WO2021095375A1 - 車両の冷却水システム - Google Patents

車両の冷却水システム Download PDF

Info

Publication number
WO2021095375A1
WO2021095375A1 PCT/JP2020/036508 JP2020036508W WO2021095375A1 WO 2021095375 A1 WO2021095375 A1 WO 2021095375A1 JP 2020036508 W JP2020036508 W JP 2020036508W WO 2021095375 A1 WO2021095375 A1 WO 2021095375A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
heat exchange
temperature side
flow path
combustion engine
Prior art date
Application number
PCT/JP2020/036508
Other languages
English (en)
French (fr)
Inventor
彰洋 大井
長谷川 学
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021095375A1 publication Critical patent/WO2021095375A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to a vehicle cooling water system.
  • the cooling water system described in Patent Document 1 includes a high temperature side heat exchanger and a low temperature side heat exchanger arranged in an intake passage of a vehicle. Cooling water flowing through the cooling water circuit of the internal combustion engine flows through the high temperature side heat exchanger. Cooling water having a lower temperature than the cooling water flowing through the high temperature side heat exchanger flows through the low temperature side heat exchanger.
  • the low temperature side heat exchanger is arranged on the downstream side of the high temperature side heat exchanger in the flow direction of the intake air.
  • the high-temperature supercharged intake air supercharged through the supercharger flows in the order of the high-temperature side heat exchanger and the low-temperature side heat exchanger.
  • the supercharged intake air flows through the high temperature side heat exchanger, heat exchange is performed between the cooling water flowing through the high temperature side heat exchanger and the supercharged intake air, so that the rough heat of the supercharged intake air is removed.
  • the supercharged intake air from which the rough heat is removed flows through the low temperature side heat exchanger, heat is exchanged between the cooling water flowing through the low temperature side heat exchanger and the supercharged intake air, so that the supercharged intake air is supplied. Is further cooled.
  • the cooling water discharged from the pump is distributed and flows to the internal combustion engine and the high temperature side heat exchanger, so that the cooling water exchanges heat between the internal combustion engine and the high temperature side heat exchanger. Receive heat from the vessel. Therefore, the high temperature side heat exchanger is provided in parallel with the internal combustion engine in the cooling water circuit.
  • the cooling water received in the internal combustion engine passes through the thermostat and is supplied to the radiator.
  • the cooling water received by the high temperature side heat exchanger is also supplied to the radiator. The cooling water dissipates heat in the radiator and then is sucked into the pump.
  • An object of the present disclosure is to provide a vehicle cooling water system capable of more accurately cooling and warming intake air.
  • the vehicle cooling water system has a first heat exchange unit and a second heat exchange unit arranged in an intake passage of the internal combustion engine of the vehicle, and has a first heat exchange unit and a second heat exchange unit. Heat exchange takes place between the cooling water flowing through each of the above and the intake air flowing through the intake passage.
  • the cooling water system consists of a first cooling water circuit that circulates cooling water to the first heat exchange section and the internal combustion engine, and a second cooling water that circulates cooling water at a lower temperature than the first heat exchange section to the second heat exchange section. It is equipped with a circuit.
  • the first heat exchange unit is arranged in parallel with the internal combustion engine with respect to the flow of cooling water, and the first heat exchange unit is arranged with respect to the flow of cooling water of the internal combustion engine. It is possible to switch to the second circulation state arranged in series downstream.
  • the cooling water circuit when the first cooling water circuit is in the first circulation state, the cooling water flows in parallel to the first heat exchange unit and the internal combustion engine, so that the first cooling water flow is relative to the first.
  • the heat exchange unit is arranged downstream of the internal combustion engine, cooling water having a lower temperature can flow to the first heat exchange unit. Therefore, it is possible to cool the intake air more accurately.
  • the first cooling water circuit when the first cooling water circuit is in the second circulation state, the cooling water received by the internal combustion engine flows into the first heat exchange section, so that the first heat exchange section internally interacts with the flow of the cooling water. Compared with the case where the cooling water is arranged in parallel with the engine, the cooling water having a higher temperature can flow to the first heat exchange section.
  • the intake air can be warmed up more accurately. Therefore, by setting the first cooling water circuit to the first circulation state when cooling the intake air and setting the first cooling water circuit to the second circulation state when warming the intake air, it is more accurate. It is possible to cool and warm the intake air.
  • the vehicle cooling water system has a heat exchange section arranged in the intake passage of the internal combustion engine of the vehicle, and is between the cooling water flowing through the heat exchange section and the intake air flowing through the intake passage. Heat exchange takes place at.
  • the cooling water system includes a cooling water circuit that circulates cooling water to a heat exchange unit and an internal combustion engine.
  • the cooling water circuit has a first circulation state in which the heat exchange unit is arranged in parallel with the internal combustion engine with respect to the flow of cooling water, and the heat exchange unit is arranged in series downstream of the internal combustion engine with respect to the flow of cooling water. It is possible to switch to the second circulation state.
  • the cooling water circuit when the cooling water circuit is in the first circulation state, the cooling water flows in parallel to the first heat exchange unit and the internal combustion engine, so that the first heat exchange with respect to the flow of the cooling water.
  • the unit is arranged downstream of the internal combustion engine, cooling water having a lower temperature can flow to the first heat exchange unit. Therefore, it is possible to cool the intake air more accurately.
  • the cooling water circuit when the cooling water circuit is in the second circulation state, the cooling water received by the internal combustion engine flows into the first heat exchange section, so that the first heat exchange section moves into the internal combustion engine with respect to the flow of the cooling water.
  • the intake air can be warmed up more accurately. Therefore, by setting the cooling water circuit to the first circulation state when cooling the intake air and setting the cooling water circuit to the second circulation state when warming the intake air, the intake air can be cooled and cooled more accurately. It becomes possible to warm up.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle cooling water system according to the first embodiment.
  • FIG. 2 is a plan view showing a plan structure of a plate member of the two-temperature heat exchange module of the first embodiment.
  • FIG. 3 is a block diagram showing an electrical configuration of the vehicle cooling water system of the first embodiment.
  • FIG. 4 is a block diagram showing an operation example of the vehicle cooling water system of the first embodiment.
  • FIG. 5 is a block diagram showing an operation example of the vehicle cooling water system of the first embodiment.
  • FIG. 6 is a plan view showing a plan structure of a plate member of a two-temperature heat exchange module according to a modification of the first embodiment.
  • FIG. 7 is a block diagram showing a schematic configuration of a vehicle cooling water system according to a second embodiment.
  • FIG. 8 is a block diagram showing an operation example of the vehicle cooling water system of the second embodiment.
  • FIG. 9 is a block diagram showing a schematic configuration of a vehicle cooling water system according to a third embodiment.
  • FIG. 10 is a block diagram showing an operation example of the vehicle cooling water system of the third embodiment.
  • FIG. 11 is a block diagram showing a schematic configuration of a vehicle cooling water system according to a fourth embodiment.
  • FIG. 12 is a block diagram showing an operation example of the vehicle cooling water system of the fourth embodiment.
  • FIG. 13 is a block diagram showing a schematic configuration of a vehicle cooling water system according to a fifth embodiment.
  • FIG. 14 is a block diagram showing an operation example of the vehicle cooling water system of the fifth embodiment.
  • FIG. 15 is a block diagram showing a schematic configuration of a vehicle cooling water system according to a sixth embodiment.
  • FIG. 16 is a block diagram showing an operation example of the vehicle cooling water system of the sixth embodiment.
  • FIG. 17 is a block diagram showing a schematic configuration of a vehicle cooling water system of another embodiment.
  • the vehicle 10 of the present embodiment includes an internal combustion engine 11 and a supercharger 20.
  • the supercharger 20 includes a compressor wheel 21 and a turbine wheel 22 connected to each other.
  • the compressor wheel 21 is arranged in the intake passage 110 of the internal combustion engine 11.
  • the turbine wheel 22 is arranged in the exhaust passage 111 of the internal combustion engine 11.
  • the turbine wheel 22 rotates when the exhaust gas discharged from the internal combustion engine 11 to the exhaust passage 111 passes through the turbine wheel 22.
  • the compressor wheel 21 rotates with the rotation of the turbine wheel 22, the air flowing through the intake passage 110 is compressed.
  • the air compressed by the compressor wheel 21, that is, the so-called supercharged intake air to the internal combustion engine 11, it is possible to increase the output of the internal combustion engine 11.
  • a two-temperature heat exchange module 50 is arranged between the compressor wheel 21 and the internal combustion engine 11 in the intake passage 110.
  • the two-temperature heat exchange module 50 is a composite heat exchanger integrally having a high-temperature side heat exchange unit 31 and a low-temperature side heat exchange unit 41.
  • the high temperature side heat exchange unit 31 and the low temperature side heat exchange unit 41 are arranged in the intake passage 110.
  • the low temperature side heat exchange unit 41 is arranged downstream of the high temperature side heat exchange unit 31 in the flow direction of the intake air. Cooling water circulating in the high-temperature side cooling water circuit 30 flows into the high-temperature side heat exchange unit 31. Cooling water circulating in the low-temperature side cooling water circuit 40 flows into the low-temperature side heat exchange unit 41.
  • the high temperature side heat exchange unit 31 corresponds to the first heat exchange unit
  • the low temperature side heat exchange unit 41 corresponds to the second heat exchange unit
  • the high temperature side cooling water circuit 30 corresponds to the first cooling water circuit
  • the low temperature side cooling water circuit 40 corresponds to the second cooling water circuit.
  • the cooling water system 70 is composed of the high temperature side cooling water circuit 30 and the low temperature side cooling water circuit 40.
  • the two-temperature heat exchange module 50 is composed of a plurality of substantially rectangular plate members 500 shown in FIG.
  • the plate member 500 is integrally formed with a high temperature side flow path 501 and a low temperature side flow path 502. Cooling water circulating in the high-temperature side cooling water circuit 30 flows through the high-temperature side flow path 501. Cooling water circulating in the low temperature side cooling water circuit 40 flows through the low temperature side flow path 502.
  • the high temperature side flow path 501 is formed so as to extend linearly in a direction orthogonal to the intake flow direction A, and has a so-called I flow shape.
  • a first communication hole 501a is formed at one end of the high temperature side flow path 501.
  • a second communication hole 501b is formed at the other end of the high temperature side flow path 501.
  • the first communication holes 501a of each plate member 500 communicate with each other to form the first high temperature side tank space S11.
  • the second communication holes 501b of each plate member 500 communicate with each other to form the second high temperature side tank space S12.
  • One of the first high temperature side tank space S11 and the second high temperature side tank space S12 functions as an inflow port for allowing the cooling water flowing through the high temperature side cooling water circuit 30 to flow into the high temperature side flow path 501. Either one of them functions as an outlet for discharging the cooling water from the high temperature side flow path 501.
  • the high temperature side flow path 501 corresponds to the cooling water flow path.
  • the low temperature side flow path 502 includes linear flow paths 502c and 502d extending in a direction orthogonal to the intake flow direction A, and a turning portion 502e formed so as to connect one end thereof, so-called. It has a U-flow shape. Therefore, the low temperature side flow path 502 is formed so that the flow direction of the cooling water flowing inside the flow path 502 is at least one rotation.
  • a third communication hole 502a is formed at an end of the linear flow path 502c opposite to the end connected to the turning portion 502e.
  • a fourth communication hole 502b is formed at an end of the linear flow path 502d opposite to the end connected to the turning portion 502e.
  • the third communication holes 502a of each plate member 500 communicate with each other to form the first low temperature side tank space S21.
  • the fourth communication hole 502b of each plate member 500 communicates with each other to form the second low temperature side tank space S22.
  • the first low temperature side tank space S21 functions as an inflow port for flowing the cooling water circulating in the low temperature side cooling water circuit 40 into the low temperature side flow path 502.
  • the second low temperature side tank space S22 functions as an outlet for flowing out the cooling water from the low temperature side flow path 502.
  • the two-temperature heat exchange module 50 is configured by arranging a plurality of plate members 500 shown in FIG. 2 in a laminated manner with a predetermined gap. Intake air flows in the gap between the adjacent plate members 500, 500.
  • the cooling water flows through the high temperature side flow path 501
  • heat exchange is performed between the intake air flowing through the gap between the adjacent plate members 500 and 500 and the cooling water.
  • the cooling water flows through the low temperature side flow path 502
  • further heat exchange is performed between the intake air flowing through the gap between the adjacent plate members 500 and 500 and the cooling water. It is said.
  • the portion provided with the high temperature side flow path 501 exchanges heat between the cooling water circulating in the high temperature side cooling water circuit 30 and the supercharged intake air.
  • the side heat exchange unit 31 is configured.
  • the portion provided with the low temperature side flow path 502 constitutes the low temperature side heat exchange unit 41 that exchanges heat between the cooling water circulating in the low temperature side cooling water circuit 40 and the supercharged intake air.
  • the temperature of the cooling water flowing through the low-temperature side heat exchange unit 41 is lower than the temperature of the cooling water flowing through the high-temperature side heat exchange unit 31. Therefore, the temperatures of the cooling water flowing inside the heat exchange units 31 and 41 are different.
  • the high temperature side cooling water circuit 30 and the low temperature side cooling water circuit 40 will be specifically described.
  • the high temperature side cooling water circuit 30 is provided with an internal combustion engine 11, a high temperature side pump 32, a multi-sided valve 33, an on / off valve 34, a thermostat 35, and a high temperature side radiator 36. ..
  • the high temperature side pump 32, the internal combustion engine 11, the on / off valve 34, the thermostat 35, and the high temperature side radiator 36 are connected in this order by the high temperature side annular flow path W10 in an annular shape.
  • Cooling water made of water, a refrigerant, or the like circulates in the high-temperature side annular flow path W10. It is possible to use LLC or the like as the refrigerant.
  • the high temperature side radiator 36 is arranged near the grill opening of the vehicle 10. Air is supplied to the high temperature side radiator 36 by the traveling wind of the vehicle 10. Inside the high temperature side radiator 36, cooling water circulating in the high temperature side annular flow path W10 flows. In the high temperature side radiator 36, the cooling water is cooled by heat exchange between the cooling water flowing inside the radiator 36 and the air flowing outside the radiator 36. The cooling water cooled in the high temperature side radiator 36 is sucked into the high temperature side pump 32 through the high temperature side annular flow path W10.
  • the high temperature side pump 32 sucks in the low temperature cooling water discharged from the high temperature side radiator 36 and discharges it to the internal combustion engine 11.
  • the high temperature side pump 32 is a mechanical pump driven by the power of the internal combustion engine 11.
  • an electric pump that is driven based on the supply of electric power may be used.
  • the high temperature side pump 32 corresponds to the pump for the first cooling water circuit.
  • the cooling water circulates in the high temperature side annular flow path W10 due to the discharge pressure applied to the cooling water by the high temperature side pump 32.
