WO2021090372A1 - 汎用型ロータリーエンコーダ - Google Patents
汎用型ロータリーエンコーダ Download PDFInfo
- Publication number
- WO2021090372A1 WO2021090372A1 PCT/JP2019/043339 JP2019043339W WO2021090372A1 WO 2021090372 A1 WO2021090372 A1 WO 2021090372A1 JP 2019043339 W JP2019043339 W JP 2019043339W WO 2021090372 A1 WO2021090372 A1 WO 2021090372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- signal
- rotary encoder
- data
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
- G01D5/2454—Encoders incorporating incremental and absolute signals
- G01D5/2458—Encoders incorporating incremental and absolute signals with incremental and absolute tracks on separate encoders
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4155—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
- G01D5/2454—Encoders incorporating incremental and absolute signals
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/43—Speed, acceleration, deceleration control ADC
- G05B2219/43083—Structure, step motor
Definitions
- the present invention relates to a rotary encoder, and more particularly to a general-purpose rotary encoder that employs an MR sensor and is suitable for use in industrial equipment.
- the rotary encoder is used as an encoder for industrial robots and the like to measure the absolute angular position of a rotating shaft driven by a motor.
- a control method for a brushless DC motor it is possible to control the motor as a servomotor by synchronizing the rotary encoder that detects the Z-phase, U-phase, V-phase, and W-phase phases with the magnetic pole position of the rotor. It is done.
- Patent Document 1 discloses a rotary encoder including a multi-rotation information detection unit and an angle detection unit, which can calculate multi-rotation information and detect and notify an abnormal state of the device.
- the angle detection unit is an optical encoder having an absolute pattern ABS and an incremental pattern INC.
- Patent Document 2 includes a magnetic sensor (one set of MR sensor units) for detecting the rotation phase of the rotation axis of the motor, and drives signals for A phase, B phase, Z phase signal, U phase, V phase, and W phase. And, a motor control device configured to assign an EEPROM address to the information of the absolute origin position and record it in the EEPROM as absolute signal data is disclosed.
- a magnetic sensor one set of MR sensor units
- Incremental DC motors (brushless DC motors, brushed DC motors) and absolute compatible DC motors (brushless DC motors, brushed DC motors) are known as DC motors to which rotary encoders are mounted.
- the brushless DC motor to which the rotary encoder is mounted is a type of motor that does not use a Hall element for detecting the position of the rotor and does not perform vector control.
- data for driving an incrementally compatible type DC motor for example, data for driving a brushless DC motor, in other words, incrementalization, depending on the specifications of the DC motor to be mounted.
- the data of the driven signal (A, B, Z, U, V, W signals) is generated and output.
- the motor driver of the brushless DC motor generates a drive signal for driving a motor such as an inverter, for example, a PWM signal, based on the data of the drive signal.
- an absolute-compatible rotary encoder data for generating an absolute-compatible type DC motor drive signal according to the specifications of the DC motor to be mounted, in other words, an electric angle for generating an absolute drive signal. Data is generated and output.
- the motor driver of the brushless DC motor generates an absolute drive signal based on the data of the absolute electric angle, and further generates, for example, a PWM signal for driving a motor such as an inverter.
- the conventional rotary encoder is configured to generate and output the drive signal data to the DC motor according to the specifications of the DC motor to be mounted, and is usually to be mounted.
- Incremental rotary encoders and absolute rotary encoders which are individually configured to meet the specifications of DC motors, are known.
- optical rotary encoders as described in Patent Document 1 employ a glass substrate and form a slit pattern on the glass substrate in order to ensure high accuracy.
- the slit pattern is formed according to the specifications of a specific motor, for example, the number of poles and the number of pulses per rotation.
- the optical encoder has a limited range of motors that can be mounted, and has a more complicated structure than the magnetic sensor type encoder, and is therefore expensive.
- the motor control device described in Patent Document 2 includes a control unit that controls power supplied to each of the three-phase stator coils of a brushless DC servomotor, U-phase, V-phase, and W-phase, and a multi-pole permanent magnet. It has a magnetic sensor that detects the rotation of the rotor. The control unit calculates the rotation position of the brushless DC servomotor that drives the driven member, and the U-phase, V-phase, and W-phase of the brushless DC servomotor so that the driven member operates at each predetermined position. Information on the inverter drive signal that supplies current to each coil is generated.
- the microcomputer performs arithmetic processing for generating the three-phase drive signals of U-phase, V-phase, and W-phase according to an operation command, a load state, and the like. Therefore, the microcomputer needs to have the capability necessary for the arithmetic processing of the three-phase drive signal. In order to reduce the cost of the motor control device, it is desirable to further reduce the processing capacity required for this microcomputer. Further, since the control unit is usually configured according to the specifications of a specific motor, it is necessary to provide a control unit corresponding to the specifications of the motor having other specifications.
- One object of the present invention is to provide a highly versatile rotary encoder that can meet various specifications of an incrementally compatible type DC motor and an absolute compatible type DC motor.
- Another object of the present invention is to provide an inexpensive rotary encoder that uses one set of MR sensors and reduces arithmetic processing of drive signals and the like, in other words, processing required for a microcomputer.
- the rotary encoder An MR sensor unit that outputs information on the mechanical angle of the rotation angle of the rotation axis of the DC motor, A mechanical angle-electric angle signal conversion unit that converts the output information of the MR sensor unit into information for generating the DC motor drive signal and outputs the information. Equipped with non-volatile memory
- the mechanical angle-electric angle signal conversion unit is An incrementally compatible mechanical angle-electric angle signal conversion unit that converts the output information of the MR sensor unit into an incremental signal for generating the DC motor drive signal. It has an absolute-compatible mechanical angle-electric angle signal conversion unit that converts the output information of the MR sensor unit into an absolute signal for generating the DC motor drive signal.
- the non-volatile memory provides initial setting data for signal conversion data for converting output information of the MR sensor unit into a signal for generating a motor drive signal, which corresponds to the type of the DC motor to which the rotary encoder is mounted.
- the mechanical angle-electric angle signal conversion unit converts the output information output from the MR sensor unit into a signal for generating the motor drive signal based on the signal conversion data during operation of the DC motor. It is configured to output.
- an incremental type or absolute type rotary encoder having excellent versatility that can correspond to various motor specifications by using an MR sensor.
- the DC motor to which the rotary encoder of the present invention is mounted is an incrementally compatible type DC motor
- the function of converting and outputting is given to the rotary encoder.
- This rotary encoder converts the output signal (mechanical angle) of the MR sensor unit into an incremental drive signal (electrical angle) and outputs it when the DC motor to be mounted is operated.
- the absolute output of the MR sensor unit is set to the drive signal of the DC motor to be mounted at the time of initial setting of the rotary encoder.
- the rotary encoder is provided with the function of converting and outputting the absolute electric angle data required for generation. Therefore, the rotary encoder has a function of converting the output signal (mechanical angle) of the MR sensor unit into an absolute drive signal generation signal (electrical angle) and outputting it when the DC motor to be mounted is operated. ..
- the rotary encoder performs the processing of the mechanical angle-electric angle signal conversion using the signal conversion data based on the output signal from the MR sensor unit, so that the initial setting has been completed.
- the motor drive signal data can be read directly from the non-volatile memory. Therefore, it is possible to provide an inexpensive rotary encoder that reduces the arithmetic processing of the electric angle signal conversion, in other words, the processing required for the microcomputer.
- FIG. 5 is an image diagram showing an example of a process of generating information for generating a drive signal for an absolute compatible type DC motor, which is generated by the process of FIG.
- FIG. 9 shows the state which the rotary encoder which completed the initial setting of FIG. 9 is mounted on a brushless DC motor, and is used. It is a perspective view of the robot equipped with the rotary encoder which concerns on 2nd Embodiment of this invention.
- FIG. 1 is a diagram showing a configuration example of a rotary encoder initial setting system according to a first embodiment of the present invention.
- the rotary encoder initial setting system 100 is composed of a rotary encoder 110 used at the time of initial setting and operation of a brushless DC motor, an initial setting unit 120 used only at the time of initial setting, and an output setting / switching unit 130. These are electrically connected via a detachable socket or the like.
- Reference numeral 140 denotes a power supply circuit, which provides a predetermined, for example, 5 V DC power supply to the rotary encoder 110, the initial setting unit 120, and the like.
- the information for generating the drive signal is supplied to the DC motor 500 to which the rotary encoder 110 is mounted via the motor driver 400.
- the motor driver 400 includes a brushless DC motor compatible driver (BLDC) and a brushed DC motor compatible driver (DC) according to the type of DC motor 500 to which the rotary encoder 110 is mounted.
- the motor driver 400 generates a drive signal for controlling the speed and position of the motor, for example, a PWM signal for driving an inverter, based on the output of the rotary encoder 110, an operation command, a load of the motor, and the like, and generates a DC motor. To drive.
- the rotary encoder 110 includes an MR sensor unit 111, a mechanical angle-electric angle signal conversion unit (incremental) 112, and a mechanical angle-electric angle signal conversion unit (absolute) 113, and further includes a memory 114 including a non-volatile memory. It includes a parallel signal transmission unit 115 and a serial signal transmission / reception unit 116. Examples of the non-volatile memory 114 of the encoder include PROM, EPROM, EEPROM, and flash memory. Signal conversion data is recorded in this non-volatile memory as initial setting data.
- the mechanical angle-electric angle signal conversion units 112 and 113 are based on the output signal of the MR sensor unit 111 and the data of the non-volatile memory, and the type and specifications of the DC motor to which these mechanical angle-electric angle signal conversion units are mounted. It has a function to generate an incremental or absolute encoder output signal according to the above.
- the mechanical angle-electric angle signal conversion unit (incremental) 112 is a MR sensor unit 111 based on the signal conversion data of the non-volatile memory initially set according to the type and specifications of the DC motor to which the rotary encoder 110 is mounted. It has a function of converting the incremental A, B, and Z signals (mechanical angle), which are output signals, into a signal for driving a DC motor (electrical angle) and outputting the signal.
- the DC motor is a brushless DC motor
- the output signal of the MR sensor unit 111 is converted into a U, V, W signal for driving the brushless DC motor based on the signal conversion data of the initially set non-volatile memory. It has a function to convert to and output.
- the output signal of the MR sensor unit 111 is brushed based on the signal conversion data of the non-volatile memory. It has a function of converting and outputting A, B, and Z signals for driving a DC motor.
- the mechanical angle-electric angle signal conversion unit (absolute) 113 is an output signal of the MR sensor unit 111 based on the signal conversion data of the non-volatile memory initially set according to the specifications of the DC motor to which the rotary encoder 110 is mounted. It has a function of converting the absolute signal (mechanical angle) into data of the electric angle for driving the DC motor and outputting it.
- the parallel signal transmission unit 115 and the serial signal transmission / reception unit 116 have a function of converting various information into a parallel signal or a serial signal and transmitting / receiving between the rotary encoder 110, the initialization unit 120, and the motor driver 400.
- A-phase / B-phase signals and Z-phase signals generated by parallel transmission processing are converted into transmission data (BUS) for serial transmission conforming to the serial transmission communication standard, and this BUS signal is converted into a communication cable. Is sent via.
- the initial setting unit 120 includes a motor drive signal generation function 121, a signal conversion data generation function (incremental) 122, a signal conversion data generation function (absolute) 123, and an initial setting / adjustment memory 124.
- the output setting / switching unit 130 is provided with a terminal with a display screen, and has a function of setting conditions for the initial setting signal generated by the initial setting unit 120 according to the type and specifications of the motor to which the rotary encoder is mounted. Have. For example, when the motor to be mounted is an incrementally compatible brushless DC motor, the number of poles of the motor, the number of pulses per rotation (P / R), and the U, V, W signals per rotation. Set the number of, output signal type (incremental), etc.
- the number of pulses per rotation (P / R) and the like are set.
- the resolution (number of bits), output conditions (serial or parallel), and the like are set.
- the motor drive signal generation function 121 has a function of generating a motor drive signal according to the conditions set by the output setting / switching unit 130.
- the setting conditions are set based on the A, B, and Z signals output from the MR sensor unit 111 at the time of initial setting of the motor.
- it has a function of generating U, V, W signals for driving necessary for driving this brushless DC motor.
- the motor to be mounted is an absolute compatible type DC motor, the absolute value of the rotation angle of the DC motor obtained from the output of the MR sensor unit 111, that is, the absolute signal, is used at the time of initial setting of the motor.
