, and through this, it is possible to secure advantageous properties for subsequent processing in a state dispersed in the solvent.
  • the surface treatment may include mixing a surface treatment material with the core-shell particles and then performing ultrasonic treatment.
  • ultrasonic treatment the surface treatment can be efficiently performed within a relatively short time.
  • the surface treatment material may include citric acid.
  • citric acid is used as the surface treatment material, about 40 to about 70 parts by weight of citric acid may be used relative to 100 parts by weight of the core-shell particles. In this case, it may be more advantageous in terms of imparting a desired degree of physical properties to the surface of the core-shell particles, and as a result, it may be advantageous in securing dispersibility of the core-shell particles.
  • the magnetic plasmon particle having the above-described technical characteristics and advantages may be manufactured through the method of manufacturing the magnetic plasmon particle, and further, the nanostructure to which the magnetic plasmon particle is applied may be obtained.
  • the nanostructure is a magnetic field forming step; Particle disposing step of disposing at least two or more nanoparticles in a magnetic field; And a magnetic field adjusting step of adjusting at least one of a magnetic flux density, a magnetization direction, and a spatial range of the magnetic field, wherein the arrangement of the nanoparticles disposed in the magnetic field in the magnetic field adjusting step is arranged to correspond to the structure of the magnetic field.
  • the entire structure can be manufactured by a method in which a nanostructure having chirality is formed.
  • the magnetic field is not particularly limited as long as it has a structure capable of imparting chirality to the nanostructure, but may be, for example, a magnetic field having a helical structure.
  • the magnetic field is a helical magnetic field, it has chirality resulting from a structure called a helical.
  • the structural chirality induced from the magnetic field may be transferred to the nanoparticles, whereby the alignment structure of the nanoparticles may be manufactured to exhibit chirality resulting from a helical structure.
  • FIG. 5 is a schematic diagram schematically illustrating a method of manufacturing the nanostructure according to an embodiment.
  • the magnetic field may be a helical magnetic field 13 formed by relatively rotating at least two magnetic bodies 11 and 12.
  • the two magnetic bodies 11 and 12 are arranged to face each other in the same magnetization direction (y-axis direction), and then rotate in opposite directions using an axis (y-axis) passing through each center as a rotation axis. ) Can be formed.
  • FIG. 6 is a schematic diagram illustrating a case in which the two magnetic bodies 11 and 12 are rotated, but rotated in opposite directions, in the y-axis direction.
  • one magnetic body 11 rotates clockwise so that the angle ⁇ 1 formed by its long axis L1 and the z-axis is in the range of 0° ⁇ 1 ⁇ 180°
  • the other magnetic body ( 12) It can be rotated counterclockwise so that the angle ⁇ 2 formed by the long axis L2 and the z-axis thereof is in the range of 0°> ⁇ 2> -180°.
  • the structure of the helical magnetic field may be determined by adjusting ⁇ 1 and ⁇ 2.
  • the two magnetic bodies 11 and 12 may be rotated so that the magnitudes of the absolute values of ⁇ 1 and ⁇ 2 are the same.
  • the structure of the helical magnetic field 13 may be determined by adjusting the magnitudes of ⁇ 1 and ⁇ 2.
  • the helical magnetic field 13 exhibits chirality by having a mirror surface asymmetric structure, and the degree of chirality may be adjusted according to the magnitudes of ⁇ 1 and ⁇ 2.
  • the chirality of the helical magnetic field 13 may be proportional to the size of sin(2 ⁇ ).
  • the two magnetic bodies 11 and 12 may each independently include a neodymium magnet, a ferrite magnet, or an electromagnet.
  • the magnetic flux density of the magnetic material may be about 1 ⁇ T to about 5T, for example, about 0.01T to about 0.4T, and for example, about 0.01T to about 0.3T.
  • the magnetic material separation distance defined as a linear distance connecting the centers of the two magnetic materials 11 and 12 may be about 1 ⁇ m to about 10 m, for example, about 1 ⁇ m to about 5 m, For example, it may be about 1 ⁇ m to about 1 m, for example, 1 ⁇ m to about 80 cm, and for example, it may be about 1 cm to about 50 cm, for example, about 1 cm to about 10 cm. May be, for example, from about 1 cm to about 8 cm, for example, from about 1 cm to about 6 cm, for example, from about 1 cm to about 5 cm, for example, from about 1 cm to about It can be 4 cm.
  • the method of manufacturing the nanostructure includes a particle arrangement step of disposing at least two or more nanoparticles in a magnetic field. 7 schematically shows the particle arrangement step 20.
  • the particle arranging step 20 is a step of arranging target particles for imparting chirality in the magnetic field generated in the magnetic field forming step.
  • the particle arranging step may be performed before the magnetic field forming step, or may be performed after the magnetic field forming step. That is, the nanoparticles may be disposed in a region in which a magnetic field is to be formed before the magnetic field is formed, or may be disposed in a region in which a magnetic field is formed after the magnetic field is formed.
  • the nanoparticles may be disposed in the magnetic field while being dispersed in a solvent or a dispersion medium. Specifically, after preparing a colloidal solution 21 including at least two or more of the nanoparticles, the colloidal solution 21 may be disposed in the magnetic field.
  • the concentration of the nanoparticles in the colloidal solution 21 may be about 5 ⁇ g/mL to about 500 mg/mL, for example, about 5 ⁇ g/mL to about 400 mg/mL, for example, about It may be from 10 mg/mL to about 400 mg/mL.
  • the solvent or dispersion medium may include one selected from the group consisting of distilled water, deionized water, alcohol, organic solvent, polymer, and combinations thereof, but is not limited thereto.
  • The'polymer' is a polymer having a weight average molecular weight (Mw) of about 500 or more, and may have a viscosity of about 5 cP to 6000 cP at room temperature, may be composed of one or two or more mixtures, and function as a dispersion medium of the nanoparticles. It is understood to collectively refer to polymers in liquid or solid phases that may be hydrophilic, hydrophobic or amphiphilic.
  • the method of manufacturing the chiral nanostructure includes a magnetic field adjustment step of adjusting at least one of a magnetic flux density, a magnetization direction, and a spatial range of the magnetic field.
  • the magnetic field adjustment step is a step of imparting a target level of chirality to the nanoparticles disposed in the magnetic field by changing the magnetic field formed in the magnetic field formation step.
  • the step of adjusting the magnetic field may be performed simultaneously with the step of forming the magnetic field, or may be performed with a predetermined time difference.
  • a magnetic field having a desired structure may be formed by controlling at least one of a magnetic flux density, a magnetization direction, and a spatial range thereof;
  • a magnetic field having a different structure may be formed by adjusting at least one of a magnetic flux density, a magnetization direction, and a spatial range of the magnetic field initially formed in the magnetic field forming step.
  • chirality is given to a non-chiral nanoparticle dispersion for the first time
  • a different chirality is given to a conventional chiral nanostructure. It may include a case for doing.
  • the arrangement of the nanoparticles disposed in the magnetic field is changed, so that the final alignment structure is adjusted to correspond to the chirality of the magnetic field, thereby finally forming a nanostructure having chirality.
  • the fact that the arrangement of the nanoparticles arranged in the magnetic field is aligned to correspond to the structure of the magnetic field means that the alignment structure by the arrangement of the nanoparticles does not have chirality, but the chirality of the magnetic field is transferred to chirality. It means having a surname or having a chirality different from the existing chirality.
  • the magnetic field formed in the magnetic field forming step for example, is a helical magnetic field
  • chirality derived from a mirror surface asymmetry structure is obtained.
  • the at least two or more nanoparticles disposed in the magnetic field may receive structural chirality of the helical magnetic field through an arrangement change due to the magnetic field, thereby forming an alignment structure having substantially the same level of chirality.
  • the chirality of the magnetic field is changed, and accordingly, the chirality of the alignment structure of the nanoparticles disposed in the magnetic field is changed. It is done. For example, when the magnetic flux density is increased in the magnetic field adjustment step, the peak on the circular dichroism spectroscopy graph of the nanostructure moves toward the short wavelength side.
  • the magnetic field may be a helical magnetic field formed by relative rotation of at least two magnetic bodies, and an angle at which the at least two magnetic bodies are rotated relative to each other in the magnetic field adjusting step; And a direction of magnetization of the magnetic field may be adjusted by changing at least one of the mutually parallel degrees of the at least two magnetic bodies.
  • the magnetic field in the magnetic field forming step, may be a helical magnetic field formed by relative rotation of at least two magnetic bodies, and in the magnetic field adjusting step, the spatial range of the magnetic field is changed by changing a linear distance between the at least two magnetic bodies. Can be adjusted.
  • the magnetic field may be a helical magnetic field formed by relative rotation of at least two magnetic bodies, and the magnetic force of the at least two magnetic bodies in the magnetic field adjusting step; And changing at least one of the linear distances between the at least two magnetic bodies to adjust the magnetic flux density of the magnetic field.
  • the chiral nanostructure as described above may be manufactured.
  • a chiral nanostructure satisfying the following Equation 1 may be manufactured.
  • A is the ratio of the average core particle diameter (nm) to the average shell thickness (nm) of the nanoparticles; Or the ratio of the average core width (nm) to the average shell thickness (nm), B is the concentration of the nanoparticles ( ⁇ g/mL), and C is the helical magnetic field applied to the chiral nanostructure.
  • the rotation angle ⁇ is 45°, it is the ratio of the relative chirality when the chirality ⁇ is set to 1.0
  • P max is the B and B of the nanostructure satisfying the A. It is the absolute value of the maximum peak value of Circular Dichroism Spectroscopy under C condition.
  • Equation 1 The description of Equation 1 and each factor constituting the same is as described above with respect to the chiral nanostructure.
  • a mixed solution was prepared by mixing 3.2 mmol of iron nitrate (Fe(NO 3 ) 3 ⁇ 9H 2 O) with 40 mL of ethylene glycol (C 2 H 4 (OH) 2 ) and stirring until completely dissolved with a magnetic stirrer.
  • To the mixed solution 35 mmol of sodium acetate (CH 3 COONa) and 0.59 mmol of silver nitrate (AgNO 3 ) were added, followed by stirring.
  • the mixed solution is transferred to a Teflon container, placed in a metal container to withstand the pressure, heated to 210°C, and maintained for 4 hours. After the reaction is over, the synthesized particles are separated by centrifugation, etc., and purified with ethanol and deionized water. The separated particles are dried in a vacuum oven for 12 hours to prepare a powder form.
  • a surface pretreatment step of attaching a hydrophilic functional group to the surface of the particles is performed.
  • 1 mg of nanoparticles in powder form and 0.6 mg of citric acid (HOC(COOH)(CH 2 COOH) 2 ) made in the particle synthesis step were added to 1 mL of deionized water, ultrasonicated for 2 hours, and then the particles were separated by centrifugation. Separated and purified with deionized water.
  • the shell is substantially the core (Core) )
  • the average diameter of the core was 61.4 ( ⁇ 13.3) nm
  • the average thickness of the shell was 54.3 ( ⁇ 5.7) nm.
  • a mixed solution was prepared by mixing 1.6 mmol of iron nitrate (Fe(NO 3 ) 3 ⁇ 9H 2 O) with 40 mL of ethylene glycol (C 2 H 4 (OH) 2 ) and stirring until completely dissolved with a magnetic stirrer.
  • To the mixed solution 35 mmol of sodium acetate (CH 3 COONa) and 0.59 mmol of silver nitrate (AgNO 3 ) were added, followed by stirring.
  • the mixed solution is transferred to a Teflon container, placed in a metal container to withstand the pressure, heated to 210°C, and maintained for 4 hours. After the reaction is over, the synthesized particles are separated by centrifugation, etc., and purified with ethanol and deionized water. The separated particles are dried in a vacuum oven for 12 hours to prepare a powder form.
  • a surface pretreatment step of attaching a hydrophilic functional group to the surface of the particles is performed.
  • Add 1 mg of powdery particles and 0.6 mg of citric acid (HOC(COOH)(CH 2 COOH) 2 ) to 1 mL of deionized water, and ultrasonically treated for 2 hours, and then centrifuged the nanoparticles. Separated and purified with deionized water.
  • the shell is substantially the core (Core) )
  • the average diameter of the core was 50.2 ( ⁇ 12.2) nm
  • the average thickness of the shell was 56.3 ( ⁇ 7.4) nm.
  • a mixed solution was prepared by mixing 4.0 mmol of iron chloride (FeCl 3 ⁇ 6H 2 O) with 40 mL of ethylene glycol (C 2 H 4 (OH) 2 ) and stirring until completely dissolved with a magnetic stirrer.
  • To the mixed solution 35 mmol of sodium acetate (CH 3 COONa) and 0.59 mmol of chloroauric acid (HAuCl 4 ⁇ 3H 2 O) were added, followed by stirring.
  • the mixed solution is transferred to a Teflon container, placed in a metal container to withstand the pressure, heated to 200°C, and maintained for 8 hours. After the reaction is over, the synthesized particles are separated by centrifugation, etc., and purified with ethanol and deionized water. The separated particles are dried in a vacuum oven for 12 hours to prepare a powder form.
  • a surface pretreatment step of attaching a hydrophilic functional group to the surface of the particles is performed.
  • 1 mg of powder-like particles made in the particle synthesis step and 0.6 mg of citric acid (HOC(COOH)(CH 2 COOH) 2 ) were added to 1 mL of deionized water and subjected to ultrasonic treatment for 2 hours, and then the particles were separated by centrifugation. And purify with deionized water.
  • the shell is substantially the Magnetic plasmon particles having a structure surrounding the entire surface of the core were prepared.
  • the average length of the core was 2454 ( ⁇ 624) nm
  • the average width of the core was 78 ( ⁇ 16) nm
  • the average thickness of the shell was 107 ( ⁇ 12) nm.
  • a surface pretreatment step of attaching a hydrophilic functional group to the surface of the nanoparticles is performed.
  • 1 mg of nanoparticles in powder form and 0.6 mg of citric acid (HOC(COOH)(CH 2 COOH) 2 ) made in the nanoparticle synthesis step were added to 1 mL of deionized water, sonicated for 2 hours, and then nanoparticles were subjected to centrifugation. The particles are separated and purified with deionized water.
  • the slide glass is treated with a piranha solution to remove organic substances and foreign substances to prepare a hydrophilic surface.
  • the slide glass is immersed in a 0.2wt% polydiallyldimethylammonium chloride (PDDA) polymer solution so that a positively charged polyvinylalcohol (PVA) polymer can be evenly distributed on the slide glass surface.
  • PDDA polydiallyldimethylammonium chloride
  • PVA polyvinylalcohol
  • take out the slide glass dry it, and drop the prepared particle solution so that the negatively charged nanoparticles can adhere evenly to the positively charged PDDA surface, and the remaining solutions are gently washed with deionized water and dried.
  • the nanoparticles arranged on the slide glass as a single layer are coated with a gold sputter to about 20 nm.
  • the shell is substantially the core.
  • the average diameter of the core was 204.6 ( ⁇ 23.6) nm, and the average thickness of the shell was 22.8 ( ⁇ 1.8) nm.
  • Measurement Example 1 Evaluation of variability by applying a magnetic field
  • a particle dispersion was prepared by dispersing the magnetic plasmon particles of Examples 1 to 4 at different concentrations in a deionized water solvent, as described in Tables 1 to 4, respectively.
  • Two neodymium magnets (50 x 10 x 2 mm, 0.2T) were prepared, and as shown in FIG. 5, the two magnets 11 and 12 were 3 cm from each other in the same magnetization direction (y-axis direction). They were arranged opposite to each other so as to be spaced apart from each other. The particle dispersions 21 of each concentration were placed in the center between the two magnets 11 and 12. The two magnets 11 and 12 were rotated by the same angle with the y-axis as the rotation axis, but one magnet was rotated clockwise and the other magnet was rotated counterclockwise. 6 is a perspective view shown in the y-axis direction after the two magnets 11 and 12 rotate.
  • a 3D nanostructure having a predetermined alignment structure was prepared. This is a scan speed of 500 nm/min, a data interval of 0.5 nm, and a wavelength range of 200 nm to 900 nm using a circular dichroic component photometer (JASCO, J-1500) for the nanostructures manufactured according to the respective magnetic field application conditions.
  • JASCO, J-1500 circular dichroic component photometer
  • the peak values of the spectrum are as described in Tables 1 to 4, respectively.
  • the concentration of the nanostructure for each of the magnetic plasmon particles of Examples 1 to 4 and the CD spectrum for each rotation angle are as shown in FIGS. 8 to 11, respectively.
  • Each of the three-dimensional nanostructures prepared by changing the magnetic field application conditions for each of the magnetic plasmon particles of Examples 1 to 4, as measured in Measurement Example 1, is a circular dichroism spectrum (Circular Dichroism Spectroscopy, CD) showed a peak, it was confirmed that the chirality (Chirality) was shown.
  • the core for the average thickness (nm) of the shell The ratio of the average particle diameter (nm) is set to A value, and when the magnetic plasmon particles are rod-shaped core-shell particles, the ratio of the average core width (nm) to the average thickness (nm) of the shell is set to the A value. , The value of the following formula 1 was calculated.
  • C is the size ( ⁇ ) of each of the rotation angles ( ⁇ 1, ⁇ 2) of the two magnets 11 and 12 for applying a magnetic field to the magnetic plasmon particles
  • the size of the rotation angle ( ⁇ ) is 45°
  • the relative chirality (sin(2 ⁇ )) when the size of chirality ( ⁇ ) was set to 1.0 was calculated and used as the value.
  • each nanostructure manufactured based on the variability of the arrangement by the application of a magnetic field of the magnetic plasmon particles received the chirality of the magnetic field and exhibited structural chirality by itself.
  • the magnetic plasmon particles of Examples 1 to 2 include spherical core-shell particles, and the shell substantially completely surrounds the surface of the core, and the value of the formula 1 of the nanostructure to which it is applied It was confirmed that this satisfies about 0.01 to about 1.0.
  • the magnetic plasmon particle of Example 3 includes a rod-shaped core-shell particle, and the shell substantially completely surrounds the surface of the core, and the value of Equation 1 of the nanostructure to which it is applied is about 0.3. It was confirmed that to about 3.0 was satisfied.
  • the magnetic plasmon particle of Example 4 is a half-shell structure including spherical core-shell particles, and the shell substantially partially surrounds the surface of the core, and the value of Equation 1 of the nanostructure to which it is applied is It was confirmed that about 0.01 to about 20 were satisfied.
  • the magnetic plasmon particles have a core-shell structure and an array variability due to the application of a magnetic field, thereby forming a nanostructure having an alignment structure corresponding to the structure and strength of the applied magnetic field.
  • the magnetic field is a magnetic field of a helical structure having chirality
  • the magnetic plasmon particles function as a composition of a nanostructure having chirality in the overall structure by changing the structural arrangement to correspond thereto.
  • Such magnetic plasmon particles not only have a fast reaction rate to application of a magnetic field, but also play a role of improving structural precision when manufactured as a nanostructure, thereby achieving an effect of securing a wide range of utility in various technical fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

자기장에 대한 물리적인 반응성, 즉 배열 가변성을 나타냄으로써 즉각적인 자기 조립성을 구현할 수 있고, 이러한 자기장 인가에 의한 배열 가변성을 바탕으로 종래에 비하여 현저히 단순화된 공정을 통해 3차원 구조체로 제조될 수 있으며, 이러한 3차원 구조체의 기하학적 구조에 대한 추가적인 변경 또는 조절이 용이하여 다양한 기술 분야에 활용 가능한 자성 플라즈몬 입자로서 코어(Core); 및 상기 코어의 표면의 적어도 일부를 둘러싸고 상기 코어의 성분과 이종의 성분을 포함하는 쉘(Shell);을 포함하는 코어-쉘(Core-shell) 입자를 포함하고, 자기장 인가에 의한 배열 가변성을 갖는 자성 플라즈몬 입자를 제공한다.