  • the cooling water absorbs the heat of the internal combustion engine 11 to cool the internal combustion engine 11.
  • the cooling water received by the internal combustion engine 11 flows into the high-temperature side radiator 36 through the on / off valve 34 and the thermostat 35, so that the cooling water is cooled again in the high-temperature side radiator 36.
  • the on / off valve 34 is arranged between the internal combustion engine 11 and the thermostat 35 in the high temperature side annular flow path W10.
  • the on / off valve 34 is a solenoid valve. When the on / off valve 34 is in the open state, the flow of cooling water from the internal combustion engine 11 to the thermostat 35 is permitted. When the on / off valve 34 is closed, the flow of cooling water from the internal combustion engine 11 to the thermostat 35 is cut off.
  • the thermostat 35 is arranged between the on / off valve 34 and the high temperature side radiator 36 in the high temperature side annular flow path W10.
  • a bypass flow path W11 is connected to the flow path portion having the thermostat 35.
  • the bypass flow path W11 is a flow path for allowing the cooling water that has passed through the internal combustion engine 11 and the on / off valve 34 to bypass the high temperature side radiator 36 and flow to the high temperature side pump 32.
  • the thermostat 35 causes the cooling water to flow into the high temperature side radiator 36.
  • the thermostat 35 blocks the inflow of the cooling water to the high temperature side radiator 36 and causes the cooling water to flow into the bypass flow path W11.
  • a branch flow path W12 is formed so as to connect the upstream side portion of the high temperature side pump 32 and the downstream side portion of the internal combustion engine 11 in the high temperature side annular flow path W10.
  • a high temperature side heat exchange section 31 and a multi-way valve 33 are arranged in the branch flow path W12.
  • the multi-way valve 33 is arranged at a position closer to the high temperature side pump 32 than the high temperature side heat exchange unit 31 in the branch flow path W12.
  • a branch flow path W13 is further connected to the multi-way valve 33.
  • the branch flow path W13 is connected to a portion between the high temperature side pump 32 and the internal combustion engine 11 in the high temperature side annular flow path W10.
  • the multi-sided valve 33 has a first port 33a connected to a portion on the upstream side of the high temperature side pump 32, a second port 33b connected to the branch flow path W13, and a third port 33c connected to the high temperature side heat exchange unit 31. ing.
  • the multi-way valve 33 switches the connection state of the branch flow paths W12 and W13 by switching the open / closed state of each of the ports 33a, 33b, 33c.
  • the multi-way valve 33 corresponds to a flow path switching valve for the heat exchange section.
  • the first high temperature side tank space S11 of the high temperature side heat exchange unit 31 is connected to the third port 33c of the multi-way valve 33 via the branch flow path W12.
  • the second high temperature side tank space S12 of the high temperature side heat exchange unit 31 is connected to a portion on the downstream side of the internal combustion engine 11 via a branch flow path W12.
  • the low temperature side cooling water circuit 40 has a low temperature side pump 42 and a low temperature side radiator 43 in addition to the low temperature side heat exchange unit 41.
  • the low temperature side heat exchange section 41, the low temperature side pump 42, and the low temperature side radiator 43 are connected in an annular shape by the low temperature side annular flow path W20. Cooling water composed of water, a refrigerant, or the like circulates in the low temperature side annular flow path W20. It is possible to use LLC or the like as the refrigerant.
  • the low temperature side radiator 43 is arranged near the grill opening of the vehicle 10 like the high temperature side radiator 36. Inside the low temperature side radiator 43, cooling water circulating in the low temperature side annular flow path W20 flows. In the low temperature side radiator 43, the cooling water is cooled by heat exchange between the cooling water flowing inside the radiator 43 and the air flowing outside the radiator 43. The low-temperature cooling water cooled by the low-temperature side radiator 43 flows toward the low-temperature side pump 42 through the low-temperature side annular flow path W20.
  • the low temperature side pump 42 sucks in the low temperature cooling water discharged from the low temperature side radiator 43 and discharges it to the low temperature side heat exchange unit 41.
  • the low temperature side pump 42 is an electric pump that is driven based on the supply of electric power.
  • the cooling water circulates in the low temperature side annular flow path W20 due to the discharge pressure applied to the cooling water by the low temperature side pump 42.
  • the low temperature side pump 42 corresponds to the pump for the second cooling water circuit.
  • the first low temperature side tank space S21 of the low temperature side heat exchange unit 41 is connected to the low temperature side pump 42 via the low temperature side annular flow path W20.
  • the second low temperature side tank space S22 of the low temperature side heat exchange unit 41 is connected to the low temperature side radiator 43 via the low temperature side annular flow path W20. Therefore, the cooling water discharged from the low temperature side pump 42 flows into the low temperature side radiator 43 after performing heat exchange with the supercharging intake air in the low temperature side heat exchange unit 41.
  • the cooling water system 70 further includes an intake air temperature sensor 51 and a control device 52.
  • the control device 52 corresponds to the control unit.
  • the intake air temperature sensor 51 detects the temperature of the supercharged intake air flowing through the intake air passage 110, and outputs a signal corresponding to the detected temperature of the supercharged intake air to the control device 52.
  • the control device 52 is mainly composed of a microcomputer having a CPU, a memory, and the like.
  • the control device 52 comprehensively controls the cooling water system 70 by executing a program recorded in advance in the memory. Specifically, the control device 52 controls the multi-way valve 33, the on / off valve 34, and the low temperature side pump 42 based on the temperature of the supercharged intake air detected by the intake air temperature sensor 51, thereby controlling the supercharged intake air.
  • the intake air cooling control for cooling the engine and the intake air warming control for warming the supercharged intake air are executed.
  • the control device 52 executes intake air cooling control when the temperature of the supercharged intake air detected by the intake air temperature sensor 51 is equal to or higher than a predetermined temperature. At this time, the control device 52 closes the first port 33a of the multi-sided valve 33 and opens the second port 33b and the third port 33c. Further, the control device 52 opens the on / off valve 34 and drives the low temperature side pump 42. As a result, the cooling water system 70 is formed with a flow path as shown by a solid line in FIG. In FIG. 4, the flow path shown by the broken line indicates a flow path through which the cooling water does not flow.
  • the cooling water discharged from the high temperature side pump 32 is supplied to the internal combustion engine 11 in the high temperature side cooling water circuit 30, and is supplied to the internal combustion engine 11 through the multi-way valve 33. It is also supplied to the high temperature side heat exchange unit 31.
  • the cooling water that has passed through the multi-sided valve 33 flows into the inside through the first high temperature side tank space S11 and then is discharged through the second high temperature side tank space S12. In this way, the high temperature side cooling water circuit 30 is in a state in which the high temperature side heat exchange unit 31 is arranged in parallel with the internal combustion engine 11 with respect to the flow of the cooling water.
  • the state in which such a flow path is formed corresponds to the first circulation state.
  • the cooling water that has flowed through the internal combustion engine 11 and the high-temperature side heat exchange section 31 merges at the connection portion between the high-temperature side annular flow path W10 and the branch flow path W12, and then flows into the thermostat 35 through the on / off valve 34.
  • this flow path corresponds to a radiator passage flow path that allows the cooling water that has passed through the internal combustion engine 11 to flow into the internal combustion engine 11 via the high temperature side radiator 36.
  • the thermostat 35 blocks the inflow of the cooling water to the high temperature side radiator 36 and causes the cooling water to flow into the bypass flow path W11.
  • a flow path of cooling water that flows directly from the thermostat 35 to the high temperature side pump 32 is formed.
  • this flow path corresponds to a radiator detour flow path that allows the cooling water that has passed through the internal combustion engine 11 to flow into the internal combustion engine 11 without passing through the high temperature side radiator 36.
  • the internal combustion engine 11 is cooled by heat exchange between the internal combustion engine 11 and the cooling water.
  • heat exchange is performed between the cooling water flowing inside the cooling water and the supercharged intake air flowing through the intake passage 110, so that the cooling water absorbs the rough heat of the supercharged intake air. Then, the supercharged intake air is cooled.
  • the cooling water cooled by the low temperature side radiator 43 is supplied to the low temperature side heat exchange unit 41.
  • the supercharged intake air is further cooled by performing heat exchange between the cooling water flowing inside the low temperature side heat exchange unit 41 and the supercharged intake air that has passed through the high temperature side heat exchange unit 31.
  • the control device 52 executes intake air warm-up control. At this time, the control device 52 opens the first port 33a and the third port 33c of the multi-sided valve 33, and closes the second port 33b. Further, the control device 52 closes the on / off valve 34 and stops the low temperature side pump 42. As a result, the cooling water system 70 is formed with a flow path as shown by a solid line in FIG. In FIG. 5, the flow path shown by the broken line indicates a flow path through which the cooling water does not flow.
  • the high temperature side cooling water circuit 30 when the intake air warming control is executed, in the high temperature side cooling water circuit 30, after the cooling water discharged from the high temperature side pump 32 passes through the internal combustion engine 11, the high temperature side heat exchange unit 31 and A flow path is formed which is returned to the high temperature side pump 32 through the multi-way valve 33.
  • the cooling water that has passed through the internal combustion engine 11 flows into the inside through the second high temperature side tank space S12, and then is discharged from the first high temperature side tank space S11.
  • the high temperature side cooling water circuit 30 is in a state in which the high temperature side heat exchange unit 31 is arranged in series downstream of the internal combustion engine 11 with respect to the flow of the cooling water.
  • the state in which such a flow path is formed corresponds to the second circulation state.
  • the flow direction of the cooling water in the high temperature side heat exchange unit 31 is opposite between the intake air warming control and the intake air cooling control.
  • the cooling water received by the internal combustion engine 11 is supplied to the high temperature side heat exchange unit 31.
  • the high temperature side heat exchange unit 31 heat exchange is performed between the cooling water flowing inside the cooling water and the intake air flowing through the intake passage 110, so that the intake air is warmed up. Since the low temperature side pump 42 is stopped during intake air warming control, it is difficult for the intake air to exchange heat with the cooling water of the low temperature side cooling water circuit 40 at the low temperature side heat exchange unit 41. That is, it is difficult for the intake air warmed by the high temperature side heat exchange unit 31 to be recooled by the cooling water of the low temperature side cooling water circuit 40.
  • the cooling water system 70 of the present embodiment described above the actions and effects shown in the following (1) to (6) can be obtained.
  • (1) When the high-temperature side cooling water circuit 30 is in the state shown in FIG. 4, the cooling water flows in parallel to the high-temperature side heat exchange unit 31 and the internal combustion engine 11, so that the cooling water flows in parallel, as shown in FIG.
  • the cooling water having a lower temperature can flow to the high temperature side heat exchange unit 31. .. Therefore, it is possible to cool the intake air more accurately. Further, since the cooling water having a high water pressure and a low water temperature flows into the high temperature side heat exchange unit 31, it is possible to improve the robustness against boiling of the cooling water.
  • the high temperature side cooling water circuit 30 when the high temperature side cooling water circuit 30 is in the state shown in FIG. 5, the cooling water received by the internal combustion engine 11 flows to the high temperature side heat exchange unit 31, so that the cooling water is shown in FIG. Compared with the case where the high temperature side heat exchange unit 31 is arranged in parallel with the internal combustion engine 11 with respect to the flow, it is possible to flow the cooling water having a higher temperature to the high temperature side heat exchange unit 31. Further, during the intake air warm-up control, the overall flow path length of the high-temperature side cooling water circuit 30 is shorter than that during the intake air cooling control, so that the heat of the cooling water is less likely to be released to the atmosphere. Therefore, the intake air can be warmed up more accurately.
  • the high temperature side cooling water circuit 30 is set to the state shown in FIG. 4 during intake air cooling control and setting the high temperature side cooling water circuit 30 to the state shown in FIG. 5 during intake air warming control, more accurately. It is possible to cool and warm the intake air.
  • the high temperature side cooling water circuit 30 is in the state shown in FIG. 4, the high temperature side pump 32 is an internal combustion engine without passing the cooling water through a heat exchanger different from the high temperature side heat exchange unit 31. Cooling water is supplied to 11 and the high temperature side heat exchange unit 31. This makes it possible to more accurately cool the internal combustion engine 11 and the supercharged intake air.
  • the control device 52 when the high-temperature side cooling water circuit 30 is in the state shown in FIG. 4, a flow path for connecting the downstream portion of the high-temperature side pump 32 and the high-temperature side heat exchange unit 31 is formed.
  • the multi-way valve 33 is controlled so as to be. In the present embodiment, the flow path formed by the multi-sided valve 33 corresponds to the first flow path. Further, in the control device 52, when the high temperature side cooling water circuit 30 is in the state shown in FIG. 5, a flow path connecting the upstream side portion of the high temperature side pump 32 and the high temperature side heat exchange portion 31 is formed.
  • the multi-way valve 33 is controlled in this way. In the present embodiment, the flow path formed by the multi-sided valve 33 corresponds to the second flow path.
  • the high temperature side heat exchange unit 31 is arranged in parallel with the internal combustion engine 11 with respect to the flow of cooling water, and the high temperature side heat exchange unit 31 with respect to the flow of cooling water is the internal combustion engine 11. It is possible to easily realize a state in which they are arranged in series downstream of the above.
  • the low temperature side pump 42 is in the driven state when the high temperature side cooling water circuit 30 is in the state shown in FIG. 4, and is in the non-driven state when the high temperature side cooling water circuit 30 is in the state shown in FIG. It becomes.
  • the intake air warmed by the high temperature side heat exchange unit 31 is less likely to be cooled by the low temperature side heat exchange unit 41, so that the intake air can be warmed up more accurately.
  • the high temperature side heat exchange unit 31 has a high temperature side flow path 501 through which cooling water flows so as to be orthogonal to the intake flow direction A.
  • the second high temperature side tank space S12 to the first high temperature side tank
  • the high temperature side flow path 501 has a symmetrical structure with respect to the flow direction of the cooling water when the cooling water flows toward the space S11. Therefore, the influence on the performance and the water flow resistance can be suppressed to zero as much as possible against the phenomenon that the flow direction of the cooling water is reversed between the intake cooling and the intake warming.
  • the temperature distribution generated on the intake outlet side which is a weak point of the high temperature side flow path 501 having the shape of the I flow, can be solved by making the low temperature side flow path 502 a U flow structure.
  • the two-temperature heat exchange module 50 is composed of the plate member 500 shown in FIG. As shown in FIG. 6, in this plate member 500, the shape of the high temperature side flow path 501 is different from that of the plate member 500 shown in FIG.
  • the high temperature side flow path 501 includes linear flow paths 501c and 501d extending in a direction orthogonal to the intake flow direction A and a turning portion 501e formed so as to connect one end thereof. It has a U-shape like the low temperature side flow path 502. Therefore, the high temperature side flow path 501 is formed so that the flow direction of the cooling water flowing inside the high temperature side flow path 501 is turned at least once.