- the setting conditions are set based on the signal output from the MR sensor unit 111 at the time of initial setting of the motor. Accordingly, it has the ability to generate the incremental or absolute signals needed to drive the motor for initial setup.
- the signal conversion data generation function (incremental) 122 generates signal conversion data for converting the output of the MR sensor unit 111 into the incremental driving signal required to drive the DC motor to be mounted. It has a function to record in the non-volatile memory as initial setting data. For example, when the motor to be mounted is an incrementally compatible brushless DC motor, the signal conversion data generation function 122 generates A, B, Z signals output from the MR sensor unit 111 and a motor drive signal. The signal conversion data for driving the brushless DC motor, which gives the correspondence with the U, V, W signals generated by the function 121, is generated and recorded in the non-volatile memory as the initial setting data.
- the motor to be mounted is a brushed DC motor
- the signal conversion data for driving the brushed DC motor is generated and recorded in the non-volatile memory as the initial setting data.
- the signal conversion data generation function (absolute) 123 has a function of generating signal conversion data for an absolute compatible DC motor and recording it in a non-volatile memory as initial setting data. That is, the signal conversion data generation function 123 includes an absolute signal (mechanical angle) indicating an absolute value of the rotation angle obtained from the output from the MR sensor unit 111, and control absolute data (electricity) generated by the motor drive signal generation function 121. The signal conversion data that gives the correspondence with the corner) is generated and recorded in the non-volatile memory as the initial setting data.
- the initial setting / adjustment memory 124 records motor drive signal data and information related to the type and specifications of the motor, which are necessary for the initial setting.
- the rotary encoder 110 is mounted on the motor 500 to be mounted together with the initial setting unit 120, and has a signal conversion data generation function of the initial setting unit 120 according to the conditions input from the output setting / switching unit 130.
- Signal conversion data is generated by the (incremental) 122 and the signal conversion data generation function (absolute) 123 functions, and these data are recorded in the non-volatile memory as initial setting values.
- the rotary encoder 110 sets the mechanical angle-electric angle signal conversion unit 112, based on the detected value of the MR sensor unit 111 and the initial setting value recorded in the non-volatile memory during the operation of the motor 500 to be mounted.
- a predetermined signal conversion process is performed.
- the motor driver 400 Upon receiving the output of the rotary encoder 110, the motor driver 400 generates a predetermined drive signal to drive the motor 500.
- the rotary encoder 110, the initial setting unit 120, and the output setting / switching unit 130 each include, for example, a CPU, a memory such as a ROM or RAM, an oscillation circuit, a timer, an I / O interface, a serial I / F, or the like as one LSI. It is realized by a single-chip microcomputer integrated in. Each function is realized by executing the program held in the memory on the CPU.
- the MR sensor unit 111 may employ any magnetoresistive element (MR: AMR, GMR, TMR, etc.) including a GMR as the MR sensor.
- the MR sensor unit 111 includes a flat plate magnet 1110 and a sensor output processing unit 1120.
- the sensor output processing unit 1120 is a pair of MR sensors 1122A, 1122B, a temperature sensor 112C, and a pair of MR sensors 1122A, 1122B, which are separated from each other at a position facing the magnet 1110 and fixed to a fixed side of the motor, for example, a motor housing via a substrate.
- the sensor output processing circuit unit includes an AD converter 11123, an axis misalignment correction processing unit 11124, a sensor memory 11125 such as a RAM, an inverse tangent calculation processing unit 11126, an absolute signal generation unit 11127, and an incremental A-phase / B-phase signal generation unit. It is equipped with 11128.
- the MR sensor When the magnet 1110 fixed to the rotation axis of the motor rotates by an angle ⁇ (mechanical angle) and the direction of the magnetic field acting on each MR sensor rotates, as shown in FIG. 2B, the MR sensor responds to this rotation.
- the electrical resistance value in other words, the voltage of the output signal of the general-purpose sensor fluctuates, and for each rotation of the rotation shaft of the motor 500, 360 degrees (mechanical angle) for each of the SIN wave and COS wave, each pulse signal for one cycle. Is output.
- the analog signal of the pair of MR sensors is quantized, divided into multiple parts by the interpolation processing of the electric angle, and converted into A-phase and B-phase digital signals, respectively.
- the A-phase and B-phase digital signals are cumulatively added by the pulse counter, and the value is calculated by the inverse tangent calculation processing unit 11126.
- a right-angled triangular signal is generated in which the incremental value repeats increasing and decreasing linearly in synchronization with the position of the angle 0 for each rotation of the rotation axis.
- the absolute signal generation unit 11127 generates absolute signal data indicating the absolute value of the rotation angle (mechanical angle) of the motor based on the linear signal output from the inverse tangent calculation processing unit 11126, and generates the absolute signal data in the sensor memory 11125. Be retained.
- the incremental A-phase / B-phase signal generation unit 11128 generates incremental A-phase signal and B-phase signal pulse data based on the linear signal output from the inverse tangent arithmetic processing unit 11126, and the sensor. It is held in the memory 11125.
- a Z signal is also generated in synchronization with the position of the angle 0 (origin) that appears for each rotation of the rotation axis (hereinafter, A-phase, B-phase, and Z-phase signals).
- the position of the origin (Z0) of the MR sensor 111 is a specific position on the magnet 1110 fixed to the rotation axis of the motor, for example, a position corresponding to the time when the analog output value of the SIN wave of FIG. 2B is 0.
- FIG. 3 is a vertical cross-sectional view showing a configuration example of a main part of the brushless DC motor 500 to which the rotary encoder 110 of FIG. 1 is mounted.
- a disk-shaped magnet 1110 of the MR sensor unit 111 is fixed to one end surface of the rotating shaft 510 of the brushless DC motor 500 via a holding means (not shown).
- the brushless DC motor 500 includes a field iron core 541 and a field coil 542 wound around the field iron core 541 as a stator fixed inside the motor housing 520.
- the magnet 543 which is integrally formed with the rotating shaft 510, is an 8-pole rotor having a rotor yoke and, for example, eight permanent magnets fixed to the outer peripheral portion thereof.
- the rotating shaft 510 is held by a bearing 530 provided in the motor housing 210.
- a substrate 117 on which the rotary encoder 110 is mounted is fixed inside the motor end cover-522.
- a sensor output processing unit 1120 of the MR sensor 111 including a pair of MR sensors 1122A and 1122B is installed at a position on the substrate 117 facing the magnet.
- the initial setting system 100 of the rotary encoder of this embodiment is a mechanical angle-electric angle signal conversion unit that generates an incremental signal as a signal for driving a motor by a signal conversion data generation function (incremental) 122 or the like of the initial setting unit 120.
- a mechanical angle-electric angle signal conversion unit (absolute) 1200 that generates an absolute signal as a signal for driving a motor is provided by the (incremental) 1000 and the signal conversion data generation function (absolute) 123 of the initial setting unit 120. ing.
- the mechanical angle-electric angle signal conversion unit (incremental) 1000 has an encoder resolution setting function 1001, a motor specification, for example, a specification setting function 1002 for setting the motor type, number of poles, number of slots, etc., and incremental A from MR sensor output.
- B, Z signal acquisition function 1003, U, V, W signal generation function 1004 based on A, B, Z signals, signal conversion data generation function 1005, and signal conversion data recording (read / write) function 1007. have.
- the mechanical angle-electric angle signal conversion unit (absolute) 1200 also has an encoder resolution setting function 1201, a function of acquiring absolute data from MR sensor output 1202, a serial / parallel conversion function 1203, and an absolute drive signal data generation function. It has 1204, a signal conversion data generation function 1205, and a signal conversion data recording (read / write) function 12006.
- the initial setting unit 120 and the output setting / switching unit 130 of the initial setting system 100 are connected to the rotary encoder 110 mounted in the motor 500 to be controlled via a connector (S501).
- the initial setting unit 120 receives the output condition set by the output setting / switching unit 130 (S502). For example, when the motor to be mounted is an incrementally compatible type DC motor, the generation of an incremental signal is selected as the output type. In addition, the resolution of the encoder is set.
- data related to the type of motor, the number of poles, the number of slots, and the like are set.
- the number NA / R of A, B, Z signals per rotation of the motor and the number of repetitions Pn / R of U, V, W signals per rotation are set.
- conditions such as voltage output, open collector output, line driver output, and bus output are set.
- the initial setting unit 120 drives the target motor 500 by the motor drive signal generation function 121 using the initial setting drive signal recorded in the initial setting / adjustment memory 124 (S503). Then, by the function 1003 for acquiring the incremental A, B, Z signals from the MR sensor output, the incremental A, B, Z signals (mechanical angle) and the like, which are the outputs of the MR sensor unit 111 accompanying the rotation of the motor 500, are acquired. It is held in the buffer memory (S504). Further, the resolution setting function 1001 of the encoder divides the acquired signal according to the set resolution (S505).
- the type of the motor to be controlled set by the specification setting function 1002 is confirmed (S506), and in the case of a brushless DC motor, the U, V, W signal generation function 1004 based on the A, B, Z signals is confirmed.
- A, B, Z signal data electric angles
- the generated signal for example, the A, B, Z, U, V, W signal for an incrementally compatible type brushless DC motor, or the A, B, Z signal for a brushed DC motor is a specification setting function. It is determined whether the setting condition set by 1002 is satisfied (S509). If the setting condition is not satisfied, the signal adjustment process is performed so as to satisfy the setting condition (S510). When the setting conditions are satisfied, the signal conversion data generation function 1005 generates incremental data (electric angle) as signal conversion data (S511), and records the signal conversion data (read / read /). By the write function 1007, the data is recorded in the non-volatile memory 1300 (S512), and the rotary encoder 110A is an incremental type.
- FIG. 6 is a diagram showing an example of the generation process of A, B, ZU, V, and W signals for an incrementally compatible type DC motor using signal conversion data.
- incremental A and B signals mechanical angles
- based on the Z signal obtained from the MR sensor unit 111 of the rotary encoder 110 are A, using signal conversion data. It is converted into U-phase, V-phase, and W-phase signals that are synchronized with the B and Z signals.
- the rise of the U phase is determined in synchronization with the A signal synchronized with the rise of the Z signal, and the U signal data corresponding to this U phase is generated according to the number of poles of the motor. ..
- V and W signal data (electrical angles) having different phases are generated every 120 degrees of electric angle. This data is the data of the driving signal that is repeated in one rotation of the motor, that is, in the Z signal unit.
- the initial setting unit 120 and the output setting / switching unit 130 are removed from the encoder 110A to be initialized (S513), and the initial setting is completed (S514).
- FIG. 7 is a diagram showing an image of an example of signal conversion data generated by the process of FIG. 5 and recorded in the non-volatile memory.
- the signal conversion data is data that gives U, V, W signal values corresponding to the incremental A and B signals with reference to the Z signal output from the MR sensor unit of the rotary encoder 110A. It is tabulated.
- the U phase is H
- the V phase and the W phase are L with respect to the A phase signal of the incremental value 0000001 (nonvolatile memory address 000001200) output from the rotary encoder 110A
- the incremental value 00000176 nonvolatile
- the U phase is L
- the V phase is H
- the W phase is L with respect to the A phase signal of the sex memory address 0000015050).
- the rotary encoder 110A knows the address of the non-volatile memory of the A and B signals output from the MR sensor unit, the U, V, W phase signals for the incremental compatible type DC motor can be obtained from the signal conversion data. Data can be obtained from the non-volatile memory.
- the initial setting unit 120 and the output setting / switching unit 130 are removed from the encoder 110A to be initialized (S513), and the initial setting is completed (S514).
- FIG. 8 is a diagram showing a state in which the incremental type rotary encoder 110A for which the initial setting has been completed is mounted on the incremental type brushless DC motor 500 to be mounted and used.
- This rotary encoder holds the signal conversion data as shown in FIG. 7 in the non-volatile memory 1300.
- the signal conversion data is used by the signal conversion data generation function (incremental) 122 based on the A, B, Z phase signals (mechanical angle) which are the output signals from the MR sensor unit 111.
- the initialized U, V, W signal data (electric angle) can be directly read from the non-volatile memory 1300.
- the incremental A, B, Z signals and U, V, W signals are output to the driver 400 of the brushless DC motor via the signal transmission units 115 and 116.
- the mechanical angle-electric angle signal conversion unit (incremental) 112 of the rotary encoder 110 is used at the time of initial setting. Since the rotary encoder 110 can be set as an incremental type rotary encoder 110A corresponding to the motor to be mounted, it is possible to provide a highly versatile rotary encoder that can meet the specifications of various incremental type DC motors. ..