Description

자성 플라즈몬 입자 및 이를 포함하는 구조체
본 발명은 플라즈몬(Plasmon) 속성과 자성(magnetic property)을 동시에 갖는 입자 및 이를 포함하는 구조체에 관한 것으로, 이의 구조 및 조성을 바탕으로 다양한 기술 분야에 광범위한 응용이 가능한 나노 입자를 제공한다.
합성 기술의 지속적인 발전에 따라 금속을 활용하여 나노 수준의 크기를 갖는 입자로 제조하는 것이 가능하게 되었으며, 분석 기술의 진보로 인해 이러한 나노 입자들이 다양하고 독특한 특성을 가지는 것이 밝혀져 왔다. 이러한 나노 입자는 그 조성 및 구조 등에 따라서 그 자체 혹은 이들로 이루어진 3차원 구조체로서 광학, 바이오, 촉매 등의 다양한 기술 분야에서 활용될 수 있다. 또한, 최근 나노 과학 분야가 새로운 차세대 산업 분야로 각광받게 되면서 다양한 조성 및 구조의 나노 입자에 대한 요구가 증가하고 있다. 이러한 기술적 기류에 부합하여 특정 조성 및 구조의 나노 입자를 활용하여 3차원 구조체를 합성하는 연구가 활발히 진행되고 있는데, 주로 화학적인 합성 방법을 활용하고 있다. 일례로, 최근에는 2개 이상의 아미노산이 결합되어 있는 펩타이드를 활용하여 합성하는 방법이 제시된 바 있다. 또한, 전자빔리소그라피(e-beam lithography)를 이용하는 방법, 나노 사이즈로 이루어진 홀을 이용하여 회전 증착하는 홀 리소그라피(hole lithography) 방법 등이 연구되고 있다. 다만, 종래의 나노 입자 및 이를 이용한 구조체의 합성은 그 과정이 복잡하고 정밀성 및 정확성이 다소 부족한 면이 있다. 이에 본 발명자들은 보다 간단한 구조체 합성 공정에 적용이 가능하고, 그 조성 및 구조에 있어서 가공의 정확성 및 정밀성을 크게 향상시킬 수 있는 입자에 관하여 연구하였고, 본 발명을 완성하였다.
본 발명의 일 구현예는 자기장에 대한 물리적인 반응성, 즉 배열 가변성을 나타냄으로써 즉각적인 자기 조립성을 나타내는 자성 플라즈몬 입자를 제공하고자 한다. 또한, 자기장 인가에 의한 배열 가변성을 바탕으로 종래에 비하여 현저히 단순화된 공정을 통해 3차원 구조체로 제조될 수 있으며, 이러한 3차원 구조체의 기하학적 구조에 대한 추가적인 변경 또는 조절이 용이하여 다양한 기술 분야에 활용될 수 있는 자성 플라즈몬 입자를 제공하고자 한다.
본 발명의 일 구현예에서, 코어(Core); 및 상기 코어의 표면의 적어도 일부를 둘러싸고 상기 코어의 성분과 이종의 성분을 포함하는 쉘(Shell);을 포함하는 코어-쉘(Core-shell) 입자를 포함하고, 자기장 인가에 의한 배열 가변성을 갖는 자성 플라즈몬 입자를 제공한다.
상기 코어-쉘 입자는 구형 코어-쉘 입자 또는 막대형 코어-쉘 입자를 포함할 수 있다.
상기 구형 코어-쉘 입자는, 상기 코어의 직경이 0.01nm 내지 300nm이고, 상기 쉘의 두께가 1nm 내지 150nm이며, 상기 코어의 장경(L) 및 단경(S)의 비(L/S)로 정의되는 종횡비(Aspect ratio)가 1.00 내지 2.00일 수 있다.
상기 막대형 코어-쉘 입자는, 상기 코어의 폭이 0.01nm 내지 100nm이고, 상기 쉘의 두께가 1nm 내지 150nm이며, 상기 코어의 길이(L) 및 폭(W)의 비(L/W)로 정의되는 종횡비(Aspect ratio)가 2.00 초과, 40.00 이하일 수 있다.
상기 코어-쉘 입자는 상기 코어 및 상기 쉘 중 어느 하나가 자성 성분을 포함하고, 다른 하나가 금속 성분을 포함할 수 있다.
상기 자성 성분은, 산화철(Fe 3O 4), 산화니켈(NiO), 산화코발트(Co 3O 4), 철(Fe), 니켈(Ni), 코발트(Co) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
상기 금속 성분은, 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 팔라듐(Pd), 이리듐(iridium), 오스뮴(osmium), 로듐(rhodium), 루테늄(ruthenium), 니켈(Ni), 코발트(Co), 철(Fe), 망간(Mn), 크롬(Cr), 바나듐(V), 티타늄(Ti), 알루미늄(Al), 아연(Zn), 카드뮴(Cd) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
상기 자성 플라즈몬 입자의 상기 자기장 인가에 의한 배열 가변성은, 나선형 자기장 인가에 의한 배열 가변성을 포함할 수 있다.
상기 코어-쉘 입자는 구형 코어-쉘 입자를 포함하고, 상기 구형 코어-쉘 입자는 1mg 수량의 파우더에 대한 코어 입경의 표준편차가 20 이하일 수 있다.
상기 코어-쉘 입자는 막대형 코어-쉘 입자를 포함하고, 상기 막대형 코어-쉘 입자는 1mg 수량의 파우더에 대한 코어 폭의 표준편차가 20 이하일 수 있다.
상기 자성 플라즈몬 입자는 상기 자기장 인가에 의한 배열 가변성에 의하여, 자기장 인가 시 배열 변화를 통해 입자 배열 구조체를 형성하며, 상기 입자 배열 구조체를 적어도 하나 포함하는 나노 구조체가 전체 구조상 카이랄성(Chirality)를 띨 수 있다.
이때, 인가되는 상기 자기장이 나선형 자기장일 수 있다.
본 발명의 다른 일 구현예에서, 나노 입자 배열 구조체를 2 이상 포함하고, 상기 나노 입자 배열 구조체는 적어도 하나의 나노 입자를 포함하는 제1 구조체; 및 적어도 하나의 나노 입자를 포함하고 상기 제1 구조체와 이격 배치된 제2 구조체를 포함하며, 상기 나노 입자는 자성 플라즈몬(magnetoplasmonic) 입자를 포함하고, 전체 구조가 카이랄성(Chiarality)을 띠는, 카이랄 나노 구조체를 제공한다.
상기 카이랄 나노 구조체의 카이랄성은 나선형 자기장 인가에 의해 가변적인 특징을 가질 수 있다.
상기 카이랄 나노 구조체는 상기 나선형 자기장의 인가 시점(T1)으로부터 인가된 상기 나선형 자기장에 상응하는 카이랄성을 나타내도록 변화가 완료되는 시점(T2)까지의 시간(T2-T1)이 0.01ms 내지 20ms일 수 있다.
상기 제1 구조체 및 상기 제2 구조체 사이의 이격 직선 거리는 0.01nm 내지 50㎛일 수 있다.
상기 자성 플라즈몬 입자는 자기장에 대한 물리적인 반응성, 즉 배열 가변성을 나타냄으로써 즉각적인 자기 조립성을 구현할 수 있다. 또한, 상기 자성 플라즈몬 입자는 자기장 인가에 의한 배열 가변성을 바탕으로 종래에 비하여 현저히 단순화된 공정을 통해 3차원 구조체로 제조될 수 있으며, 이러한 3차원 구조체의 기하학적 구조에 대한 추가적인 변경 또는 조절이 용이하여 다양한 기술 분야에 활용 가능한 이점을 갖는다.
도 1은 일 구현예에 따른 상기 자성 플라즈몬 입자의 단면을 개략적으로 도시한 것이다.
도 2는 일 구현예에 따른 상기 구형 코어-쉘 입자의 사진을 게재한 것이다.
도 3은 일 구현예에 따른 상기 막대형 코어-쉘 입자의 사진을 게재한 것이다.
도 4는 일 구현예에 따른 상기 나노 구조체의 일부를 개략적으로 도시한 사시도이다.
도 5는 상기 자성 플라즈몬 입자의 자기장 인가에 의한 가변성을 평가하기 위한 측정예에서 각 구성의 배치를 개략적으로 도시한 것이다.
도 6은 상기 자성 플라즈몬 입자의 자기장 인가에 의한 가변성을 평가하기 위한 측정예에서 자기장 인가를 위한 자성체 회전에 대한 일 방향 투시도를 개략적으로 도시한 것이다.
도 7은 상기 자성 플라즈몬 입자의 자기장 인가에 의한 가변성을 평가하기 위한 측정예에서 나선형 자기장이 인가되는 과정을 개략적으로 도시한 것이다.
도 8은 실시예 1의 자성 플라즈몬 입자를 이용하여 제조된 나노 구조체에 대한 농도 및 회전 각도별 원편광이색성분광 스펙트럼(Circular Dichroism Spectroscopy, CD)을 게재한 것이다.
도 9는 실시예 2의 자성 플라즈몬 입자를 이용하여 제조된 나노 구조체에 대한 농도 및 회전 각도별 원편광이색성분광 스펙트럼(Circular Dichroism Spectroscopy, CD)을 게재한 것이다.
도 10은 실시예 3의 자성 플라즈몬 입자를 이용하여 제조된 나노 구조체에 대한 농도 및 회전 각도별 원편광이색성분광 스펙트럼(Circular Dichroism Spectroscopy, CD)을 게재한 것이다.
도 11은 실시예 4의 자성 플라즈몬 입자를 이용하여 제조된 나노 구조체에 대한 농도 및 회전 각도별 원편광이색성분광 스펙트럼(Circular Dichroism Spectroscopy, CD)을 게재한 것이다.
본 발명의 일 구현예에서, 코어(Core); 및 상기 코어의 표면의 적어도 일부를 둘러싸고 상기 코어의 성분과 이종의 성분을 포함하는 쉘(Shell);을 포함하는 코어-쉘(Core-shell) 입자를 포함하고, 자기장 인가에 의한 배열 가변성을 갖는 자성 플라즈몬 입자를 제공한다.
본 발명의 다른 일 구현예에서, 나노 입자 배열 구조체를 2 이상 포함하고, 상기 나노 입자 배열 구조체는 적어도 하나의 나노 입자를 포함하는 제1 구조체; 및 적어도 하나의 나노 입자를 포함하고 상기 제1 구조체와 이격 배치된 제2 구조체를 포함하며, 상기 나노 입자는 자성 플라즈몬(magnetoplasmonic) 입자를 포함하고, 전체 구조가 카이랄성(Chiarality)을 띠는, 카이랄 나노 구조체를 제공한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술하는 실시예들을 참조하면 명확해질 것이다 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서의 도면에서는 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
본 명세서에서 '~ 이상'의 의미는 그 해당 숫자 혹은 그보다 많은 경우를 포함하는 것으로 해석된다. 예를 들어, '2 이상'은 둘 또는 그보다 많은 경우를 의미한다. 또한, 수치 범위에 대한 'X 내지 Y'의 기재는 X 또는 Y를 포함하는 범위로 해석된다. 예를 들어,'25 내지 50'은 25 및 50을 포함하는 수치 범위를 의미한다.
이하, 본 발명에 따른 구현예에 관하여 상세히 설명하기로 한다.
본 발명의 일 구현예에서, 코어(Core); 및 상기 코어의 표면의 적어도 일부를 둘러싸고 상기 코어의 성분과 이종의 성분을 포함하는 쉘(Shell);을 포함하는 코어-쉘(Core-shell) 입자를 포함하고, 자기장 인가에 의한 배열 가변성을 갖는, 자성 플라즈몬 입자를 제공한다.
플라즈몬(Plasmon)이란 금속 내부의 자유 전자들이 집단적으로 진동하는 현상을 의미한다. 금속 나노 입자의 경우, 플라즈몬이 표면에 국부적으로 존재할 수 있는데, 이를 표면 플라즈몬(Surface Plasmon)이라고 지칭할 수 있다. 금속 나노 입자가 가시광선에서 근적외선에 이르는 영역의 빛의 전기장과 만나는 경우 표면 플라즈몬 공명(Surface Plasmon Resonance, SPR)에 의해 광흡수가 일어나 선명한 색을 띠게 된다. 상기 자성 플라즈몬 입자는 자성을 띠는 플라즈몬 입자로서, 자성에 의해 자기장 내에 소정의 배열로 정렬될 수 있고, 이와 동시에 플라즈몬 현상에 의해 색을 띨 수 있다.
상기 자성 플라즈몬 입자는 자기장 인가에 의한 배열 가변성을 갖는다. 상기 '자기장 인가에 의한 배열 가변성'이란 상기 자성 플라즈몬 입자에 자기장이 인가되는 경우 인가된 상기 자기장에 따라 소정의 배열로 정렬되는 특성을 의미한다. 이러한 배열 가변성을 바탕으로, 상기 자성 플라즈몬 입자는 자기장 인가라는 비교적 단순한 수단에 의하여 이를 구성으로 하는 소정의 정렬 구조를 갖는 3차원 구조체를 제조할 수 있다.
한편, 본 발명에 따른 다른 일 구현예에서, 나노 입자 배열 구조체를 2 이상 포함하고, 상기 나노 입자 배열 구조체는 적어도 하나의 나노 입자를 포함하는 제1 구조체; 및 적어도 하나의 나노 입자를 포함하고 상기 제1 구조체와 이격 배치된 제2 구조체를 포함하며, 전체 구조가 카이랄성(Chiarality)을 띠는 카이랄 나노 구조체를 제공한다.
카이랄성(Chirality)은 비대칭 속성을 말한다. 구조적 카이랄성을 갖는 입자 구조체는 액정 표시 장치(Liquid Crystal Display, LCD) 등의 광학 기술 분야 또는 제약 등의 바이오 분야에 유용하게 적용될 수 있다. 상기 카이랄 나노 구조체는 간단한 구조적 가공 및 변형을 통하여 높은 수준의 카이랄 변조 성능을 구현할 수 있다. 상기 카이랄 변조 성능은 즉각적이고 빠른 반응 속도가 요구되는 나노 과학 분야에서 매우 높은 성능을 구현할 수 있다.
일 구현예에서, 상기 나노 구조체의 카이랄성(Chirality)은 나선형 자기장 인가에 의해 가변적인 속성을 나타낼 수 있다. 상기 나노 구조체의 카이랄성은 상기 나노 구조체의 전체적인 구조적 특징으로부터 도출되는 것이다. 상기 나노 구조체는 나선형 자기장 인가라는 비교적 단순한 수단에 의하여 상기 구조적 특징이 즉각적이고 빠르게 변형될 수 있고, 그 결과, 상기 나노 구조체의 카이랄성이 즉각적이고 빠르게 변화하는 가변성을 확보할 수 있다.
예를 들어, 상기 나노 구조체는 상기 나선형 자기장의 인가 시점(T1)으로부터 인가된 상기 나선형 자기장의 카이랄성에 상응하는 카이랄성을 나타내도록 구조적 변화가 완료되는 시점(T2)까지의 시간(T2-T1)이 약 0.01ms 내지 약 20ms일 수 있고, 예를 들어, 약 0.01ms 내지 약 10ms일 수 있다. 이는, 종래의 템플릿(Template) 등을 활용한 카이랄성 변조 기능에 비하여 월등히 빠른 반응 속도를 나타내는 것으로서 의약, 광학 등의 다양한 산업 분야에 적용되어 우수한 기능을 구현할 수 있다.
도 1은 일 구현예에 따른 상기 자성 플라즈몬 입자의 단면을 개략적으로 도시한 것이다. 도 1을 참조할 때, 상기 자성 플라즈몬 입자는 코어(14) 및 쉘(15)을 포함하는 코어-쉘(Core-shell) 입자일 수 있다. 상기 쉘(15)은 상기 코어(14)의 표면의 적어도 일부를 둘러싸며, 상기 코어(14)와 이종의 성분의 포함할 수 있다. 상기 쉘(shell)이 상기 코어(core)의 성분과 이종의 성분을 포함한다는 것은, 상호 모든 성분이 상이한 경우뿐만 아니라 일부 동일한 성분을 포함하더라도 전체 조성이 상이한 경우를 포함하는 것으로 해석되어야 할 것이다.
일 구현예에서, 상기 코어-쉘 입자는 상기 코어(14) 및 상기 쉘(15) 중 어느 하나가 자성 성분을 포함하고, 다른 하나가 금속 성분을 포함할 수 있다. 자성 성분을 포함하는 코어(14)와 금속 성분을 포함하는 쉘(15); 또는 자성 성분을 포함하는 쉘(15)과 금속 성분을 포함하는 코어(14)의 조합을 통하여, 상기 자성 플라즈몬 입자의 자기장 인가에 의한 배열 가변성이 즉각적이고 빠르게 구현될 수 있으며, 목적하는 색상의 발현 등에 있어서 기술적 이점을 확보하기에 유리할 수 있다.
상기 금속 성분은, 예를 들어, 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 팔라듐(Pd), 이리듐(iridium), 오스뮴(osmium), 로듐(rhodium), 루테늄(ruthenium), 니켈(Ni), 코발트(Co), 철(Fe), 망간(Mn), 크롬(Cr), 바나듐(V), 티타늄(Ti), 알루미늄(Al), 아연(Zn), 카드뮴(Cd) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
상기 자성 성분은, 예를 들어, 산화철(Fe 3O 4), 산화니켈(NiO), 산화코발트(Co 3O 4), 철(Fe), 니켈(Ni), 코발트(Co) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
일 구현예에서, 상기 코어(core)는 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 팔라듐(Pd), 이리듐(iridium), 오스뮴(osmium), 로듐(rhodium), 루테늄(ruthenium), 니켈(Ni), 코발트(Co), 철(Fe), 망간(Mn), 크롬(Cr), 바나듐(V), 티타늄(Ti), 알루미늄(Al), 아연(Zn), 카드뮴(Cd) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하고, 상기 쉘(shell)은 산화철(Fe 3O 4), 산화니켈(NiO), 산화코발트(Co 3O 4), 철(Fe), 니켈(Ni), 코발트(Co) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
다른 구현예에서, 상기 코어(core)는 산화철(Fe 3O 4), 산화니켈(NiO), 산화코발트(Co 3O 4), 철(Fe), 니켈(Ni), 코발트(Co) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하고, 상기 쉘(shell)은 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 팔라듐(Pd), 이리듐(iridium), 오스뮴(osmium), 로듐(rhodium), 루테늄(ruthenium), 니켈(Ni), 코발트(Co), 철(Fe), 망간(Mn), 크롬(Cr), 바나듐(V), 티타늄(Ti), 알루미늄(Al), 아연(Zn), 카드뮴(Cd) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
상기 코어-쉘 입자는 구형 코어-쉘 입자 또는 막대형 코어-쉘 입자를 포함할 수 있다. 즉, 상기 코어-쉘 입자는 구형 코어-쉘 입자만으로 이루어지거나, 막대형 코어-쉘 입자만으로 이루어지거나, 구형 코어-쉘 입자 및 막대형 코어-쉘 입자의 조합으로 이루어질 수 있다.
일 구현예에서, 상기 코어-쉘 입자는 구형 코어-쉘 입자를 포함할 수 있다. 도 1의 (a) 및 (b)를 참조할 때, 상기 코어-쉘 입자는 3차원 형상이 구형인 코어-쉘 입자를 포함할 수 있다. 상기 구형 코어-쉘 입자는 도 1의 (a)에 도시된 바와 같이, 상기 코어(14)와 실질적으로 이의 표면 전체를 둘러싼 쉘(15)을 포함하는 구조일 수도 있고, 도 2의 (b)에 도시된 바와 같이 상기 코어(14)와 이의 표면의 일부를 둘러싼 쉘(15)을 포함하는 하프-쉘(Half-Shell) 구조일 수도 있다.
본 명세서에서 '구형'이란, 이의 단면이 기하학적으로 완벽한 원형인 경우뿐만 아니라, 타원형이더라도 소정의 오차 범위 내에서 전체적인 3차원 구조상 구(sphere)의 형상으로 인지될 수 있는 범위까지 포함되는 것으로 해석될 수 있다.
본 명세서에서 '하프-쉘(half-shell)'의 의미는 상기 쉘(15)이 상기 코어(14)의 표면적의 정확히 절반을 둘러싼 경우만 의미하는 것이 아니라, 전체가 아닌 적어도 일부를 둘러싼 경우를 모두 총칭하는 것으로 이해될 수 있다.
일 구현예에서, 상기 코어-쉘 입자는 막대형 코어-쉘 입자를 포함할 수 있다. 도 1의 (c)를 참조할 때, 상기 코어-쉘 입자는 3차원 형상이 막대형인 코어-쉘 입자를 포함할 수 있다. 상기 막대형 코어-쉘 입자도 상기 구형 코어-쉘 입자의 경우와 같이, 상기 코어(14)와 실질적으로 이의 표면 전체를 둘러싼 쉘(15)을 포함하는 구조일 수도 있고, 상기 코어(14)의 표면의 적어도 일부를 둘러싼 쉘(15)을 포함하는 하프-쉘 구조(미도시)일 수도 있다.
본 명세서에서 '막대형'이란, 이의 단면에 대하여 길이 및 폭이 소정의 종횡비를 이루는 형상을 총칭하는 것으로서, 폭에 대한 길이의 비율이 2.00을 초과하는 모든 3차원 형상을 포괄하는 것으로 이해될 수 있다.
일 구현예에서, 상기 코어-쉘(core-shell) 입자는 구형 코어-쉘 입자 또는 막대형 코어-쉘 입자를 포함하고, 상기 구형 코어-쉘 입자 또는 상기 막대형 코어-쉘 입자는 코어(14); 및 상기 코어의 표면 전체를 둘러싸고 상기 코어의 성분과 이종의 성분을 포함하는 쉘(15)을 포함하며, 상기 코어(14)는 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 팔라듐(Pd), 이리듐(iridium), 오스뮴(osmium), 로듐(rhodium), 루테늄(ruthenium), 니켈(Ni), 코발트(Co), 철(Fe), 망간(Mn), 크롬(Cr), 바나듐(V), 티타늄(Ti), 알루미늄(Al), 아연(Zn), 카드뮴(Cd) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하고, 상기 쉘(15)은 산화철(Fe 3O 4), 산화니켈(NiO), 산화코발트(Co 3O 4), 철(Fe), 니켈(Ni), 코발트(Co) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
예를 들어, 상기 코어(14)는 은(Ag), 금(Au) 또는 이들의 조합을 포함하고, 상기 쉘(15)은 산화철(Fe 3O 4)을 포함할 수 있다. 이와 같은 성분의 조합을 포함하는 코어-쉘 구조를 가짐으로써 상기 자성 플라즈몬 입자가 자기장 인가 조건 하에 정밀하게 설계된 배열로 정렬될 수 있으며, 그 결과, 목적하는 3차원 구조체의 형성에 있어서 보다 유리할 수 있다.
다른 구현예에서, 상기 코어-쉘(core-shell) 입자는 구형 코어-쉘 입자 또는 막대형 코어-쉘 입자를 포함하고, 상기 구형 코어-쉘 입자 또는 상기 막대형 코어-쉘 입자는 코어(14) 및 상기 코어의 표면 일부를 둘러싸고, 상기 코어(14)의 성분과 이종의 성분을 포함하는 하프-쉘(half-shell,15)을 포함하며, 상기 코어(14)는 산화철(Fe 3O 4), 산화니켈(NiO), 산화코발트(Co 3O 4), 철(Fe), 니켈(Ni), 코발트(Co) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하고, 상기 쉘(15)은 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 팔라듐(Pd), 이리듐(iridium), 오스뮴(osmium), 로듐(rhodium), 루테늄(ruthenium), 니켈(Ni), 코발트(Co), 철(Fe), 망간(Mn), 크롬(Cr), 바나듐(V), 티타늄(Ti), 알루미늄(Al), 아연(Zn), 카드뮴(Cd) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
예를 들어, 상기 코어(14)는 산화철(Fe 3O 4)을 포함하고, 상기 쉘(15)은 은(Ag), 금(Au) 또는 이들의 조합을 포함할 수 있다. 이와 같은 성분의 조합을 포함하는 코어-쉘 구조를 가짐으로써 상기 자성 플라즈몬 입자가 자기장 인가 조건 하에 정밀하게 설계된 배열로 정렬될 수 있으며, 그 결과, 목적하는 3차원 구조체의 형성에 있어서 보다 유리할 수 있다.
도 2는 일 구현예에 따른 상기 구형 코어-쉘 입자의 사진을 게재한 것이고, 도 3은 일 구현예에 따른 상기 막대형 코어-쉘 입자의 사진을 게재한 것이다.