  • a first communication hole 501a is formed at an end of the linear flow path 501c opposite to the end connected to the turning portion 501e.
  • a second communication hole 501b is formed at an end of the linear flow path 501d opposite to the end connected to the turning portion 502e.
  • the first high temperature side tank space S11 on the upstream side of the intake air flow direction A serves as the cooling water inlet when the intake air is cooled, and on the downstream side of the intake air flow direction A when the intake air is warmed up.
  • the second high temperature side tank space S12 serves as an inflow port for cooling water.
  • a second embodiment of the cooling water system 70 will be described.
  • the differences from the cooling water system 70 of the first embodiment will be mainly described.
  • a multi-way valve 37 is used instead of the on / off valve 34 and the thermostat 35.
  • the multi-way valve 37 is arranged between the internal combustion engine 11 and the high temperature side radiator 36 in the high temperature side annular flow path W10.
  • a bypass flow path W11 is connected to the multi-way valve 37.
  • the multi-way valve 37 includes a first port 37a connected to a portion downstream of the connection portion with the branch flow path W12 in the high temperature side annular flow path W10, a second port 37b connected to the bypass flow path W11, and a high temperature side radiator 36. It has a third port 37c connected to.
  • the multi-way valve 37 switches the connection state of the high temperature side annular flow path W10 and the bypass flow path W11 by switching the open / closed state of each of the ports 37a to 37c.
  • the multi-way valve 37 corresponds to a radiator flow path switching valve.
  • the high temperature side annular flow path W10 is provided with a water temperature sensor 53 that detects the temperature of the cooling water flowing into the first port 37a of the multi-sided valve 37. As shown by the broken line in FIG. 3, the output signal of the water temperature sensor 53 is taken in by the control device 52. The control device 52 further controls the multi-way valve 37 based on the temperature of the cooling water detected by the water temperature sensor 53.
  • the control device 52 when the water temperature of the cooling water detected by the water temperature sensor 53 is equal to or higher than a predetermined temperature during intake air cooling control, the control device 52 has the first port 37a and the third port 37c of the multi-way valve 37. Is opened and the second port 37b is closed.
  • the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG.
  • this flow path corresponds to a radiator passing flow path that allows the cooling water that has passed through the internal combustion engine 11 to flow into the internal combustion engine 11 and the high temperature side heat exchange unit 31 via the high temperature side radiator 36.
  • the control device 52 opens the first port 37a and the second port 37b of the multi-sided valve 37 when the water temperature of the cooling water detected by the water temperature sensor 53 is lower than the predetermined temperature during the intake air cooling control. At the same time, the third port 37c is closed. As a result, a flow path of cooling water is formed so that the cooling water that has passed through the internal combustion engine 11 flows directly to the high temperature side pump 32 via the multi-sided valve 37.
  • this flow path corresponds to a radiator detour flow path that allows the cooling water that has passed through the internal combustion engine 11 to flow into the internal combustion engine 11 and the high temperature side heat exchange unit 31 without passing through the high temperature side radiator 36.
  • the control device 52 closes all the ports 37a to 37c of the multi-way valve 37 during intake air cooling control.
  • the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG.
  • the cooling water system 70 of the present embodiment described above the actions and effects shown in (7) below can be further obtained.
  • the responsiveness can be improved as compared with the thermostat 35.
  • the fuel consumption of the vehicle 10 is improved because the intake air cooling and the intake air warming can be quickly switched.
  • the cost can be reduced.
  • cooling water system 70 a third embodiment of the cooling water system 70 will be described.
  • the differences from the cooling water system 70 of the second embodiment will be mainly described.
  • one end of the branch flow path W12 is connected to the multi-way valve 37.
  • the multi-way valve 37 further includes a fourth port 37d connected to the branch flow path W12.
  • the control device 52 opens the first port 37a and the fourth port 37d of the multi-sided valve 37 during intake air cooling control, and also opens the second port 37b and the second port 37b based on the temperature of the cooling water detected by the water temperature sensor 53.
  • One of the third ports 37c is opened and one of the other is closed.
  • the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG.
  • FIG. 9 illustrates a case where the second port 37b is in the closed state and the third port 37c is in the open state. In this case, the cooling water that has passed through the internal combustion engine 11 and the cooling water that has passed through the high temperature side heat exchange unit 31 merge at the multi-sided valve 37 and then flow to the high temperature side radiator 36.
  • the control device 52 opens the first port 37a and the fourth port 37d of the multi-way valve 37 and closes the second port 37b and the third port 37c during the intake air warm-up control.
  • the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG. That is, the cooling water that has passed through the internal combustion engine 11 passes through the multi-sided valve 37 and flows into the high temperature side heat exchange unit 31.
  • the actions and effects shown in (8) below can be further obtained.
  • the confluence portion between the high temperature side heat exchange unit 31 and the internal combustion engine 11 is provided in the multi-way valve 37, the intake air cooling control and the intake air warming control are switched by opening and closing the flow path by the multi-way valve 37. It is possible to suppress the time lag associated with the backflow phenomenon that occurs at that time. Therefore, the responsiveness can be improved. Further, when connecting the high temperature side annular flow path W10 and the branch flow path W12, a branch pipe is required at the connecting portion, but such a branch pipe is not required in the cooling water system 70 of the present embodiment. , Cost can be reduced.
  • a fourth embodiment of the cooling water system 70 will be described.
  • the differences from the cooling water system 70 of the third embodiment will be mainly described.
  • a branch flow is formed so as to connect the downstream side portion and the upstream side portion of the high temperature side pump 32 in the high temperature side annular flow path W10.
  • Road W14 is formed.
  • the branch flow path W14 is provided with an on / off valve 38 and a high temperature side heat exchange section 31.
  • One end of the branch flow path W15 is connected to a portion of the branch flow path W14 between the on / off valve 38 and the high temperature side heat exchange portion 31.
  • the other end of the branch flow path W15 is connected to the fourth port 37d of the multi-way valve 37.
  • the on / off valve 38 is arranged in the flow path portion W140.
  • the on / off valve 38 is a solenoid valve.
  • the control device 52 controls the multi-way valve 37 and the on / off valve 38 to form a flow path as shown in FIGS. 11 and 12. Specifically, the control device 52 opens the first port 37a of the multi-sided valve 37 and closes the fourth port 37d during the intake air cooling control. Further, the control device 52 opens either one of the second port 37b and the third port 37c based on the temperature of the cooling water detected by the water temperature sensor 53, and closes the other. Further, the control device 52 opens the on / off valve 38. As a result, the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG. Note that FIG.
  • the cooling water discharged from the high temperature side pump 32 flows into the internal combustion engine 11 via the high temperature side annular flow path W10, and also flows into the high temperature side heat exchange section 31 through the flow path portion W140 of the branch flow path W14. Inflow.
  • the cooling water flows in from the first high temperature side tank space S11, and the cooling water is discharged from the second high temperature side tank space S12.
  • the cooling water that has passed through the high temperature side heat exchange unit 31 is returned to the upstream side of the high temperature side pump 32 through the branch flow path W14. In this way, during intake air cooling control, the high temperature side heat exchange unit 31 is arranged in parallel with the internal combustion engine 11 with respect to the flow of cooling water.
  • the control device 52 opens the first port 37a and the fourth port 37d of the multi-way valve 37 and closes the second port 37b and the third port 37c during the intake air warm-up control. Further, the control device 52 closes the on / off valve 38.
  • the high temperature side cooling water circuit 30 is formed with a flow path as shown by the solid line in FIG. That is, since the on / off valve 38 is in the closed state, the flow path portion W140 of the branch flow path W14 is blocked. Therefore, the cooling water discharged from the high temperature side pump 32 does not flow toward the high temperature side heat exchange unit 31, but flows only into the internal combustion engine 11.
  • the cooling water that has passed through the internal combustion engine 11 flows through the multi-sided valve 37, the branch flow path W15, and the branch flow path W14 in this order, and flows into the high temperature side heat exchange unit 31.
  • the cooling water flows in from the first high temperature side tank space S11, and the cooling water is discharged from the second high temperature side tank space S12.
  • the cooling water that has passed through the high temperature side heat exchange unit 31 is returned to the upstream side of the high temperature side pump 32 through the branch flow path W14.
  • the high temperature side heat exchange unit 31 is arranged in series on the downstream side of the internal combustion engine 11 with respect to the flow of the cooling water.
  • cooling water system 70 of the present embodiment described above the actions and effects shown in (9) below can be further obtained.
  • (9) In either case of intake air cooling control or intake air warming control, cooling water flows from the first high temperature side tank space S11 to the second high temperature side tank space S12 in the high temperature side heat exchange unit 31. .. That is, in the high temperature side heat exchange unit 31, the phenomenon that the flow direction of the cooling water is reversed between the intake air cooling control and the intake air warming control does not occur. Therefore, the heat strain generated inside the high temperature side heat exchange unit 31 can be suppressed by reversing the flow direction of the cooling water, and the water flow resistance of the cooling water flowing inside the high temperature side heat exchange unit 31 can be suppressed. Change can be suppressed.
  • the vehicle 10 has a so-called exhaust gas recirculation (EGR) system 60 in which a part of the exhaust gas flowing through the exhaust passage 111 is returned to the intake passage 110 for the purpose of suppressing NOx. Is installed in some.
  • the EGR system 60 includes an EGR passage 61 that connects the intake passage 110 and the exhaust passage 111, and an EGR cooler 62 that cools the exhaust gas flowing through the EGR passage 61.
  • the exhaust gas flowing through the exhaust passage 111 is returned to the intake passage 110 through the EGR passage 61.
  • the EGR cooler 62 cools the EGR gas by exchanging heat between the EGR gas flowing through the EGR passage 61 and the cooling water.
  • the EGR cooler 62 corresponds to the cooling unit.
  • the cooling water system 70 of the present embodiment further includes a flow path for supplying cooling water to the EGR cooler 62.
  • a branch flow path W15 is formed so as to connect the upstream portion of the high temperature side pump 32 and the multi-way valve 37.
  • An EGR cooler 62 is arranged in the middle of the branch flow path W15.
  • the multi-sided valve 37 further has a fifth port 37e to which one end of the branch flow path W15 is connected.
  • the control device 52 opens the first port 37a, the fourth port 37d, and the fifth port 37e of the multi-sided valve 37 during intake air cooling control, and is based on the temperature of the cooling water detected by the water temperature sensor 53. Either one of the second port 37b and the third port 37c is opened, and one of the other is closed. As a result, the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG. Note that FIG. 13 illustrates a case where the second port 37b is in the closed state and the third port 37c is in the open state.
  • the control device 52 opens the first port 37a and the fourth port 37d of the multi-way valve 37 and closes the second port 37b and the third port 37c during the intake air warm-up control. Further, the control device 52 closes the fifth port 37e when the exhaust temperature detected by the exhaust temperature sensor provided in the exhaust passage 111 is lower than the predetermined temperature, and the control device 52 closes the fifth port 37e and detects the exhaust gas by the exhaust temperature sensor. When the temperature is equal to or higher than the predetermined temperature, the fifth port 37e is opened. As a result, the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG. Note that FIG. 14 illustrates a case where the fifth port 37e is in the closed state.
  • the cooling water system 70 of the present embodiment described above the actions and effects shown in (10) below can be further obtained.
  • (10) In the EGR system 60 as shown in FIGS. 13 and 14, the exhaust gas containing a large amount of water vapor after combustion in the internal combustion engine 11 is returned to the intake passage 110, so that troubles due to condensed water generated during intake air cooling occur. For example, there is a problem that water hammer and corrosion of the intake pipe forming the intake passage 110 are likely to occur.
  • the intake air can be rapidly warmed up by executing the intake air warm-up control, so that the robustness against the generation of condensed water can be improved.
  • a sixth embodiment of the cooling water system 70 will be described.
  • the differences from the cooling water system 70 of the fifth embodiment will be mainly described.
  • the high temperature side cooling water circuit 30 of the present embodiment one end of the branch flow path W15 is connected to the high temperature side heat exchange section 31.
  • the EGR cooler 62 is arranged in series with the high temperature side heat exchange unit 31 with respect to the flow of the cooling water.
  • the multi-sided valve 37 is not provided with the fourth port 37d.
  • the control device 52 opens the first port 37a and the fifth port 37e of the multi-sided valve 37 during intake air cooling control, and also opens the second port 37b and the second port 37b based on the temperature of the cooling water detected by the water temperature sensor 53.
  • One of the third ports 37c is opened and one of the other is closed.
  • the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG.
  • FIG. 15 illustrates a case where the second port 37b is in the closed state and the third port 37c is in the open state.
  • the cooling water that has passed through the high temperature side heat exchange unit 31 flows into the EGR cooler 62, and the cooling water that has passed through the EGR cooler 62 flows into the multi-way valve 37.
  • the control device 52 opens the first port 37a and the fifth port 37e of the multi-way valve 37 and closes the second port 37b and the third port 37c at the time of intake air warm-up control.
  • the high temperature side cooling water circuit 30 is formed with a flow path as shown by a solid line in FIG. In this case, the cooling water that has passed through the internal combustion engine 11 flows into the EGR cooler 62 through the multi-sided valve 37. Further, the cooling water that has passed through the EGR cooler 62 flows into the high temperature side heat exchange unit 31.
  • the cooling water system 70 of the present embodiment has a configuration in which the cooling water after passing through the high temperature side heat exchange unit 31 flows into the EGR cooler 62 during intake air cooling control. ..
  • the configuration of the cooling water system 70 of the present embodiment has a lower temperature of the cooling water. Is supplied to the EGR cooler 62, so that the cooling performance of the EGR cooler 62 can be improved.
  • the cooling water that has passed through the EGR cooler 62 during intake air warming control flows into the high temperature side heat exchange unit 31.
  • the cooling water received from the exhaust gas in the EGR cooler 62 is supplied to the high temperature side heat exchange unit 31, so that the warming performance of the high temperature side heat exchange unit 31 can be improved.
  • -Intake cooling control and intake warming control do not necessarily have to be strictly stratified. For example, it is possible to remove the rough heat of the supercharged intake air even when the intake air warm-up control is executed, and it is possible to flexibly deal with it in consideration of fuel consumption and controllability.
  • each embodiment can also be applied to a cooling water system 70 that does not have a low temperature side cooling water circuit 40, as shown in FIG.
  • the control device 52 and its control method described in the present disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by a plurality of dedicated computers.
  • the control device 52 and its control method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or more dedicated hardware logic circuits.
  • the control device 52 and its control method according to the present disclosure are composed of a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be realized by one or more dedicated computers.
  • the computer program may be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