- the signal for driving the DC motor can be acquired based on the output signal of the MR sensor unit and output to the driver 400 of the DC motor, so that the drive of the DC motor can be driven. It is possible to provide an inexpensive rotary encoder 110A that simplifies the process for generating a signal and reduces the load on the microcomputer.
- the initial setting unit 120 and the output setting / switching unit 130 of the initial setting system 100 are connected to the rotary encoder 110 mounted in the motor 500 to be controlled via a connector ( S901).
- the initial setting unit 120 receives the output condition set by the output setting / switching unit 130 (S902).
- the absolute signal is selected as the output.
- the resolution of the encoder is set by the resolution setting function 1201 of the encoder.
- the initial setting unit 120 drives the target motor with the initial setting drive signal recorded in the initial setting / adjustment memory 124 by the motor drive signal generation function 121 (S903).
- the data acquisition function 1202 that acquires the absolute data from the MR sensor output acquires the absolute data (mechanical angle) from the output of the MR sensor unit that accompanies the rotation of the motor 500 and holds it in the buffer memory (S904).
- the absolute data is divided according to the set resolution (S905), the divided absolute data is converted into serial and parallel signals by the serial / parallel conversion function 1203, and the absolute drive signal data generation function 1204 is used. Control absolute data (electric angle) for driving signal generation is generated according to the output conditions (S906).
- FIG. 10 is an image diagram showing an example of the information generation process for driving signal generation for an absolute compatible type DC motor.
- An absolute signal (mechanical angle) as shown in FIG. 10A can be obtained from the MR sensor unit 111 of the rotary encoder 110.
- the signal conversion data of FIG. 10B gives a correspondence between the addresses of the absolute signal (mechanical angle) and the absolute signal (electrical angle).
- the output value (address) of the MR sensor unit 111 is N-Mx (mechanical angle)
- the output value of the rotary encoder that is, the data (address) for generating the drive signal is N-Ex based on the signal conversion data. (Electric angle).
- this signal conversion data is recorded in the non-volatile memory 1300 of the rotary encoder 110 by the signal conversion data recording (read / write) function 12006 (S910) to complete the absolute type rotary encoder 110B. ..
- the initial setting unit 120 and the output setting / switching unit 130 are removed from the encoder 110B to be initialized (S911), and the initial setting is completed (S912).
- FIG. 11 is a diagram showing a state in which the rotary encoder 110B for which the initial setting has been completed is mounted on an absolute compatible type DC motor and used.
- an absolute type rotary encoder 110B that holds signal conversion data in the non-volatile memory 1300 is mounted on the brushless DC motor 500 and used.
- the signal conversion data generation function (absolute) 123 uses the signal conversion data to drive the non-volatile memory 1300 to the initial setting. Data for signal generation (electric angle) can be read directly.
- the data for generating the drive signal is output to the driver 400 of the brushless DC motor via the signal transmission / reception units 115 and 116.
- the initial set absolute signal data for driving signal generation is directly read from the non-volatile memory 1300 based on the output signal from the MR sensor unit 111. Can be done. In other words, it is possible to provide an inexpensive rotary encoder that simplifies the process for generating data for generating a drive signal of a DC motor and reduces the load on the microcomputer.
- the rotary encoder 110 is used by using the mechanical angle-electric angle signal conversion unit (absolute) 113 of the rotary encoder 110, the initial setting unit 120, and the output setting / switching unit 130.
- the absolute type rotary encoder 110B can be set to the absolute type rotary encoder 110B, so that it is possible to provide a highly versatile rotary encoder that can correspond to various motor specifications.
- the articulated robot 600 includes a base portion 602, a main body portion 610, and a plurality of arm portions (613, 618, etc.) constituting a link.
- a control unit that controls the entire articulated robot 600 is provided in the main body unit 610.
- the joints are rotatably connected to each other with links.
- the base and arm have six axes, namely S (swivel) axis 611, L (lower arm) axis 612, U (upper arm) axis 616, R (wrist rotation) axis 620, and T (wrist rotation) axis 622.
- B (wrist bending) shaft 626 is driven by an actuator that rotates each of them.
- actuators are composed of a brushless DC motor 500 provided with the rotary encoder 110 of the present invention and a reduction mechanism connected to the output shaft of each motor.
- An operation unit 624 is provided at the tip of the arm portion. Tools, a camera, and the like can be installed as the operation unit 624.
- An incremental brushless DC motor 500 equipped with a rotary encoder 110A having a mechanical angle-electric angle signal conversion unit (incremental) 112 of the present invention is used to drive the S-axis 611, the L-axis 612, and the U-axis 616. To do. Further, for driving the R-axis 620, the T-axis 622, and the B-axis 626, an absolute-compatible brushless DC motor equipped with a rotary encoder 110B having the incremental mechanical angle-electric angle signal conversion unit (absolute) 113 of the present invention. Adopt 500.
- the control unit includes functions corresponding to the rotary encoders 110A and 110B and the driver 400 of the brushless DC motor shown in FIGS. 8 and 11, and each arm unit is based on a command value, a load, and an output of the rotary encoder. To drive.
- the base part with a wide rotation range and the arm part that requires high positioning accuracy are more appropriate. Becomes controllable. For example, it is possible to provide an inexpensive motor having excellent control characteristics for an assembly line or a chip mounter.
- the two types of brushless DC motors use MR sensors, and are inexpensive, general-purpose rotary encoders that simplify the process for generating signals for driving DC motors and reduce the load on the microcomputer. Since it is adopted, it is possible to provide an inexpensive device as a whole.
- the rotary encoder initial setting system can be used to set an incremental type rotary encoder or an absolute type rotary encoder at the time of initial setting, so that the system can be flexibly adapted to various motor specifications. , It is possible to provide a rotary encoder having excellent versatility.