일 구현예에서, 상기 구형 코어-쉘 입자는, 상기 코어(14)의 평균 입경이 약 0.01nm 내지 약 300nm, 예를 들어, 약 5nm 내지 약 250nm, 예를 들어, 약 5nm 내지 약 100nm, 예를 들어, 약 5nm 내지 약 90nm, 예를 들어, 약 5nm 내지 약 80nm, 예를 들어, 약 20nm 내지 약 80nm, 예를 들어, 약 40nm 내지 80nm일 수 있다.
상기 구형 코어-쉘 입자의 상기 쉘(15)의 평균 두께는 약 1nm 내지 약 150nm, 예를 들어, 약 1nm 내지 약 120nm, 예를 들어, 약 1nm 내지 약 100nm, 예를 들어, 약 1nm 내지 약 80nm, 예를 들어, 약 5nm 내지 약 80nm, 예를 들어, 약 10nm 내지 약 80nm, 예를 들어, 약 10nm 내지 약 70nm, 예를 들어, 약 20nm 내지 약 60nm, 예를 들어, 약 30nm 내지 약 60nm, 예를 들어, 약 40nm 내지 약 60nm일 수 있다.
상기 구형 코어-쉘 입자에 있어서, 그 단면을 기준으로 상기 코어(14)의 장경(L) 및 단경(S)의 비(L/S)로 정의되는 종횡비(Aspect ratio)가 약 1.00 내지 약 2.00, 예를 들어, 약 1.00 내지 약 1.80, 예를 들어, 약 1.00 내지 약 1.75, 예를 들어, 약 1.00 내지 약 1.70, 예를 들어, 약 1.00 내지 약 1.65, 예를 들어, 약 1.00 내지 약 1.60일 수 있다.
상기 구형 코어-쉘 입자는 1mg 수량의 파우더에 대한 코어(14) 입경의 표준편차가 약 30 nm 이하일 수 있고, 예를 들어, 약 25 nm 이하일 수 있고, 예를 들어, 약 20 nm 내지 약 10 nm일 수 있다. 상기 자성 플라즈몬 입자는 파우더, 즉, 복수의 입자를 포함하는 집합체로 활용될 수 있다. 이때, 복수의 상기 자성 플라즈몬 입자는 자기장 인가 조건 하에서 상호 소정의 간격 및 상대적 위치 관계를 갖도록 정렬되어 목적하는 3차원 구조체를 형성할 수 있다. 상기 수량의 파우더에 대하여 표준편차 범위가 전술한 범위를 만족함으로써, 상기 자성 플라즈몬 입자를 이용하여 제조된 3차원 구조체의 구조적 규칙성 및 정확성이 향상될 수 있고, 대량 설계 측면에서 보다 유리할 수 있다.
일 구현예에서, 상기 막대형 코어-쉘 입자는, 상기 코어(14)의 평균 폭(width)이 약 0.01nm 내지 약 100nm, 예를 들어, 약 5nm 내지 약 100nm, 예를 들어, 약 5nm 내지 약 90nm, 예를 들어, 약 5nm 내지 약 80nm, 예를 들어, 약 20nm 내지 약 80nm, 예를 들어, 약 40nm 내지 80nm일 수 있다.
상기 막대형 코어-쉘 입자의 상기 쉘(15)의 평균 두께는 약 1nm 내지 약 150nm, 예를 들어, 약 1nm 내지 약 120nm, 예를 들어, 약 1nm 내지 약 100nm, 예를 들어, 약 1nm 내지 약 80nm, 예를 들어, 약 5nm 내지 약 80nm, 예를 들어, 약 10nm 내지 약 80nm, 예를 들어, 약 10nm 내지 약 70nm, 예를 들어, 약 20nm 내지 약 60nm, 예를 들어, 약 30nm 내지 약 60nm, 예를 들어, 약 40nm 내지 약 60nm일 수 있다.
상기 막대형 코어-쉘 입자에 있어서, 상기 코어(14)의 길이(L) 및 폭(W)의 비(L/W)로 정의되는 종횡비(Aspect ratio)가 약 2.00 초과, 약 40.00이하, 예를 들어, 약 5.00 내지 약 40.00, 예를 들어, 약 10.00 내지 약 40.00, 예를 들어, 약 15.00 내지 약 35.00일 수 있다.
상기 막대형 코어-쉘 입자는 1mg 수량의 파우더에 대한 코어(14) 폭의 표준편차가 약 30 nm 이하일 수 있고, 예를 들어, 약 25 nm 이하일 수 있고, 예를 들어, 약 20 nm 내지 약 10 nm일 수 있다. 상기 자성 플라즈몬 입자는 파우더, 즉, 복수의 입자를 포함하는 집합체로 활용될 수 있다. 이때, 복수의 상기 자성 플라즈몬 입자는 자기장 인가 조건 하에서 상호 소정의 간격 및 상대적 위치 관계를 갖도록 정렬되어 목적하는 3차원 구조체를 형성할 수 있다. 상기 수량의 파우더에 대하여 표준편차 범위가 전술한 범위를 만족함으로써, 상기 자성 플라즈몬 입자를 이용하여 제조된 3차원 구조체의 구조적 규칙성 및 정확성이 향상될 수 있고, 대량 설계 측면에서 보다 유리할 수 있다.
상기 구형 코어-쉘 입자 및 상기 막대형 코어-쉘 입자의 구조에 있어서, 상기 코어의 입경 및/또는 평균 입경, 상기 코어의 폭 및/또는 평균 폭, 상기 쉘의 평균 두께, 상기 코어의 장경 및 단경, 상기 코어의 길이 및 폭 등은 모두 입자의 단면에 대하여 측정한 2차원 값으로서, 주사전자현미경(SEM) 또는 투과전자현미경(TEM) 등의 수단을 통하여 얻은 투영상으로부터 얻을 수 있다. 상기 코어의 평균 입경, 상기 코어의 평균 폭 및 상기 쉘의 평균 두께에서 '평균'은 '수평균'을 의미한다. 상기 구형 코어-쉘 입자에 있어서, 임의의 하나의 코어에 대하여, 가장 긴 입경이 상기 상기 코어의 장경으로 정의되며, 가장 짧은 입경이 상기 코어의 단경으로 정의된다. 상기 막대형 코어-쉘 입자에 있어서, 임의의 하나의 코어에 대하여, 가로 및 세로 중 상대적으로 긴 길이를 상기 코어의 길이로 지칭하며, 상대적으로 짧은 길이를 상기 코어의 폭으로 지칭한다. 상기 구형 및 막대형 코어-쉘 입자에 있어서, 상기 쉘의 두께는 상기 코어와 상기 쉘의 계면으로부터 상기 쉘의 외부 표면까지의 수직 직선 거리를 의미한다.
전술한 바와 같이, 상기 자성 플라즈몬 입자는 자기장 인가에 의한 배열 가변성을 갖는다. 상기 '자기장 인가에 의한 배열 가변성'이란 상기 자성 플라즈몬 입자에 자기장이 인가되는 경우 인가된 상기 자기장에 따라 소정의 배열로 정렬되는 특성을 의미한다. 이러한 배열 가변성을 바탕으로, 상기 자성 플라즈몬 입자는 자기장 인가라는 비교적 단순한 수단에 의하여 이를 구성으로 하는 소정의 정렬 구조를 갖는 3차원 구조체를 제조할 수 있다.
구체적으로, 일 구현예에서, 상기 자성 플라즈몬 입자는 자기장 인가 시 입자 배열 구조체를 형성할 수 있다. 또한, 일 구현예에서, 상기 입자 배열 구조체를 적어도 하나 포함하는 나노 구조체의 전체 구조가 카이랄성(Chirality)을 나타낼 수 있다. 즉, 상기 자성 플라즈몬 입자는 카이랄성을 띠는 나노 구조체의 일 구성으로 기능할 수 있다.
도 4는 상기 나노 구조체(200)의 일 예시에 대하여, 그 일부를 개략적으로 도시한 사시도이다. 도 4를 참조할 때, 상기 자성 플라즈몬 입자(22)는 자기장 인가에 의하여 소정의 배열을 갖는 입자 배열 구조체(210)를 형성할 수 있다. 상기 자성 플라즈몬 입자(22)는 인가된 자기장에 상응하는 배열로 정렬되어 상기 입자 배열 구조체(210)를 형성할 수 있다. 일 구현예에서, 상기 입자 배열 구조체(210)를 적어도 하나 포함하는 나노 구조체(200)는 전체적인 구조상 카이랄성(Chirality)을 나타낼 수 있다.
도 4를 참조할 때, 상기 나노 구조체(200)는 상기 입자 배열 구조체(210)를 적어도 하나 포함할 수 있고, 구체적으로, 2 이상 포함할 수 있다. 상기 입자 배열 구조체(210)는 적어도 하나의 상기 자성 플라즈몬 입자(22)를 포함하는 제1 구조체(201); 및 적어도 하나의 상기 자성 플라즈몬 입자(22)를 포함하고 상기 제1 구조체(201)와 이격 배치된 제2 구조체(202)를 포함할 수 있다. 상기 제1 구조체(201) 및 상기 제2 구조체(202)는 2 이상의 상기 입자 배열 구조체(210) 중에서 인접한 임의의 두 구조체를 의미한다. 상기 제1 구조체(201)에 포함된 상기 자성 플라즈몬 입자(22)와 상기 제2 구조체(202)에 포함된 상기 자성 플라즈몬 입자(22)는 그 성분 및 구조가 동일할 수도 있고, 상이할 수도 있다.
일 구현예에서, 상기 제1 구조체(201) 및 상기 제2 구조체(202) 사이의 이격 직선 거리는 약 0.01nm 내지 약 50㎛일 수 있다. 임의의 두 구조체 사이의 이격 거리가 상기 범위에서 조절됨으로써 상기 나노 구조체(200)의 카이랄성 가변 속도가 목적 수준으로 빠르게 구현될 수 있고, 광학 또는 바이오 분야 등에 응용되어 최적의 기능을 구현할 수 있다.
상기 자성 플라즈몬 입자(22)로서 전술한 각각의 특징을 만족하는 입자를 적용함으로써 이를 일 구성으로 포함하는 상기 나노 구조체(200)가 자기장 인가로 인해 우수한 구조적 카이랄성을 나타낼 수 있다. 특히, 상기 나노 구조체(200)에 대한 반복적인 자기장 인가에 대해서도 정밀하고 즉각적인 구조 변화가 가능하며, 이에 따라 카이랄성 또한 즉각적/실시간적인 조정이 가능한 효과를 구현할 수 있다.
일 구현예에서, 상기 자성 플라즈몬 입자(22)에 인가되는 상기 자기장이 나선형 자기장일 수 있다. 즉, 상기 자성 플라즈몬 입자(22)의 자기장 인가에 의한 가변성은, 구체적으로, 나선형 자기장 인가에 의한 가변성일 수 있다. 상기 자성 플라즈몬 입자(22)가 이에 인가되는 나선형 자기장에 의한 배열 변화를 통하여, 이에 상응하는 구조적 배열을 형성함으로써 전체 구조가 카이랄성을 띠는 상기 나노 구조체(200)를 효율적으로 획득할 수 있다.
일 구현예에서, 상기 나노 구조체(200)는 상기 자성 플라즈몬 입자(22)가 불규칙적으로 분산된 비카이랄성(non-chirality)의 입자 분산체에 나선형 자기장을 인가하여 제조된 카이랄성(chirality)을 갖는 구조체일 수 있다. 즉, 상기 나노 구조체(200)의 기존 카이랄성이 나선형의 자기장 인가에 의해 가변적일 뿐만 아니라, 최초의 카이랄성 자체가 나선형 자기장의 인가에 의해 부여된 것일 수 있다. 보다 구체적으로, 상기 자성 플라즈몬 입자(22)가 분산매 중에 분산된 분산체를 소정의 각도(θ)로 상대 회전하는 두 자성체 사이에 형성된 나선형 자기장 내에 배치함으로써 최초의 카이랄성이 부여된 나노 구조체(200)를 제조할 수 있다.
일 구현예에서, 상기 나노 구조체(200)는 2 이상의 상기 입자 배열 구조체(210)가 용매 또는 분산매 중에 존재하는 형태일 수 있다.
일 구현예에서, 상기 나노 구조체(200)의 하기 식 1의 값이 약 0 내지 약 20일 수 있다.
[식 1]
Figure PCTKR2020015355-appb-img-000001
상기 식 1에서, 상기 A는 상기 자성 플라즈몬 입자의 쉘의 평균 두께(nm)에 대한 코어 평균 입경(nm)의 비; 또는 쉘의 평균 두께(nm)에 대한 코어 평균 폭(nm)의 비 값이고, 상기 B는 상기 자성 플라즈몬 입자의 농도(㎍/mL) 값이며, 상기 C는 상기 나선형 자기장의 회전각(θ)이 45°일 때 카이랄성(τ)의 크기 값을 1.0으로 한 경우의 상대적 카이랄성 크기의 비이고, 상기 P max는 상기 A를 만족하는 상기 나노 구조체의 상기 B 및 C 조건 하에서의 원편광 이색성 분광 스펙트럼(Circular Dichroism Spectroscopy)의 최대 피크 값의 절대값이다.
일 구현예에서, 상기 나노 구조체의 상기 식 1의 값은, 상기 B가 약 25 내지 약 200 중 어느 하나의 값이고, 상기 C가 약 0 내지 약 1.0 중 어느 하나의 값일 때의 결과일 수 있다. 이와 같은 농도 및 각도 조건에서 도출된 상기 식 1의 값이 약 0 내지 약 20의 범위를 만족하는 경우, 상기 식 1의 값과 상기 자성 플라즈몬 입자의 자기장에 의한 배열 가변성의 상관 관계에 대한 신뢰도가 향상될 수 있으며, 카이랄성의 확보 측면에서 상기 나노 구조체의 구조적 완결성이 크게 향상될 수 있다.
상기 식 1의 값은 상기 B 및 상기 C의 전술한 모든 범위에서 약 0 내지 약 20을 만족해야 하는 것이 아니라, 전술한 각각의 범위에서 임의의 하나의 B의 값과 임의의 하나의 C의 값에 대하여 약 0 내지 약 20 범위 내 특정 값을 만족하는 경우, 상기 나노 구조체의 카이랄성이 목적하는 실시간 가변성 및 구조적 완결성을 확보함을 나타내는 지표가 될 수 있다. 다만, 상기 B 및 상기 C의 전술한 범위 내에서 상기 식 1의 값의 범위가 해당 범위를 만족하는 경우의 수가 증가할수록 상기 자성 플라즈몬 입자 배열의 실시간 가변성과 상기 나노 구조체의 카이랄성 측면에서의 구조적 완결성이 향상되는 상관성을 나타낸다.
상기 자성 플라즈몬 입자가 구형 코어-쉘 입자인 경우, 상기 A는 쉘 평균 두께(T)에 대한 코어 평균 입경(D)의 비(D/T)의 값이다. 상기 자성 플라즈몬 입자가 막대형 코어-쉘 입자인 경우, 상기 A는 쉘 평균 두께(T)에 대한 코어 평균 폭(W)의 비(W/T)의 값이다.
상기 B는 상기 나노 구조체 중의 상기 자성 플라즈몬 입자의 농도((㎍/mL) 값이다. 전술한 바와 같이, 상기 나노 구조체는 용매 또는 분산매 중에 존재하는 형태, 즉, 일종의 콜로이드 용액 상태일 수 있다. 상기 B는 이러한 콜로이드 용액 중의 상기 자성 플라즈몬 입자의 농도 값(㎍/mL)으로 정의될 수 있다. 구체적으로, 상기 자성 플라즈몬 입자 불규칙적으로 분산된 비카이랄성의 입자 분산체로부터 최초의 카이랄성이 부여된 나노 구조체를 제조하는 경우; 및 기존의 카이랄성을 띠는 나노 구조체에 다른 카이랄성을 부여하기 위하여 자기장을 인가하는 경우; 모두 상기 B는 상기 용액 중의 상기 자성 플라즈몬 입자의 농도(㎍/mL) 값으로 정의될 수 있다.
상기 C는 상기 자성 플라즈몬 입자에 인가된 나선형 자기장의 회전각(θ)이 45°일 때 카이랄성(τ)의 크기 값을 1.0으로 한 경우의 상대적 카이랄성 크기의 비이다. 예를 들어, 상기 나선형 자기장은 2개의 자성체를 마주보도록 배치한 후 동일 각도만큼 상대 회전시켜 형성할 수 있고, 상기 회전각(θ)은 상기 나선형 장기장을 형성하기 위해 상대 회전하는 2개의 자성체 각각의 회전각(θ)을 의미할 수 있다. 구체적으로, 상기 나선형 자기장의 카이랄성(τ)의 크기는 sin(2θ) 크기 값에 비례할 수 있다. 예를 들어, 상기 두 자성체의 각각의 회전각(θ)이 15°인 경우; 및 165°인 경우의 카이랄성의 상대적 크기의 비는 상기 나선형 자기장의 회전각(θ)이 45°일 때 카이랄성(τ)의 크기 1.0을 기준으로, 0.5이다.
상기 Pmax는, 상기 자성 플라즈몬 입자를 일 구성으로 하여 이의 자기장에 의한 배열 가변성에 기초하여 제조된 상기 나노 구조체에 대하여, 원편광 이색성 분광 스펙트럼(Circular Dichroism Spectroscopy)을 측정하였을 때, 최대 피크 값(mdeg)이다. 예를 들어, 서로 다른 파장 영역에서 2 이상의 피크가 도출되었을 경우, 피크 값의 절대값이 가장 큰 하나의 피크에 대한 값을 의미한다. 상기 Pmax는 절대값으로서 양(+)의 값으로 나타낸다.
상기 자성 플라즈몬 입자를 일 구성으로 하여 형성된 상기 나노 구조체에 대하여, 상기 식 1의 값이 약 0 내지 약 20을 만족하는 경우, 종래에 비하여 카이랄성의 변조 속도가 월등히 빠른 효과를 구현할 수 있으며, 실질적으로 실시간 가변되는 자기 조립성을 구현할 수 있다.
일 구현예에서, 상기 자성 플라즈몬 입자가 구형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 전체를 둘러싼 구조인 경우, 상기 식 1의 값이 약 0 내지 약 3.0, 예를 들어, 약 0 내지 약 2.5, 예를 들어, 약 0 내지 약 1.5, 예를 들어, 약 0 내지 약 1.0일 수 있다. 이때, 예를 들어, 상기 자성 플라즈몬 입자는 금속 성분을 포함하는 코어; 및 자성 성분을 포함하는 쉘을 구비한 코어-쉘 입자일 수 있다.
상기 자성 플라즈몬 입자가 구형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 전체를 둘러싼 구조이며, 상기 C가 0(zero)보다 큰 어느 하나의 값인 경우, 상기 식 1의 값이 약 0.01 내지 약 3.5, 예를 들어, 약 0.01 내지 약 3.0, 예를 들어, 약 0.01 내지 약 2.5, 예를 들어, 약 0.01 내지 약 1.5, 예를 들어, 약 0.01 내지 약 1.0일 수 있다.
상기 자성 플라즈몬 입자가 구형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 전체를 둘러싼 구조이며, 상기 C가 0(zero)보다 큰 어느 하나의 값이고, 상기 B가 50 내지 200 범위의 어느 하나의 값인 경우, 상기 식 1의 값이 약 0.01 내지 약 1.0일 수 있고, 예를 들어, 약 0.01 내지 약 0.80일 수 있고, 예를 들어, 약 0.01 내지 약 0.50일 수 있다.
다른 구현예에서, 상기 자성 플라즈몬 입자가 구형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 중 일부를 둘러싼 하프-쉘 구조인 경우, 상기 식 1의 값이 약 0 내지 약 19.00일 수 있고, 예를 들어, 약 0 내지 약 18.00일 수 있고, 예를 들어, 약 0 내지 약 17.00일 수 있다. 이때, 예를 들어, 상기 자성 플라즈몬 입자는 자성 성분을 포함하는 코어; 및 금속 성분을 포함하는 쉘을 구비한 코어-쉘 입자일 수 있다.
상기 자성 플라즈몬 입자가 구형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 중 일부를 둘러싼 하프-쉘 구조이며, 상기 C가 0(zero)보다 큰 어느 하나의 값인 경우, 상기 식 1의 값이 약 1.00 내지 약 19.00일 수 있고, 예를 들어, 약 1.50 내지 약 19.00일 수 있고, 예를 들어, 약 2.00 내지 약 18.00일 수 있고, 예를 들어, 약 2.50 내지 약 17.00일 수 있다.
상기 자성 플라즈몬 입자가 구형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 중 일부를 둘러싼 하프-쉘 구조이며, 상기 C가 0(zero)보다 큰 어느 하나의 값이고, 상기 B가 50 내지 200 범위의 어느 하나의 값인 경우, 상기 식 1의 값이 약 1.00 내지 약 17.00일 수 있고, 예를 들어, 약 1.00 내지 15.00일 수 있고, 예를 들어, 약 1.00 내지 14.00일 수 있다.
또 다른 구현예에서, 상기 자성 플라즈몬 입자가 막대형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 전체를 둘러싼 구조인 경우, 상기 식 1의 값이 약 0 내지 약 3.0일 수 있다. 이때, 예를 들어, 상기 자성 플라즈몬 입자는 금속 성분을 포함하는 코어; 및 자성 성분을 포함하는 쉘을 구비한 코어-쉘 입자일 수 있다.
상기 자성 플라즈몬 입자가 막대형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 전체를 둘러싼 구조이며, 상기 C가 0(zero)보다 큰 어느 하나의 값인 경우, 상기 식 1의 값이 약 0.1 내지 약 3.5, 예를 들어, 약 0.1 내지 약 3.0, 예를 들어, 약 0.2 내지 약 3.5, 예를 들어, 약 0.2 내지 약 3.5, 예를 들어, 약 0.3 내지 약 3.5, 예를 들어, 약 0.3 내지 약 3.0일 수 있다.
상기 자성 플라즈몬 입자가 막대형의 코어-쉘 입자를 포함하고, 상기 쉘이 실질적으로 상기 코어의 표면 전체를 둘러싼 구조이며, 상기 C가 0(zero)보다 큰 어느 하나의 값이고, 상기 B가 75 내지 200 범위의 어느 하나의 값인 경우, 상기 식 1의 값이 약 0.1 내지 약 3.0, 예를 들어, 약 0.1 내지 약 2.0, 예를 들어, 약 0.1 내지 약 1.8일 수 있다.
상기 자성 플라즈몬 입자가 상기 나노 구조체의 구성 단위로서 기능함으로써, 상기 나노 구조체가 상기 식 1의 값을 전술한 범위로 만족할 수 있고, 이에 따라, 우수한 카이랄성 부여/변화 성능을 구현할 수 있다. 구체적으로, 상기 자성 플라즈몬 입자의 적용을 통하여, 종래에 카이랄성을 갖는 구조체를 제조하기 위하여 화학적인 합성 방법을 활용하거나 별도 템플릿(Template)을 활용하는 등의 방법을 적용한 것에 비하여, 제조 공정의 효율성을 크게 향상시킬 수 있으며 구조적 정밀성 및 신뢰성을 향상시킬 수 있다. 또한, 상기 자성 플라즈몬 입자를 구성 단위로 하는 상기 나노 구조체가 카이랄성의 부여 또는 변조에 있어서 즉각적인 실시간성을 확보할 수 있다. 이러한 상기 나노 구조체는 편광 기능이 요구되는 다양한 광학 장치 및 바이오 센서 분야에 광범위하게 활용 가능하며, 특히 카이랄 특성의 정밀하고 즉각적인 변조가 가능하므로 초고속 전환, 실시간 조정, 정교한 색상 구현이 요구되는 3D, 홀로그래픽 디스플레이와 같은 차세대 디스플레이를 위한 능동적이고 역동적인 광학 활성 수단의 역할을 수행할 수 있다.
이하, 상기 자성 플라즈몬 입자의 제조방법에 대해 상술하기로 한다.
상기 자성 플라즈몬 입자는 코어(Core)용 원료 성분을 준비하는 단계; 쉘(Shell)용 원료 성분을 준비하는 단계; 및 상기 코어(Core)용 원료 성분 및 상기 쉘(Shell)용 원료 성분을 혼합 후 반응시키는 단계;를 포함하는 제조방법에 의하여 제조될 수 있다.
상기 제조방법에 있어서, 상기 쉘(Shell)용 원료 성분은 상기 코어(Core)용 원료 성분과 이종의 성분을 포함할 수 있다. 일 구현예에서, 상기 코어(Core)용 원료 성분이 제1 금속 또는 이의 염을 포함하고, 상기 쉘(Shell)용 원료 성분이 제2 금속 또는 이의 염을 포함하며, 상기 제1 금속 및 상기 제2 금속은 서로 상이한 금속일 수 있다.
상기 제1 금속 및 상기 제2 금속은 각각 독립적으로, 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 팔라듐(Pd), 이리듐(iridium), 오스뮴(osmium), 로듐(rhodium), 루테늄(ruthenium), 니켈(Ni), 코발트(Co), 철(Fe), 망간(Mn), 크롬(Cr), 바나듐(V), 티타늄(Ti), 알루미늄(Al), 아연(Zn), 카드뮴(Cd) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
일 구현예에서, 상기 제1 금속이 은(Ag), 금(Au) 및 이들의 조합 중 선택된 하나를 포함하고, 상기 제2 금속이 니켈(Ni), 코발트(Co), 철(Fe) 및 이들의 조합 중 선택된 하나를 포함할 수 있다.
다른 구현예에서, 상기 제1 금속이 니켈(Ni), 코발트(Co), 철(Fe) 및 이들의 조합 중 선택된 하나를 포함하고, 상기 제2 금속이 (Ag), 금(Au) 및 이들의 조합 중 선택된 하나를 포함할 수 있다.
상기 제조방법에 의하여 제조하고자 하는 상기 자성 플라즈몬 입자의 형상은 코어(Core)를 포함하고, 상기 코어(core)의 표면의 적어도 일부를 둘러싸는 쉘(Shell)을 포함하는 코어-쉘 입자일 수 있다. 상기 코어-쉘 입자의 형상, 구조 및 성분이 관한 사항은 상기 자성 플라즈몬 입자에 관하여 전술한 사항이 모두 동일하게 통합 적용될 수 있다.
상기 제조방법에 의하여 제조하고자 하는 상기 자성 플라즈몬 입자의 형상은 구형 코어-쉘 입자 또는 막대형 코어-쉘 입자일 수 있다. 상기 구형 코어-쉘 입자 및 상기 막대형 코어-쉘 입자에 관한 사항은 상기 자성 플라즈몬 입자에 관하여 전술한 사항이 모두 동일하게 통합 적용될 수 있다.
상기 코어(Core)용 원료 성분 및 상기 쉘(Shell)용 원료 성분을 혼합 후 반응시키는 단계는 약 100℃ 내지 약 300℃에서, 약 1시간 내지 약 15시간 반응시키는 단계일 수 있다. 상기 온도 범위 및 상기 시간 범위에서 상기 코어(Core) 및 상기 쉘(shell)의 각각의 원료 성분을 혼합 반응시킴으로써 원하는 형상 및 크기의 코어-쉘 입자를 가공하기에 보다 유리할 수 있다.
상기 코어(Core)의 원료 성분 및 상기 쉘(Shell)의 원료 성분을 혼합 후 반응시키는 단계를 통하여 코어(Core)와 이의 표면의 적어도 일부를 둘러싸는 쉘(Shell)을 포함하는 코어-쉘(Core-Shell) 입자가 제조될 수 있다.
상기 자성 플라즈몬 입자의 제조방법은 상기 코어-쉘(Core-Shell) 입자의 표면 처리 단계를 더 포함할 수 있다. 상기 표면 처리 단계를 통하여 상기 코어-쉘 입자의 표면에 소정의 물성을 부여하여 후속하는 공정상 상기 자성 플라즈몬 입자의 분산성 및 응집 방지 측면에서 필요한 기능을 확보할 수 있다.
예를 들어, 상기 표면 처리 단계는 상기 코어-쉘 입자의 표면에 친수성을 부여하는 단계일 수 있다. 이 경우, 상기 자성 플라즈몬 입자가 친수성 용매 상의 분산성을 확보할 수 있고, 이를 통해 용매 중에 분산된 상태로 필요한 가공을 후속하기에 유리한 특성을 확보할 수 있다.
일 구현예에서, 상기 표면 처리 단계는 상기 코어-쉘 입자에 표면 처리 물질을 혼합한 후 초음파 처리하는 단계를 포함할 수 있다. 초음파 처리를 이용하는 경우, 상기 표면 처리가 비교적 짧은 시간 내에 효율적으로 진행될 수 있다.
일 구현예에서, 상기 표면 처리 물질은 구연산(Citric acid)을 포함할 수 있다. 상기 표면 처리 물질로 구연산을 사용하는 경우, 상기 코어-쉘 입자 100 중량부 대비, 상기 구연산을 약 40 내지 약 70 중량부 사용할 수 있다. 이 경우, 상기 코어-쉘 입자의 표면에 목적하는 정도의 물성을 부여하는 측면에서 보다 유리할 수 있고, 그 결과 상기 코어-쉘 입자의 분산성 확보에 유리할 수 있다.
상기 자성 플라즈몬 입자의 제조방법을 통하여 전술한 기술적 특징 및 이점을 갖는 상기 자성 플라즈몬 입자를 제조할 수 있으며, 나아가 상기 자성 플라즈몬 입자를 적용한 상기 나노 구조체를 획득할 수 있다.
이하, 상기 나노 구조체의 제조방법에 대하여 상세히 설명하기로 한다.
상기 나노 구조체는 자기장 형성 단계; 적어도 2 이상의 나노 입자를 자기장 내에 배치하는 입자 배치 단계; 및 상기 자기장의 자속 밀도, 자화 방향 및 공간적 범위 중 적어도 하나를 조절하는 자기장 조절 단계;를 포함하고, 상기 자기장 조절 단계에서 상기 자기장 내에 배치된 상기 나노 입자의 배열이 상기 자기장의 구조에 상응하도록 정렬되어 전체 구조가 카이랄성(Chirality)을 띠는 나노 구조체로 형성되는 방법에 의하여 제조될 수 있다.
상기 자기장 형성 단계에서, 상기 자기장은 최종적으로 상기 나노 구조체에 카이랄성을 부여할 수 있는 구조를 갖는 자기장이면 특별히 제한되지 않으나, 예를 들어, 나선형 구조의 자기장일 수 있다. 상기 자기장이 나선형 자기장인 경우, 나선형이라는 구조에서 기인한 카이랄성을 갖게 된다. 이때, 상기 자기장으로부터 유도되는 구조적 카이랄성이 상기 나노 입자에 전가될 수 있고, 이로써 상기 나노 입자의 정렬 구조가 나선형 구조에서 기인한 카이랄성을 띠도록 제조될 수 있다.
도 5는 일 구현예에 따른 상기 나노 구조체의 제조방법을 개략적으로 도식화한 모식도이다.
예를 들어, 상기 자기장 형성 단계에서 상기 자기장은 적어도 2개의 자성체(11, 12)를 상대 회전시켜 형성된 나선형 자기장(13)일 수 있다. 상기 2개의 자성체(11, 12)는 서로 동일한 자화 방향(y축 방향)으로 마주보도록 배치된 후 각각의 중심을 지나는 축(y축)을 회전축으로 하여 서로 반대 방향으로 회전되어, 나선형 자기장(13)을 형성할 수 있다.
도 6은 상기 두 자성체(11, 12)를 각각 회전시키되 서로 반대 방향으로 회전시킨 경우를 y축 방향에서 도시한 개략도이다. 도 6을 참조할 때, 하나의 자성체(11)는 이의 장축(L1)과 z축이 이루는 각도(θ1)가 0°< θ1 < 180°범위가 되도록 시계 방향으로 회전하고, 다른 하나의 자성체(12) 이의 장축(L2)과 z축이 이루는 각도(θ2)가 0°> θ2 > -180°범위가 되도록 반시계 방향으로 회전시킬 수 있다. 상기 θ1 및 θ2를 조절함으로써 상기 나선형 자기장의 구조가 결정될 수 있다.
일 구현예에서, 상기 두 자성체(11, 12)는 상기 θ1 및 θ2의 절대값의 크기가 동일하도록 회전시킬 수 있다. 또한, 상기 θ1 및 θ2의 크기를 조절함으로써 상기 나선형 자기장(13)의 구조가 결정될 수 있다. 상기 나선형 자기장(13)은 거울면 비대칭 구조를 가짐으로써 카이랄성을 나타내며, 상기 θ1 및 θ2의 크기에 따라 카이랄성의 정도가 조절될 수 있다. 상기 θ1 및 θ2의 절대값의 크기를 θ라 지칭할 때, 상기 나선형 자기장(13)의 카이랄성의 크기는 sin(2θ)의 크기에 비례할 수 있다.
일 구현예에서, 상기 두 자성체(11, 12)는 각각 독립적으로 네오디뮴(neodymium) 자석, 페라이트(ferrite) 자석 또는 전자석을 포함할 수 있다. 구체적으로, 상기 자성체의 자속 밀도는 약 1μT 내지 약 5T일 수 있고, 예를 들어, 약 0.01T 내지 약 0.4T일 수 있고, 예를 들어, 약 0.01T 내지 약 0.3T일 수 있다.
일 구현예에서, 상기 두 자성체(11, 12)의 중심을 연결하는 직선 거리로 정의되는 자성체 이격 거리는 약 1㎛ 내지 약 10m일 수 있고, 예를 들어, 약 1㎛ 내지 약 5m일 수 있고, 예를 들어, 약 1㎛ 내지 약 1m일 수 있고, 예를 들어, 1㎛ 내지 약 80cm일 수 있고, 예를 들어, 약 1cm 내지 약 50cm일 수 있고, 예를 들어, 약 1cm 내지 약 10cm일 수 있고, 예를 들어, 약 1cm 내지 약 8cm일 수 있고, 예를 들어, 약 1cm 내지 약 6cm일 수 있고, 예를 들어, 약 1cm 내지 약 5cm일 수 있고, 예를 들어, 약 1cm 내지 약 4cm일 수 있다.
상기 나노 구조체의 제조방법은 적어도 2 이상의 나노 입자를 자기장 내에 배치하는 입자 배치 단계를 포함한다. 도 7은 상기 입자 배치 단계(20)에 관하여 개략적으로 도시한 것이다.
상기 입자 배치 단계(20)는 상기 자기장 형성 단계에서 생성된 자기장 내에 카이랄성을 부여하기 위한 대상 입자를 배치하는 단계이다. 상기 입자 배치 단계는 상기 자기장 형성 단계 이전에 수행될 수도 있고, 상기 자기장 형성 단계 이후에 수행될 수도 있다. 즉, 상기 나노 입자는 상기 자기장이 형성되기 전에 미리 자기장이 형성될 영역 내에 배치될 수도 있고, 상기 자기장이 형성된 후에 자기장이 형성된 영역 내에 배치될 수도 있다.
상기 나노 입자에 관한 사항은 모두 상기 카이랄 나노 구조체에 관하여 전술한 바와 동일하다.
도 7은, 예시적으로, 상기 자기장 형성 단계 이전에 입자가 배치된 경우를 도시한 것이다. 도 7을 참조할 때, 상기 입자 배치 단계(20)에서, 상기 나노 입자는 용매 또는 분산매 내에 분산된 상태로 상기 자기장 내에 배치될 수 있다. 구체적으로, 적어도 2 이상의 상기 나노 입자를 포함하는 콜로이드 용액(21)을 제조한 후, 상기 콜로이드 용액(21)을 상기 자기장 내에 배치하는 방법으로 수행될 수 있다.
상기 콜로이드 용액(21) 중의 상기 나노 입자의 농도는 약 5㎍/mL 내지 약 500mg/mL일 수 있고, 예를 들어, 약 5㎍/mL 내지 약 400mg/mL일 수 있고, 예를 들어, 약 10mg/mL 내지 약 400mg/mL일 수 있다. 상기 나노 입자를 전술한 농도 범위로 분산시켜 상기 제조방법에 적용함으로써 상기 나노 입자가 응집되지 않고 카이랄성을 띠는 정렬 구조로 배열되기에 유리할 수 있으며, 적어도 2 이상의 상기 나노 입자로 이루어진 3차원의 카이랄 나노 구조체가 정교하게 형성될 수 있다.
상기 용매 또는 분산매는 증류수, 탈이온수, 알코올, 유기 용매, 고분자 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 '고분자'는 중량평균분자량(Mw)이 약 500 이상인 중합체로 상온에서 점도가 약 5cP 내지 6000cP일 수 있으며, 1종 또는 2종 이상의 혼합물로 구성될 수 있고, 상기 나노 입자의 분산매로 기능할 수 있는 친수성, 소수성 또는 양친매성의 액상 또는 고상의 중합체를 총칭하는 것으로 이해된다.
상기 카이랄 나노 구조체의 제조방법은 상기 자기장의 자속 밀도, 자화 방향 및 공간적 범위 중 적어도 하나를 조절하는 자기장 조절 단계를 포함한다. 상기 자기장 조절 단계는 상기 자기장 형성 단계에서 형성된 자기장을 변화시켜 상기 자기장 내에 배치된 나노 입자에 목적 수준의 카이랄성(Chirality)을 부여하는 단계이다. 상기 자기장 조절 단계는 상기 자기장 형성 단계와 동시에 수행될 수도 있고, 소정의 시간차를 두고 수행될 수도 있다. 즉, 상기 자기장 형성 단계에서 자기장의 형성과 동시에 이의 자속 밀도, 자화 방향 및 공간적 범위 중 적어도 하나를 조절하여 목적하는 구조의 자기장을 형성할 수도 있고; 혹은 상기 자기장 형성 단계에서 최초로 형성된 자기장에 대하여 추후 이의 자속 밀도, 자화 방향 및 공간적 범위 중 적어도 하나를 조절하여 다른 구조의 자기장으로 형성할 수도 있다. 예를 들어, 전자의 경우는 비카이랄성의 나노 입자 분산체에 최초로 카이랄성을 부여하는 경우를 포함할 수 있고, 후자의 경우는 기존의 카이랄성을 갖는 나노 구조체에 다른 카이랄성을 부여하기 위한 경우를 포함할 수 있다.
상기 자기장 조절 단계에서 상기 자기장 내에 배치된 상기 나노 입자의 배열이 변화하여 그 최종적인 정렬 구조가 상기 자기장의 카이랄성에 상응하도록 조절되어 최종적으로 카이랄성을 띠는 나노 구조체가 형성될 수 있다. 상기 자기장 내에 배치된 상기 나노 입자의 배열이 상기 자기장의 구조에 상응하도록 정렬된다는 것은, 상기 나노 입자의 배열에 의한 정렬 구조가 카이랄성을 띠지 않다가 상기 자기장의 카이랄성이 전가되어 카이랄성을 갖게 되거나, 혹은 기존의 카이랄성과 다른 카이랄성을 갖게 되는 것을 의미한다.
상기 자기장 형성 단계에서 형성된 자기장이, 예를 들어, 나선형 자기장인 경우, 거울면 비대칭 구조로부터 유도된 카이랄성을 갖게 된다. 이때 상기 자기장 내에 배치된 적어도 2 이상의 나노 입자들은 상기 자기장에 의한 배열 변화를 통하여 상기 나선형 자기장의 구조적 카이랄성을 전가 받아 실질적으로 동등 수준의 카이랄성을 갖는 정렬 구조를 형성할 수 있다. 따라서, 상기 자기장의 자속 밀도, 자화 방향 및 공간적 범위 중 적어도 하나를 변화하는 경우, 상기 자기장의 카이랄성이 변화하게 되고, 이에 따라 상기 자기장 내에 배치된 상기 나노 입자의 정렬 구조의 카이랄성도 변화하게 된다. 예를 들어, 상기 자기장 조절 단계에서 자속 밀도를 증가시키는 경우, 상기 나노 구조체의 원편광 이색성 분광법(Circular Dichroism spectroscopy) 그래프 상의 피크는 단파장 측으로 이동하게 된다.
예를 들어, 상기 자기장 형성 단계에서 상기 자기장은 적어도 2개의 자성체를 상대 회전시켜 형성된 나선형 자기장일 수 있고, 상기 자기장 조절 단계에서 상기 적어도 2개의 자성체를 상대 회전시키는 각도; 및 상기 적어도 2개의 자성체의 상호 평행한 정도 중 적어도 하나를 변화시켜 상기 자기장의 자화 방향을 조절할 수 있다.
예를 들어, 상기 자기장 형성 단계에서 상기 자기장은 적어도 2개의 자성체를 상대 회전시켜 형성된 나선형 자기장일 수 있고, 상기 자기장 조절 단계에서 상기 적어도 2개의 자성체 사이의 직선 거리를 변화시켜 상기 자기장의 공간적 범위를 조절할 수 있다.
예를 들어, 상기 자기장 형성 단계에서 상기 자기장은 적어도 2개의 자성체를 상대 회전시켜 형성된 나선형 자기장일 수 있고, 상기 자기장 조절 단계에서 상기 적어도 2개의 자성체의 자기력; 및 상기 적어도 2개의 자성체 사이의 직선 거리 중 적어도 하나를 변화시켜 상기 자기장의 자속 밀도를 조절할 수 있다.
상기 카이랄 나노 구조체의 제조방법을 통하여, 전술한 바와 같은 상기 카이랄 나노 구조체를 제조할 수 있다. 또한, 상기 카이랄 나노 구조체의 제조방법을 통하여 하기 식 1을 만족하는 카이랄 나노 구조체를 제조할 수 있다.
[식 1a]
Figure PCTKR2020015355-appb-img-000002
상기 식 1a에서, 상기 A는 상기 나노 입자의 쉘 평균 두께(nm)에 대한 코어 평균 입경(nm)의 비; 또는 쉘 평균 두께(nm)에 대한 코어 평균 폭(nm)의 비 값이고, 상기 B는 상기 나노 입자의 농도(㎍/mL) 값이며, 상기 C는 상기 카이랄 나노 구조체에 인가된 나선형 자기장의 회전각(θ)이 45°일 때 카이랄성(τ)의 크기 값을 1.0으로 한 경우의 상대적 카이랄성 크기의 비이고, 상기 P max는 상기 A를 만족하는 상기 나노 구조체의 상기 B 및 C 조건 하에서의 원편광 이색성 분광 스펙트럼(Circular Dichroism Spectroscopy)의 최대 피크 값의 절대값이다.
상기 식 1과 이를 구성하는 각각의 인자에 대한 설명은 상기 카이랄 나노 구조체와 관련하여 전술한 바와 같다.
이하에서는 본 발명의 구체적인 실시예를 제시한다. 다만, 하기에 기재된 실시예는 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하고, 이로 인해 본 발명의 권리 범위가 제한 해석되지 않으며, 본 발명의 권리 범위는 청구 범위에 의해서 결정되는 것이다.
<실시예 및 비교예>
실시예 1: 자성 플라즈몬 입자 (I)
3.2mmol의 질산철(Fe(NO 3) 3·9H 2O)을 40mL의 에틸렌글리콜(C 2H 4(OH) 2)과 혼합하여 자석 교반기로 완전히 녹을 때까지 교반함으로써 혼합 용액을 제조하였다. 상기 혼합 용액에 35mmol의 아세트산나트륨(CH 3COONa)과 0.59mmol의 질산은(AgNO 3)을 넣고 계속 교반하였다. 아세트산나트륨과 질산은이 모두 녹으면 혼합 용액을 테플론용기에 옮겨 담고 압력을 견딜 수 있도록 금속 용기에 넣은 후 210℃로 가열 후 4시간 동안 유지시킨다. 반응이 끝나면 합성된 입자를 원심 분리 등으로 분리하여 에탄올, 탈이온수로 정제한다. 분리된 입자를 진공 오븐에서 12시간 동안 건조하여 파우더 형태로 제조한다.
이어서, 상기 입자를 탈이온수 등의 극성 용매에 분산시키기 위하여 입자 표면에 친수성 기능기를 부착하는 표면 전처리 단계를 진행한다. 입자 합성 단계에서 만들어진 파우더 형태의 나노입자 1mg과 구연산(citric acid, HOC(COOH)(CH 2COOH) 2) 0.6mg을 1mL의 탈이온수에 넣고 2시간 동안 초음파 처리한 후 원심분리 등으로 입자를 분리하고 탈이온수로 정제한다.
이로써 은(Ag)을 포함하는 코어(Core) 및 산화철(Fe 3O 4)을 포함하는 쉘(Shell)을 구비한 구형의 코어-쉘 입자로서, 상기 쉘(Shell)이 실질적으로 상기 코어(Core)의 표면 전체를 둘러싼 구조의 자성 플라즈몬 입자를 제조하였다. 상기 코어의 평균 직경은 61.4(±13.3)nm이고, 상기 쉘의 평균 두께는 54.3(±5.7)nm였다.
실시예 2: 자성 플라즈몬 입자 (II)
1.6mmol의 질산철(Fe(NO 3) 3·9H 2O)을 40mL의 에틸렌글리콜(C 2H 4(OH) 2)과 혼합하여 자석 교반기로 완전히 녹을 때까지 교반함으로써 혼합 용액을 제조하였다. 상기 혼합 용액에 35mmol의 아세트산나트륨(CH 3COONa)과 0.59mmol의 질산은(AgNO 3)을 넣고 계속 교반하였다. 아세트산나트륨과 질산은이 모두 녹으면 혼합 용액을 테플론용기에 옮겨 담고 압력을 견딜 수 있도록 금속 용기에 넣은 후 210℃로 가열 후 4시간 동안 유지시킨다. 반응이 끝나면 합성된 입자를 원심 분리 등으로 분리하여 에탄올, 탈이온수로 정제한다. 분리된 입자를 진공 오븐에서 12시간 동안 건조하여 파우더 형태로 제조한다.
이어서, 상기 입자를 탈이온수 등의 극성 용매에 분산시키기 위하여 입자 표면에 친수성 기능기를 부착하는 표면 전처리 단계를 진행한다. 입자 합성 단계에서 만들어진 파우더 형태의 입자 1mg과 구연산(citric acid, HOC(COOH)(CH 2COOH) 2) 0.6mg을 1mL의 탈이온수에 넣고 2시간 동안 초음파 처리한 후 원심분리 등으로 나노입자를 분리하고 탈이온수로 정제한다.
이로써 은(Ag)을 포함하는 코어(Core) 및 산화철(Fe 3O 4)을 포함하는 쉘(Shell)을 구비한 구형의 코어-쉘 입자로서, 상기 쉘(Shell)이 실질적으로 상기 코어(Core)의 표면 전체를 둘러싼 구조의 자성 플라즈몬 입자를 제조하였다. 상기 코어의 평균 직경은 50.2(±12.2)nm이고, 상기 쉘의 평균 두께는 56.3(±7.4)nm였다.
실시예 3: 자성 플라즈몬 입자 (III)
4.0mmol의 염화철(FeCl 3·6H 2O)을 40mL의 에틸렌글리콜(C 2H 4(OH) 2)과 혼합하여 자석 교반기로 완전히 녹을 때까지 교반함으로써 혼합 용액을 제조하였다. 상기 혼합 용액에 35mmol의 아세트산나트륨(CH 3COONa)과 0.59mmol의 염화금산(HAuCl 4·3H 2O)을 넣고 계속 교반하였다. 아세트산나트륨과 염화금산이 모두 녹으면 혼합 용액을 테플론용기에 옮겨 담고 압력을 견딜 수 있도록 금속 용기에 넣은 후 200℃로 가열 후 8시간 동안 유지시킨다. 반응이 끝나면 합성된 입자를 원심 분리 등으로 분리하여 에탄올, 탈이온수로 정제한다. 분리된 입자를 진공 오븐에서 12시간 동안 건조하여 파우더 형태로 제조한다.
이어서, 상기 입자를 탈이온수 등의 극성 용매에 분산시키기 위하여 입자 표면에 친수성 기능기를 부착하는 표면 전처리 단계를 진행한다. 입자 합성단계에서 만들어진 파우더 형태의 입자 1mg과 구연산(citric acid, HOC(COOH)(CH 2COOH) 2) 0.6mg을 1mL의 탈이온수에 넣고 2시간 동안 초음파 처리한 후 원심분리 등으로 입자를 분리하고 탈이온수로 정제한다.
이로써 금(Au)을 포함하는 코어(Core) 및 산화철(Fe 3O 4)을 포함하는 쉘(Shell)을 구비한 막대형의 코어-쉘 자성 플라즈몬 입자로서, 상기 쉘(Shell)이 실질적으로 상기 코어(Core)의 표면 전체를 둘러싼 구조의 자성 플라즈몬 입자를 제조하였다. 상기 코어의 평균 길이(length)는 2454(±624)nm이고, 상기 코어의 평균 폭(width)은 78(±16)nm이며, 상기 쉘의 평균 두께는 107(±12)nm였다.
실시예 4: 자성 플라즈몬 입자 (IV)
20mL의 에틸렌글리콜(C 2H 4(OH) 2) 용액에 염화철 (Fe(NO 3) 3·9H 2O) 0.12 M과 구연산 34mM이 되도록 혼합하여 자석 교반기로 완전히 녹을 때까지 교반함으로써 혼합 용액을 제조하였다. 상기 혼합 용액에 아세트산나트륨(CH 3COONa)을 첨가하여 0.73 M 농도로 맞춘다. 아세트산나트륨이 모두 녹으면 혼합 용액을 테플론용기에 옮겨 담고 압력을 견딜 수 있도록 금속 용기에 넣은 후 200℃로 가열 후 10시간 동안 유지시킨다. 반응이 끝나면 합성된 나노입자를 원심 분리 등으로 분리하여 에탄올, 탈이온수로 정제한다. 분리된 나노입자를 진공 오븐에서 12시간 동안 건조하여 파우더 형태로 제조한다.
이어서, 상기 나노입자를 탈이온수 등의 극성 용매에 분산시키기 위하여 나노입자 표면에 친수성 기능기를 부착하는 표면 전처리 단계를 진행한다. 나노입자 합성단계에서 만들어진 파우더 형태의 나노입자 1mg과 구연산(citric acid, HOC(COOH)(CH 2COOH) 2) 0.6mg을 1mL의 탈이온수에 넣고 2시간 동안 초음파 처리한 후 원심분리 등으로 나노입자를 분리하고 탈이온수로 정제한다.
슬라이드 글라스를 피라냐 용액에 처리하여 유기물 및 이물질을 제거하여 친수성 표면을 제작한다. 슬라이드 글라스를 0.2wt% 폴리디알릴디메틸암모니아(PDDA, Polydiallyldimethylammonium chloride) 고분자 용액에 담가 양전하를 띄는 폴리비닐알콜(PVA, Polyvinylalcohol) 고분자가 슬라이드 글라스 표면에 고루 분포할 수 있게 한다. 이후 슬라이드 글라스를 꺼내서 말린 다음 준비한 입자 용액을 떨어뜨려 음전하를 띄는 나노입자들이 양전하를 띄는 PDDA 표면에 균일하게 붙을 수 있도록 하고 나머지 용액들은 탈이온수로 약하게 씻어낸 후 말린다. 단일층으로 슬라이드 글라스 위에 정렬되어 있는 나노입자에 금 스퍼터를 이용하여 20 nm 정도 코팅을 한다. 이후 코팅된 금 박막 표면을 안정화 시키기 위하여 1mg/mL 농도의 cysteine을 과량 첨가한 후 shaking incubator로 60 rpm으로 12시간 동안 반응시킨다. 반응이 끝난 후 초음파 처리를 하여 입자 단일층을 슬라이드 글라스로부터 떼어내고 자석으로 입자를 분리하고 탈이온수로 정제한다.
이로써 산화철(Fe 3O 4)을 포함하는 코어(Core) 및 금(Au)을 포함하는 쉘(shell)을 구비한 구형의 코어-쉘 입자로서, 상기 쉘(shell)이 실질적으로 상기 코어(Core)의 표면 일부를 둘러싼 하프-쉘 (Half-shell) 구조의 자성 플라즈몬 입자를 제조하였다. 상기 코어의 평균 직경은 204.6(±23.6)nm 이고, 상기 쉘의 평균 두께는 22.8(±1.8)nm였다.
<측정예>
측정예 1: 자기장 인가에 의한 가변성 평가
상기 실시예 1 내지 4의 자성 플라즈몬 입자에 대하여, 각각 하기 표 1 내지 표 4에 기재된 바와 같이, 탈이온수 용매에 농도를 달리하여 분산시킴으로써 입자 분산체를 제조하였다.
2개의 네오디뮴(neodymium) 자석(50 x 10 x 2 mm, 0.2T)을 준비하고, 도 5에 도시된 바와 같이, 상기 두 자석(11, 12)이 동일한 자화 방향(y축 방향)으로 서로 3cm의 간격이 되도록 대향 배치하였다. 각각의 농도의 상기 입자 분산체(21)를 상기 2개의 자석(11, 12) 사이의 중앙에 배치하였다. 상기 2개의 자석(11, 12)을 y축을 회전축으로 하여 동일한 각도 크기만큼 회전시키되, 하나의 자석은 시계 방향으로 회전시키고, 다른 하나의 자석은 반시계 방향으로 회전시켰다. 도 6은 상기 두 자석(11, 12)의 회전 이후 y축 방향에서 도시한 투시도이다. 도 6을 참조할 때, 각각의 자석(11, 12)의 장축(L1, L2)이 z축과 이루는 각도(θ1, θ2)의 크기, 즉, 두 자석(11, 12)의 회전각의 크기가 각각 하기 표 1 내지 4에 기재된 바와 같도록 회전시켰다. 이로써, 도 5 및 도 7을 참조할 때, 상기 입자 분산체(21)에 각 조건에 따른 나선형 자기장(13)이 인가되었다.
각 조건에 따라, 상기 실시예 1 내지 4의 자성 플라즈몬 입자의 배열이 변화함에 따라 소정의 정렬 구조를 갖는 3차원 나노 구조체가 제조되었다. 이는 각각의 자기장 인가 조건에 따라 제조된 상기 나노 구조체에 대하여 원편광이색성분광기(JASCO, J-1500)를 이용하여 500nm/min의 스캔 속도, 0.5nm의 데이터 간격, 및 200nm 내지 900nm의 파장 범위 조건 하에서 스펙트럼을 측정하였을 때, 그 스펙트럼이 변화하는 것으로부터 확인할 수 있었다. 스펙트럼의 피크 값은 각각 하기 표 1 내지 4에 기재된 바와 같다. 또한, 상기 실시예 1 내지 4의 자성 플라즈몬 입자 각각에 대한 나노 구조체의 농도 및 회전 각도별 CD 스펙트럼은 각각 도 8 내지 도 11에 도시한 바와 같다.
측정예 2: 나노 구조체의 카이랄성(Chirality)
상기 실시예 1 내지 4의 각각의 자성 플라즈몬 입자에 대하여 자기장 인가 조건을 변화시킴으로써 제조된 각각의 3차원 나노 구조체는 상기 측정예 1에서 측정한 바와 같이, 원편광이색성분광 스펙트럼(Circular Dichroism Spectroscopy, CD)이 피크를 나타내는 바, 카이랄성(Chirality)을 나타내는 것을 확인할 수 있었다.
이때, 상기 실시예 1 내지 4의 각각의 자성 플라즈몬 입자를 이용하여 제조된 각각의 나노 구조체에 대하여, 상기 자성 플라즈몬 입자가 구형의 코어-쉘 입자인 경우에는 쉘의 평균 두께(nm)에 대한 코어 평균 입경(nm)의 비를 A 값으로 하고, 상기 자성 플라즈몬 입자가 막대형의 코어-쉘 입자인 경우에는 쉘의 평균 두께(nm)에 대한 코어 평균 폭(nm)의 비를 A 값으로 하여, 하기 식 1의 값을 구하였다.
[식 1]
Figure PCTKR2020015355-appb-img-000003
상기 C는 상기 자성 플라즈몬 입자에 자기장을 인가하기 위한 상기 두 자석(11, 12)의 각각의 회전각(θ1, θ2)의 크기(θ)에 대하여, 회전각의 크기(θ)가 45°일 때 카이랄성(τ)의 크기 값을 1.0으로 한 경우의 상대적 카이랄성(sin(2θ)) 크기를 계산하여 그 값으로 하였다.
각각의 나노 구조체에 대한 상기 A, B 및 C의 값과 상기 식 1의 값은 하기 표 1 내지 4에 기재한 바와 같다.
입자 (I) 농도(B)
[㎍/mL]
θ
[°]
τ 상대비(C)
(|sin2θ|)
[θ=degree]
CD 스펙트럼 [mdeg] (A*B*C)/Pmax
(A=61.4/54.3)
@680nm부근 @830nm부근 Pmax
실시예 1-1 25 0 0.00 24.0099 -27.7944 27.7944 0.00
실시예 1-2 50 0 0.00 -1.18151 -3.35958 3.35958 0.00
실시예 1-3 75 0 0.00 67.0504 -117.419 117.419 0.00
실시예 1-4 100 0 0.00 95.599 -174.176 174.176 0.00
실시예 1-5 125 0 0.00 59.8761 -168.584 168.584 0.00
실시예 1-6 150 0 0.00 62.7865 -196.911 196.911 0.00
실시예 1-7 175 0 0.00 41.5222 -158.031 158.031 0.00
실시예 1-8 200 0 0.00 24.2616 -142.455 142.455 0.00
실시예 1-9 25 15 0.50 -4.5823 14.4494 14.4494 0.98
실시예 1-10 50 15 0.50 -85.6535 220.452 220.452 0.13
실시예 1-11 75 15 0.50 -131.236 324.921 324.921 0.13
실시예 1-12 100 15 0.50 -261.17 721.541 721.541 0.08
실시예 1-13 125 15 0.50 -404.182 1147.69 1147.69 0.06
실시예 1-14 150 15 0.50 -443.853 1276.1 1276.1 0.07
실시예 1-15 175 15 0.50 -245.245 818.711 818.711 0.12
실시예 1-16 200 15 0.50 -415.379 1174.39 1174.39 0.10
실시예 1-17 25 30 0.87 -22.7185 79.474 79.474 0.31
실시예 1-18 50 30 0.87 -121.04 417.616 417.616 0.12
실시예 1-19 75 30 0.87 -272.214 646.457 646.457 0.11
실시예 1-20 100 30 0.87 -490.672 1414.71 1414.71 0.07
실시예 1-21 125 30 0.87 -678.063 2063.78 2063.78 0.06
실시예 1-22 150 30 0.87 -634.406 1913.76 1913.76 0.08
실시예 1-23 175 30 0.87 -825.094 2361.52 2361.52 0.07
실시예 1-24 200 30 0.87 -755.049 2214.15 2214.15 0.09
실시예 1-25 25 45 1.00 -20.9936 76.835 76.835 0.37
실시예 1-26 50 45 1.00 -140.436 511.409 511.409 0.11
실시예 1-27 75 45 1.00 -306.815 1080.49 1080.49 0.08
실시예 1-28 100 45 1.00 -591.983 1926.45 1926.45 0.06
실시예 1-29 125 45 1.00 -742.859 2263.11 2263.11 0.06
실시예 1-30 150 45 1.00 -722.538 2269.08 2269.08 0.07
실시예 1-31 175 45 1.00 -941.641 2738.09 2738.09 0.07
실시예 1-32 200 45 1.00 -1018.3 2892.83 2892.83 0.08
실시예 1-33 25 60 0.87 -20.8995 73.6665 73.6665 0.33
실시예 1-34 50 60 0.87 -88.4849 346.019 346.019 0.14
실시예 1-35 75 60 0.87 -276.003 781.403 781.403 0.09
실시예 1-36 100 60 0.87 -502.098 1540.75 1540.75 0.06
실시예 1-37 125 60 0.87 -655.969 2052.61 2052.61 0.06
실시예 1-38 150 60 0.87 -710.642 2167.07 2167.07 0.07
실시예 1-39 175 60 0.87 -780.289 2379.01 2379.01 0.07
실시예 1-40 200 60 0.87 -848.356 2460.57 2460.57 0.08
실시예 1-41 25 75 0.50 -0.245546 24.6635 24.6635 0.57
실시예 1-42 50 75 0.50 -36.2108 158.793 158.793 0.18
실시예 1-43 75 75 0.50 -143.936 461.295 461.295 0.09
실시예 1-44 100 75 0.50 -262.514 825.693 825.693 0.07
실시예 1-45 125 75 0.50 -359.163 1140.66 1140.66 0.06
실시예 1-46 150 75 0.50 -357.154 1284.65 1284.65 0.07
실시예 1-47 175 75 0.50 -436.247 1330.04 1330.04 0.07
실시예 1-48 200 75 0.50 -399.246 1214.5 1214.5 0.09
실시예 1-49 25 90 0.00 16.0777 -44.0767 44.0767 0.00
실시예 1-50 50 90 0.00 28.9884 -64.2371 64.2371 0.00
실시예 1-51 75 90 0.00 52.7822 -126.687 126.687 0.00
실시예 1-52 100 90 0.00 60.1336 -105.996 105.996 0.00
실시예 1-53 125 90 0.00 60.7256 -132.183 132.183 0.00
실시예 1-54 150 90 0.00 44.4219 -102.583 102.583 0.00
실시예 1-55 175 90 0.00 54.9442 -120.422 120.422 0.00
실시예 1-56 200 90 0.00 28.7288 -86.9 86.9 0.00
실시예 1-57 25 105 0.50 34.9145 -105.617 105.617 0.13
실시예 1-58 50 105 0.50 74.5349 -224.161 224.161 0.13
실시예 1-59 75 105 0.50 231.221 -719.515 719.515 0.06
실시예 1-60 100 105 0.50 381.372 -1127.94 1127.94 0.05
실시예 1-61 125 105 0.50 493.191 -1466.55 1466.55 0.05
실시예 1-62 150 105 0.50 472.662 -1430.01 1430.01 0.06
실시예 1-63 175 105 0.50 479.217 -1467.72 1467.72 0.07
실시예 1-64 200 105 0.50 440.318 -1416.95 1416.95 0.08
실시예 1-65 25 120 0.87 44.0728 -147.612 147.612 0.17
실시예 1-66 50 120 0.87 115.376 -398.886 398.886 0.12
실시예 1-67 75 120 0.87 348.892 -1100.23 1100.23 0.07
실시예 1-68 100 120 0.87 570.329 -1844.23 1844.23 0.05
실시예 1-69 125 120 0.87 803.536 -2343.33 2343.33 0.05
실시예 1-70 150 120 0.87 754.928 -2261.11 2261.11 0.06
실시예 1-71 175 120 0.87 899.43 -2568.77 2568.77 0.07
실시예 1-72 200 120 0.87 905.293 -2470.57 2470.57 0.08
실시예 1-73 25 135 1.00 51.5963 -186.348 186.348 0.15
실시예 1-74 50 135 1.00 165.941 -582.582 582.582 0.10
실시예 1-75 75 135 1.00 414.199 -1300.25 1300.25 0.07
실시예 1-76 100 135 1.00 680.842 -2144.71 2144.71 0.05
실시예 1-77 125 135 1.00 805.463 -2502.3 2502.3 0.06
실시예 1-78 150 135 1.00 882.054 -2601.23 2601.23 0.07
실시예 1-79 175 135 1.00 1071.95 -3049.28 3049.28 0.06
실시예 1-80 200 135 1.00 958.416 -2714.1 2714.1 0.08
실시예 1-81 25 150 0.87 48.8084 -159.532 159.532 0.15
실시예 1-82 50 150 0.87 154.376 -515.826 515.826 0.09
실시예 1-83 75 150 0.87 375.085 -1174.04 1174.04 0.06
실시예 1-84 100 150 0.87 599.926 -1900.42 1900.42 0.05
실시예 1-85 125 150 0.87 757.317 -2261.12 2261.12 0.05
실시예 1-86 150 150 0.87 719.947 -2231.19 2231.19 0.07
실시예 1-87 175 150 0.87 1072.8 -2985.31 2985.31 0.06
실시예 1-88 200 150 0.87 999.777 -2777.72 2777.72 0.07
실시예 1-89 25 165 0.50 37.7221 -117.342 117.342 0.12
실시예 1-90 50 165 0.50 96.7212 -317.234 317.234 0.09
실시예 1-91 75 165 0.50 241.131 -748.105 748.105 0.06
실시예 1-92 100 165 0.50 370.313 -1163.1 1163.1 0.05
실시예 1-93 125 165 0.50 530.478 -1494.5 1494.5 0.05
실시예 1-94 150 165 0.50 470.297 -1417.91 1417.91 0.06
실시예 1-95 175 165 0.50 708.259 -1794.61 1794.61 0.06
실시예 1-96 200 165 0.50 471.786 -1363.09 1363.09 0.08
(A*B*C)/Pmax의 최대값 0.98
(A*B*C)/Pmax의 최소값 0.00
C>0인 경우, (A*B*C)/Pmax의 최소값 0.05
입자 (II) 농도(B)
[㎍/mL]
θ
[°]
τ 상대비(C)
(|sin2θ|)
[θ=degree]
CD 스펙트럼 [mdeg] (A*B*C)/Pmax
(A=50.2/56.3)
@550nm부근 @630nm부근 Pmax
실시예 2-1 25 0 0.00 12.9887 -33.9227 33.9227 0.00
실시예 2-2 50 0 0.00 24.0005 -69.5656 69.5656 0.00
실시예 2-3 75 0 0.00 37.3188 -90.1883 90.1883 0.00
실시예 2-4 100 0 0.00 44.8066 -147.669 147.669 0.00
실시예 2-5 125 0 0.00 69.7232 -177.941 177.941 0.00
실시예 2-6 150 0 0.00 73.5675 -232.129 232.129 0.00
실시예 2-7 175 0 0.00 56.4886 -211.105 211.105 0.00
실시예 2-8 200 0 0.00 80.6551 -195.476 195.476 0.00
실시예 2-9 25 15 0.50 2.04169 19.0562 19.0562 0.58
실시예 2-10 50 15 0.50 -13.2609 133.278 133.278 0.17
실시예 2-11 75 15 0.50 -41.9411 319.499 319.499 0.10
실시예 2-12 100 15 0.50 -71.6352 545.872 545.872 0.08
실시예 2-13 125 15 0.50 -115.016 751.164 751.164 0.07
실시예 2-14 150 15 0.50 -169.939 982.81 982.81 0.07
실시예 2-15 175 15 0.50 -252.55 1177.08 1177.08 0.07
실시예 2-16 200 15 0.50 -286.668 1196.82 1196.82 0.07
실시예 2-17 25 30 0.87 -4.94052 55.0064 55.0064 0.35
실시예 2-18 50 30 0.87 -21.8273 221.683 221.683 0.17
실시예 2-19 75 30 0.87 -66.9534 527.974 527.974 0.11
실시예 2-20 100 30 0.87 -140.085 898.497 898.497 0.09
실시예 2-21 125 30 0.87 -201.536 1187.15 1187.15 0.08
실시예 2-22 150 30 0.87 -285.584 1619.41 1619.41 0.07
실시예 2-23 175 30 0.87 -433.604 2225.84 2225.84 0.06
실시예 2-24 200 30 0.87 -486.3 2106.9 2106.9 0.07
실시예 2-25 25 45 1.00 -0.08542 55.9676 55.9676 0.40
실시예 2-26 50 45 1.00 -21.1961 212.854 212.854 0.21
실시예 2-27 75 45 1.00 -74.4058 589.566 589.566 0.11
실시예 2-28 100 45 1.00 -155.121 1046.21 1046.21 0.09
실시예 2-29 125 45 1.00 -210.311 1297.41 1297.41 0.09
실시예 2-30 150 45 1.00 -345.387 1916.35 1916.35 0.07
실시예 2-31 175 45 1.00 -497.619 2605.74 2605.74 0.06
실시예 2-32 200 45 1.00 -605.706 2554.89 2554.89 0.07
실시예 2-33 25 60 0.87 0.161611 46.2883 46.2883 0.42
실시예 2-34 50 60 0.87 -14.1837 166.475 166.475 0.23
실시예 2-35 75 60 0.87 -53.0223 451.453 451.453 0.13
실시예 2-36 100 60 0.87 -108.765 793.788 793.788 0.10
실시예 2-37 125 60 0.87 -149.601 967.583 967.583 0.10
실시예 2-38 150 60 0.87 -270.391 1566.68 1566.68 0.07
실시예 2-39 175 60 0.87 -384.997 1989.45 1989.45 0.07
실시예 2-40 200 60 0.87 -505.936 2198.12 2198.12 0.07
실시예 2-41 25 75 0.50 2.59645 15.2231 15.2231 0.73
실시예 2-42 50 75 0.50 -0.765858 83.6581 83.6581 0.27
실시예 2-43 75 75 0.50 -20.7056 211.067 211.067 0.16
실시예 2-44 100 75 0.50 -46.9466 413.847 413.847 0.11
실시예 2-45 125 75 0.50 -61.347 427.492 427.492 0.13
실시예 2-46 150 75 0.50 -146.882 838.844 838.844 0.08
실시예 2-47 175 75 0.50 -183.78 916.749 916.749 0.08
실시예 2-48 200 75 0.50 -256.047 1226.8 1226.8 0.07
실시예 2-49 25 90 0.00 9.84896 -18.8676 18.8676 0.00
실시예 2-50 50 90 0.00 15.4456 -28.7567 28.7567 0.00
실시예 2-51 75 90 0.00 23.4234 -56.0573 56.0573 0.00
실시예 2-52 100 90 0.00 26.461 -54.7599 54.7599 0.00
실시예 2-53 125 90 0.00 33.0412 -52.6661 52.6661 0.00
실시예 2-54 150 90 0.00 41.7176 -77.1626 77.1626 0.00
실시예 2-55 175 90 0.00 34.1409 -58.5267 58.5267 0.00
실시예 2-56 200 90 0.00 55.8616 -71.8682 71.8682 0.00
실시예 2-57 25 105 0.50 12.1705 -45.612 45.612 0.24
실시예 2-58 50 105 0.50 27.4317 -107.644 107.644 0.21
실시예 2-59 75 105 0.50 58.5299 -267.077 267.077 0.12
실시예 2-60 100 105 0.50 94.0003 -458.404 458.404 0.10
실시예 2-61 125 105 0.50 103.088 -503.227 503.227 0.11
실시예 2-62 150 105 0.50 194.818 -833.629 833.629 0.08
실시예 2-63 175 105 0.50 241.432 -981.791 981.791 0.08
실시예 2-64 200 105 0.50 350.582 -1289.48 1289.48 0.07
실시예 2-65 25 120 0.87 10.1605 -57.3501 57.3501 0.34
실시예 2-66 50 120 0.87 29.1265 -136.643 136.643 0.28
실시예 2-67 75 120 0.87 74.073 -357.38 357.38 0.16
실시예 2-68 100 120 0.87 133.365 -661.947 661.947 0.12
실시예 2-69 125 120 0.87 136.452 -655.09 655.09 0.15
실시예 2-70 150 120 0.87 297.667 -1342.15 1342.15 0.09
실시예 2-71 175 120 0.87 351.385 -1529.56 1529.56 0.09
실시예 2-72 200 120 0.87 486.754 -1796 1796 0.09
실시예 2-73 25 135 1.00 12.016 -51.161 51.161 0.43
실시예 2-74 50 135 1.00 30.7176 -136.684 136.684 0.33
실시예 2-75 75 135 1.00 74.6721 -368.175 368.175 0.18
실시예 2-76 100 135 1.00 142.527 -695.904 695.904 0.13
실시예 2-77 125 135 1.00 233.812 -1073.28 1073.28 0.10
실시예 2-78 150 135 1.00 309.784 -1423.48 1423.48 0.09
실시예 2-79 175 135 1.00 403.784 -1806.37 1806.37 0.09
실시예 2-80 200 135 1.00 545.072 -1995.66 1995.66 0.09
실시예 2-81 25 150 0.87 9.68342 -46.9737 46.9737 0.41
실시예 2-82 50 150 0.87 26.3462 -110.558 110.558 0.35
실시예 2-83 75 150 0.87 63.2917 -275.067 275.067 0.21
실시예 2-84 100 150 0.87 121.576 -502.891 502.891 0.15
실시예 2-85 125 150 0.87 175.334 -793.066 793.066 0.12
실시예 2-86 150 150 0.87 274.307 -1201.31 1201.31 0.10
실시예 2-87 175 150 0.87 371.011 -1444.21 1444.21 0.09
실시예 2-88 200 150 0.87 433.043 -1554.62 1554.62 0.10
실시예 2-89 25 165 0.50 9.81558 -33.4495 33.4495 0.33
실시예 2-90 50 165 0.50 17.268 -66.056 66.056 0.34
실시예 2-91 75 165 0.50 34.6347 -153.61 153.61 0.22
실시예 2-92 100 165 0.50 64.7832 -273.244 273.244 0.16
실시예 2-93 125 165 0.50 125.247 -509.581 509.581 0.11
실시예 2-94 150 165 0.50 171.555 -721.413 721.413 0.09
실시예 2-95 175 165 0.50 228.764 -870.148 870.148 0.09
실시예 2-96 200 165 0.50 268.001 -915.525 915.525 0.10
(A*B*C)/Pmax의 최대값 0.73
(A*B*C)/Pmax의 최소값 0.00
C>0인 경우, (A*B*C)/Pmax의 최소값 0.06
입자 (III) 농도(B)
[㎍/mL]
θ
[°]
τ 상대비(C)
(|sin2θ|)
[θ=degree]
CD 스펙트럼 [mdeg] (A*B*C)/Pmax
(A=78/107)
@560nm부근 @830nm부근 Pmax
실시예 3-1 25 0 0.00 -7.53815 9.50373 9.50373 0.00
실시예 3-2 50 0 0.00 -11.5166 11.6856 11.6856 0.00
실시예 3-3 75 0 0.00 -19.4045 13.333 19.4045 0.00
실시예 3-4 100 0 0.00 -30.2261 13.0284 30.2261 0.00
실시예 3-5 125 0 0.00 -27.3712 29.2251 29.2251 0.00
실시예 3-6 150 0 0.00 -22.7016 38.9029 38.9029 0.00
실시예 3-7 175 0 0.00 -19.079 34.1915 34.1915 0.00
실시예 3-8 200 0 0.00 -26.3219 35.9554 35.9554 0.00
실시예 3-9 25 15 0.50 -7.91551 7.68037 7.91551 1.15
실시예 3-10 50 15 0.50 -15.8674 -6.02037 15.8674 1.15
실시예 3-11 75 15 0.50 -27.9142 -19.1392 27.9142 0.98
실시예 3-12 100 15 0.50 -39.4368 -32.1212 39.4368 0.93
실시예 3-13 125 15 0.50 -51.6815 -47.6679 51.6815 0.88
실시예 3-14 150 15 0.50 -57.5326 -65.4931 65.4931 0.84
실시예 3-15 175 15 0.50 -70.7813 -100.152 100.152 0.64
실시예 3-16 200 15 0.50 -65.7547 -115.026 115.026 0.63
실시예 3-17 25 30 0.87 -9.4047 0.259422 9.4047 1.68
실시예 3-18 50 30 0.87 -20.5545 -14.4674 20.5545 1.54
실시예 3-19 75 30 0.87 -35.1782 -35.3682 35.3682 1.34
실시예 3-20 100 30 0.87 -54.9278 -64.9022 64.9022 0.97
실시예 3-21 125 30 0.87 -70.683 -103.213 103.213 0.77
실시예 3-22 150 30 0.87 -80.7226 -139.911 139.911 0.68
실시예 3-23 175 30 0.87 -84.4237 -184.024 184.024 0.60
실시예 3-24 200 30 0.87 -105.777 -236.778 236.778 0.53
실시예 3-25 25 45 1.00 -8.93725 1.29636 8.93725 2.04
실시예 3-26 50 45 1.00 -23.0299 -13.2333 23.0299 1.58
실시예 3-27 75 45 1.00 -37.3763 -40.461 40.461 1.35
실시예 3-28 100 45 1.00 -59.3599 -80.2965 80.2965 0.91
실시예 3-29 125 45 1.00 -74.4613 -114.102 114.102 0.80
실시예 3-30 150 45 1.00 -93.3701 -167.345 167.345 0.65
실시예 3-31 175 45 1.00 -93.1886 -216.908 216.908 0.59
실시예 3-32 200 45 1.00 -109.779 -263.285 263.285 0.55
실시예 3-33 25 60 0.87 -6.4495 2.78366 6.4495 2.45
실시예 3-34 50 60 0.87 -14.6077 -12.3136 14.6077 2.16
실시예 3-35 75 60 0.87 -29.8128 -33.7258 33.7258 1.41
실시예 3-36 100 60 0.87 -49.5093 -60.2401 60.2401 1.05
실시예 3-37 125 60 0.87 -63.1746 -96.4258 96.4258 0.82
실시예 3-38 150 60 0.87 -82.6834 -146.269 146.269 0.65
실시예 3-39 175 60 0.87 -76.156 -176.352 176.352 0.63
실시예 3-40 200 60 0.87 -74.7141 -206.697 206.697 0.61
실시예 3-41 25 75 0.50 -6.55073 5.32714 6.55073 1.39
실시예 3-42 50 75 0.50 -18.8469 -5.32564 18.8469 0.97
실시예 3-43 75 75 0.50 -21.2838 -15.4706 21.2838 1.29
실시예 3-44 100 75 0.50 -33.7699 -28.8007 33.7699 1.08
실시예 3-45 125 75 0.50 -36.9541 -46.3082 46.3082 0.99
실시예 3-46 150 75 0.50 -48.4698 -71.9071 71.9071 0.76
실시예 3-47 175 75 0.50 -54.8074 -93.9875 93.9875 0.68
실시예 3-48 200 75 0.50 -60.9551 -114.5 114.5 0.64
실시예 3-49 25 90 0.00 -8.21705 5.6958 8.21705 0.00
실시예 3-50 50 90 0.00 -14.5284 4.16412 14.5284 0.00
실시예 3-51 75 90 0.00 -19.2898 4.08091 19.2898 0.00
실시예 3-52 100 90 0.00 -18.027 12.6545 18.027 0.00
실시예 3-53 125 90 0.00 -21.2254 24.8205 24.8205 0.00
실시예 3-54 150 90 0.00 -15.3822 22.9 22.9 0.00
실시예 3-55 175 90 0.00 -24.9115 20.5429 24.9115 0.00
실시예 3-56 200 90 0.00 -23.7274 23.832 23.832 0.00
실시예 3-57 25 105 0.50 -2.01906 8.26742 8.26742 1.10
실시예 3-58 50 105 0.50 -4.33768 14.8651 14.8651 1.23
실시예 3-59 75 105 0.50 -9.37984 28.0946 28.0946 0.97
실시예 3-60 100 105 0.50 -10.9829 52.7525 52.7525 0.69
실시예 3-61 125 105 0.50 -5.55637 77.838 77.838 0.59
실시예 3-62 150 105 0.50 2.34774 108.448 108.448 0.50
실시예 3-63 175 105 0.50 -3.44082 129.594 129.594 0.49
실시예 3-64 200 105 0.50 -1.00455 149.064 149.064 0.49
실시예 3-65 25 120 0.87 -6.74832 8.49235 8.49235 1.86
실시예 3-66 50 120 0.87 -3.26899 19.614 19.614 1.61
실시예 3-67 75 120 0.87 -1.63751 42.1399 42.1399 1.13
실시예 3-68 100 120 0.87 8.42136 87.5046 87.5046 0.72
실시예 3-69 125 120 0.87 17.7691 125.622 125.622 0.63
실시예 3-70 150 120 0.87 29.9982 180.58 180.58 0.53
실시예 3-71 175 120 0.87 18.6498 204.748 204.748 0.54
실시예 3-72 200 120 0.87 42.3768 244.464 244.464 0.52
실시예 3-73 25 135 1.00 -4.69228 8.02431 8.02431 2.27
실시예 3-74 50 135 1.00 -7.01615 15.3894 15.3894 2.37
실시예 3-75 75 135 1.00 1.10383 51.6208 51.6208 1.06
실시예 3-76 100 135 1.00 9.99771 90.5506 90.5506 0.81
실시예 3-77 125 135 1.00 19.9972 135.318 135.318 0.67
실시예 3-78 150 135 1.00 26.0874 195.643 195.643 0.56
실시예 3-79 175 135 1.00 39.5219 234.553 234.553 0.54
실시예 3-80 200 135 1.00 38.8694 293.858 293.858 0.50
실시예 3-81 25 150 0.87 -6.71394 6.86092 6.86092 2.30
실시예 3-82 50 150 0.87 -4.00949 12.8799 12.8799 2.45
실시예 3-83 75 150 0.87 -2.05087 42.0491 42.0491 1.13
실시예 3-84 100 150 0.87 2.5425 78.2846 78.2846 0.81
실시예 3-85 125 150 0.87 17.0064 134.022 134.022 0.59
실시예 3-86 150 150 0.87 15.4648 176.807 176.807 0.54
실시예 3-87 175 150 0.87 39.1618 219.53 219.53 0.50
실시예 3-88 200 150 0.87 35.0033 270.308 270.308 0.47
실시예 3-89 25 165 0.50 -2.72344 3.83548 3.83548 2.38
실시예 3-90 50 165 0.50 -6.24092 6.95336 6.95336 2.62
실시예 3-91 75 165 0.50 -0.576269 24.7738 24.7738 1.10
실시예 3-92 100 165 0.50 -6.19691 59.9633 59.9633 0.61
실시예 3-93 125 165 0.50 2.06396 91.3203 91.3203 0.50
실시예 3-94 150 165 0.50 9.68981 99.0606 99.0606 0.55
실시예 3-95 175 165 0.50 7.16727 136.52 136.52 0.47
실시예 3-96 200 165 0.50 8.96223 157.629 157.629 0.46
(A*B*C)/Pmax의 최대값 2.62
(A*B*C)/Pmax의 최소값 0.00
C>0인 경우, (A*B*C)/Pmax의 최소값 0.46
입자 (IV) 농도(B)
[㎍/mL]
θ
[°]
τ 상대비(C)
(|sin2θ|)
[θ=degree]
CD 스펙트럼 [mdeg] (A*B*C)/Pmax
(A=204.6/22.8)
@450nm부근 @700nm부근 Pmax
실시예 4-1 25 0 0.00 -13.7293 -9.37537 13.7293 0.00
실시예 4-2 50 0 0.00 -26.8003 -19.6424 26.8003 0.00
실시예 4-3 75 0 0.00 -40.3599 -27.4027 40.3599 0.00
실시예 4-4 100 0 0.00 -61.3673 -49.9827 61.3673 0.00
실시예 4-5 125 0 0.00 -64.7302 -63.3074 64.7302 0.00
실시예 4-6 150 0 0.00 -82.6592 -71.9333 82.6592 0.00
실시예 4-7 175 0 0.00 -78.9345 -97.0621 97.0621 0.00
실시예 4-8 200 0 0.00 -82.7787 -80.4553 82.7787 0.00
실시예 4-9 25 15 0.50 -11.437 -6.12388 11.437 9.80
실시예 4-10 50 15 0.50 -0.387778 -28.7961 28.7961 7.79
실시예 4-11 75 15 0.50 8.87803 -38.657 38.657 8.70
실시예 4-12 100 15 0.50 14.8943 -64.7364 64.7364 6.93
실시예 4-13 125 15 0.50 27.2106 -113.701 113.701 4.93
실시예 4-14 150 15 0.50 32.7927 -126.945 126.945 5.30
실시예 4-15 175 15 0.50 41.7736 -163.453 163.453 4.80
실시예 4-16 200 15 0.50 81.4048 -197.244 197.244 4.55
실시예 4-17 25 30 0.87 -11.437 -6.12388 11.437 16.98
실시예 4-18 50 30 0.87 9.05278 -30.7624 30.7624 12.63
실시예 4-19 75 30 0.87 39.1174 -56.1303 56.1303 10.38
실시예 4-20 100 30 0.87 79.4493 -82.8562 82.8562 9.38
실시예 4-21 125 30 0.87 97.5773 -137.605 137.605 7.06
실시예 4-22 150 30 0.87 129.521 -176.785 176.785 6.59
실시예 4-23 175 30 0.87 173.356 -212.988 212.988 6.38
실시예 4-24 200 30 0.87 179.851 -248.184 248.184 6.26
실시예 4-25 25 45 1.00 -3.60336 -13.2538 13.2538 16.92
실시예 4-26 50 45 1.00 20.658 -37.4083 37.4083 11.99
실시예 4-27 75 45 1.00 50.3629 -60.2882 60.2882 11.16
실시예 4-28 100 45 1.00 88.9416 -95.797 95.797 9.36
실시예 4-29 125 45 1.00 127.573 -159.375 159.375 7.04
실시예 4-30 150 45 1.00 148.764 -202.892 202.892 6.63
실시예 4-31 175 45 1.00 164.48 -244.317 244.317 6.43
실시예 4-32 200 45 1.00 177.76 -275.326 275.326 6.52
실시예 4-33 25 60 0.87 -8.39113 -13.7004 13.7004 14.18
실시예 4-34 50 60 0.87 12.5795 -38.8445 38.8445 10.00
실시예 4-35 75 60 0.87 46.6445 -54.6695 54.6695 10.66
실시예 4-36 100 60 0.87 78.3133 -98.3385 98.3385 7.90
실시예 4-37 125 60 0.87 100.229 -136.854 136.854 7.10
실시예 4-38 150 60 0.87 136 -196.026 196.026 5.94
실시예 4-39 175 60 0.87 152.98 -239.44 239.44 5.68
실시예 4-40 200 60 0.87 174.774 -258.659 258.659 6.01
실시예 4-41 25 75 0.50 -13.1136 -11.9487 13.1136 8.55
실시예 4-42 50 75 0.50 -2.90439 -25.3031 25.3031 8.86
실시예 4-43 75 75 0.50 14.0841 -46.955 46.955 7.16
실시예 4-44 100 75 0.50 25.5531 -65.2249 65.2249 6.88
실시예 4-45 125 75 0.50 32.7731 -110.369 110.369 5.08
실시예 4-46 150 75 0.50 38.7656 -150.619 150.619 4.47
실시예 4-47 175 75 0.50 68.8032 -167.151 167.151 4.70
실시예 4-48 200 75 0.50 80.1045 -181.408 181.408 4.94
실시예 4-49 25 90 0.00 -13.6779 -11.4838 13.6779 0.00
실시예 4-50 50 90 0.00 -31.6212 -20.6161 31.6212 0.00
실시예 4-51 75 90 0.00 -41.8544 -23.6395 41.8544 0.00
실시예 4-52 100 90 0.00 -41.9537 -31.529 41.9537 0.00
실시예 4-53 125 90 0.00 -89.1371 -56.5824 89.1371 0.00
실시예 4-54 150 90 0.00 -74.274 -77.7345 77.7345 0.00
실시예 4-55 175 90 0.00 -133.742 -62.0819 133.742 0.00
실시예 4-56 200 90 0.00 -87.9446 -50.7764 87.9446 0.00
실시예 4-57 25 105 0.50 -24.9615 -2.0642 24.9615 4.49
실시예 4-58 50 105 0.50 -53.6922 -7.2385 53.6922 4.18
실시예 4-59 75 105 0.50 -81.738 -9.26416 81.738 4.12
실시예 4-60 100 105 0.50 -129.965 0.163201 129.965 3.45
실시예 4-61 125 105 0.50 -191.557 5.12119 191.557 2.93
실시예 4-62 150 105 0.50 -229.336 -11.7384 229.336 2.93
실시예 4-63 175 105 0.50 -239.939 22.9567 239.939 3.27
실시예 4-64 200 105 0.50 -241.141 52.4878 241.141 3.72
실시예 4-65 25 120 0.87 -30.2692 -0.84840 30.2692 6.42
실시예 4-66 50 120 0.87 -76.1418 -0.62602 76.1418 5.10
실시예 4-67 75 120 0.87 -128.125 3.04504 128.125 4.55
실시예 4-68 100 120 0.87 -163.733 16.9155 163.733 4.74
실시예 4-69 125 120 0.87 -244.645 36.2708 244.645 3.97
실시예 4-70 150 120 0.87 -328.532 47.1086 328.532 3.55
실시예 4-71 175 120 0.87 -336.89 100.448 336.89 4.04
실시예 4-72 200 120 0.87 -346.413 119.458 346.413 4.48
실시예 4-73 25 135 1.00 -30.1818 -0.43374 30.1818 7.43
실시예 4-74 50 135 1.00 -77.7811 0.402123 77.7811 5.77
실시예 4-75 75 135 1.00 -138.074 6.51752 138.074 4.87
실시예 4-76 100 135 1.00 -208.923 25.7691 208.923 4.29
실시예 4-77 125 135 1.00 -276.945 39.2789 276.945 4.05
실시예 4-78 150 135 1.00 -331.597 56.2207 331.597 4.06
실시예 4-79 175 135 1.00 -351.074 127.933 351.074 4.47
실시예 4-80 200 135 1.00 -466.984 168.866 466.984 3.84
실시예 4-81 25 150 0.87 -28.4136 -2.24077 28.4136 6.83
실시예 4-82 50 150 0.87 -76.1401 -0.08146 76.1401 5.10
실시예 4-83 75 150 0.87 -117.67 2.83803 117.67 4.95
실시예 4-84 100 150 0.87 -179.737 12.7147 179.737 4.32
실시예 4-85 125 150 0.87 -233.904 31.5423 233.904 4.15
실시예 4-86 150 150 0.87 -311.735 39.6801 311.735 3.74
실시예 4-87 175 150 0.87 -323.65 94.0516 323.65 4.20
실시예 4-88 200 150 0.87 -326.197 120.249 326.197 4.76
실시예 4-89 25 165 0.50 -25.1369 -5.97778 25.1369 4.46
실시예 4-90 50 165 0.50 -54.1712 -8.91204 54.1712 4.14
실시예 4-91 75 165 0.50 -85.2771 -16.5045 85.2771 3.94
실시예 4-92 100 165 0.50 -112.405 -7.10573 112.405 3.99
실시예 4-93 125 165 0.50 -172.165 -9.25674 172.165 3.26
실시예 4-94 150 165 0.50 -204.38 -15.8375 204.38 3.29
실시예 4-95 175 165 0.50 -226.903 14.977 226.903 3.46
실시예 4-96 200 165 0.50 -262.556 26.2862 262.556 3.42
(A*B*C)/Pmax의 최대값 16.98
(A*B*C)/Pmax의 최소값 0.00
C>0인 경우, (A*B*C)/Pmax의 최소값 2.93
상기 측정예 1 내지 2 및 상기 표 1 내지 4를 참조할 때, 상기 실시예 1 내지 4의 자성 플라즈몬 입자는 자기장의 인가에 따라 그 배열이 변화하는 특성을 갖는 것을 확인할 수 있었다.
나아가, 상기 자성 플라즈몬 입자의 자기장 인가에 의한 배열 가변성에 기초하여 제조된 각각의 나노 구조체는 상기 자기장의 카이랄성(chirality)을 전가 받아 그 자체로 구조적 카이랄성을 나타내는 것을 확인할 수 있었다.
보다 구체적으로, 상기 실시예 1 내지 2의 자성 플라즈몬 입자는 구형의 코어-쉘 입자를 포함하고 상기 쉘이 상기 코어의 표면을 실질적으로 전면 둘러싸는 구조로서, 이를 적용한 나노 구조체의 상기 식 1의 값이 약 0.01 내지 약 1.0을 만족하는 것을 확인할 수 있었다.
또한, 상기 실시예 3의 자성 플라즈몬 입자는 막대형의 코어-쉘 입자를 포함하고 상기 쉘이 상기 코어의 표면을 실질적으로 전면 둘러싸는 구조로서, 이를 적용한 나노 구조체의 상기 식 1의 값이 약 0.3 내지 약 3.0을 만족하는 것을 확인할 수 있었다.
또한, 상기 실시예 4의 자성 플라즈몬 입자는 구형의 코어-쉘 입자를 포함하고 상기 쉘이 상기 코어의 표면을 실질적으로 일부 둘러싸는 하프-쉘 구조로서, 이를 적용한 나노 구조체의 상기 식 1의 값이 약 0.01 내지 약 20을 만족하는 것을 확인할 수 있었다.
이와 같이, 상기 자성 플라즈몬 입자는 코어-쉘 구조이면서 자기장 인가에 의한 배열 가변성을 가짐으로써, 인가되는 자기장의 구조 및 세기 등에 상응하는 정렬 구조를 갖는 나노 구조체를 형성할 수 있다. 일 구현예로서, 상기 자기장이 카이랄성을 갖는 나선형 구조의 자기장인 경우, 상기 자성 플라즈몬 입자가 이에 상응하도록 구조적 배열이 변화하여 전체적인 구조상 카이랄성을 갖는 나노 구조체의 일 구성으로 기능하는 것을 확인할 수 있었다. 이러한 상기 자성 플라즈몬 입자는 자기장 인가에 대한 반응 속도가 빠를 뿐만 아니라, 나노 구조체로 제조되었을 때의 구조적 정밀성을 향상시키는 역할을 수행함으로써 다양한 기술 분야에 있어서 광범위한 활용성을 확보하는 효과를 구현할 수 있다.
[부호의 설명]
14: 코어
15: 쉘
22: 자성 플라즈몬 입자
200: 나노 구조체
210: 입자 배열 구조체
201: 제1 구조체
202: 제2 구조체
11, 12: 자석
21: 입자 분산체
L1, L2: 자석의 장축
본 발명에 따른 나노 구조체에 의하는 경우 구조적 정밀성을 향상시키는 역할을 수행함으로써 다양한 기술 분야에 있어서 광범위한 활용성을 확보하는 효과를 구현할 수 있다.

Claims (16)

  1. 코어(Core); 및
    상기 코어의 표면의 적어도 일부를 둘러싸고 상기 코어의 성분과 이종의 성분을 포함하는 쉘(Shell);을 포함하는 코어-쉘(Core-shell) 입자를 포함하고,
    자기장 인가에 의한 배열 가변성을 갖는,
    자성 플라즈몬 입자.
  2. 제1항에 있어서,
    상기 코어-쉘 입자는 구형 코어-쉘 입자 또는 막대형 코어-쉘 입자를 포함하는,
    자성 플라즈몬 입자.
  3. 제2항에 있어서,
    상기 구형 코어-쉘 입자는,
    상기 코어의 직경이 0.01nm 내지 300nm이고,
    상기 쉘의 두께가 1nm 내지 150nm이며,
    상기 코어의 장경(L) 및 단경(S)의 비(L/S)로 정의되는 종횡비(Aspect ratio)가 1.00 내지 2.00인,
    자성 플라즈몬 입자.
  4. 제2항에 있어서,
    상기 막대형 코어-쉘 입자는,
    상기 코어의 폭이 0.01nm 내지 100nm이고,
    상기 쉘의 두께가 1nm 내지 150nm이며,
    상기 코어의 길이(L) 및 폭(W)의 비(L/W)로 정의되는 종횡비(Aspect ratio)가 2.00 초과, 40.00 이하인,
    자성 플라즈몬 입자.
  5. 제1항에 있어서,
    상기 코어-쉘 입자는 상기 코어 및 상기 쉘 중 어느 하나가 자성 성분을 포함하고, 다른 하나가 금속 성분을 포함하는,
    자성 플라즈몬 입자.
  6. 제5항에 있어서,
    상기 자성 성분은, 산화철(Fe 3O 4), 산화니켈(NiO), 산화코발트(Co 3O 4), 철(Fe), 니켈(Ni), 코발트(Co) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는,
    자성 플라즈몬 입자.
  7. 제5항에 있어서,
    상기 금속 성분은, 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 팔라듐(Pd), 이리듐(iridium), 오스뮴(osmium), 로듐(rhodium), 루테늄(ruthenium), 니켈(Ni), 코발트(Co), 철(Fe), 망간(Mn), 크롬(Cr), 바나듐(V), 티타늄(Ti), 알루미늄(Al), 아연(Zn), 카드뮴(Cd) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는,
    자성 플라즈몬 입자.
  8. 제1항에 있어서,
    상기 자기장 인가에 의한 배열 가변성은,
    나선형 자기장 인가에 의한 배열 가변성을 포함하는,
    자성 플라즈몬 입자.
  9. 제1항에 있어서,
    상기 코어-쉘 입자는 구형 코어-쉘 입자를 포함하고,
    상기 구형 코어-쉘 입자는 1mg 수량의 파우더에 대한 코어 입경의 표준편차가 30 이하인,
    자성 플라즈몬 입자.
  10. 제1항에 있어서,
    상기 코어-쉘 입자는 막대형 코어-쉘 입자를 포함하고,
    상기 막대형 코어-쉘 입자는 1mg 수량의 파우더에 대한 코어 폭의 표준편차가 30 이하인,
    자성 플라즈몬 입자.
  11. 제1항에 있어서,
    상기 자기장 인가에 의한 배열 가변성에 의하여,
    자기장 인가 시 배열 변화를 통해 입자 배열 구조체를 형성하며,
    상기 입자 배열 구조체를 적어도 하나 포함하는 나노 구조체가 전체 구조상 카이랄성(Chirality)를 띠는,
    자성 플라즈몬 입자.
  12. 제11항에 있어서,
    인가되는 상기 자기장이 나선형 자기장인
    자성 플라즈몬 입자.
  13. 나노 입자 배열 구조체를 2 이상 포함하고,
    상기 나노 입자 배열 구조체는 적어도 하나의 나노 입자를 포함하는 제1 구조체; 및 적어도 하나의 나노 입자를 포함하고 상기 제1 구조체와 이격 배치된 제2 구조체를 포함하며,
    전체 구조가 카이랄성(Chiarality)을 띠는,
    카이랄 나노 구조체.
  14. 제13항에 있어서,
    상기 카이랄성이 나선형 자기장 인가에 의해 가변적인,
    카이랄 나노 구조체.
  15. 제14항에 있어서,
    상기 나선형 자기장의 인가 시점(T1)으로부터 인가된 상기 나선형 자기장에 상응하는 카이랄성을 나타내도록 변화가 완료되는 시점(T2)까지의 시간(T2-T1)이 0.01ms 내지 20ms인,
    카이랄 나노 구조체.
  16. 제13항에 있어서,
    상기 제1 구조체 및 상기 제2 구조체 사이의 이격 직선 거리는 0.01nm 내지 50㎛인,
    카이랄 나노 구조체.
PCT/KR2020/015355 2019-11-12 2020-11-04 자성 플라즈몬 입자 및 이를 포함하는 구조체 WO2021096154A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/775,858 US20220388061A1 (en) 2019-11-12 2020-11-04 Magnetic plasmonic particles and structure comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190144029 2019-11-12
KR10-2019-0144029 2019-11-12

Publications (1)

Publication Number Publication Date
WO2021096154A1 true WO2021096154A1 (ko) 2021-05-20

Family

ID=75911373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015355 WO2021096154A1 (ko) 2019-11-12 2020-11-04 자성 플라즈몬 입자 및 이를 포함하는 구조체

Country Status (3)

Country Link
US (1) US20220388061A1 (ko)
KR (1) KR102357642B1 (ko)
WO (1) WO2021096154A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177143A1 (en) * 2001-05-25 2002-11-28 Mirkin Chad A. Non-alloying core shell nanoparticles
US20130071882A1 (en) * 2011-09-15 2013-03-21 Libing Wang Collective chirality of binary plasmonic nanoparticles janus assemblies
JP2016153519A (ja) * 2015-02-20 2016-08-25 新日鉄住金化学株式会社 金属複合体粒子及びその製造方法
KR20170051214A (ko) * 2015-10-31 2017-05-11 주식회사 나노브릭 컬러 나노 복합체를 함유하는 마이크로 입자 및 이의 제조방법
KR101782265B1 (ko) * 2016-05-23 2017-09-28 부산대학교 산학협력단 마그네토플라즈모닉 필름, 이를 포함하는 습도 센서 및 이들의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030807A1 (ja) * 2002-10-02 2004-04-15 Japan Society For The Promotion Of Science 磁場配向体の製造方法及び物体の分離方法
KR101317456B1 (ko) * 2011-11-11 2013-10-11 상명대학교서울산학협력단 자성 금속 나노입자-은 코어-쉘 나노 입자 및 그 제조방법
KR101409716B1 (ko) * 2012-02-10 2014-06-18 상명대학교서울산학협력단 자성 입자들이 규칙적으로 정렬된 고체 상태의 고분자 복합 필름 및 그 제조방법
KR101538327B1 (ko) * 2013-08-26 2015-07-22 전자부품연구원 3차원 광결정 레이어 형성 방법
KR101581406B1 (ko) 2014-07-23 2015-12-30 한국과학기술원 3차원 나노구조체의 제조방법 및 이로부터 제조된 3차원 카이랄 나노구조체
US20190221343A1 (en) * 2018-01-16 2019-07-18 Rogers Corporation Core-shell particles, magneto-dielectric materials, methods of making, and uses thereof
KR102173227B1 (ko) 2018-04-06 2020-11-03 서울대학교산학협력단 3차원 카이랄 나노 구조체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177143A1 (en) * 2001-05-25 2002-11-28 Mirkin Chad A. Non-alloying core shell nanoparticles
US20130071882A1 (en) * 2011-09-15 2013-03-21 Libing Wang Collective chirality of binary plasmonic nanoparticles janus assemblies
JP2016153519A (ja) * 2015-02-20 2016-08-25 新日鉄住金化学株式会社 金属複合体粒子及びその製造方法
KR20170051214A (ko) * 2015-10-31 2017-05-11 주식회사 나노브릭 컬러 나노 복합체를 함유하는 마이크로 입자 및 이의 제조방법
KR101782265B1 (ko) * 2016-05-23 2017-09-28 부산대학교 산학협력단 마그네토플라즈모닉 필름, 이를 포함하는 습도 센서 및 이들의 제조방법

Also Published As

Publication number Publication date
KR102357642B1 (ko) 2022-02-07
KR20210057672A (ko) 2021-05-21
US20220388061A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2021096153A1 (ko) 카이랄 나노구조체의 제조방법 및 이를 제조하기 위한 나선형 자기장 형성 장치
KR100886084B1 (ko) 코어-쉘 형태의 나노입자 및 그 제조방법
WO2021096154A1 (ko) 자성 플라즈몬 입자 및 이를 포함하는 구조체
KR100733748B1 (ko) 콜로이드성 금속 용액, 이의 제조 방법 및 이를 함유하는도료
Tang et al. Effects of colouration mechanism and stability of CoAl2O4 ceramic pigments sintered on substrates
US20120301720A1 (en) Metal island coatings and method for synthesis
KR102357643B1 (ko) 카이랄 나노 구조체 및 그 용도
TW200301491A (en) Ultrafine metal powder slurry with high dispersibility
CA2604754A1 (en) Silver-containing nanoparticles with replacement stabilizer
KR20100019372A (ko) 은 나노입자 공정
JP5692858B2 (ja) 銅フタロシアニン微粒子の製造方法
JP2009140788A (ja) 導電材料、それを用いたインクジェットインク及び透明導電性フィルム
TWI828743B (zh) 鹵化鋅酞青素顏料、著色組成物及濾色器
JP5959109B2 (ja) 高耐熱性フタロシアニン顔料及び高耐熱性フタロシアニン微粒子の製造方法
KR102357626B1 (ko) 카이랄 나노 구조체
JP6698989B2 (ja) 複合フタロシアニン微粒子およびその製造方法
KR102350766B1 (ko) 손대칭성을 부여하기 위한 나선형 자기장 형성 장치
TW201726771A (zh) 光學膜以及圖像顯示裝置
JP5507161B2 (ja) 塗膜の製造方法
US20090223412A1 (en) Stable suspension of crystalline tiO2 particles of hydrothermally treated sol-gel precursor powders
KR20130086933A (ko) 신규인 황색 안료 조성물 및 황색 안료 미립자의 제조 방법
Titkov et al. Synthesis of Cu@ Ag nanoparticles with a core–shell structure stabilized with oxyethylated carboxylic acid
EP3157064B1 (en) Cu2zn0.14sn0.25te2.34 nanocrystalline solution and preparation method thereof , photosensitive resin solution and black matrix preparation method, and color film substrate
Saito et al. Azobenzene-based lustrous golden thin films fabricated by electrophoretic deposition
WO2011158537A1 (ja) 新規なキナクリドン顔料組成物及びキナクリドン微粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887067

Country of ref document: EP

Kind code of ref document: A1