冷却水システムは、車両の内燃機関(11)の吸気通路(110)に配置される第1熱交換部(31)及び第2熱交換部(41)を有する。冷却水システムは、第1熱交換部及び内燃機関に冷却水を循環させる第1冷却水回路(30)と、第1熱交換部よりも低温の冷却水を第2熱交換部に循環させる第2冷却水回路(40)と、を備える。第1冷却水回路は、冷却水の流れに対して第1熱交換部が内燃機関と並列に配置される第1循環状態と、冷却水の流れに対して第1熱交換部が内燃機関の下流に直列に配置される第2循環状態と、に切り替え可能である。

Description

車両の冷却水システム 関連出願の相互参照
 本出願は、2019年11月11日に出願された日本国特許出願2019-204022号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、車両の冷却水システムに関する。
 従来、下記の特許文献1に記載の車両の冷却水システムがある。特許文献1に記載の冷却水システムは、車両の吸気通路に配置される高温側熱交換器及び低温側熱交換器を備えている。高温側熱交換器には、内燃機関の冷却水回路を流れる冷却水が流れている。低温側熱交換器には、高温側熱交換器を流れる冷却水よりも低温の冷却水が流れている。低温側熱交換器は、吸気の流れ方向において高温側熱交換器よりも下流側に配置されている。特許文献1に記載の冷却水システムでは、過給機を通じて過給された高温の過給吸気が高温側熱交換器、低温側熱交換器の順で流れる。過給吸気が高温側熱交換器を流れる際に、高温側熱交換器を流れる冷却水と過給吸気との間で熱交換が行われることにより、過給吸気の粗熱が除去される。また、粗熱が除去された過給吸気が低温側熱交換器を流れる際に、低温側熱交換器を流れる冷却水と過給吸気との間で熱交換が行われることにより、過給吸気が更に冷却される。
 特許文献1に記載の内燃機関の冷却水回路では、ポンプから吐出される冷却水が内燃機関及び高温側熱交換器のそれぞれに分配されて流れることにより、冷却水が内燃機関及び高温側熱交換器から受熱する。したがって、高温側熱交換器は、冷却水回路において内燃機関と並列に設けられている。内燃機関において受熱した冷却水はサーモスタットを通過してラジエータに供給される。また、高温側熱交換器において受熱した冷却水もラジエータに供給される。冷却水は、ラジエータにおいて放熱した後、ポンプに吸入される。
英国特許出願公開第2057564号明細書
 近年、排ガス及び燃費の規制の厳格化に伴って低温環境下への対策が求められている。その対策の一つとして、内燃機関の冷間始動時に吸気を早期に暖気するニーズが高まってきている。特許文献1に記載される冷却水システムにおいて吸気を暖気する場合には、高温側熱交換器により吸気を暖気するという方法がある。しかしながら、高温側熱交換器を用いて吸気を暖気しようとする場合、次のような課題が生じる。
 特許文献1に記載の冷却水システムで吸気を暖気する際には、内燃機関から受熱した冷却水を高温側熱交換器に供給する必要がある。内燃機関と高温側熱交換器とが並列に配置されている場合、内燃機関で受熱した冷却水は、サーモスタット及びポンプを通過した後に高温側熱交換器に供給されることとなる。この場合、内燃機関から高温側熱交換器に到達するまでの間に冷却水の熱の一部が大気に放出されることにより、冷却水の温度が低下する。また、内燃機関において受熱した冷却水が高温側熱交換器に到達するまでには、ある程度の時間を要する。このような冷却水の到達のタイムラグ及び冷却水の温度低下が、高温側熱交換器による吸気の暖気性能を低下させる要因となっている。
 本開示の目的は、より的確に吸気の冷却及び暖気を行うことが可能な車両の冷却水システムを提供することにある。
 本開示の一態様による車両の冷却水システムは、車両の内燃機関の吸気通路に配置される第1熱交換部及び第2熱交換部を有し、第1熱交換部及び第2熱交換部のそれぞれを流れる冷却水と吸気通路を流れる吸気との間で熱交換が行われる。冷却水システムは、第1熱交換部及び内燃機関に冷却水を循環させる第1冷却水回路と、第1熱交換部よりも低温の冷却水を第2熱交換部に循環させる第2冷却水回路と、を備える。第1冷却水回路は、冷却水の流れに対して第1熱交換部が内燃機関と並列に配置される第1循環状態と、冷却水の流れに対して第1熱交換部が内燃機関の下流に直列に配置される第2循環状態と、に切り替え可能である。
 この構成によれば、第1冷却水回路が第1循環状態である場合には、第1熱交換部及び内燃機関に対して冷却水が並列に流れるため、冷却水の流れに対して第1熱交換部が内燃機関の下流に配置されている場合と比較すると、より温度の低い冷却水を第1熱交換部に流すことが可能となる。よって、より的確に吸気を冷却することが可能である。一方、第1冷却水回路が第2循環状態である場合には、内燃機関で受熱した冷却水が第1熱交換部に流入するため、冷却水の流れに対して第1熱交換部が内燃機関に対して並列に配置されている場合と比較すると、より温度の高い冷却水を第1熱交換部に流すことが可能となる。よって、より的確に吸気を暖気することができる。したがって、吸気を冷却する際には第1冷却水回路を第1循環状態に設定するとともに、吸気を暖気する際には第1冷却水回路を第2循環状態に設定することで、より的確に吸気の冷却及び暖気を行うことが可能となる。
 また、本開示の他の態様による車両の冷却水システムは、車両の内燃機関の吸気通路に配置される熱交換部を有し、熱交換部を流れる冷却水と吸気通路を流れる吸気との間で熱交換が行われる。冷却水システムは、熱交換部及び内燃機関に冷却水を循環させる冷却水回路を備える。冷却水回路は、冷却水の流れに対して熱交換部が内燃機関と並列に配置される第1循環状態と、冷却水の流れに対して熱交換部が内燃機関の下流に直列に配置される第2循環状態と、に切り替え可能である。
 この構成によれば、冷却水回路が第1循環状態である場合には、第1熱交換部及び内燃機関に対して冷却水が並列に流れるため、冷却水の流れに対して第1熱交換部が内燃機関の下流に配置されている場合と比較すると、より温度の低い冷却水を第1熱交換部に流すことが可能となる。よって、より的確に吸気を冷却することが可能である。一方、冷却水回路が第2循環状態である場合には、内燃機関で受熱した冷却水が第1熱交換部に流入するため、冷却水の流れに対して第1熱交換部が内燃機関に対して並列に配置されている場合と比較すると、より温度の高い冷却水を第1熱交換部に流すことが可能となる。よって、より的確に吸気を暖気することができる。したがって、吸気を冷却する際には冷却水回路を第1循環状態に設定するとともに、吸気を暖気する際には冷却水回路を第2循環状態に設定することで、より的確に吸気の冷却及び暖気を行うことが可能となる。
図1は、第1実施形態の車両の冷却水システムの概略構成を示すブロック図である。 図2は、第1実施形態の2温式熱交換モジュールのプレート部材の平面構造を示す平面図である。 図3は、第1実施形態の車両の冷却水システムの電気的な構成を示すブロック図である。 図4は、第1実施形態の車両の冷却水システムの動作例を示すブロック図である。 図5は、第1実施形態の車両の冷却水システムの動作例を示すブロック図である。 図6は、第1実施形態の変形例の2温式熱交換モジュールのプレート部材の平面構造を示す平面図である。 図7は、第2実施形態の車両の冷却水システムの概略構成を示すブロック図である。 図8は、第2実施形態の車両の冷却水システムの動作例を示すブロック図である。 図9は、第3実施形態の車両の冷却水システムの概略構成を示すブロック図である。 図10は、第3実施形態の車両の冷却水システムの動作例を示すブロック図である。 図11は、第4実施形態の車両の冷却水システムの概略構成を示すブロック図である。 図12は、第4実施形態の車両の冷却水システムの動作例を示すブロック図である。 図13は、第5実施形態の車両の冷却水システムの概略構成を示すブロック図である。 図14は、第5実施形態の車両の冷却水システムの動作例を示すブロック図である。 図15は、第6実施形態の車両の冷却水システムの概略構成を示すブロック図である。 図16は、第6実施形態の車両の冷却水システムの動作例を示すブロック図である。 図17は、他の実施形態の車両の冷却水システムの概略構成を示すブロック図である。
 以下、車両の冷却水システムの一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、第1実施形態の車両の流体回路システムについて説明する。図1に示されるように、本実施形態の車両10は、内燃機関11と、過給機20とを備えている。過給機20は、互いに連結されたコンプレッサホイール21とタービンホイール22とを備えている。コンプレッサホイール21は内燃機関11の吸気通路110に配置されている。タービンホイール22は内燃機関11の排気通路111に配置されている。過給機20では、内燃機関11から排気通路111に排出される排気がタービンホイール22を通過することにより、タービンホイール22が回転する。このタービンホイール22の回転に伴ってコンプレッサホイール21が回転することにより、吸気通路110を流れる空気が圧縮される。コンプレッサホイール21により圧縮された空気、いわゆる過給吸気が内燃機関11に供給されることにより、内燃機関11の出力を高めることが可能となっている。
 吸気通路110におけるコンプレッサホイール21と内燃機関11との間には2温式熱交換モジュール50が配置されている。2温式熱交換モジュール50は高温側熱交換部31と低温側熱交換部41と一体的に有する複合熱交換器である。高温側熱交換部31及び低温側熱交換部41は吸気通路110に配置されている。低温側熱交換部41は、吸気の流れ方向において高温側熱交換部31の下流に配置されている。高温側熱交換部31には、高温側冷却水回路30を循環する冷却水が流入する。低温側熱交換部41には、低温側冷却水回路40を循環する冷却水が流入する。
 本実施形態では、高温側熱交換部31が第1熱交換部に相当し、低温側熱交換部41が第2熱交換部に相当する。また、高温側冷却水回路30が第1冷却水回路に相当し、低温側冷却水回路40が第2冷却水回路に相当する。高温側冷却水回路30及び低温側冷却水回路40により冷却水システム70が構成されている。
 2温式熱交換モジュール50は、図2に示される略矩形状の複数のプレート部材500により構成されている。プレート部材500には、高温側流路501と、低温側流路502とが一体的に形成されている。高温側流路501には、高温側冷却水回路30を循環する冷却水が流れる。低温側流路502には、低温側冷却水回路40を循環する冷却水が流れる。
 高温側流路501は、吸気の流れ方向Aに対して直交する方向に直線状に延びるように形成されており、いわゆるIフローの形状を有している。高温側流路501の一端部には第1連通孔501aが形成されている。高温側流路501の他端部には第2連通孔501bが形成されている。各プレート部材500の第1連通孔501aは互いに連通することにより第1高温側タンク空間S11を構成している。各プレート部材500の第2連通孔501bは互いに連通することにより第2高温側タンク空間S12を構成している。第1高温側タンク空間S11及び第2高温側タンク空間S12のうちのいずれか一方が、高温側冷却水回路30を流れる冷却水を高温側流路501に流入させる流入口として機能し、それらのうちのいずれか他方が、高温側流路501から冷却水を流出させる流出口として機能する。本実施形態では、高温側流路501が冷却水流路に相当する。
 低温側流路502は、吸気の流れ方向Aに対して直交する方向に延びる直線流路502c,502dと、それらの一端部を接続するように形成される転向部502eとを備えており、いわゆるUフローの形状を有している。したがって、低温側流路502は、その内部を流れる冷却水の流れ方向が少なくとも一回転向するように形成されている。直線流路502cにおける転向部502eに接続される端部とは反対側の端部には第3連通孔502aが形成されている。直線流路502dにおける転向部502eに接続される端部とは反対側の端部には第4連通孔502bが形成されている。各プレート部材500の第3連通孔502aは互いに連通することにより第1低温側タンク空間S21を構成している。各プレート部材500の第4連通孔502bは互いに連通することにより第2低温側タンク空間S22を構成している。第1低温側タンク空間S21は、低温側冷却水回路40を循環する冷却水を低温側流路502に流入させる流入口として機能する。第2低温側タンク空間S22は、低温側流路502から冷却水を流出させる流出口として機能する。
 2温式熱交換モジュール50は、図2に示される複数のプレート部材500が所定の隙間を有して積層して配置されることにより構成されている。隣り合うプレート部材500,500の間の隙間には吸気が流れる。2温式熱交換モジュール50では、冷却水が高温側流路501を流れる際に、隣り合うプレート部材500,500の間の隙間を流れる吸気と冷却水との間で熱交換が行われる。また、2温式熱交換モジュール50では、冷却水が低温側流路502を流れる際に、隣り合うプレート部材500,500の間の隙間を流れる吸気と冷却水との間で更に熱交換が行われる。
 このように、2温式熱交換モジュール50では、高温側流路501が設けられている部分が、高温側冷却水回路30を循環する冷却水と過給吸気との間で熱交換を行う高温側熱交換部31を構成している。また、低温側流路502が設けられている部分が、低温側冷却水回路40を循環する冷却水と過給吸気との間で熱交換を行う低温側熱交換部41を構成している。
 なお、2温式熱交換モジュール50では、高温側熱交換部31を流れる冷却水の温度よりも、低温側熱交換部41を流れる冷却水の温度の方が低い。よって、各熱交換部31,41の内部を流れる冷却水の温度は異なっている。
 次に、図1を参照して、高温側冷却水回路30及び低温側冷却水回路40について具体的に説明する。
 高温側冷却水回路30には、高温側熱交換部31の他、内燃機関11、高温側ポンプ32、多方弁33、オン・オフ弁34、サーモスタット35、及び高温側ラジエータ36が設けられている。高温側ポンプ32、内燃機関11、オン・オフ弁34、サーモスタット35、及び高温側ラジエータ36は、この順で高温側環状流路W10により環状に接続されている。高温側環状流路W10には、水や冷媒等からなる冷却水が循環している。なお、冷媒としてはLLC等を用いることが可能である。
 高温側ラジエータ36は、車両10のグリル開口部付近に配置されている。高温側ラジエータ36には、車両10の走行風等により空気が供給されている。高温側ラジエータ36の内部には、高温側環状流路W10を循環する冷却水が流れている。高温側ラジエータ36では、その内部を流れる冷却水と、その外部を流れる空気との間で熱交換が行われることにより、冷却水が冷却される。高温側ラジエータ36において冷却された冷却水は高温側環状流路W10を通じて高温側ポンプ32に吸入される。
 高温側ポンプ32は、高温側ラジエータ36から吐出される低温の冷却水を吸入して内燃機関11に吐出する。高温側ポンプ32は、内燃機関11の動力により駆動する機械式のポンプである。なお、高温側ポンプ32としては、電力の供給に基づき駆動する電動式のポンプを用いてもよい。本実施形態では、高温側ポンプ32が第1冷却水回路用ポンプに相当する。高温側ポンプ32により冷却水に付与される吐出圧により、冷却水が高温側環状流路W10内を循環している。内燃機関11を冷却水が通過する際に、冷却水が内燃機関11の熱を吸収することにより、内燃機関11が冷却される。内燃機関11において受熱した冷却水は、オン・オフ弁34及びサーモスタット35を通じて高温側ラジエータ36に流入することにより、高温側ラジエータ36において再び冷却される。
 オン・オフ弁34は、高温側環状流路W10において内燃機関11とサーモスタット35との間に配置されている。オン・オフ弁34は電磁弁である。オン・オフ弁34が開状態であるとき、内燃機関11からサーモスタット35への冷却水の流れが許可される。オン・オフ弁34が閉状態であるとき、内燃機関11からサーモスタット35への冷却水の流れが遮断される。