- a part or all the functions of the arithmetic unit that operates based on the program may be configured by a dedicated LSI such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- the rotary encoder initial setting system by using the rotary encoder initial setting system, it is possible to provide an inexpensive general-purpose rotary encoder suitable for use in a DC motor as a drive source for various industrial devices. it can.
- Rotary encoder initialization system 110 Rotary encoder 110A Rotary encoder (incremental type) 110B rotary encoder (absolute type) 111 MR sensor unit 1110 Magnet 1120 Sensor output processing unit 1122A First MR sensor 1122B Second MR sensor 11123 AD converter 11124 Axis misalignment correction processing unit 11125 Sensor memory 11126 Inverse tangential calculation processing unit 11127 Absolute signal generation unit 11128 Incremental A Phase / B phase signal generator 112 Mechanical angle-electric angle signal conversion unit (incremental) 113 Mechanical Angle-Electric Angle Signal Conversion Unit (Absolute) 114 Encoder memory 115 Parallel signal transmission unit 116 Serial signal transmission / reception unit 117 Board 120 Initial setting unit 121 Motor drive signal generation function 122 Signal conversion data generation function (incremental) 123 Signal conversion data generation function (absolute) 124 Initial setting / adjustment memory 130 Output setting / switching unit 140 Power supply circuit 400 Motor driver 1 500 DC motor 510 Rotating shaft 1300 Non-volatile memory
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
汎用性に優れかつ安価なロータリーエンコーダを提供するという課題に対して、ロータリーエンコーダは、機械角-電気角信号変換ユニットと、不揮発性メモリとを備え、機械角-電気角信号変換ユニットは、MRセンサユニットの出力情報をDCモータ駆動信号生成用のインクリメンタル化された信号に変換する機能と、MRセンサユニットの出力情報をDCモータ駆動信号生成用のアブソリュート化された信号に変換する機能とを有しており、不揮発性メモリは、ロータリーエンコーダが装着されるDCモータのタイプに対応した、MRセンサユニットの出力情報をモータ駆動信号生成用の信号に変換するための信号変換データを初期設定データとして保有しており、機械角-電気角信号変換ユニットは、DCモータの運転時に、MRセンサユニットから出力される出力情報を、信号変換データに基づき、モータ駆動信号生成用の信号に変換して出力する。
Description
本発明は、ロータリーエンコーダに係り、特に、MRセンサを採用し、産業用機器に使用するのに適した汎用型のロータリーエンコーダに関する。
ロータリーエンコーダは、産業用のロボット等のエンコーダとして、モータで駆動される回転軸の絶対角度位置を測定するために使用される。例えば、ブラシレスDCモータの制御方法として、Z相、U相、V相、及びW相の位相を検知するロータリーエンコーダと、ロータの磁極位置とを同期させて、モータをサーボモータとして制御することが行われている。
特許文献1には、多回転情報検出部と角度検出部とを備え、多回転情報を算出するとともに、装置の異常状態を検知し報知できるロータリーエンコーダが開示されている。角度検出部は、アブソリュートパターンABSおよびインクリメンタルパターンINCを有する、光学式のエンコーダである。
特許文献2には、モータの回転軸の回転位相を検知する磁気センサ(1組のMRセンサユニット)を備え、A相、B相、Z相信号、U相、V相、W相の駆動信号及び絶対原点位置の情報にEEPROMのアドレスを付与し、アブソリュート信号のデータとしてEEPROMに記録するように構成されたモータ制御装置が開示されている。
ロータリーエンコーダの装着対象となるDCモータには、インクリメンタル対応タイプのDCモータ(ブラシレスDCモータ、ブラシ付きDCモータ)と、アブソリュート対応タイプのDCモータ(ブラシレスDCモータ、ブラシ付きDCモータ)とが知られている。
また、ロータリーエンコーダの装着対象となるブラシレスDCモータは、ロータの位置検出にホール素子を使用せず、また、ベクトル制御も行わないタイプのモータである。
通常、インクリメンタル対応のロータリーエンコーダでは、装着対象となるDCモータの仕様に応じて、インクリメンタル対応タイプDCモータの駆動用のデータ、例えば、ブラシレスDCモータ駆動用の駆動信号のデータ、換言すると、インクリメンタル化された駆動信号のデータ(A,B,Z、U,V,W信号)を生成して出力する。ブラシレスDCモータのモータドライバでは、この駆動信号のデータ等に基づき、インバータ等のモータを駆動するための駆動信号、例えば、PWM信号を生成する。
また、ロータリーエンコーダの装着対象となるブラシレスDCモータは、ロータの位置検出にホール素子を使用せず、また、ベクトル制御も行わないタイプのモータである。
通常、インクリメンタル対応のロータリーエンコーダでは、装着対象となるDCモータの仕様に応じて、インクリメンタル対応タイプDCモータの駆動用のデータ、例えば、ブラシレスDCモータ駆動用の駆動信号のデータ、換言すると、インクリメンタル化された駆動信号のデータ(A,B,Z、U,V,W信号)を生成して出力する。ブラシレスDCモータのモータドライバでは、この駆動信号のデータ等に基づき、インバータ等のモータを駆動するための駆動信号、例えば、PWM信号を生成する。
一方、アブソリュート対応のロータリーエンコーダでは、装着対象となるDCモータの仕様に応じて、アブソリュート対応タイプDCモータの駆動信号を生成するためのデータ、換言すると、アブソリュート化された駆動信号生成用の電気角のデータを生成して出力する。ブラシレスDCモータのモータドライバでは、このアブソリュート化された電気角のデータに基づき、アブソリュート化された駆動信号を生成し、さらに、インバータ等のモータを駆動するための、例えば、PWM信号を生成する。
このように、従来のロータリーエンコーダでは、装着対象となるDCモータの仕様に応じて、DCモータに、駆動信号のデータを生成して出力するように構成されており、通常は、装着対象となるDCモータの仕様に適合するように個別に構成された、インクリメンタル対応のロータリーエンコーダや、アブソリュート対応のロータリーエンコーダが、知られている。
特許文献1に記載されたような、光学式のロータリーエンコーダは、高精度を確保するために、ガラス製の基板を採用し、それにスリットパターンを形成しているものが多い。
しかし、このような高精度の光学式のロータリーエンコーダでは、スリットパターンが特定のモータの仕様、例えば極数、1回転当たりのパルス数、に対応して形成されており、他の仕様のモータに対しては、別途、スリットパターンを形成する必要がある。換言すると、光学式のエンコーダは、装着しうるモータの対象が限定され、しかも、磁気センサタイプのエンコーダに比べて構造が複雑であり、そのため高価格である。
しかし、このような高精度の光学式のロータリーエンコーダでは、スリットパターンが特定のモータの仕様、例えば極数、1回転当たりのパルス数、に対応して形成されており、他の仕様のモータに対しては、別途、スリットパターンを形成する必要がある。換言すると、光学式のエンコーダは、装着しうるモータの対象が限定され、しかも、磁気センサタイプのエンコーダに比べて構造が複雑であり、そのため高価格である。
一方、特許文献2に記載のモータ制御装置は、ブラシレスDCサーボモータのU相、V相、W相の3相の各ステータコイルに供給される電力を制御する制御ユニットと、多極の永久磁石を有するロータの回転を検知する磁気センサとを有している。
制御ユニットは、被駆動部材を駆動するブラシレスDCサーボモータの回動位置を演算し、被駆動部材が所定の各位置で動作するように、ブラシレスDCサーボモータのU相、V相、W相の各コイルへ電流を供給するインバータ駆動信号の情報を生成している。
通常の運転時、マイコンは、運転指令や負荷状態等に応じて、このU相、V相、W相の3相の駆動信号を生成するための演算処理を行う。そのため、マイコンは、この3相の駆動信号の演算処理に必要な能力を具備している必要がある。モータ制御装置のコスト低減のためには、このマイコンに要求される処理能力をより軽減することが望ましい。
また、制御ユニットは、通常、特定のモータの仕様に合わせて構成されるため、他の仕様のモータに対しては、それに応じた制御ユニットを設ける必要がある。
制御ユニットは、被駆動部材を駆動するブラシレスDCサーボモータの回動位置を演算し、被駆動部材が所定の各位置で動作するように、ブラシレスDCサーボモータのU相、V相、W相の各コイルへ電流を供給するインバータ駆動信号の情報を生成している。
通常の運転時、マイコンは、運転指令や負荷状態等に応じて、このU相、V相、W相の3相の駆動信号を生成するための演算処理を行う。そのため、マイコンは、この3相の駆動信号の演算処理に必要な能力を具備している必要がある。モータ制御装置のコスト低減のためには、このマイコンに要求される処理能力をより軽減することが望ましい。
また、制御ユニットは、通常、特定のモータの仕様に合わせて構成されるため、他の仕様のモータに対しては、それに応じた制御ユニットを設ける必要がある。
本発明の1つの目的は、インクリメンタル対応タイプのDCモータ、及び、アブソリュート対応タイプのDCモータの、種々の仕様に対応できる、汎用性に優れた、ロータリーエンコーダを提供することにある。
本発明の他の目的は、1組のMRセンサを使用し、駆動信号等の演算処理、換言するとマイコンに要求される処理を軽減した、安価な、ロータリーエンコーダを提供することにある。
本発明の1つの態様によれば、ロータリーエンコーダは、
DCモータの回転軸の回転角度の機械角の情報を出力するMRセンサユニットと、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用の情報に変換して出力する機械角-電気角信号変換ユニットと、
不揮発性メモリとを備えており、
前記機械角-電気角信号変換ユニットは、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用のインクリメンタル化された信号に変換する、インクリメンタル対応の機械角-電気角信号変換ユニットと、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用のアブソリュート化された信号に変換する、アブソリュート対応の機械角-電気角信号変換ユニットとを有しており、
前記不揮発性メモリは、前記ロータリーエンコーダが装着される前記DCモータのタイプに対応した、前記MRセンサユニットの出力情報をモータ駆動信号生成用の信号に変換するための信号変換データを、初期設定データとして保有しており、
前記機械角-電気角信号変換ユニットは、前記DCモータの運転時に、前記MRセンサユニットから出力される前記出力情報を、前記信号変換データに基づき、前記モータ駆動信号生成用の信号に変換して出力するように構成されている。
DCモータの回転軸の回転角度の機械角の情報を出力するMRセンサユニットと、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用の情報に変換して出力する機械角-電気角信号変換ユニットと、
不揮発性メモリとを備えており、
前記機械角-電気角信号変換ユニットは、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用のインクリメンタル化された信号に変換する、インクリメンタル対応の機械角-電気角信号変換ユニットと、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用のアブソリュート化された信号に変換する、アブソリュート対応の機械角-電気角信号変換ユニットとを有しており、
前記不揮発性メモリは、前記ロータリーエンコーダが装着される前記DCモータのタイプに対応した、前記MRセンサユニットの出力情報をモータ駆動信号生成用の信号に変換するための信号変換データを、初期設定データとして保有しており、
前記機械角-電気角信号変換ユニットは、前記DCモータの運転時に、前記MRセンサユニットから出力される前記出力情報を、前記信号変換データに基づき、前記モータ駆動信号生成用の信号に変換して出力するように構成されている。
本発明の上記態様によれば、MRセンサを使用して、種々のモータ仕様に対応できる、インクリメンタルタイプもしくはアブソリュートタイプの、汎用性に優れたロータリーエンコーダを提供することができる。
例えば、本発明のロータリーエンコーダの装着対象となるDCモータが、インクリメンタル対応タイプのDCモータの場合には、ロータリーエンコーダの初期設定時に、初期設定ユニットを使用して、MRセンサユニットの出力(A,B,Z信号=機械角)を、装着対象のDCモータを駆動するのに必要なインクリメンタル化された駆動用の信号(例えば、A,B,Z、U,V,W信号=電気角)に変換して出力する機能を、ロータリーエンコーダに付与する。このロータリーエンコーダは、装着対象となるDCモータの運転時に、MRセンサユニットの出力信号(機械角)をインクリメンタル化された駆動用の信号(電気角)に変換して出力する。
また、本発明のロータリーエンコーダの装着対象となるDCモータが、アブソリュートタイプのDCモータの場合には、ロータリーエンコーダの初期設定時に、MRセンサユニットのアブソリュート出力を、装着対象のDCモータの駆動信号を生成するために必要なアブソリュート化された電気角のデータに変換して出力する機能を、ロータリーエンコーダに付与する。そのため、ロータリーエンコーダは、装着対象となるDCモータの運転時に、MRセンサユニットの出力信号(機械角)をアブソリュート化された駆動信号生成用の信号(電気角)に変換して出力する機能を有する。
例えば、本発明のロータリーエンコーダの装着対象となるDCモータが、インクリメンタル対応タイプのDCモータの場合には、ロータリーエンコーダの初期設定時に、初期設定ユニットを使用して、MRセンサユニットの出力(A,B,Z信号=機械角)を、装着対象のDCモータを駆動するのに必要なインクリメンタル化された駆動用の信号(例えば、A,B,Z、U,V,W信号=電気角)に変換して出力する機能を、ロータリーエンコーダに付与する。このロータリーエンコーダは、装着対象となるDCモータの運転時に、MRセンサユニットの出力信号(機械角)をインクリメンタル化された駆動用の信号(電気角)に変換して出力する。
また、本発明のロータリーエンコーダの装着対象となるDCモータが、アブソリュートタイプのDCモータの場合には、ロータリーエンコーダの初期設定時に、MRセンサユニットのアブソリュート出力を、装着対象のDCモータの駆動信号を生成するために必要なアブソリュート化された電気角のデータに変換して出力する機能を、ロータリーエンコーダに付与する。そのため、ロータリーエンコーダは、装着対象となるDCモータの運転時に、MRセンサユニットの出力信号(機械角)をアブソリュート化された駆動信号生成用の信号(電気角)に変換して出力する機能を有する。
また、本発明の上記態様によれば、ロータリーエンコーダで、MRセンサユニットからの出力信号に基づき、信号変換データを使用して機械角-電気角信号変換の処理を行うことにより、初期設定済のモータ駆動信号のデータを不揮発性メモリから直接読み出すことができる。そのため、電気角信号変換の演算処理、換言するとマイコンに要求される処理を軽減した、安価な、ロータリーエンコーダを提供することができる。
以下、本発明の実施の形態を、図面を参照しながら、詳細に説明する。
図1は、本発明の第1の実施例に係る、ロータリーエンコーダ初期設定システムの構成例を示す図である。
このロータリーエンコーダ初期設定システム100は、初期設定時及びブラシレスDCモータの運転時に使用されるロータリーエンコーダ110と、初期設定時のみ使用される初期設定ユニット120及び出力設定/切替部130とで構成され、これらは着脱可能なソケット等を介して電気的に接続されている。140は電源回路であり、ロータリーエンコーダ110や初期設定ユニット120等に所定の、例えば5Vの直流電源を提供する。
ロータリーエンコーダ110の出力である駆動信号生成用の情報は、モータドライバ400を介してロータリーエンコーダ110の装着対象であるDCモータ500に供給される。
モータドライバ400には、ロータリーエンコーダ110の装着対象となるDCモータ500の種類に応じた、ブラシレスDCモータ対応のドライバ(BLDC)やブラシ付きDCモータ対応のドライバ(DC)がある。このモータドライバ400は、ロータリーエンコーダ110の出力、及び、運転指令、モータの負荷等に基づき、モータの速度や位置等を制御する駆動信号、例えばインバータ駆動用のPWM信号を生成して、DCモータを駆動する。
このロータリーエンコーダ初期設定システム100は、初期設定時及びブラシレスDCモータの運転時に使用されるロータリーエンコーダ110と、初期設定時のみ使用される初期設定ユニット120及び出力設定/切替部130とで構成され、これらは着脱可能なソケット等を介して電気的に接続されている。140は電源回路であり、ロータリーエンコーダ110や初期設定ユニット120等に所定の、例えば5Vの直流電源を提供する。
ロータリーエンコーダ110の出力である駆動信号生成用の情報は、モータドライバ400を介してロータリーエンコーダ110の装着対象であるDCモータ500に供給される。
モータドライバ400には、ロータリーエンコーダ110の装着対象となるDCモータ500の種類に応じた、ブラシレスDCモータ対応のドライバ(BLDC)やブラシ付きDCモータ対応のドライバ(DC)がある。このモータドライバ400は、ロータリーエンコーダ110の出力、及び、運転指令、モータの負荷等に基づき、モータの速度や位置等を制御する駆動信号、例えばインバータ駆動用のPWM信号を生成して、DCモータを駆動する。
ロータリーエンコーダ110は、MRセンサユニット111、機械角-電気角信号変換ユニット(インクリメンタル)112、及び、機械角-電気角信号変換ユニット(アブソリュート)113を備え、さらに、不揮発性メモリを含むメモリ114、パラレル信号送信ユニット115、及び、シリアル信号送受信ユニット116を備えている。
エンコーダの不揮発性メモリ114としては、PROM、EPROM、EEPROM、フラッシュメモリ等がある。この不揮発性メモリには、初期設定データとして、信号変換データが記録される。
機械角-電気角信号変換ユニット112,113は、MRセンサユニット111の出力信号と不揮発性メモリのデータを基に、これらの機械角-電気角信号変換ユニットが装着されるDCモータのタイプや仕様に応じた、インクリメンタル化もしくはアブソリュート化された、エンコーダの出力信号を生成する機能を有している。
エンコーダの不揮発性メモリ114としては、PROM、EPROM、EEPROM、フラッシュメモリ等がある。この不揮発性メモリには、初期設定データとして、信号変換データが記録される。
機械角-電気角信号変換ユニット112,113は、MRセンサユニット111の出力信号と不揮発性メモリのデータを基に、これらの機械角-電気角信号変換ユニットが装着されるDCモータのタイプや仕様に応じた、インクリメンタル化もしくはアブソリュート化された、エンコーダの出力信号を生成する機能を有している。
機械角-電気角信号変換ユニット(インクリメンタル)112は、ロータリーエンコーダ110が装着されるDCモータのタイプや仕様に合わせて初期設定された不揮発性メモリの信号変換データを基に、MRセンサユニット111の出力信号であるインクリメンタル化されたA,B,Z信号(機械角)をDCモータ駆動用の信号(電気角)に変換して出力する機能を有している。
例えば、DCモータがブラシレスDCモータである場合には、初期設定された不揮発性メモリの信号変換データを基に、MRセンサユニット111の出力信号を、ブラシレスDCモータ駆動用のU,V,W信号に変換して出力する機能を有している。
また、機械角-電気角信号変換ユニット112が装着されるDCモータがブラシ付きDCモータである場合には、不揮発性メモリの信号変換データを基に、MRセンサユニット111の出力信号を、ブラシ付きDCモータ駆動用のA,B,Z信号に変換して出力する機能を有している。
例えば、DCモータがブラシレスDCモータである場合には、初期設定された不揮発性メモリの信号変換データを基に、MRセンサユニット111の出力信号を、ブラシレスDCモータ駆動用のU,V,W信号に変換して出力する機能を有している。
また、機械角-電気角信号変換ユニット112が装着されるDCモータがブラシ付きDCモータである場合には、不揮発性メモリの信号変換データを基に、MRセンサユニット111の出力信号を、ブラシ付きDCモータ駆動用のA,B,Z信号に変換して出力する機能を有している。
機械角-電気角信号変換ユニット(アブソリュート)113は、ロータリーエンコーダ110が装着されるDCモータの仕様に合わせて初期設定された不揮発性メモリの信号変換データを基に、MRセンサユニット111の出力信号であるアブソリュート化された信号(機械角)をDCモータ駆動用の電気角のデータに変換して出力する機能を有している。
パラレル信号送信ユニット115、及び、シリアル信号送受信ユニット116は、ロータリーエンコーダ110、初期設定ユニット120、及び、モータドライバ400の間で、各種の情報を、パラレル信号もしくはシリアル信号に変換し、送受信する機能を有している。例えば、パラレル伝送処理により生成されたA相・B相信号、及び、Z相信号が、シリアル伝送通信の規格に適合したシリアル伝送用の送信データ(BUS)に変換され、このBUS信号が通信ケーブルを介して送信される。
初期設定ユニット120は、モータ駆動信号生成機能121、信号変換データ生成機能(インクリメンタル)122、信号変換データ生成機能(アブソリュート)123、及び、初期設定・調整用メモリ124を備えている。
出力設定/切替部130は、表示画面付きの端末を備え、ロータリーエンコーダの装着対象であるモータの種類や仕様に応じて、初期設定ユニット120で生成される初期設定信号の条件を設定する機能を有する。例えば、装着対象であるモータが、インクリメンタル対応タイプのブラシレスDCモータである場合には、そのモータの極数、1回転当たりのパルス数(P/R)、1回転当たりのU,V,W信号の数、出力信号のタイプ(インクリメンタル)等を設定する。また、インクリメンタル対応のブラシ付きDCモータである場合には、1回転当たりのパルス数(P/R)等を設定する。
さらに、装着対象であるモータが、アブソリュート対応タイプのブラシレスDCモータやブラシ付きDCモータである場合には、分解能(bit数)、出力条件(シリアル又はパラレル)等を設定する。
出力設定/切替部130は、表示画面付きの端末を備え、ロータリーエンコーダの装着対象であるモータの種類や仕様に応じて、初期設定ユニット120で生成される初期設定信号の条件を設定する機能を有する。例えば、装着対象であるモータが、インクリメンタル対応タイプのブラシレスDCモータである場合には、そのモータの極数、1回転当たりのパルス数(P/R)、1回転当たりのU,V,W信号の数、出力信号のタイプ(インクリメンタル)等を設定する。また、インクリメンタル対応のブラシ付きDCモータである場合には、1回転当たりのパルス数(P/R)等を設定する。
さらに、装着対象であるモータが、アブソリュート対応タイプのブラシレスDCモータやブラシ付きDCモータである場合には、分解能(bit数)、出力条件(シリアル又はパラレル)等を設定する。
モータ駆動信号生成機能121は、出力設定/切替部130で設定された条件に従って、モータ駆動用の信号を生成する機能を有している。例えば、装着対象であるモータが、インクリメンタル対応タイプのブラシレスDCモータである場合には、そのモータの初期設定時に、MRセンサユニット111から出力されるA,B,Z信号を基に、設定条件に応じて、このブラシレスDCモータを駆動するのに必要な駆動用のU,V,W信号を生成する機能を有している。
また、装着対象であるモータが、アブソリュート対応タイプDCモータである場合には、そのモータの初期設定時に、MRセンサユニット111の出力から得られるDCモータの回転角度の絶対値、すなわちアブソリュート信号を、設定条件に応じて、このブラシレスDCモータを初期設定のために駆動するのに必要な制御用アブソリュートデータを生成する機能を有している。
更に、機械角-電気角信号変換ユニットが装着されるDCモータがブラシ付きDCモータである場合には、そのモータの初期設定時に、MRセンサユニット111から出力される信号を基に、設定条件に応じて、そのモータを初期設定のために駆動するのに必要な、インクリメンタル化あるいはアブソリュート化された信号を生成する機能を有している。
また、装着対象であるモータが、アブソリュート対応タイプDCモータである場合には、そのモータの初期設定時に、MRセンサユニット111の出力から得られるDCモータの回転角度の絶対値、すなわちアブソリュート信号を、設定条件に応じて、このブラシレスDCモータを初期設定のために駆動するのに必要な制御用アブソリュートデータを生成する機能を有している。
更に、機械角-電気角信号変換ユニットが装着されるDCモータがブラシ付きDCモータである場合には、そのモータの初期設定時に、MRセンサユニット111から出力される信号を基に、設定条件に応じて、そのモータを初期設定のために駆動するのに必要な、インクリメンタル化あるいはアブソリュート化された信号を生成する機能を有している。
信号変換データ生成機能(インクリメンタル)122は、MRセンサユニット111の出力を装着対象のDCモータを駆動するのに必要なインクリメンタル化された駆動用の信号に変換するための、信号変換データを生成し、初期設定データとして不揮発性メモリに記録する機能を有している。例えば、装着対象であるモータが、インクリメンタル対応タイプのブラシレスDCモータである場合には、信号変換データ生成機能122は、MRセンサユニット111から出力されるA,B,Z信号と、モータ駆動信号生成機能121で生成されたU,V,W信号との対応関係を与える、ブラシレスDCモータ駆動用の信号変換データを生成し、初期設定データとして不揮発性メモリに記録する。装着対象であるモータがブラシ付きDCモータの場合は、MRセンサユニット111から出力されるA,B,Z信号と、モータ駆動信号生成機能121で生成されたA,B,Z信号との対応関係を与える、ブラシ付きDCモータ駆動用の信号変換データを生成し、初期設定データとして不揮発性メモリに記録する。
また、信号変換データ生成機能(アブソリュート)123は、アブソリュート対応のDCモータ用の信号変換データを生成し、初期設定データとして不揮発性メモリに記録する機能を有している。すなわち、信号変換データ生成機能123は、MRセンサユニット111から出力から得られる回転角度の絶対値を示すアブソリュート信号(機械角)と、モータ駆動信号生成機能121で生成された制御用アブソリュートデータ(電気角)との対応関係を与える、信号変換データを生成し、初期設定データとして不揮発性メモリに記録する。
初期設定・調整用メモリ124には、初期設定に必要な、モータの駆動信号のデータや、モータの種類や仕様等に関係した情報が記録されている。
ロータリーエンコーダ110は、初期設定時に、初期設定ユニット120と共に装着対象であるモータ500に装着された状態で、出力設定/切替部130から入力された条件に従って、初期設定ユニット120の信号変換データ生成機能(インクリメンタル)122や信号変換データ生成機能(アブソリュート)123機能により、信号変換データが生成され、それらのデータが初期設定値として不揮発性メモリに記録される。
その後、ロータリーエンコーダ110は、装着対象であるモータ500の運転時、MRセンサユニット111の検出値と不揮発性メモリに記録された初期設定値とを基に、機械角-電気角信号変換ユニット112,113で所定の信号変換の処理がなされる。ロータリーエンコーダ110の出力を受けて、モータドライバ400は、所定の駆動信号を生成し、モータ500を駆動する。
その後、ロータリーエンコーダ110は、装着対象であるモータ500の運転時、MRセンサユニット111の検出値と不揮発性メモリに記録された初期設定値とを基に、機械角-電気角信号変換ユニット112,113で所定の信号変換の処理がなされる。ロータリーエンコーダ110の出力を受けて、モータドライバ400は、所定の駆動信号を生成し、モータ500を駆動する。
ロータリーエンコーダ110や、初期設定ユニット120及び出力設定/切替部130は、各々、例えば、CPU、ROMやRAM等のメモリ、発振回路、タイマー、I/Oインタフェース、シリアルI/F等を1つのLSIに集積したシングルチップマイコンで実現される。メモリに保持されたプログラムをCPU上で実行することで、各機能が実現される。
次に、MRセンサユニット111の構成例及び機能について、図2A、図2Bを参照しながら説明する。
MRセンサユニット111は、MRセンサとして、GMRを含む磁気抵抗効果素子(MR:AMR、GMR、TMR等)のいずれを採用しても良い。MRセンサユニット111は、平板状のマグネット1110と、センサ出力処理ユニット1120を有している。
センサ出力処理ユニット1120は、マグネット1110に対向する位置で離間してモータの固定側、例えばモータハウジングに、基板を介して固定される、1対のMRセンサ1122A,1122B、温度センサ112C、及び、センサ出力処理回路部を備えている。センサ出力処理回路部は、AD変換器11123、軸ずれ補正処理部11124、RAMなどのセンサメモリ11125、逆正接演算処理部11126、アブソリュート信号生成部11127、及び、インクリメンタルA相・B相信号生成部11128を備えている。
MRセンサユニット111は、MRセンサとして、GMRを含む磁気抵抗効果素子(MR:AMR、GMR、TMR等)のいずれを採用しても良い。MRセンサユニット111は、平板状のマグネット1110と、センサ出力処理ユニット1120を有している。