 サーモスタット35は、高温側環状流路W10においてオン・オフ弁34と高温側ラジエータ36との間に配置されている。サーモスタット35を有する流路部には、バイパス流路W11が接続されている。バイパス流路W11は、内燃機関11及びオン・オフ弁34を通過した冷却水を、高温側ラジエータ36を迂回させて高温側ポンプ32に流す流路である。サーモスタット35は、流入する冷却水の温度が所定温度以上である場合には、高温側ラジエータ36に冷却水を流入させる。サーモスタット35は、流入する冷却水の温度が所定温度未満である場合には、高温側ラジエータ36への冷却水の流入を遮断して、バイパス流路W11に冷却水を流入させる。
 高温側冷却水回路30には、高温側環状流路W10において高温側ポンプ32の上流側の部分と内燃機関11の下流側の部分とを接続するように分岐流路W12が形成されている。分岐流路W12には高温側熱交換部31及び多方弁33が配置されている。多方弁33は、分岐流路W12において高温側熱交換部31よりも高温側ポンプ32に近い位置に配置されている。
 多方弁33には、分岐流路W13が更に接続されている。分岐流路W13は、高温側環状流路W10において高温側ポンプ32と内燃機関11との間の部分に接続されている。多方弁33は、高温側ポンプ32の上流側の部分に繋がる第1ポート33aと、分岐流路W13に繋がる第2ポート33bと、高温側熱交換部31に繋がる第3ポート33cとを有している。多方弁33は、各ポート33a,33b,33cの開閉状態を切り替えることにより、分岐流路W12,W13の接続状態を切り替える。本実施形態では、多方弁33が熱交換部用流路切替弁に相当する。
 高温側熱交換部31の第1高温側タンク空間S11は、分岐流路W12を介して多方弁33の第3ポート33cに接続されている。高温側熱交換部31の第2高温側タンク空間S12は、分岐流路W12を介して内燃機関11の下流側の部分に接続されている。
 低温側冷却水回路40は、低温側熱交換部41の他、低温側ポンプ42と、低温側ラジエータ43とを有している。低温側熱交換部41、低温側ポンプ42、及び低温側ラジエータ43は低温側環状流路W20により環状に接続されている。低温側環状流路W20には、水や冷媒等からなる冷却水が循環している。なお、冷媒としてはLLC等を用いることが可能である。
 低温側ラジエータ43は、高温側ラジエータ36と同様に、車両10のグリル開口部付近に配置されている。低温側ラジエータ43の内部には、低温側環状流路W20を循環する冷却水が流れている。低温側ラジエータ43では、その内部を流れる冷却水と、その外部を流れる空気との間で熱交換が行われることにより冷却水が冷却される。低温側ラジエータ43により冷却された低温の冷却水は低温側環状流路W20を通じて低温側ポンプ42に向かって流れる。
 低温側ポンプ42は、低温側ラジエータ43から吐出される低温の冷却水を吸入して低温側熱交換部41に吐出する。低温側ポンプ42は、電力の供給に基づき駆動する電動式のポンプである。低温側ポンプ42により冷却水に付与される吐出圧により、冷却水が低温側環状流路W20内を循環している。本実施形態では、低温側ポンプ42が第2冷却水回路用ポンプに相当する。
 低温側熱交換部41の第1低温側タンク空間S21は、低温側環状流路W20を介して低温側ポンプ42に接続されている。低温側熱交換部41の第2低温側タンク空間S22は、低温側環状流路W20を介して低温側ラジエータ43に接続されている。したがって、低温側ポンプ42から吐出される冷却水は、低温側熱交換部41において過給吸気と熱交換を行った後、低温側ラジエータ43に流入する。
 次に、図3を参照して、冷却水システム70の電気的な構成について説明する。
 図3に示されるように、冷却水システム70は、吸気温センサ51と、制御装置52とを更に備えている。本実施形態では、制御装置52が制御部に相当する。
 吸気温センサ51は、吸気通路110を流れる過給吸気の温度を検出するとともに、検出された過給吸気の温度に応じた信号を制御装置52に出力する。
 制御装置52は、CPUやメモリ等を有するマイクロコンピュータを中心に構成されている。制御装置52は、メモリに予め記録されているプログラムを実行することにより、冷却水システム70を統括的に制御する。具体的には、制御装置52は、吸気温センサ51により検出される過給吸気の温度に基づいて多方弁33、オン・オフ弁34、及び低温側ポンプ42を制御することにより、過給吸気を冷却する吸気冷却制御、及び過給吸気を暖気する吸気暖気制御を実行する。
 次に、制御装置52により実行される吸気冷却制御及び吸気暖気制御の具体的な手順について説明する。
 (吸気冷却制御)
 制御装置52は、吸気温センサ51により検出される過給吸気の温度が所定温度以上である場合には、吸気冷却制御を実行する。この際、制御装置52は、多方弁33の第1ポート33aを閉状態にし、第2ポート33b及び第3ポート33cを開状態にする。また、制御装置52は、オン・オフ弁34を開状態にするとともに、低温側ポンプ42を駆動させる。これにより、冷却水システム70には、図4に実線で示されるような流路が形成される。なお、図4において、破線で示される流路は、冷却水が流れていない流路を示している。
 図4に示されるように、吸気冷却制御の実行時には、高温側冷却水回路30において、高温側ポンプ32から吐出された冷却水が、内燃機関11に供給されるとともに、多方弁33を介して高温側熱交換部31にも供給される。高温側熱交換部31では、多方弁33を通過した冷却水が、第1高温側タンク空間S11を通じて内部に流入した後、第2高温側タンク空間S12を通じて排出される。このように、高温側冷却水回路30は、冷却水の流れに対して高温側熱交換部31が内燃機関11に対して並列に配置される状態となる。本実施形態では、このような流路が形成されている状態が第1循環状態に相当する。内燃機関11及び高温側熱交換部31をそれぞれ流れた冷却水は、高温側環状流路W10と分岐流路W12との接続部分で合流した後、オン・オフ弁34を通じてサーモスタット35に流入する。
 サーモスタット35は、流入する冷却水の温度が所定温度以上である場合には、高温側ラジエータ36に冷却水を流入させる。これにより、サーモスタット35から高温側ラジエータ36を経由して高温側ポンプ32に流れるような冷却水の流路が形成される。本実施形態では、この流路が、内燃機関11を通過した冷却水を、高温側ラジエータ36を経由させて内燃機関11に流入させるラジエータ通過流路に相当する。
 なお、サーモスタット35は、流入する冷却水の温度が所定温度未満である場合には、高温側ラジエータ36への冷却水の流入を遮断して、バイパス流路W11に冷却水を流入させる。これにより、サーモスタット35から高温側ポンプ32に直接流れるような冷却水の流路が形成される。本実施形態では、この流路が、内燃機関11を通過した冷却水を、高温側ラジエータ36を経由させずに内燃機関11に流入させるラジエータ迂回流路に相当する。
 高温側ラジエータ36を経由した冷却水、又はバイパス流路W11を経由した冷却水は、高温側ポンプ32を通じて内燃機関11及び高温側熱交換部31に再び流入する。
 高温側冷却水回路30では、内燃機関11と冷却水との間で熱交換が行われることにより内燃機関11が冷却される。また、高温側熱交換部31では、その内部を流れる冷却水と、吸気通路110を流れる過給吸気との間で熱交換が行われることにより、過給吸気の粗熱を冷却水が吸収して、過給吸気が冷却される。
 一方、低温側冷却水回路40では、低温側ポンプ42が駆動しているため、低温側ラジエータ43において冷却された冷却水が低温側熱交換部41に供給される。低温側熱交換部41では、その内部を流れる冷却水と、高温側熱交換部31を通過した過給吸気との間で熱交換が行われることにより、過給吸気が更に冷却される。
 (吸気暖気制御)
 制御装置52は、吸気温センサ51により検出される過給吸気の温度が所定温度未満である場合には、吸気暖気制御を実行する。この際、制御装置52は、多方弁33の第1ポート33a及び第3ポート33cを開状態にし、第2ポート33bを閉状態にする。また、制御装置52は、オン・オフ弁34を閉状態にするとともに、低温側ポンプ42を停止させる。これにより、冷却水システム70には、図5に実線で示されるような流路が形成される。なお、図5において、破線で示される流路は、冷却水が流れていない流路を示している。
 図5に示されるように、吸気暖気制御の実行時には、高温側冷却水回路30において、高温側ポンプ32から吐出された冷却水が、内燃機関11を通過した後、高温側熱交換部31及び多方弁33を通じて高温側ポンプ32に戻される流路が形成される。高温側熱交換部31では、内燃機関11を通過した冷却水が第2高温側タンク空間S12を通じて内部に流入した後、第1高温側タンク空間S11から排出される。このように、高温側冷却水回路30は、冷却水の流れに対して高温側熱交換部31が内燃機関11の下流に直列に配置される状態となる。本実施形態では、このような流路が形成されている状態が第2循環状態に相当する。高温側熱交換部31における冷却水の流れ方向は、吸気暖気制御時と吸気冷却制御時とで逆方向となる。
 高温側冷却水回路30では、内燃機関11において受熱した冷却水が高温側熱交換部31に供給される。高温側熱交換部31では、その内部を流れる冷却水と、吸気通路110を流れる吸気との間で熱交換が行われることにより、吸気が暖気される。
 なお、吸気暖気制御時には低温側ポンプ42が停止しているため、吸気は低温側熱交換部41において低温側冷却水回路40の冷却水と熱交換を行い難い。すなわち、高温側熱交換部31において暖気された吸気が低温側冷却水回路40の冷却水により再冷却され難くなっている。
 以上説明した本実施形態の冷却水システム70によれば、以下の(1)~(6)に示される作用及び効果を得ることができる。
 (1)高温側冷却水回路30が図4に示される状態である場合には、高温側熱交換部31及び内燃機関11に対して冷却水が並列に流れるため、図5に示されるように冷却水の流れに対して高温側熱交換部31が内燃機関11の下流側に配置されている場合と比較すると、より温度の低い冷却水を高温側熱交換部31に流すことが可能となる。よって、より的確に吸気を冷却することが可能となる。また、高温側熱交換部31には、水圧が高く、且つ水温の低い冷却水が流入するため、冷却水の沸騰に対するロバスト性を向上させることもできる。
 一方、高温側冷却水回路30が図5に示される状態である場合には、内燃機関11で受熱した冷却水が高温側熱交換部31に流れるため、図4に示されるように冷却水の流れに対して高温側熱交換部31が内燃機関11と並列に配置されている場合と比較すると、より温度の高い冷却水を高温側熱交換部31に流すことが可能となる。また、吸気暖気制御時には、吸気冷却制御時と比較すると、高温側冷却水回路30の全体の流路長が短くなるため、冷却水の熱が大気に放出され難い。よって、より的確に吸気を暖気することができる。
 したがって、吸気冷却制御時に高温側冷却水回路30を図4に示される状態に設定するとともに、吸気暖気制御時に高温側冷却水回路30を図5に示される状態に設定することで、より的確に吸気の冷却及び暖気を行うことが可能となる。
 (2)高温側ポンプ32は、高温側冷却水回路30が図4に示される状態であるとき、高温側熱交換部31とは別の熱交換器に冷却水を通過させることなく、内燃機関11及び高温側熱交換部31に冷却水を供給する。これにより、より的確に内燃機関11及び過給吸気を冷却することが可能となる。
 (3)制御装置52は、高温側冷却水回路30が図4に示される状態であるとき、高温側ポンプ32の下流側の部分と高温側熱交換部31とを接続する流路が形成されるように多方弁33を制御する。本実施形態では、この多方弁33により形成される流路が第1流路に相当する。また、制御装置52は、高温側冷却水回路30が図5に示される状態であるとき、高温側ポンプ32の上流側の部分と高温側熱交換部31とを接続する流路が形成されるように多方弁33を制御する。本実施形態では、この多方弁33により形成される流路が第2流路に相当する。この構成によれば、冷却水の流れに対して高温側熱交換部31が内燃機関11と並列に配置されている状態と、冷却水の流れに対して高温側熱交換部31が内燃機関11の下流に直列に配置されている状態とを容易に実現することが可能となる。
 (4)高温側冷却水回路30が図4に示される状態である場合と、図5に示される状態である場合とで、高温側熱交換部31における冷却水の流れ方向が反転する。これにより、仮に冷却水に混入している異物が高温側熱交換部31の内部で詰まった場合であっても、冷却水の流れ方向の反転により、高温側熱交換部31から異物が排出され易くなる。
 (5)低温側ポンプ42は、高温側冷却水回路30が図4に示される状態であるときに駆動状態となり、高温側冷却水回路30が図5に示される状態であるときに非駆動状態となる。これにより、吸気暖気制御において、高温側熱交換部31において暖気された吸気が低温側熱交換部41で冷却され難くなるため、より的確に吸気を暖気することが可能となる。
 (6)図2に示されるように、高温側熱交換部31は、吸気の流れ方向Aに対して直交するように冷却水が流れる高温側流路501を有する。この構成によれば、吸気冷却時に第1高温側タンク空間S11から第2高温側タンク空間S12に向かって冷却水が流れる場合と、吸気暖気時に第2高温側タンク空間S12から第1高温側タンク空間S11に向かって冷却水が流れる場合とで、冷却水の流れ方向に対して高温側流路501が対称構造となる。そのため、吸気冷却時と吸気暖気時とで冷却水の流れ方向が反転する現象に対して性能や通水抵抗への影響を限りなく零に抑えることができる。また、Iフローの形状を有する高温側流路501の弱点である、吸気出口側に発生する温度分布についても、低温側流路502をUフローの構造とすることで、解消できる。
 (変形例)
 次に、第1実施形態の冷却水システム70の変形例について説明する。
 本変形例の冷却水システム70では、2温式熱交換モジュール50が、図6に示されるプレート部材500により構成されている。図6に示されるように、このプレート部材500では、図2に示されるプレート部材500と高温側流路501の形状が異なっている。
 具体的には、高温側流路501は、吸気の流れ方向Aに対して直交する方向に延びる直線流路501c,501dと、それらの一端部を接続するように形成される転向部501eとを有しており、低温側流路502と同様にU字状に形成されている。したがって、高温側流路501は、その内部を流れる冷却水の流れ方向が少なくとも1回、転向するように形成されている。直線流路501cにおける転向部501eに接続される端部とは反対側の端部には第1連通孔501aが形成されている。直線流路501dにおける転向部502eに接続される端部とは反対側の端部には第2連通孔501bが形成されている。
 本変形例の高温側流路501では、吸気冷却時には吸気の流れ方向Aの上流側の第1高温側タンク空間S11が冷却水の流入口となり、吸気暖気時には吸気の流れ方向Aの下流側の第2高温側タンク空間S12が冷却水の流入口となる。このような構成によれば、高温の入口吸気を、より低温の冷却水で冷却するために、特に吸気冷却時に懸念される冷却水の沸騰を抑制することが可能となる。
 <第2実施形態>
 次に、冷却水システム70の第2実施形態について説明する。以下、第1実施形態の冷却水システム70との相違点を中心に説明する。
 図7に示されるように、本実施形態の冷却水システム70は、オン・オフ弁34及びサーモスタット35に代えて、多方弁37が用いられている。多方弁37は、高温側環状流路W10における内燃機関11と高温側ラジエータ36との間に配置されている。多方弁37にはバイパス流路W11が接続されている。多方弁37は、高温側環状流路W10における分岐流路W12との接続部分よりも下流側の部分に繋がる第1ポート37aと、バイパス流路W11に繋がる第2ポート37bと、高温側ラジエータ36に繋がる第3ポート37cとを有している。多方弁37は、各ポート37a~37cの開閉状態を切り替えることにより、高温側環状流路W10及びバイパス流路W11の接続状態を切り替える。本実施形態では、多方弁37がラジエータ用流路切替弁に相当する。