センサ出力処理ユニット1120は、マグネット1110に対向する位置で離間してモータの固定側、例えばモータハウジングに、基板を介して固定される、1対のMRセンサ1122A,1122B、温度センサ112C、及び、センサ出力処理回路部を備えている。センサ出力処理回路部は、AD変換器11123、軸ずれ補正処理部11124、RAMなどのセンサメモリ11125、逆正接演算処理部11126、アブソリュート信号生成部11127、及び、インクリメンタルA相・B相信号生成部11128を備えている。
モータの回転軸に固定されたマグネット1110が角度θ(機械角)だけ回転して各MRセンサに作用する磁界の向きが回転すると、図2Bに示すように、この回転に対応してMRセンサの電気抵抗値、換言すると汎用センサの出力信号の電圧が変動し、モータ500の回転軸の1回転毎に、SIN波、COS波の各々で360度(機械角)、各々1周期分のパルス信号が出力される。センサ出力処理回路部では、1対のMRセンサのアナログ信号が、量子化され、電気角の内挿処理により多分割され、各々、A相、B相のデジタル信号に変換される。このA相、B相のデジタル信号は、パルスカウンタで累積加算され、その値が逆正接演算処理部11126で逆正接演算される。この逆正接演算の結果、回転軸の1回転毎の角度0の位置に同期して、インクリメンタル値が直線状に増減を繰り返す直角三角形状の信号が生成される。
アブソリュート信号生成部11127では、逆正接演算処理部11126から出力される直線状の信号を基に、モータの回転角度(機械角)の絶対値を示すアブソリュート信号のデータが生成され、センサメモリ11125に保持される。
インクリメンタルA相・B相信号生成部11128では、逆正接演算処理部11126から出力される直線状の信号を基に、インクリメンタル化されたA相信号及びB相信号のパルスのデータが生成され、センサメモリ11125に保持される。なお、回転軸の1回転毎に現われる角度0(原点)の位置に同期して、Z信号も生成される(以下、A相・B相・Z相信号)。
MRセンサ111の原点の位置(Z0)は、モータの回転軸に固定されたマグネット1110上の特定の位置、例えば、図2BのSIN波のアナログ出力値が0の時点に対応する位置である。
インクリメンタルA相・B相信号生成部11128では、逆正接演算処理部11126から出力される直線状の信号を基に、インクリメンタル化されたA相信号及びB相信号のパルスのデータが生成され、センサメモリ11125に保持される。なお、回転軸の1回転毎に現われる角度0(原点)の位置に同期して、Z信号も生成される(以下、A相・B相・Z相信号)。
MRセンサ111の原点の位置(Z0)は、モータの回転軸に固定されたマグネット1110上の特定の位置、例えば、図2BのSIN波のアナログ出力値が0の時点に対応する位置である。
図3は、図1のロータリーエンコーダ110が装着されたブラシレスDCモータ500の主要部の構成例を示す、縦断面図である。この例では、ブラシレスDCモータ500の回転軸510の一方の端面に、保持手段(図示略)を介して、MRセンサユニット111の円板状のマグネット1110が固定されている。
ブラシレスDCモータ500は、モータハウジング520の内部に固定されたステータとして、界磁鉄心541とこれに絶縁部材を介して巻かれた界磁コイル542とを備えている。回転軸510と一体に形成されマグネット543は、ロータヨークと、その外周部に固定された例えば8個の永久磁石を有する、8極のロータである。回転軸510は、モータハウジング210に設けられた軸受け530により保持されている。
一方、モータエンドカバ-522の内側には、ロータリーエンコーダ110を搭載した基板117が固定されている。この基板117上の、マグネットに対向する位置には、1対のMRセンサ1122A,1122Bを含む、MRセンサ111のセンサ出力処理ユニット1120が設置されている。
ブラシレスDCモータ500は、モータハウジング520の内部に固定されたステータとして、界磁鉄心541とこれに絶縁部材を介して巻かれた界磁コイル542とを備えている。回転軸510と一体に形成されマグネット543は、ロータヨークと、その外周部に固定された例えば8個の永久磁石を有する、8極のロータである。回転軸510は、モータハウジング210に設けられた軸受け530により保持されている。
一方、モータエンドカバ-522の内側には、ロータリーエンコーダ110を搭載した基板117が固定されている。この基板117上の、マグネットに対向する位置には、1対のMRセンサ1122A,1122Bを含む、MRセンサ111のセンサ出力処理ユニット1120が設置されている。
次に、図4、図5を参照しながら、図1のロータリーエンコーダの初期設定システム100の、インクリメンタル対応の初期設定システムの機能について説明する。すなわち、初期設定時に、ロータリーエンコーダ110と、初期設定ユニット120及び出力設定/切替部130とで実現される、インクリメンタル対応の初期設定機能について説明する。
初期設定時には、DCモータ500のロータリーエンコーダ110に、初期設定ユニット120及び出力設定/切替部130がコネクタを介して接続される。
本実施例のロータリーエンコーダの初期設定システム100は、初期設定ユニット120の信号変換データ生成機能(インクリメンタル)122等により、モータ駆動用の信号として、インクリメンタル信号を生成する機械角-電気角信号変換ユニット(インクリメンタル)1000と、初期設定ユニット120の信号変換データ生成機能(アブソリュート)123等により、モータ駆動用の信号として、アブソリュート信号を生成する機械角-電気角信号変換ユニット(アブソリュート)1200とを備えている。
初期設定時には、DCモータ500のロータリーエンコーダ110に、初期設定ユニット120及び出力設定/切替部130がコネクタを介して接続される。
本実施例のロータリーエンコーダの初期設定システム100は、初期設定ユニット120の信号変換データ生成機能(インクリメンタル)122等により、モータ駆動用の信号として、インクリメンタル信号を生成する機械角-電気角信号変換ユニット(インクリメンタル)1000と、初期設定ユニット120の信号変換データ生成機能(アブソリュート)123等により、モータ駆動用の信号として、アブソリュート信号を生成する機械角-電気角信号変換ユニット(アブソリュート)1200とを備えている。
機械角-電気角信号変換ユニット(インクリメンタル)1000は、エンコーダの分解能設定機能1001、モータの仕様、例えばモータの種類、極数、スロット数などを設定する仕様設定機能1002、MRセンサ出力からインクリメンタルA,B,Z信号を取得する機能1003、A,B,Z信号に基づくU,V,W信号生成機能1004、信号変換データ生成機能1005、及び、信号変換データの記録(リード/ライト)機能1007を有している。
機械角-電気角信号変換ユニット(アブソリュート)1200も、同様に、エンコーダの分解能設定機能1201、MRセンサ出力からアブソリュートデータを取得する機能1202、シリアル/パラレル変換機能1203、アブソリュート駆動信号用データ生成機能1204、信号変換データ生成機能1205、及び、信号変換データの記録(リード/ライト)機能12006を有している。
次に、図5を参照しながら、初期設定システム100の機械角-電気角信号変換ユニット(インクリメンタル)1000を用いた、初期設定の処理の手順について説明する。
初期設定の開始(S500)に際して、初期設定システム100の初期設定ユニット120及び出力設定/切替部130を、制御対象のモータ500内に装着されたロータリーエンコーダ110に、コネクタを介して接続する(S501)。次に、初期設定ユニット120は、出力設定/切替部130で設定される出力条件を受け付ける(S502)。例えば、装着対象であるモータが、インクリメンタル対応タイプDCモータの場合、出力のタイプとして、インクリメンタル信号の生成が選択される。また、エンコーダの分解能が設定される。さらに、モータの種類、極数、スロット数などに関係したデータが設定される。例えば、モータの1回転当たりのA,B,Z信号の数NA/Rや、1回転当たりのU,V,W信号の繰り返し回数Pn/Rが設定される。さらに、電圧出力、オープンコレクタ出力、ラインドライバ出力、バス出力等の条件が設定される。
初期設定の開始(S500)に際して、初期設定システム100の初期設定ユニット120及び出力設定/切替部130を、制御対象のモータ500内に装着されたロータリーエンコーダ110に、コネクタを介して接続する(S501)。次に、初期設定ユニット120は、出力設定/切替部130で設定される出力条件を受け付ける(S502)。例えば、装着対象であるモータが、インクリメンタル対応タイプDCモータの場合、出力のタイプとして、インクリメンタル信号の生成が選択される。また、エンコーダの分解能が設定される。さらに、モータの種類、極数、スロット数などに関係したデータが設定される。例えば、モータの1回転当たりのA,B,Z信号の数NA/Rや、1回転当たりのU,V,W信号の繰り返し回数Pn/Rが設定される。さらに、電圧出力、オープンコレクタ出力、ラインドライバ出力、バス出力等の条件が設定される。
次に、初期設定ユニット120は、モータ駆動信号生成機能121により、初期設定・調整用メモリ124に記録されている初期設定用駆動信号を用いて、対象のモータ500を駆動する(S503)。そして、MRセンサ出力からインクリメンタルA,B,Z信号を取得する機能1003により、モータ500の回転に伴うMRセンサユニット111の出力であるインクリメンタルA,B,Z信号(機械角)等を取得し、バッファメモリに保持する(S504)。さらに、エンコーダの分解能設定機能1001により、取得した信号を設定された分解能に応じて分割する(S505)。次に、仕様設定機能1002により設定された制御対象のモータの種類を確認し(S506)、ブラシレスDCモータである場合には、A,B,Z信号に基づくU,V,W信号生成機能1004により、分割されたA,B,Z信号に基づき、出力条件に応じたA,B,Z信号及びU,V,W信号のデータ(=電気角)を生成する(S507)。制御対象のモータがブラシ付きDCモータである場合には、出力条件に応じたA,B,Z信号のデータ(電気角)を生成する(S508)。
次に、生成された信号、例えば、インクリメンタル対応タイプのブラシレスDCモータ用のA,B,Z,U,V,W信号、又は、ブラシ付きDCモータ用のA,B,Z信号が仕様設定機能1002により設定された設定条件を満たしているかを判定する(S509)。もし、設定条件を満たしていない場合には、設定条件を満たすように、信号の調整処理を行う(S510)。設定条件を満たしている場合、信号変換データ生成機能1005により、インクリメンタル化されたデータ(電気角)を、信号変換データとして生成し(S511)、この信号変換データを信号変換データの記録(リード/ライト)機能1007により、不揮発性メモリ1300に記録して(S512)、インクリメンタルタイプのロータリーエンコーダ110Aとする。
図6は、信号変換データを使用した、インクリメンタル対応タイプDCモータ用のA,B,Z-U,V,W信号の生成過程の一例を示す図である。図6に示したように、ロータリーエンコーダ110のMRセンサユニット111から得られた、Z信号を基準とするインクリメンタル化されたA,B信号(機械角)が、信号変換データを用いて、A,B,Z信号に同期するU相,V相,W相の信号に変換される。例えば、正回転の場合、Z信号の立ち上がりに同期するA信号に同期してU相の立ち上がりが決定され、このU相に対応するのU信号のデータがモータの極数に応じて生成される。同様にして、電気角120度ごとに位相の異なるV,W信号のデータ(電気角)が生成される。このデータは、モータの一回転すなわちZ信号単位で、繰り返される駆動用の信号のデータである。
図5に戻り、初期設定ユニット120及び出力設定/切替部130を、初期設定対象のエンコーダ110Aから外し(S513)、初期設定を終了する(S514)。
図7は、図5の処理で生成され不揮発性メモリに記録される、信号変換データの一例のイメージを示す図である。
この例では、信号変換データは、ロータリーエンコーダ110AのMRセンサユニットから出力されるZ信号を基準として、インクリメンタル化されたA,B信号に対応する、U,V,W信号の値を与えるデータがテーブル化されている。例えば、ロータリーエンコーダ110Aから出力されるインクリメンタル値0000001(不揮発性メモリアドレス00001200)のA相の信号に対して、U相はH、V相とW相はLとなっており、インクリメンタル値0000176(不揮発性メモリアドレス00001550)のA相の信号に対して、U相はL、V相はH、W相はLとなっている。
このように、ロータリーエンコーダ110Aは、MRセンサユニットから出力されるA,B信号の不揮発性メモリのアドレスがわかれば、信号変換データにより、インクリメンタル対応タイプDCモータ用のU,V,W相の信号のデータを、不揮発性メモリから取得できる。
この例では、信号変換データは、ロータリーエンコーダ110AのMRセンサユニットから出力されるZ信号を基準として、インクリメンタル化されたA,B信号に対応する、U,V,W信号の値を与えるデータがテーブル化されている。例えば、ロータリーエンコーダ110Aから出力されるインクリメンタル値0000001(不揮発性メモリアドレス00001200)のA相の信号に対して、U相はH、V相とW相はLとなっており、インクリメンタル値0000176(不揮発性メモリアドレス00001550)のA相の信号に対して、U相はL、V相はH、W相はLとなっている。
このように、ロータリーエンコーダ110Aは、MRセンサユニットから出力されるA,B信号の不揮発性メモリのアドレスがわかれば、信号変換データにより、インクリメンタル対応タイプDCモータ用のU,V,W相の信号のデータを、不揮発性メモリから取得できる。
図5に戻り、次に、初期設定ユニット120及び出力設定/切替部130を、初期設定対象のエンコーダ110Aから外し(S513)、初期設定を終了する(S514)。
図8は、初期設定を終えたインクリメンタルタイプのロータリーエンコーダ110Aが、装着対象であるインクリメンタル対応タイプのブラシレスDCモータ500に搭載されて使用される状態を示す図である。
このロータリーエンコーダは、不揮発性メモリ1300に、図7に示したような信号変換データを保有している。ロータリーエンコーダ110Aでは、MRセンサユニット111からのの出力信号であるA,B,Z相の信号(機械角)に基づき、信号変換データ生成機能(インクリメンタル)122により、信号変換データを使用して、不揮発性メモリ1300から初期設定済のU,V,W信号のデータ(電気角)を直接的に読み出すことができる。そして、インクリメンタル化された、A,B,Z信号及びU,V,W信号を、信号送信ユニット115,116を介して、ブラシレスDCモータのドライバ400に出力する。
このロータリーエンコーダは、不揮発性メモリ1300に、図7に示したような信号変換データを保有している。ロータリーエンコーダ110Aでは、MRセンサユニット111からのの出力信号であるA,B,Z相の信号(機械角)に基づき、信号変換データ生成機能(インクリメンタル)122により、信号変換データを使用して、不揮発性メモリ1300から初期設定済のU,V,W信号のデータ(電気角)を直接的に読み出すことができる。そして、インクリメンタル化された、A,B,Z信号及びU,V,W信号を、信号送信ユニット115,116を介して、ブラシレスDCモータのドライバ400に出力する。
このように、本実施例によれば、初期設定時に、ロータリーエンコーダ110の機械角-電気角信号変換ユニット(インクリメンタル)112と、初期設定ユニット120及び出力設定/切替部130とを使用して、ロータリーエンコーダ110を装着対象のモータに対応した、インクリメンタルタイプのロータリーエンコーダ110Aとして設定できるので、種々のインクリメンタルタイプのDCモータの仕様に対応できる、汎用性に優れた、ロータリーエンコーダを提供することができる。
また、本実施例のロータリーエンコーダ110Aによれば、MRセンサユニットの出力信号に基づき、DCモータ駆動用の信号を取得して、DCモータのドライバ400に出力することができるので、DCモータの駆動信号を生成するための処理を簡略化しマイコンの負荷を軽減した、安価な、ロータリーエンコーダ110Aを提供することができる。
次に、図9を参照しながら、初期設定システム100の機械角-電気角信号変換ユニット(アブソリュート)1200を用いた、アブソリュート対応の初期設定の処理手順の例について説明する。
初期設定の開始(S900)に際して、初期設定システム100の初期設定ユニット120及び出力設定/切替部130を、制御対象であるモータ500内に装着されたロータリーエンコーダ110に、コネクタを介して接続する(S901)。次に、初期設定ユニット120は、出力設定/切替部130で設定される出力条件を受け付ける(S902)。この例では、出力として、アブソリュート信号が選択される。また、エンコーダの分解能設定機能1201によりエンコーダの分解能が設定される。
初期設定の開始(S900)に際して、初期設定システム100の初期設定ユニット120及び出力設定/切替部130を、制御対象であるモータ500内に装着されたロータリーエンコーダ110に、コネクタを介して接続する(S901)。次に、初期設定ユニット120は、出力設定/切替部130で設定される出力条件を受け付ける(S902)。この例では、出力として、アブソリュート信号が選択される。また、エンコーダの分解能設定機能1201によりエンコーダの分解能が設定される。
次に、初期設定ユニット120は、モータ駆動信号生成機能121により、初期設定・調整用メモリ124に記録されている初期設定用駆動信号で、対象のモータを駆動する(S903)。そして、MRセンサ出力からアブソリュートデータを取得するデータ取得機能1202により、モータ500の回転に伴うMRセンサユニットの出力からアブソリュートデータ(機械角)を取得し、バッファメモリに保持する(S904)。さらに、このアブソリュートデータを設定分解能に応じて分割処理し(S905)、シリアル/パラレル変換機能1203により、分割されたアブソリュートデータをシリアル、パラレル信号に変換し、アブソリュート駆動信号用データ生成機能1204により、出力条件に応じた、駆動信号生成用の制御用アブソリュートデータ(電気角)を生成する(S906)。
次に、生成された駆動信号生成用のデータが設定条件を満たしているかを判定する(S907)。もし、設定条件を満たしていない場合には、設定条件を満たすように、信号の調整処理を行う(S908)。設定条件を満たしている場合、信号変換データ生成機能1205により、信号変換データとして生成する(S909)。
図10は、アブソリュート対応タイプDCモータ用の駆動信号生成用の情報の生成過程の一例を示すイメージ図である。ロータリーエンコーダ110のMRセンサユニット111から、図10の(A)に示したような、アブソリュート信号(機械角)が得られる。図10の(B)の信号変換データは、アブソリュート信号(機械角)とアブソリュート信号(電気角)のアドレスの対応関係を与えるものである。例えば、MRセンサユニット111の出力値(アドレス)がN-Mx(機械角)の場合、信号変換データに基づき、ロータリーエンコーダの出力値、すなわち駆動信号生成用のデータ(アドレス)は、N-Ex(電気角)となる。
図9に戻り、この信号変換データを、信号変換データの記録(リード/ライト)機能12006により、ロータリーエンコーダ110の不揮発性メモリ1300に記録して(S910)、アブソリュートタイプのロータリーエンコーダ110Bを完成させる。
次に、初期設定ユニット120及び出力設定/切替部130を、初期設定対象のエンコーダ110Bから外し(S911)、初期設定を終了する(S912)。
次に、初期設定ユニット120及び出力設定/切替部130を、初期設定対象のエンコーダ110Bから外し(S911)、初期設定を終了する(S912)。
図11は、初期設定を終えたロータリーエンコーダ110Bが、アブソリュート対応タイプDCモータに搭載されて使用される状態を示す図である。この例では、不揮発性メモリ1300に、信号変換データを保有するアブソリュートタイプのロータリーエンコーダ110Bが、ブラシレスDCモータ500に搭載されて使用される。
ロータリーエンコーダ110Bでは、MRセンサユニット111からのアブソリュート信号(機械角)に基づき、、信号変換データ生成機能(アブソリュート)123において、信号変換データを使用して、不揮発性メモリ1300から初期設定済の駆動信号生成用のデータ(電気角)を直接的に読み出すことができる。この駆動信号生成用のデータは、信号送受信ユニット115,116を介して、ブラシレスDCモータのドライバ400に出力される。
ロータリーエンコーダ110Bでは、MRセンサユニット111からのアブソリュート信号(機械角)に基づき、、信号変換データ生成機能(アブソリュート)123において、信号変換データを使用して、不揮発性メモリ1300から初期設定済の駆動信号生成用のデータ(電気角)を直接的に読み出すことができる。この駆動信号生成用のデータは、信号送受信ユニット115,116を介して、ブラシレスDCモータのドライバ400に出力される。
このように、本実施例のロータリーエンコーダ110Bによれば、MRセンサユニット111からの出力信号に基づき、初期設定済の駆動信号生成用のアブソリュート信号のデータを不揮発性メモリ1300から直接的に読み出すことができる。換言すると、DCモータの駆動信号生成用のデータを生成するための処理を簡略化しマイコンの負荷を軽減した、安価な、ロータリーエンコーダを提供することができる。
また、本実施例によれば、初期設定時に、ロータリーエンコーダ110の機械角-電気角信号変換ユニット(アブソリュート)113と、初期設定ユニット120及び出力設定/切替部130を使用して、ロータリーエンコーダ110を、アブソリュートタイプのロータリーエンコーダ110Bに設定できるので、種々のモータ仕様に対応できる、汎用性に優れた、ロータリーエンコーダを提供することができる。
次に、本発明の汎用型のロータリーエンコーダを6軸の多関節型ロボットに適用した第2の実施例について、図12を参照しながら説明する。
多関節型ロボット600は、ベース部602、本体部610及びリンクを構成する複数のアーム部(613、618等)を備えている。本体部610内には、多関節型ロボット600の全体を制御する制御部が設けられている。各関節部はリンクを互いに回動可能に連結されている。ベース部とアーム部は、6つの軸、すなわち、S(旋回)軸611、L(下腕)軸612、U(上腕)軸616、R(手首旋回)軸620、T(手首回転)軸622、B(手首曲げ)軸626を中心にして各々回転させるアクチュエータによって駆動される。これらのアクチュエータは、本発明のロータリーエンコーダ110を備えたブラシレスDCモータ500と、各モータの出力軸に接続された減速機構とで構成されている。アーム部の先端には、操作ユニット624が設けられている。操作ユニット624としては、工具、カメラ、その他を設置することができる。
多関節型ロボット600は、ベース部602、本体部610及びリンクを構成する複数のアーム部(613、618等)を備えている。本体部610内には、多関節型ロボット600の全体を制御する制御部が設けられている。各関節部はリンクを互いに回動可能に連結されている。ベース部とアーム部は、6つの軸、すなわち、S(旋回)軸611、L(下腕)軸612、U(上腕)軸616、R(手首旋回)軸620、T(手首回転)軸622、B(手首曲げ)軸626を中心にして各々回転させるアクチュエータによって駆動される。これらのアクチュエータは、本発明のロータリーエンコーダ110を備えたブラシレスDCモータ500と、各モータの出力軸に接続された減速機構とで構成されている。アーム部の先端には、操作ユニット624が設けられている。操作ユニット624としては、工具、カメラ、その他を設置することができる。
S軸611、L軸612、及びU軸616の駆動には、本発明の機械角-電気角信号変換ユニット(インクリメンタル)112を有するロータリーエンコーダ110Aを備えた、インクリメンタル対応のブラシレスDCモータ500を採用する。また、R軸620、T軸622、及びB軸626の駆動には、本発明のインクリメンタル機械角-電気角信号変換ユニット(アブソリュート)113を有するロータリーエンコーダ110Bを備えた、アブソリュート対応のブラシレスDCモータ500を採用する。
制御部は、図8や図11に示した、ロータリーエンコーダ110A、110BとブラシレスDCモータのドライバ400に相当する機能を含んでおり、指令値と負荷及びロータリーエンコーダの出力に基づいて、各アーム部を駆動する。
制御部は、図8や図11に示した、ロータリーエンコーダ110A、110BとブラシレスDCモータのドライバ400に相当する機能を含んでおり、指令値と負荷及びロータリーエンコーダの出力に基づいて、各アーム部を駆動する。
本実施例のロータリーエンコーダ110A、110Bを採用した2種類のブラシレスDCモータを、6軸の駆動源として使い分けることで、回転範囲の広いベース部と、高い位置決め精度が要求されるアーム部をより適切に制御可能になる。例えば、組み立てラインやチップマウンタに対して、制御特性に優れ、かつ、安価なモータを提供することができる。
また、2種類のブラシレスDCモータは、MRセンサを採用し、かつ、DCモータの駆動用の信号を生成するための処理を簡略化しマイコンの負荷を軽減した、安価な、汎用型のロータリーエンコーダを採用しているので、全体として安価な装置を提供することができる。
また、2種類のブラシレスDCモータは、MRセンサを採用し、かつ、DCモータの駆動用の信号を生成するための処理を簡略化しマイコンの負荷を軽減した、安価な、汎用型のロータリーエンコーダを採用しているので、全体として安価な装置を提供することができる。
また、本実施例によれば、前記ロータリーエンコーダ初期設定システムを使用して、初期設定時にインクリメンタルタイプのロータリーエンコーダやアブソリュートタイプのロータリーエンコーダに設定できるので、種々のモータ仕様にシステムに柔軟に対応できる、汎用性に優れた、ロータリーエンコーダを提供することができる。
なお、実施例1で述べた初期設定ユニット及び出力設定/切替部を使用することにより、6軸の駆動源のDCモータとして、各軸に要求される個別の駆動条件等に応じて、6個のロータリーエンコーダ、ひいては6個のモータの仕様を全て異なるものとすることも容易である。
上記各実施例では、コンピュータがメモリに記録されたプログラムを実行することにより、処理を行う場合について説明したが、本発明は、これに限定されるものではない。例えば、プログラムに基づいて動作する演算部の一部又は全部の機能をASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の専用LSIで構成してもよい。
本発明によれば、前記ロータリーエンコーダ初期設定システムを使用することにより、各種の産業用機器の駆動源としてのDCモータに使用するのに適した、安価な汎用型のロータリーエンコーダを提供することができる。
100 ロータリーエンコーダ初期設定システム
110 ロータリーエンコーダ
110A ロータリーエンコーダ(インクリメンタルタイプ)
110B ロータリーエンコーダ(アブソリュートタイプ)
111 MRセンサユニット
1110 マグネット
1120 センサ出力処理ユニット
1122A 第1のMRセンサ
1122B 第2のMRセンサ
11123 AD変換器
11124 軸ずれ補正処理部
11125 センサメモリ
11126 逆正接演算処理部
11127 アブソリュート信号生成部
11128 インクリメンタルA相・B相信号生成部
112 機械角-電気角信号変換ユニット(インクリメンタル)
113 機械角-電気角信号変換ユニット(アブソリュート)
114 エンコーダのメモリ
115 パラレル信号送信ユニット
116 シリアル信号送受信ユニット
117 基板
120 初期設定ユニット
121 モータ駆動信号生成機能
122 信号変換データ生成機能(インクリメンタル)
123 信号変換データ生成機能(アブソリュート)
124 初期設定・調整用メモリ
130 出力設定/切替部
140 電源回路
400 モータドライバ1
500 DCモータ
510 回転軸
1300 不揮発性メモリ
110 ロータリーエンコーダ
110A ロータリーエンコーダ(インクリメンタルタイプ)
110B ロータリーエンコーダ(アブソリュートタイプ)
111 MRセンサユニット
1110 マグネット
1120 センサ出力処理ユニット
1122A 第1のMRセンサ
1122B 第2のMRセンサ
11123 AD変換器
11124 軸ずれ補正処理部
11125 センサメモリ
11126 逆正接演算処理部
11127 アブソリュート信号生成部
11128 インクリメンタルA相・B相信号生成部
112 機械角-電気角信号変換ユニット(インクリメンタル)
113 機械角-電気角信号変換ユニット(アブソリュート)
114 エンコーダのメモリ
115 パラレル信号送信ユニット
116 シリアル信号送受信ユニット
117 基板
120 初期設定ユニット
121 モータ駆動信号生成機能
122 信号変換データ生成機能(インクリメンタル)
123 信号変換データ生成機能(アブソリュート)
124 初期設定・調整用メモリ
130 出力設定/切替部
140 電源回路
400 モータドライバ1
500 DCモータ
510 回転軸
1300 不揮発性メモリ
Claims (5)
- DCモータの回転軸の回転角度の機械角の情報を出力するMRセンサユニットと、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用の情報に変換して出力する機械角-電気角信号変換ユニットと、
不揮発性メモリとを備えており、
前記機械角-電気角信号変換ユニットは、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用のインクリメンタル化された信号に変換する、インクリメンタル対応の機械角-電気角信号変換ユニットと、
前記MRセンサユニットの出力情報を前記DCモータ駆動信号生成用のアブソリュート化された信号に変換する、アブソリュート対応の機械角-電気角信号変換ユニットとを有しており、
前記不揮発性メモリは、前記ロータリーエンコーダが装着される前記DCモータのタイプに対応した、前記MRセンサユニットの出力情報をDCモータ駆動信号生成用の信号に変換するための信号変換データを、初期設定データとして保有しており、
前記機械角-電気角信号変換ユニットは、前記DCモータの運転時に、前記MRセンサユニットから出力される前記出力情報を、前記信号変換データに基づき、前記DCモータ駆動信号生成用の信号に変換して出力するように構成されていることを特徴とする汎用型ロータリーエンコーダ。 - 請求項1において、
前記インクリメンタル対応の機械角-電気角信号変換ユニットは、
前記ロータリーエンコーダが装着される前記DCモータとして、インクリメンタルタイプのブラシレスDCモータを対象としており、
前記MRセンサユニットの出力情報として、前記ブラシレスDCモータの回転角度に対応したA,B,Z信号を取得するように構成され、
前記信号変換データとして、前記MRセンサユニットの出力情報である前記Z信号を基準として、前記A,B信号に対する、前記モータ駆動信号生成用の信号であるU,V,W信号の値を与えるデータを、前記初期設定データとして保有しており、さらに、
前記信号変換データを利用して、取得した前記A,B,Z信号を、前記U,V,W信号に変換して出力するように構成されていることを特徴とする汎用型ロータリーエンコーダ。 - 請求項1において、
前記アブソリュート対応の機械角-電気角信号変換ユニットは、
前記ロータリーエンコーダが装着される前記DCモータとして、アブソリュートタイプのブラシレスDCモータを対象としており、