 また、高温側環状流路W10には、多方弁37の第1ポート37aに流入する冷却水の温度を検出する水温センサ53が設けられている。図3に破線で示されるように、水温センサ53の出力信号は制御装置52に取り込まれている。制御装置52は、水温センサ53により検出される冷却水の温度に基づいて多方弁37を更に制御する。
 具体的には、制御装置52は、吸気冷却制御時において、水温センサ53により検出される冷却水の水温が所定温度以上である場合には、多方弁37の第1ポート37a及び第3ポート37cを開状態にするとともに、第2ポート37bを閉状態にする。これにより、高温側冷却水回路30には、図7に実線で示されるような流路が形成される。本実施形態では、この流路が、内燃機関11を通過した冷却水を、高温側ラジエータ36を経由させて内燃機関11及び高温側熱交換部31に流入させるラジエータ通過流路に相当する。
 制御装置52は、吸気冷却制御時において、水温センサ53により検出される冷却水の水温が所定温度未満である場合には、多方弁37の第1ポート37a及び第2ポート37bを開状態にするとともに、第3ポート37cを閉状態にする。これにより、内燃機関11を通過した冷却水が多方弁37を介して高温側ポンプ32に直接流れるような冷却水の流路が形成される。本実施形態では、この流路が、内燃機関11を通過した冷却水を、高温側ラジエータ36を経由させずに内燃機関11及び高温側熱交換部31に流入させるラジエータ迂回流路に相当する。
 制御装置52は、吸気冷却制御時において、多方弁37の全てのポート37a~37cを閉状態にする。これにより、高温側冷却水回路30には、図8に実線で示されるような流路が形成される。
 以上説明した本実施形態の冷却水システム70によれば、以下の(7)に示される作用及び効果を更に得ることができる。
 (7)第1実施形態のオン・オフ弁34及びサーモスタット35の代わりに多方弁37を制御装置52が電気制御することにより、サーモスタット35と比較して応答性を向上させることができる。結果として、吸気冷却及び吸気暖気の迅速な切り替えが可能となるため、車両10の燃費が改善する。また、部品点数を削減することができるため、コストを低減することもできる。
 <第3実施形態>
 次に、冷却水システム70の第3実施形態について説明する。以下、第2実施形態の冷却水システム70との相違点を中心に説明する。
 図9に示されるように、本実施形態の冷却水システム70では、分岐流路W12の一端部が多方弁37に接続されている。多方弁37は、分岐流路W12に繋がる第4ポート37dを更に備えている。
 制御装置52は、吸気冷却制御時において、多方弁37の第1ポート37a及び第4ポート37dを開状態にするとともに、水温センサ53により検出される冷却水の温度に基づいて第2ポート37b及び第3ポート37cのいずれか一方を開状態とし、いずれか他方を閉状態にする。これにより、高温側冷却水回路30には、図9に実線で示されるような流路が形成される。なお、図9は、第2ポート37bが閉状態であって、且つ第3ポート37cが開状態である場合を例示している。この場合、内燃機関11を通過した冷却水と、高温側熱交換部31を通過した冷却水とが多方弁37において合流した後、高温側ラジエータ36に流れる。
 一方、制御装置52は、吸気暖気制御時において、多方弁37の第1ポート37a及び第4ポート37dを開状態にするとともに、第2ポート37b及び第3ポート37cを閉状態にする。これにより、高温側冷却水回路30には、図10に実線で示されるような流路が形成される。すなわち、内燃機関11を通過した冷却水が多方弁37を通過して高温側熱交換部31に流入する。
 以上説明した本実施形態の冷却水システム70によれば、以下の(8)に示される作用及び効果を更に得ることができる。
 (8)高温側熱交換部31と内燃機関11との合流部分が多方弁37に設けられているため、多方弁37により流路を開閉することで、吸気冷却制御と吸気暖気制御とを切り替える際に発生する逆流現象に伴うタイムラグを抑制することができる。よって、応答性を向上させることができる。また、高温側環状流路W10と分岐流路W12とを接続する場合、その接続部分に分岐管が必要となるが、そのような分岐管が本実施形態の冷却水システム70では不要であるため、コストを低減することもできる。
 <第4実施形態>
 次に、冷却水システム70の第4実施形態について説明する。以下、第3実施形態の冷却水システム70との相違点を中心に説明する。
 図11に示されるように、本実施形態の高温側冷却水回路30には、高温側環状流路W10における高温側ポンプ32の下流側の部分と上流側の部分とを接続するように分岐流路W14が形成されている。分岐流路W14にはオン・オフ弁38及び高温側熱交換部31が設けられている。
 分岐流路W14におけるオン・オフ弁38と高温側熱交換部31との間の部分には分岐流路W15の一端部が接続されている。分岐流路W15の他端部は多方弁37の第4ポート37dに接続されている。
 分岐流路W14における高温側環状流路W10との接続部分から分岐流路W15との接続部分までの部分を流路部分W140とするとき、オン・オフ弁38は流路部分W140に配置されている。オン・オフ弁38は電磁弁である。オン・オフ弁38が開状態であるとき、高温側ポンプ32から高温側熱交換部31への冷却水の流れが許容される。オン・オフ弁38が閉状態であるとき、高温側ポンプ32から高温側熱交換部31への冷却水の流れが遮断される。
 図3に破線で示されるように、制御装置52は多方弁37及びオン・オフ弁38を制御することにより、図11及び図12に示されるような流路を形成する。
 具体的には、制御装置52は、吸気冷却制御時において、多方弁37の第1ポート37aを開状態にし、第4ポート37dを閉状態にする。また、制御装置52は、水温センサ53により検出される冷却水の温度に基づいて第2ポート37b及び第3ポート37cのいずれか一方を開状態にし、いずれか他方を閉状態にする。さらに、制御装置52はオン・オフ弁38を開状態にする。これにより、高温側冷却水回路30には、図11に実線で示されるような流路が形成される。なお、図11は、第2ポート37bが閉状態であって、且つ第3ポート37cが開状態である場合を例示している。この場合、高温側ポンプ32から吐出される冷却水が、高温側環状流路W10を介して内燃機関11に流入するとともに、分岐流路W14の流路部分W140を通じて高温側熱交換部31にも流入する。高温側ポンプ32では、第1高温側タンク空間S11から冷却水が流入するとともに、第2高温側タンク空間S12から冷却水が排出される。高温側熱交換部31を通過した冷却水は分岐流路W14を通じて高温側ポンプ32の上流側に戻される。このように、吸気冷却制御時には、冷却水の流れに対して高温側熱交換部31が内燃機関11と並列に配置される。
 一方、制御装置52は、吸気暖気制御時において、多方弁37の第1ポート37a及び第4ポート37dを開状態にするとともに、第2ポート37b及び第3ポート37cを閉状態にする。また、制御装置52はオン・オフ弁38を閉状態にする。これにより、高温側冷却水回路30には、図12に実線で示されるような流路が形成される。すなわち、オン・オフ弁38が閉状態であるため、分岐流路W14の流路部分W140が遮断されている。そのため、高温側ポンプ32から吐出される冷却水は、高温側熱交換部31に向かって流れることなく、内燃機関11のみに流入する。内燃機関11を通過した冷却水は、多方弁37、分岐流路W15、及び分岐流路W14を順に流れることにより、高温側熱交換部31に流入する。高温側ポンプ32では、第1高温側タンク空間S11から冷却水が流入するとともに、第2高温側タンク空間S12から冷却水が排出される。高温側熱交換部31を通過した冷却水は分岐流路W14を通じて高温側ポンプ32の上流側に戻される。このように、吸気暖気制御時には、冷却水の流れに対して高温側熱交換部31が内燃機関11の下流側に直列に配置されている。
 以上説明した本実施形態の冷却水システム70によれば、以下の(9)に示される作用及び効果を更に得ることができる。
 (9)吸気冷却制御時及び吸気暖気制御時のいずれの場合であっても、高温側熱交換部31では第1高温側タンク空間S11から第2高温側タンク空間S12に向かって冷却水が流れる。すなわち、高温側熱交換部31では、吸気冷却制御時と吸気暖気制御時とで冷却水の流れ方向が反転する現象が生じることがない。そのため、冷却水の流れ方向が反転することにより高温側熱交換部31の内部で発生する熱歪みを抑制することができるとともに、高温側熱交換部31の内部を流れる冷却水の通水抵抗の変化を抑制することができる。
 <第5実施形態>
 次に、冷却水システム70の第5実施形態について説明する。以下、第3実施形態の冷却水システム70との相違点を中心に説明する。
 図13に示されるように、車両10には、NOxの抑制等を目的として、排気通路111を流れる排気の一部を吸気通路110に戻す、いわゆる排気再循環(EGR:Exhaust Gas Recirculation)システム60が搭載されているものがある。EGRシステム60は、吸気通路110と排気通路111とを連結するEGR通路61と、EGR通路61を流れる排気を冷却するEGRクーラ62とを備えている。排気通路111を流れる排気はEGR通路61を通じて吸気通路110に戻される。以下では、EGR通路61を通じて吸気通路110に戻される排気を「EGRガス」と称する。EGRクーラ62は、EGR通路61を流れるEGRガスと冷却水との間で熱交換を行うことによりEGRガスを冷却する。本実施形態では、EGRクーラ62が冷却部に相当する。
 本実施形態の冷却水システム70は、EGRクーラ62に冷却水を供給する流路を更に備えている。具体的には、高温側冷却水回路30には、高温側ポンプ32の上流側の部分と多方弁37とを接続するように分岐流路W15が形成されている。分岐流路W15の途中部分にはEGRクーラ62が配置されている。多方弁37は、分岐流路W15の一端部が接続される第5ポート37eを更に有している。
 制御装置52は、吸気冷却制御時において、多方弁37の第1ポート37a、第4ポート37d、及び第5ポート37eを開状態にするとともに、水温センサ53により検出される冷却水の温度に基づいて第2ポート37b及び第3ポート37cのいずれか一方を開状態とし、いずれか他方を閉状態にする。これにより、高温側冷却水回路30には、図13に実線で示されるような流路が形成される。なお、図13では、第2ポート37bが閉状態であって、且つ第3ポート37cが開状態である場合を例示している。この場合、内燃機関11及び高温側熱交換部31から多方弁37に流入した冷却水の一部が分岐流路W15を通じてEGRクーラ62に供給される。これにより、EGRクーラ62を流れる冷却水によりEGRガスを冷却することができる。
 一方、制御装置52は、吸気暖気制御時において、多方弁37の第1ポート37a及び第4ポート37dを開状態にするとともに、第2ポート37b及び第3ポート37cを閉状態にする。また、制御装置52は、排気通路111に設けられる排気温センサにより検出される排気の温度が所定温度未満である場合には第5ポート37eを閉状態にし、排気温センサにより検出される排気の温度が所定温度以上である場合には第5ポート37eを開状態にする。これにより、高温側冷却水回路30には、図14に実線で示されるような流路が形成される。なお、図14では、第5ポート37eが閉状態である場合を例示している。
 以上説明した本実施形態の冷却水システム70によれば、以下の(10)に示される作用及び効果を更に得ることができる。
 (10)図13及び図14に示されるようなEGRシステム60では、内燃機関11で燃焼後の水蒸気を多量に含む排気が吸気通路110に戻されるため、吸気冷却時に発生する凝縮水によるトラブル、例えば吸気通路110を形成する吸気管のウォータハンマや腐食等が発生し易い課題を抱えている。この点、本実施形態の冷却水システム70では、吸気暖気制御の実行により吸気を急速に暖気することができるため、凝縮水の発生に対するロバスト性を向上させることができる。また、凝縮水の発生に対するロバスト性が向上することにより、結果としてEGRガスを吸気通路110に戻すことが可能な吸気の温度領域を拡大することができるため、より的確に車両10の燃費を改善したり、NOx量を低減したりすることができる。
 <第6実施形態>
 次に、冷却水システム70の第6実施形態について説明する。以下、第5実施形態の冷却水システム70との相違点を中心に説明する。
 本実施形態の高温側冷却水回路30では、分岐流路W15の一端部が高温側熱交換部31に接続されている。これにより、EGRクーラ62は、冷却水の流れに対して高温側熱交換部31と直列に配置されている。なお、多方弁37には第4ポート37dが設けられていない。
 制御装置52は、吸気冷却制御時において、多方弁37の第1ポート37a及び第5ポート37eを開状態にするとともに、水温センサ53により検出される冷却水の温度に基づいて第2ポート37b及び第3ポート37cのいずれか一方を開状態とし、いずれか他方を閉状態にする。これにより、高温側冷却水回路30には、図15に実線で示されるような流路が形成される。なお、図15では、第2ポート37bが閉状態であって、且つ第3ポート37cが開状態である場合を例示している。この場合、高温側熱交換部31を通過した冷却水がEGRクーラ62に流入するとともに、EGRクーラ62を通過した冷却水が多方弁37に流入する。
 一方、制御装置52は、吸気暖気制御時において、多方弁37の第1ポート37a及び第5ポート37eを開状態にするとともに、第2ポート37b及び第3ポート37cを閉状態にする。これにより、高温側冷却水回路30には、図16に実線で示されるような流路が形成される。この場合、内燃機関11を通過した冷却水が多方弁37を通じてEGRクーラ62に流入する。また、EGRクーラ62を通過した冷却水が高温側熱交換部31に流入する。
 以上説明した本実施形態の冷却水システム70によれば、以下の(11),(12)に示される作用及び効果を更に得ることができる。
 (11)本実施形態の冷却水システム70は、図15に示されるように、吸気冷却制御時に高温側熱交換部31を通過後の冷却水がEGRクーラ62に流入する構成を有している。これにより、図13に示されるように内燃機関11を通過後の冷却水がEGRクーラ62に流入する構成と比較すると、本実施形態の冷却水システム70の構成の方が、より低温の冷却水がEGRクーラ62に供給されるため、EGRクーラ62の冷却性能を向上させることができる。
 (12)本実施形態の冷却水システム70は、図16に示されるように、吸気暖気制御時にEGRクーラ62を通過した冷却水が高温側熱交換部31に流入する。これにより、EGRクーラ62において排気から受熱した冷却水が高温側熱交換部31に供給されるため、高温側熱交換部31の暖気性能を向上させることができる。
 <他の実施形態>
 なお、上記実施形態は、以下の形態にて実施することもできる。
 ・吸気冷却制御と吸気暖気制御は必ずしも厳格に層別されている必要はない。例えば吸気暖気制御の実行の際にも過給吸気の粗熱取りは可能であり、燃費や制御性を鑑みて柔軟に対応することが可能である。
 ・各実施形態の構成は、図17に示されるように、低温側冷却水回路40を有していない冷却水システム70に適用することも可能である。
 ・本開示に記載の制御装置52及びその制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載の制御装置52及びその制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載の制御装置52及びその制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (12)

  1.  車両の内燃機関(11)の吸気通路(110)に配置される第1熱交換部(31)及び第2熱交換部(41)を有し、前記第1熱交換部及び前記第2熱交換部のそれぞれを流れる冷却水と前記吸気通路を流れる吸気との間で熱交換が行われる車両の冷却水システムであって、
     前記第1熱交換部及び前記内燃機関に冷却水を循環させる第1冷却水回路(30)と、
     前記第1熱交換部よりも低温の冷却水を前記第2熱交換部に循環させる第2冷却水回路(40)と、を備え、
     前記第1冷却水回路は、
     冷却水の流れに対して前記第1熱交換部が前記内燃機関と並列に配置される第1循環状態と、
     冷却水の流れに対して前記第1熱交換部が前記内燃機関の下流に直列に配置される第2循環状態と、に切り替え可能である
     車両の冷却水システム。
  2.  前記第1冷却水回路は、
     前記第1冷却水回路が前記第1循環状態であるときに前記第1熱交換部及び前記内燃機関に冷却水を供給するとともに、前記第1冷却水回路が前記第2循環状態であるときに前記内燃機関に冷却水を供給する第1冷却水回路用ポンプ(32)を更に備え、
     前記第1冷却水回路用ポンプは、
     前記第1冷却水回路が前記第1循環状態に設定されているときに、前記第1熱交換部とは別の熱交換器に冷却水を通過させることなく、前記第1熱交換部及び前記内燃機関に冷却水を供給する
     請求項1に記載の車両の冷却水システム。
  3.  前記第1冷却水回路は、
     前記第1冷却水回路用ポンプの下流側の部分と前記第1熱交換部とを接続する第1流路と、前記第1冷却水回路用ポンプの上流側の部分と前記第1熱交換部とを接続する第2流路とを切り替え可能な熱交換部用流路切替弁(33)と、
     前記熱交換部用流路切替弁を制御する制御部(52)と、を備え、
     前記制御部は、
     前記第1冷却水回路が前記第1循環状態であるときに、前記第1流路が形成されるように前記熱交換部用流路切替弁を制御し、
     前記第1冷却水回路が前記第2循環状態であるときに、前記第2流路が形成されるように前記熱交換部用流路切替弁を制御する
     請求項1又は2に記載の車両の冷却水システム。
  4.  前記第1冷却水回路は、
     冷却水と空気との間の熱交換により冷却水を冷却するラジエータ(36)と、
     前記内燃機関を通過した冷却水を前記ラジエータを経由させて前記内燃機関及び前記第1熱交換部に流入させるラジエータ通過流路と、前記内燃機関を通過した冷却水を前記ラジエータを経由させずに前記内燃機関及び前記第1熱交換部に流入させるラジエータ迂回流路とを切り替え可能なラジエータ用流路切替弁(37)と、
     冷却水の温度に基づいて前記ラジエータ用流路切替弁を制御する制御部(52)と、を備える
     請求項1~3のいずれか一項に記載の車両の冷却水システム。
  5.  前記第1冷却水回路が前記第1循環状態である場合、前記内燃機関を通過した冷却水と、前記第1熱交換部を通過した冷却水とが、前記ラジエータ用流路切替弁において合流し、
     前記第1冷却水回路が前記第2循環状態である場合、前記内燃機関を通過した冷却水が前記ラジエータ用流路切替弁を通過して前記第1熱交換部に流入する
     請求項4に記載の車両の冷却水システム。
  6.  前記第1冷却水回路は、
     前記第1循環状態に設定されている場合と、前記第2循環状態に設定されている場合とで、前記第1熱交換部における冷却水の流れ方向が反転する
     請求項1~5のいずれか一項に記載の車両の冷却水システム。
  7.  前記第1冷却水回路は、
     車両の排気通路から前記吸気通路に戻される排気を冷却水により冷却する冷却部(62)を更に備える
     請求項1~6のいずれか一項に記載の車両の冷却水システム。
  8.  前記冷却部は、
     冷却水の流れに対して前記第1熱交換部と直列に配置されている
     請求項7に記載の車両の冷却水システム。
  9.  前記第2冷却水回路は、
     前記第2熱交換部に冷却水を循環させる第2冷却水回路用ポンプ(42)を更に備え、
     前記第2冷却水回路用ポンプは、
     前記第1冷却水回路が前記第1循環状態であるときに駆動状態となり、
     前記第1冷却水回路が前記第2循環状態であるときに非駆動状態となる
     請求項1~8のいずれか一項に記載の車両の冷却水システム。
  10.  前記第1熱交換部は、
     吸気の流れ方向に対して直交するように冷却水が流れる冷却水流路(501)を有する
     請求項1~9のいずれか一項に記載の車両の冷却水システム。
  11.  前記第1熱交換部は、
     冷却水が流れ、且つ冷却水の流れ方向が少なくとも一回転向するように形成される冷却水流路を有する
     請求項1~10のいずれか一項に記載の車両の冷却水システム。
  12.  車両の内燃機関(11)の吸気通路(110)に配置される熱交換部(31)を有し、前記熱交換部を流れる冷却水と前記吸気通路を流れる吸気との間で熱交換が行われる車両の冷却水システムであって、
     前記熱交換部及び前記内燃機関に冷却水を循環させる冷却水回路(30)を備え、
     前記冷却水回路は、
     冷却水の流れに対して前記熱交換部が前記内燃機関と並列に配置される第1循環状態と、
     冷却水の流れに対して前記熱交換部が前記内燃機関の下流に直列に配置される第2循環状態と、に切り替え可能である
     車両の冷却水システム。
PCT/JP2020/036508 2019-11-11 2020-09-28 車両の冷却水システム WO2021095375A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019204022A JP7347138B2 (ja) 2019-11-11 2019-11-11 車両の冷却水システム
JP2019-204022 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021095375A1 true WO2021095375A1 (ja) 2021-05-20

Family

ID=75897659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036508 WO2021095375A1 (ja) 2019-11-11 2020-09-28 車両の冷却水システム

Country Status (2)

Country Link
JP (1) JP7347138B2 (ja)
WO (1) WO2021095375A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2057564A (en) * 1979-08-24 1981-04-01 Garrett Corp Pressure-charged engine systems
JPS6015929U (ja) * 1983-07-12 1985-02-02 ダイハツディーゼル株式会社 デイ−ゼル機関の給気温度調節装置
EP0742353A1 (en) * 1995-05-12 1996-11-13 General Motors Corporation Turbocharged engine cooling apparatus
JP2008291690A (ja) * 2007-05-23 2008-12-04 Toyota Motor Corp 冷却系システム
JP2013127224A (ja) * 2011-12-19 2013-06-27 Toyota Motor Corp 冷却装置の制御装置
JP2017129035A (ja) * 2016-01-19 2017-07-27 カルソニックカンセイ株式会社 冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2057564A (en) * 1979-08-24 1981-04-01 Garrett Corp Pressure-charged engine systems
JPS6015929U (ja) * 1983-07-12 1985-02-02 ダイハツディーゼル株式会社 デイ−ゼル機関の給気温度調節装置
EP0742353A1 (en) * 1995-05-12 1996-11-13 General Motors Corporation Turbocharged engine cooling apparatus
JP2008291690A (ja) * 2007-05-23 2008-12-04 Toyota Motor Corp 冷却系システム
JP2013127224A (ja) * 2011-12-19 2013-06-27 Toyota Motor Corp 冷却装置の制御装置
JP2017129035A (ja) * 2016-01-19 2017-07-27 カルソニックカンセイ株式会社 冷却装置

Also Published As

Publication number Publication date
JP7347138B2 (ja) 2023-09-20
JP2021076081A (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6051989B2 (ja) エンジンの冷却装置
WO2006077708A1 (ja) Egr装置
JP6026825B2 (ja) 内燃機関の吸気装置
JPWO2012176286A1 (ja) 内燃機関の制御装置
WO2013080980A1 (ja) エンジンの冷却装置及びその冷却方法
JP4577270B2 (ja) 内燃機関の排気浄化システム
JP2014001703A (ja) 内燃機関の冷却システム
JP2014148957A (ja) Egrガス冷却装置
JP4526432B2 (ja) 内燃機関の過給機の故障診断装置
JP2010229878A (ja) 内燃機関の冷却システム
WO2021095375A1 (ja) 車両の冷却水システム
JP2016050545A (ja) 車両の冷却システム
WO2013011768A1 (ja) エンジンの冷却回路
JP5918474B2 (ja) Egr装置
JP2010242681A (ja) 内燃機関のegrシステム
JP4089380B2 (ja) エンジン冷却水回路
JP2013245563A (ja) 内燃機関の排気再循環システム
JP6958196B2 (ja) 冷却システム
JP5918475B2 (ja) Egr装置
JP7135402B2 (ja) 冷却システム
JP5360980B2 (ja) 内燃機関の暖機促進装置
JP2017101611A (ja) 内燃機関の吸気冷却装置
WO2021039349A1 (ja) 車両の流体回路システム
JPH08158871A (ja) 内燃機関の冷却装置
JP2016109081A (ja) インタークーラの温度制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886806

Country of ref document: EP

Kind code of ref document: A1