前記MRセンサユニットの出力情報として前記ブラシレスDCモータの原点位置及び回転角度に対応したアブソリュート信号を取得するように構成され、
前記信号変換データとして、前記原点位置を基準とする前記MRセンサユニットの出力情報である前記アブソリュート信号の機械角に対する、前記モータ駆動信号生成用の信号であるアブソリュート信号の電気角の値を与えるデータを、前記初期設定データとして保有しており、さらに、
前記信号変換データを利用して、前記アブソリュート対応の機械角の信号を、前記原点位置を基準とする前記電気角のアブソリュート信号のデータに変換して出力するように構成されていることを特徴とする汎用型ロータリーエンコーダ。 - 請求項1~3のいずれか1項において、
前記信号変換データは、前記DCモータの初期設定時に、前記ロータリーエンコーダに接続された初期設定ユニットと前記MRセンサユニットとを含む初期設定システムを使用して、前記DCモータの構成に対応するデータとして生成され、前記不揮発性メモリに記録された前記初期設定データであり、
前記初期設定ユニットは、前記DCモータの構成に関するデータを入力し、前記ロータリーエンコーダのデータの出力形式を選択するための出力設定/切替部を備えており、
前記初期設定ユニットは、前記DCモータの初期設定終了に伴い、前記ロータリーエンコーダから外されるように構成されていることを特徴とする汎用型ロータリーエンコーダ。 - 請求項4において、
前記初期設定ユニットは、
前記ロータリーエンコーダが装着される前記DCモータが、インクリメンタルタイプのブラシレスDCモータである場合、
前記出力設定/切替部からの入力情報に基づき、前記ロータリーエンコーダが装着される前記ブラシレスDCモータを駆動するための前記U,V,W信号の値を与える、前記信号変換データを、前記初期設定データとして生成し、前記不揮発性メモリに記録する機能を有することを特徴とする汎用型ロータリーエンコーダ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020557356A JP6842736B1 (ja) | 2019-11-05 | 2019-11-05 | 汎用型ロータリーエンコーダ |
KR1020207032681A KR20210056948A (ko) | 2019-11-05 | 2019-11-05 | 범용형 로터리 인코더 |
US17/057,861 US20220260971A1 (en) | 2019-11-05 | 2019-11-05 | General-purpose rotary encoder |
EP19929192.3A EP3865828A4 (en) | 2019-11-05 | 2019-11-05 | Multipurpose rotary encoder |
PCT/JP2019/043339 WO2021090372A1 (ja) | 2019-11-05 | 2019-11-05 | 汎用型ロータリーエンコーダ |
TW109136734A TW202122756A (zh) | 2019-11-05 | 2020-10-22 | 通用型旋轉編碼器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/043339 WO2021090372A1 (ja) | 2019-11-05 | 2019-11-05 | 汎用型ロータリーエンコーダ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021090372A1 true WO2021090372A1 (ja) | 2021-05-14 |
Family
ID=74860829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/043339 WO2021090372A1 (ja) | 2019-11-05 | 2019-11-05 | 汎用型ロータリーエンコーダ |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220260971A1 (ja) |
EP (1) | EP3865828A4 (ja) |
JP (1) | JP6842736B1 (ja) |
KR (1) | KR20210056948A (ja) |
TW (1) | TW202122756A (ja) |
WO (1) | WO2021090372A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114104229A (zh) * | 2021-10-26 | 2022-03-01 | 中国船舶重工集团公司第七一九研究所 | 一种机械腿关节角度限幅的通用性配置方法 |
WO2023100886A1 (ja) * | 2021-11-30 | 2023-06-08 | ニデック株式会社 | 信号生成装置およびエレベータ |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI815834B (zh) * | 2017-12-22 | 2023-09-21 | 瑞士商施內貝格爾控股公司 | 用來確定絕對位置的線性路線測量儀和用這種路線測量儀進行線性導引 |
US20220099463A1 (en) * | 2020-09-30 | 2022-03-31 | Rockwell Automation Technologies, Inc. | System and Method for Contact-less Multi-Turn Absolute Position Sensing |
TWI790843B (zh) * | 2021-12-06 | 2023-01-21 | 群光電子股份有限公司 | 輸入裝置及其控制方法 |
KR102578130B1 (ko) * | 2022-12-22 | 2023-09-12 | 박성현 | 자가 진단 기능을 갖는 엔코더 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6339307B2 (ja) | 1980-05-29 | 1988-08-04 | Ebara Infilco | |
JPH01218379A (ja) * | 1988-02-24 | 1989-08-31 | Toshiba Corp | モータ駆動回路 |
JPH11304534A (ja) * | 1998-04-27 | 1999-11-05 | Tamagawa Seiki Co Ltd | モータ付エンコーダ |
US20040036427A1 (en) * | 2001-07-23 | 2004-02-26 | Mitchell Lawrence Hardy | Commutation converter for a brushless servo motor |
JP2012509050A (ja) * | 2008-11-14 | 2012-04-12 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング | モーター用の制御装置およびモーターを制御する方法 |
JP2014023273A (ja) * | 2012-07-18 | 2014-02-03 | Aida Engineering Ltd | モータ励磁装置、モータ励磁方法、モータ制御装置およびモータ制御方法 |
JP2018021789A (ja) * | 2016-08-02 | 2018-02-08 | ファナック株式会社 | メモリ情報を消去可能なエンコーダ及びこれを備えるモータシステム |
JP2018136147A (ja) | 2017-02-20 | 2018-08-30 | 株式会社ニコン | エンコーダ装置、駆動装置、ステージ装置、及びロボット装置 |
JP2019004685A (ja) * | 2018-02-05 | 2019-01-10 | 株式会社 五十嵐電機製作所 | ブラシレスdcサーボモータの制御装置 |
JP6578499B1 (ja) * | 2019-02-19 | 2019-09-25 | 株式会社 五十嵐電機製作所 | 汎用型ロータリーエンコーダ及びそれを用いたサーボモータ |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6291149B1 (ja) * | 2017-06-12 | 2018-03-14 | 株式会社 五十嵐電機製作所 | ブラシレスdcサーボモータの制御装置 |
WO2019087364A1 (ja) * | 2017-11-02 | 2019-05-09 | 株式会社五十嵐電機製作所 | 直流モータの制御装置 |
-
2019
- 2019-11-05 KR KR1020207032681A patent/KR20210056948A/ko not_active Application Discontinuation
- 2019-11-05 JP JP2020557356A patent/JP6842736B1/ja active Active
- 2019-11-05 US US17/057,861 patent/US20220260971A1/en not_active Abandoned
- 2019-11-05 EP EP19929192.3A patent/EP3865828A4/en not_active Withdrawn
- 2019-11-05 WO PCT/JP2019/043339 patent/WO2021090372A1/ja unknown
-
2020
- 2020-10-22 TW TW109136734A patent/TW202122756A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6339307B2 (ja) | 1980-05-29 | 1988-08-04 | Ebara Infilco | |
JPH01218379A (ja) * | 1988-02-24 | 1989-08-31 | Toshiba Corp | モータ駆動回路 |
JPH11304534A (ja) * | 1998-04-27 | 1999-11-05 | Tamagawa Seiki Co Ltd | モータ付エンコーダ |
US20040036427A1 (en) * | 2001-07-23 | 2004-02-26 | Mitchell Lawrence Hardy | Commutation converter for a brushless servo motor |
JP2012509050A (ja) * | 2008-11-14 | 2012-04-12 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング | モーター用の制御装置およびモーターを制御する方法 |
JP2014023273A (ja) * | 2012-07-18 | 2014-02-03 | Aida Engineering Ltd | モータ励磁装置、モータ励磁方法、モータ制御装置およびモータ制御方法 |
JP2018021789A (ja) * | 2016-08-02 | 2018-02-08 | ファナック株式会社 | メモリ情報を消去可能なエンコーダ及びこれを備えるモータシステム |
JP2018136147A (ja) | 2017-02-20 | 2018-08-30 | 株式会社ニコン | エンコーダ装置、駆動装置、ステージ装置、及びロボット装置 |
JP2019004685A (ja) * | 2018-02-05 | 2019-01-10 | 株式会社 五十嵐電機製作所 | ブラシレスdcサーボモータの制御装置 |
JP6578499B1 (ja) * | 2019-02-19 | 2019-09-25 | 株式会社 五十嵐電機製作所 | 汎用型ロータリーエンコーダ及びそれを用いたサーボモータ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3865828A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114104229A (zh) * | 2021-10-26 | 2022-03-01 | 中国船舶重工集团公司第七一九研究所 | 一种机械腿关节角度限幅的通用性配置方法 |
CN114104229B (zh) * | 2021-10-26 | 2022-11-08 | 中国船舶重工集团公司第七一九研究所 | 一种机械腿关节角度限幅的通用性配置方法 |
WO2023100886A1 (ja) * | 2021-11-30 | 2023-06-08 | ニデック株式会社 | 信号生成装置およびエレベータ |
Also Published As
Publication number | Publication date |
---|---|
US20220260971A1 (en) | 2022-08-18 |
KR20210056948A (ko) | 2021-05-20 |
EP3865828A1 (en) | 2021-08-18 |
TW202122756A (zh) | 2021-06-16 |
JP6842736B1 (ja) | 2021-03-17 |
EP3865828A4 (en) | 2021-12-29 |
JPWO2021090372A1 (ja) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6842736B1 (ja) | 汎用型ロータリーエンコーダ | |
JP6578499B1 (ja) | 汎用型ロータリーエンコーダ及びそれを用いたサーボモータ | |
JP6438176B1 (ja) | Dcモータの制御装置 | |
TWI477038B (zh) | 直線、旋轉複合式致動器 | |
JP6339307B1 (ja) | 直流モータの制御装置 | |
KR100804361B1 (ko) | 자기식 인코더 | |
JP6780855B2 (ja) | サーボアクチュエータ | |
JP2017159425A (ja) | ロボット | |
US8146259B2 (en) | Rotary encoder and series of rotary encoders | |
JP6966143B1 (ja) | バッテリレス対応のロータリーエンコーダ及びそれを用いたサーボ制御装置 | |
CN111106765A (zh) | 一种无刷电机驱动系统及方法 | |
JP6412281B1 (ja) | ブラシレスdcサーボモータの制御装置 | |
JP6803627B1 (ja) | 汎用型ロータリーエンコーダ | |
JP5471473B2 (ja) | サーボシステム | |
JP6966142B1 (ja) | ロータリーエンコーダ及びそれを用いたサーボ制御装置 | |
JPH03178590A (ja) | ブラシレス同期電動機の制御装置 | |
WO2024134705A1 (ja) | 磁気式ロータリーエンコーダ及びそのバックアップ制御方法 | |
JP6945914B1 (ja) | ロータリーエンコーダ及びそれを用いた制御精度切替型サーボ制御装置 | |
JP2020134505A (ja) | 汎用型ロータリーエンコーダ | |
JP2018064340A (ja) | モータ制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020557356 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019929192 Country of ref document: EP Effective date: 20201126 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |