[第1実施形態]
第1実施形態について説明する。図1は、本実施形態に係るエンコーダ装置ECを示す図である。このエンコーダ装置ECは、移動部の位置情報(移動位置情報)を検出する。エンコーダ装置ECは、例えばロータリーエンコーダである。ロータリーエンコーダにおける移動部(回転体)は、例えばモータM(駆動装置、動力供給部)の回転軸SFであり、移動部の移動は、例えば所定の軸まわりの回転である。また、移動部の位置情報は、例えば、回転軸SFの回転位置情報である。
回転軸SFは、例えばモータMのシャフト(回転子)である。回転軸SFは、作用軸(出力軸)であってもよい。この作用軸は、モータMのシャフトに対して変速機などの動力伝達部を介して接続され、かつ負荷に接続される。エンコーダ装置ECが検出した回転位置情報は、モータ制御部MCに供給される。モータ制御部MCは、エンコーダ装置ECから供給された回転位置情報を使って、モータMの回転(例、回転軸SF)を制御する。
エンコーダ装置ECは、位置検出部1と、電力供給部2とを備える。位置検出部1は、回転軸SFの回転位置情報を検出する。エンコーダ装置ECは、例えば、多回転アブソリュートエンコーダである。エンコーダ装置ECは、多回転情報および角度位置情報を含む回転位置情報を検出可能である。多回転情報は、回転軸SFの回転の数を示す情報である。角度位置情報は、1回転未満の角度位置(回転角)を示す情報である。位置検出部1は、多回転情報検出部1A、及び角度検出部1Bを備える。角度検出部1Bは、回転軸SFの角度位置を検出する。多回転情報検出部1Aは、回転軸SFの多回転情報を検出する。
エンコーダ装置ECは、エンコーダ装置ECで消費される電力の供給元が異なる通常状態とバックアップ状態とのそれぞれにおいて、回転軸SFの回転位置情報を検出する(後に図10、図11等に示す)。例えば、位置検出部1の少なくとも一部(例、角度検出部1B、多回転情報検出部1A)は、通常状態において、第1電源PW1から供給される電力によって回転軸SFの回転位置情報を検出する。第1電源PW1は、例えば、エンコーダ装置ECが搭載される装置(例、駆動装置、ステージ装置、ロボット装置)の主電源である。上記の通常状態は、第1電源PW1の電力が投入されている状態、第1電源PW1がオンになっている状態、エンコーダ装置ECが搭載される装置に対して第1電源PW1から電力が供給されている状態、及びエンコーダ装置ECに対して第1電源PW1から電力が供給されている状態の少なくとも1つを含む。
例えば、第1電源PW1は、通常状態において、回転軸SFの駆動に消費される電力、及び位置検出部1の検出動作(例、角度位置情報や多回転情報を算出して検出する動作など)に消費される電力を供給する。位置検出部1の少なくとも一部は、第1電源PW1から電力供給を受けて回転軸SFの回転位置情報を検出する。モータ制御部MCは、位置検出部1の検出結果に基づいて、第1電源PW1からの電力を調整してモータMに供給することで、回転軸SFの回転を制御する。
位置検出部1の少なくとも一部(例、多回転情報検出部1A)は、通常状態とは異なるバックアップ状態において、第1電源PW1とは異なる第2電源(例、電力供給部2)から供給される電力によって動作可能である。上記のバックアップ状態は、例えば、第1電源PW1からの電力供給が遮断された状態、第1電源PW1の電力が投入されていない状態、第1電源PW1がオフになっている状態、エンコーダ装置ECが搭載される装置に対して第1電源PW1から電力が供給されていない状態、エンコーダ装置ECに対して第1電源PW1から電力が供給されていない状態の少なくとも1状態を含む。
電力供給部2は、例えば、磁石3と、信号発生部4と、切替部5と、バッテリー6とを備える。電力供給部2は、例えば、バックアップ状態において、位置検出部1の少なくとも一部(例、多回転情報検出部1A)に対して断続的(選択的、間欠的)に電力を供給する。位置検出部1は、バックアップ状態において、電力供給部2から電力供給を受けて、回転軸SFの回転位置情報の少なくとも一部(例、多回転情報)を検出する。例えば、多回転情報検出部1Aは、第2電源(例、電力供給部2)から断続的に電力供給を受けて、多回転情報を断続的に検出する。バックアップ状態において多回転情報検出部1Aが検出した多回転情報は、例えば、第1電源PW1からの電力供給が開始されてバックアップ状態から通常状態に切り替わった際(例、駆動装置の起動時)に、モータ制御部MCによる回転軸SFの回転の制御に利用される。
多回転情報検出部1Aは、第1電源PW1から電力供給を受ける通常状態と、第2電源から電力供給を受けるバックアップ状態との各状態において、回転軸SFの多回転情報を検出する。例えば、エンコーダ装置ECは、第1電源PW1の電力の投入が停止された際に、通常状態からバックアップ状態に切り替わる。エンコーダ装置ECは、第1電源PW1の電力の投入が開始された際に、バックアップ状態から通常状態に切り替わる。エンコーダ装置ECが通常状態とバックアップ状態とで切り替わる際に、多回転情報検出部1Aは、多回転情報の検出を継続する(算出を継続する)。角度検出部1Bは、例えば、第1電源PW1からの電力供給が断たれたバックアップ状態において、角度情報を検出しない(算出しない)。例えば、第2電源は、バックアップ状態において角度検出部1Bに電力供給を行わない。角度検出部1Bは、例えば、バックアップ状態において電力供給が断たれた状態であり、角度位置情報を検出しない。
以下、エンコーダ装置ECの各部について説明する。角度検出部1Bは、スケールS(例、符号板)の一回転内の位置情報(角度位置情報、絶対又は相対位置情報)を検出する。スケールSは、例えば円板状の部材である。スケールSは、回転軸SFに固定される。スケールSは、回転軸SFと連動して回転する。以下の説明において、適宜、回転軸SFの回転方向およびスケールSの回転方向を単に回転方向という。
角度検出部1Bは、光学式のエンコーダである。例えば、角度検出部1Bは、スケールSのパターンニング情報を受光素子で読み取ることにより、回転軸SFの角度位置情報を検出する。角度検出部1Bが検出するスケールSのパターンニング情報は、例えばスケールS上の透過パターン(例、スリット)と反射パターンとの一方または双方による明暗のパターンである。
角度検出部1Bは、アブソリュートパターンABS、インクリメンタルパターンINC、照射部11、検出部12、及び処理部13を備える。アブソリュートパターンABSは、回転体(スケールS、回転軸SF)の角度位置(例、絶対位置)を示す。インクリメンタルパターンINCは、回転方向における角度の変化量(例、相対位置)を示す。インクリメンタルパターンINCは、回転方向において周期的に並ぶ構造(周期構造)を含む。
照射部11(発光部)は、アブソリュートパターンABSおよびインクリメンタルパターンINCに光を照射する。照射部11は、例えば、LED(発光ダイオード)などの発光素子(例、固体光源)を含む。検出部12(光検出部)は、アブソリュートパターンABSからの光、及びインクリメンタルパターンINCからの光をそれぞれ検出する。検出部12は、例えばFD(フォトダイオード)などの受光素子(光電変換素子)を含む。
角度検出部1Bは、例えば反射型である。検出部12は、照射部11から照射されてアブソリュートパターンABSで反射した光と、照射部11から照射されてインクリメンタルパターンINCで反射した光とを個別に検出する。処理部13は、検出部12の検出結果に基づいて、回転軸SFの角度位置情報を検出(例、算出)する。例えば、処理部13は、アブソリュートパターンABSからの光を検出した結果を使って第1分解能の角度位置情報を検出する。また、処理部13は、インクリメンタルパターンINCからの光を検出した結果を使って、第1分解能の角度位置情報に内挿演算を行うことにより、第1分解能よりも高い第2分解能の角度位置情報を検出する。
なお、角度検出部1Bは透過型でもよい。この場合、検出部12は、照射部11から照射されてアブソリュートパターンABSを透過した光と、照射部11から照射されてインクリメンタルパターンINCを透過した光とを個別に検出する。
多回転情報検出部1Aは、角度検出部1Bの検出対象と同じ回転軸SFの多回転情報を検出する。本実施形態における多回転情報検出部1Aは、例えば磁気式と光学式とを併用したエンコーダである。多回転情報検出部1Aは、光学パターン15、照射部16、検出部17、処理部18、磁石3、磁気検出部19、及び記憶部20を備える。
光学パターン15は、例えば明暗を有する光学パターンである。光学パターン15は、移動方向(例、回転方向)において光学特性(例、光の反射、透過及び吸収などの光学特性の値)が変化する。光学パターン15は、回転体(例、回転軸SF、スケールS)の回転方向において光学特性の値(光学特性値)が変化する。上記の光学特性の値は、例えば、反射率、透過率、及び光吸収率の少なくとも1つを含む。光学パターン15は、例えば、アブソリュートパターンABSおよびインクリメンタルパターンINCと同じ部材(例、スケールS、第1の回転体)に設けられる。
なお、光学パターン15は、アブソリュートパターンABSおよびインクリメンタルパターンINCと別の部材に設けられてもよい。例えば、アブソリュートパターンABSおよびインクリメンタルパターンINCは、第1の回転体(例、第1のスケール)に設けられ、光学パターン15は、第1の回転体と異なる第2の回転体(例、第2のスケール)に設けられてもよい。
照射部16(発光部)は、光学パターン15に光を照射する。照射部16は、例えば、LED(発光ダイオード)などの発光素子(例、固体光源)を含む。検出部17(光検出部)は、光学パターン15からの光を検出する。照射部16は、照射部11と併用であってもよい(後の図15に示す)。
検出部17は、例えばフォトダイオードなどの受光素子(光電変換素子)を含む。多回転情報検出部1Aは、例えば反射型である。検出部17は、照射部16から照射されて光学パターン15で反射した光を検出する。なお、多回転情報検出部1Aは、透過型でもよい。この場合、検出部17は、照射部16から照射されて光学パターン15を透過した光を検出する。また、本実施形態におけるスケールSは、例えば円板状の部材(例、ガラス製、金属製、樹脂製などの部材)である。
磁石3は、位置検出部1に対して相対的に回転可能である。磁石3は、例えば、回転軸SFと連動して回転する。磁石3は、例えば、スケールSに固定される。磁気検出部19は、磁石3が形成する磁界を検出する。磁石3は、スケールS(第1の回転体)と別の部材に固定されてもよい。例えば、磁石3は、回転軸SFに固定され第1の回転体と異なる第3の回転体(例、第3のスケール)に設けられてもよい。上記の第3の回転体は、上記の第2の回転体と同じ部材でもよいし、上記の第2の回転体と異なる部材でもよい。
磁気検出部19は、例えば、複数の磁気センサ(第1磁気センサ21、第2磁気センサ22)を備える。第1磁気センサ21は、回転軸SFの回転方向において、信号発生部4と異なる角度位置に配置される。第1磁気センサ21は、磁石3が形成する磁界を検出する。第2磁気センサ22は、回転軸の回転方向において、信号発生部4および第1磁気センサ21のそれぞれと異なる角度位置に配置される。第2磁気センサ22は、磁石3が形成する磁界を検出する。
また、信号発生部4は、磁石3が形成する磁界の変化によって検出信号を発生する。処理部18は、信号発生部4において発生した検出信号に基づいて、回転軸の検出位置(例、信号発生部4による検出信号が発生した時の回転軸の位置)における磁気検出部19の検出結果(例、信号レベルの「H」「L」)と検出部17の検出結果(例、光学特性の値、明暗の二値、回転角、角度位置情報)とを用いて回転体(例、回転軸SF)の多回転情報を算出する。
図2は、本実施形態に係るエンコーダ装置のスケールを示す図である。図2は、回転軸SFに垂直な面におけるスケールSの平面図である。以下の説明において、図2等に示すXYZ直交座標系を適宜参照する。このXYZ直交座標系において、X方向およびY方向は、それぞれ回転軸SFに直交する方向である。また、Z方向は、回転軸SFに平行な方向である。また、X方向、Y方向、及びZ方向の各方向において、適宜、矢印と同じ側を+側(例、+X側)と称し、矢印と反対側を−側(例、−X側)と称する。
光学パターン15、アブソリュートパターンABS、及びインクリメンタルパターンINCは、それぞれ、環状である。光学パターン15、アブソリュートパターンABS、及びインクリメンタルパターンINCは、回転軸SFを中心とした同心円状に配置される。アブソリュートパターンABSは、例えば、回転軸SFに対してインクリメンタルパターンINCの外側に配置される。検出部12は、アブソリュートパターンABSからの光を検出する受光部12a(受光領域)と、インクリメンタルパターンINCからの光を検出する受光部12b(受光領域)とを含む。
光学パターン15は、例えば、回転軸SFに対してインクリメンタルパターンINCの内側に配置される。光学パターン15は、回転軸SF(スケールS)の角度位置を示すパターンである。光学パターン15は、例えば、回転方向において、光学特性の値が二値的に変化する。光学パターン15の光学特性の値の分布は、角度位置に対して線形な分布(例、直線)でもよいし、角度位置に対して非線形な分布(例、正弦波)でもよい。光学パターン15の光学特性の値は、回転方向において、段階的に変化してもよいし、連続的に変化してもよい。検出部17(光検出部)は、照射部16から照射されて光学パターン15を経由した光を検出(受光)する。
なお、多回転情報検出部1Aは、例えば通常状態(通常動作時)に、光学パターン15としてアブソリュートパターンABSを利用してもよい。例えば、光学パターン15がアブソリュートパターンABSであり、検出部17が検出部12と同一でもよい。
磁石3は、回転軸SFの回転方向における4以上の所定の角度位置(例、角度位置Pa、角度位置Pb、角度位置Pc、角度位置Pd)において磁界の向きが反転する。このため、磁石3は、例えば8極に着磁した永久磁石である。磁石3は、その内周部と外周部のそれぞれにおいて周方向にN極とS極が並んでいる。例えば、磁石3の内周部および外周部は、それぞれ4極に着磁した永久磁石である。磁石3の内周部と外周部とで磁極の位相が90°ずれている。磁石3において、内周部におけるN極とS極との境界は、外周部におけるN極とS極との境界と、角度位置がほぼ一致している。
角度位置Pa、角度位置Pb、角度位置Pc、及び角度位置Pdは、それぞれ、回転軸SFの回転方向においてN極とS極との境界の位置である。角度位置Pa、角度位置Pb、角度位置Pc、及び角度位置Pdは、例えば、回転軸SFの回転方向において所定の角度間隔で並んでいる。例えば、角度位置Pbは、回転軸SFの回転方向において角度位置Paから反時計回りに90°の角度位置である。角度位置Pcは、回転軸SFの回転方向において角度位置Pbから反時計回りに90°の角度位置である。角度位置Pdは、回転軸SFの回転方向において角度位置Pcから反時計回りに90°の角度位置である。
磁石3は、回転軸SFの周りで回転することによって、磁石3の外部の定められた位置に交流磁界を形成する。図2の状態において、角度位置Paに信号発生部4が配置されている。信号発生部4は、スケールSの外部に固定されている。スケールSは、回転軸SFの回転によって、信号発生部4と相対的に回転する。以下、回転方向における回転角について、適宜、信号発生部4の角度位置を基準(例、0°)として説明する。
磁石3は、スケールSの回転によって、信号発生部4と相対的に回転する。磁石3が信号発生部4の位置に形成する磁界の向きおよび強さは、磁石3と信号発生部4との相対的な回転によって変化する。信号発生部4は、磁石3が形成する磁界の向きが反転する際に信号レベルが立ち上がる検出信号(例、電気信号)を発生する。例えば、信号発生部4で発生する電気信号は、角度位置Pa、角度位置Pb、角度位置Pc、及び角度位置Pdのそれぞれが信号発生部4の近傍を通過する際に、信号レベルが立ち上がる(例、パルス状の電気信号が発生する)。
本実施形態において、エンコーダ装置ECが備える信号発生部4の数は1つである。この単一の信号発生部4は、磁石3が1回転する間に、電気信号(例、パルス)が4回以上発生する。多回転情報検出部1Aは、信号発生部4に電気信号が発生した際に、磁石3の角度位置を4以上の段階(例、0°、90°、180°、270°)で検出する。本実施形態における磁石は8極の磁極数を有するため、信号発生部4は回転体の1回転内において検出信号として電気信号(パルス)を4回出力する。
信号発生部4が所定の角度位置(角度位置Pa、角度位置Pb、角度位置Pc、角度位置Pd)に配置される際に、第1磁気センサ21は、例えば、回転軸SFの回転方向において所定の角度位置と異なる角度位置に配置される。信号発生部4に電気信号(例、パルス)が発生するタイミングにおいて、第1磁気センサ21は、例えば、回転軸SFの回転方向において所定の角度位置と異なる角度位置に配置される。例えば、第1磁気センサ21は、信号発生部4から0°よりも大きく90°未満の角度位置、又は信号発生部4から90°よりも大きく180°未満の角度位置に配置される。
第1磁気センサ21は、例えば、信号発生部4に電気信号(例、パルス)が発生するタイミングにおいて、磁石3が形成する交流磁界の所定方向(例、スケールSの径方向)の強さが極大となる角度位置に配置される。例えば、図2において、第1磁気センサ21は、信号発生部4から反時計回りに約135°の角度位置に配置される。
また、信号発生部4が所定の角度位置(角度位置Pa、角度位置Pb、角度位置Pc、角度位置Pd)に配置される際に、第2磁気センサ22は、例えば、回転軸SFの回転方向において信号発生部4と異なる所定の角度位置に配置される。信号発生部4に電気信号(例、パルス)が発生するタイミングにおいて、第2磁気センサ22は、例えば、回転軸SFの回転方向において所定の角度位置に配置される。例えば、信号発生部4が角度位置Paに配置されるタイミングにおいて、第2磁気センサ22は、角度位置Pa以外の所定の角度位置(角度位置Pb、角度位置Pc、又は角度位置Pd)に配置される。第2磁気センサ22は、例えば、信号発生部4から90°、180°、又は270°の角度位置に配置される。
第2磁気センサ22は、例えば、信号発生部4に電気信号(例、パルス)が発生するタイミングにおいて、磁石3が形成する交流磁界の所定方向(例、スケールSの系方向)の強さが極小となる角度位置に配置される。例えば、図2において、第2磁気センサ22は、信号発生部4から反時計回りに約180°の角度位置に配置される。第1磁気センサ21は、例えば、第2磁気センサ22に対して0°よりも大きく90°未満の角度位置(例、図2では約45°)に配置される。
また、光学パターン15は、例えば、回転方向において光学特性の値が二値的に変化する(切り替わる)。例えば、光学パターン15の光学特性の値(この場合、明暗の二値)は、角度位置Paおよび角度位置Pcのそれぞれにおいて切り替わる。回転方向において光学特性の値が二値的に変化する場合、光学パターン15は、角度位置Paから反時計回りに180°の範囲において相対的に反射率が高い領域である。例えば、光学パターン15は、角度位置Pcから反時計回りに180°の範囲において相対的に反射率が低い領域である。信号発生部4が所定の角度位置(角度位置Pa、角度位置Pb、角度位置Pc、及び角度位置Pd)のいずれかに配置されるタイミングにおいて、検出部17は、例えば、光学パターン15の光学特性の値が切り替わる角度位置と異なる角度位置に配置される。
図3は、本実施形態に係る磁気センサ、バイアス磁石を示す図である。実施形態に係るエンコーダ装置ECは、第1バイアス磁石23a、第2バイアス磁石23b、及び支持部材24を備える。支持部材24は、例えば、固定部材25(後の図16に示す)を介して、モータM(図1参照)における固定子側の部材(例、本体部BD)と固定される。モータMの本体部BDは、モータMにおける電機子(例、可動子)および磁石(例、固定子)を収容する。
支持部材24は、回転軸SFの軸方向視(例、Z方向視)において、移動体(例、回転軸SF)の移動方向(例、回転方向)に対する交差方向(例、Z方向)に磁石3と重ねられている。例えば、支持部材24は、回転軸SFと平行な方向において、磁石3から離れて配置される。支持部材24は、例えば板状(例、円板状)である。支持部材24は、第1面24aおよび第2面24bを有する。支持部材24は、第1面24aがスケールSに対向するように配置される。第1面24aは、例えば、スケールSと平行に配置される。支持部材24は、第1面24aが磁石3と対向するように配置される。第2面24bは、第1面24aの反対側の面である。
支持部材24は、位置検出部1の少なくとも一部を支持する。支持部材24は、例えばプリント基板である。支持部材(例、処理基板)24の表面には、例えば、配線、回路等が形成される。支持部材24は、例えば、位置検出部1において信号を処理する信号処理部(例、処理部13、処理部18、記憶部20、比較部51、合成部52、通信部53)の少なくとも一部を支持する。位置検出部1の少なくとも一部は、例えば、第2面24bに設けられる。例えば、位置検出部1において上記の信号処理部は、信号を処理する回路(例、論理回路、演算回路)を含む。この回路は、支持部材24(例、プリント基板)の第2面24bに形成(例、実装、搭載)される。
また、支持部材24は、例えば、第1磁気センサ21、及び第2磁気センサ22を支持する。第1磁気センサ21、及び第2磁気センサ22は、例えば、支持部材24の第1面24aに設けられる。図3(A)において、第1バイアス磁石23aは、支持部材24に対して第1磁気センサ21と同じ側に配置される。第1バイアス磁石23aは、例えば、第1磁気センサ21に取り付けられ、第1磁気センサ21を介して支持部材24に支持される。第1バイアス磁石23aは、第1磁気センサ21にバイアス磁界26aを形成する。
第2バイアス磁石23bは、支持部材24に対して第2磁気センサ22と同じ側に配置される。第2バイアス磁石23bは、例えば、第2磁気センサ22に取り付けられ、第2磁気センサ22を介して支持部材24に支持される。第2バイアス磁石23bは、第2磁気センサ22にバイアス磁界26bを形成する。
第1バイアス磁石23aと第2バイアス磁石23bとは、例えば、同じ磁極(例、S極)が向き合うように、配置される。この場合、第1バイアス磁石23aは、磁力線が第2バイアス磁石23bと異なる方向へ曲がり、例えば第2バイアス磁石23bと接近した状態においても、第1磁気センサ21にバイアス磁界26aを効率的に形成可能である。同様に、第2バイアス磁石23bは、磁力線が第1バイアス磁石23aと異なる方向へ曲がり、例えば第1バイアス磁石23aと接近した状態においても、第2磁気センサ22にバイアス磁界26bを効率的に形成可能である。上記の接近した状態は、例えば、第1磁気センサ21および第2磁気センサ22が支持部材24の同じ面に配置され、かつ回転方向における互いの角度位置が0°よりも大きく45°以下の範囲でずれた状態である。
なお、上記のバイアス磁石は、支持部材24に対して上記の磁気センサと反対側に配置されてもよい。図3(B)において、第1バイアス磁石23aは、支持部材24に対して第1磁気センサ21と反対側に配置される。第1バイアス磁石23aは、例えば、支持部材24に実装される。第2バイアス磁石23bは、支持部材24に対して第2磁気センサ22と反対側に配置される。第2バイアス磁石23bは、例えば、支持部材24に実装される。
図3(A)のように、バイアス磁石は、支持部材24に対して磁気センサと同じ側に配置される場合、例えば、支持部材24に対して磁気センサと反対側に配置される場合に比べて、磁気センサにバイアス磁界を効率的に形成可能である。また、図3(B)のように、バイアス磁石が支持部材24に対して磁気センサと反対側に配置される場合、例えば、磁気センサを磁石3に近づけて配置することが可能である。
図4は、本実施形態に係る信号発生部を示す図である。信号発生部4は、磁性体31、発電部33、及びケース34を備える。磁性体31は、磁力を感じる感磁性部である。磁性体31は、ウィーガントワイヤなどの感磁性ワイヤである。磁性体31には、磁石3の回転に伴う磁界の変化によって大バルクハウゼンジャンプ(ウィーガンド効果)が生じる。磁性体31は、円柱状の部材である。磁性体31は、その軸方向(Y方向)に交流磁界が印加されて磁界が反転する際に、軸方向の一端から他端に向かう磁壁が発生する。
発電部33は、磁性体31において発生する大バルクハウゼンジャンプに伴う電磁誘導によって、電気信号が発生する。発電部33は、例えば、高密度コイル(コイル部)を含む。発電部33は、例えば、磁性体31に巻き付けられて、配置される。発電部33には、磁性体31における磁壁の発生に伴って電磁誘導が生じ、誘導電流が流れる。発電部33は、外部(例、図1の第1電源PW1)からの電力供給がなくても動作可能である。
発電部33には、例えば、磁性体31において発生する大バルクハウゼンジャンプによって、パルス状の電流(電気信号)が発生する。発電部33は、例えば、大バルクハウゼンジャンプを利用して正パルスや負パルス等の検出パルスを含む電気信号(検出信号)を出力可能である。発電部33に発生する電流の向きは、磁界の反転前後の向きに応じて変化する。発電部33に発生する電力(誘導電流)は、例えば高密度コイルの巻き数により設定できる。
ケース34は、磁性体31および発電部33を収容する。磁性体31は、例えば、ケース34に支持される。ケース34には、端子35aおよび端子35bが設けられる。端子35aは、発電部33(例、高密度コイル)において電流が流れる経路(例、配線)の第1端と電気的に接続される。端子35bは、発電部33において電流が流れる経路の第2端と電気的に接続される。信号発生部4は、発生した電気信号を端子35aおよび端子35bを介して、外部へ出力可能である。
なお、上述の信号発生部4は、一例であり、その構成が適宜変更可能である。例えば、信号発生部4は、大バルクハウゼンジャンプ(ウィーガンド効果)を利用しない電磁誘導によって電力を発生してもよい。信号発生部4は、ケース34を備えなくてもよい。例えば、信号発生部4の少なくとも一部(例、磁性体31、発電部33)は、図3の支持部材24に実装されてもよい。エンコーダ装置ECが備える信号発生部4の数は、2つ以上でもよい。また、信号発生部4の配置についても適宜変更可能である。
図5は、本実施形態に係る位置検出部1(例、多回転情報検出部1A)および電力供給部2の回路構成を示す図である。第2電源(例、電力供給部2、バッテリー6)は、検出信号に基づいて、位置検出部1の少なくとも一部(例、多回転情報検出部1A)に対して電力供給を実行する。電力供給部2は、例えば、整流スタック41、及び図1の切替部5としてレギュレータ42を備える。
整流スタック41は、信号発生部4から流れる電流を整流する整流器である。整流スタック41の第1入力端子41aは、信号発生部4の端子35aと接続されている。整流スタック41の第2入力端子41bは、信号発生部4の端子35bと接続されている。整流スタック41の接地端子41gは、シグナルグランドSGと同電位が供給される接地線GLに接続されている。多回転情報検出部1Aの動作時に、接地線GLの電位は、回路44の基準電位になる。整流スタック41の出力端子41cは、レギュレータ42の制御端子42cに接続されている。
レギュレータ42は、このレギュレータ42のオン状態及びオフ状態に応じて、バッテリー6から位置検出部1へ供給される電力を調整する。レギュレータ42は、バッテリー6と位置検出部1との間の電力の供給経路に設けられるスイッチ(例、スイッチング素子43)を含む。レギュレータ42は、信号発生部4で発生する電気信号(検出信号)を制御信号(例、イネーブル信号)に用いてスイッチング素子43の動作を制御する。
レギュレータ42の入力端子42aは、バッテリー6に接続されている。レギュレータ42の出力端子42bは、電源線PLに接続されている。レギュレータ42の接地端子42gは、接地線GLに接続されている。レギュレータ42の制御端子42cはイネーブル端子であり、レギュレータ42は、制御端子42cに閾値以上の電圧が印加された状態で、出力端子42bの電位を所定電圧に維持する。レギュレータ42の出力電圧(上記の所定電圧)は、計数部48(後述する)がCMOSなどで構成される場合に例えば3Vである。記憶部20の動作電圧は、例えば、所定電圧と同じ電圧に設定される。なお、所定電圧は、電力供給に必要な電圧であり、一定の電圧値でもよいし、段階的に変化する電圧でもよい。
スイッチング素子43は、位置検出部1に電力を供給する回路44の導通と遮断とを切替える。回路44は、例えば、第2電源(例、バッテリー6)の第1電極(正極)と第2電極(負極)とを結ぶ電力の供給経路を構成する。回路44は、電源線PLおよび接地線GLを含む。接地線GLは、例えば、バッテリー6の負極と接続され、その電位が回路44の基準電位となる。スイッチング素子43は、例えば、バッテリー6から回路44を介した位置検出部1への電力の供給の有無を切替える。
レギュレータ42は、信号発生部4から制御端子42cに供給される電気信号を制御信号(イネーブル信号)に用いて、スイッチング素子43の第1端子43aと第2端子43bとの間の導通状態(オン状態)と絶縁状態(オフ状態)とを切り替える。例えば、スイッチング素子43は、MOS、TFTなどを含む。第1端子43aと第2端子43bとは例えば、ソース電極とドレイン電極である。制御端子43cは、例えばゲート電極である。
スイッチング素子43は、信号発生部4で発生する電気信号(検出信号)によって生じる制御端子43cの電圧に応じて、回路44を導通へ切替える。例えば、スイッチング素子43は、制御端子43cの電位が回路44の基準電位である状態で回路44を遮断している。また、スイッチング素子43は、制御端子43cの電圧が所定値以上になることで、第1端子43aと第2端子43bとの間が導通状態(オン状態)になる。回路44を導通へ切替える。第1端子43aと第2端子43bとの間がオン状態になると、バッテリー6から、電源線PLおよび接地線GLを介して回路44に電力が供給される。
第1電源PW1は、例えば、電源線PLに接続される。第1電源PW1は、電源線PLおよび接地線GLを介して回路44に電力を供給する。電力供給部2は、例えば、第1電源PW1が電源線PLを介して電力を供給する通常状態において、レギュレータ42をオフ状態に設定する設定部を備えてもよい。また、電力供給部2は、レギュレータ42のオン状態及びオフ状態を取得する取得部を備えてもよい。
多回転情報検出部1Aは、図1に示した処理部18として、例えば、アナログコンパレータ45、アナログコンパレータ46、アナログコンパレータ47、計数部48、及び計数部49を含む。
第1磁気センサ21は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて磁石3が形成する磁界を検出する。第1磁気センサ21の電源端子21pは、電源線PLに接続されている。第1磁気センサ21の接地端子21gは、接地線GLに接続されている。第1磁気センサ21の出力端子21cは、アナログコンパレータ45の入力端子45aに接続されている。
アナログコンパレータ45は、第1磁気センサ21の検出結果(検出情報、検出信号)を処理する。アナログコンパレータ45は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて第1磁気センサ21の検出結果を処理する。アナログコンパレータ45の電源端子45pは、電源線PLに接続されている。アナログコンパレータ45の接地端子45gは、接地線GLに接続されている。
アナログコンパレータ45は、例えば、第1磁気センサ21から出力される電圧を二値化する二値化部である。アナログコンパレータ45は、例えば第1磁気センサ21から出力される電圧を所定電圧と比較する。アナログコンパレータ45は、第1磁気センサ21の出力電圧が閾値以上である場合に、出力端子45bからHレベル(ハイレベル)の信号を出力する。アナログコンパレータ45は、第1磁気センサ21の出力電圧が閾値未満である場合に出力端子45bからLレベル(ローレベル)の信号を出力する。アナログコンパレータ45の出力端子45bは、計数部48の第1入力端子48aおよび計数部49の第1入力端子49aのそれぞれに接続されている。
第2磁気センサ22は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて磁石3が形成する磁界を検出する。第2磁気センサ22の電源端子22pは、電源線PLに接続されている。第2磁気センサ22の接地端子22gは、接地線GLに接続されている。第2磁気センサ22の出力端子22cは、アナログコンパレータ46の入力端子46aに接続されている。
アナログコンパレータ46は、第2磁気センサ22の検出結果(検出情報、検出信号)を処理する。アナログコンパレータ46は、例えば、アナログコンパレータ45と同様の構成である。アナログコンパレータ46は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて第2磁気センサ22の検出結果を処理する。アナログコンパレータ46の電源端子46pは、電源線PLに接続されている。アナログコンパレータ46の接地端子46gは、接地線GLに接続されている。
アナログコンパレータ46は、第2磁気センサ22の出力電圧が閾値以上である場合に、出力端子46bからHレベルの信号を出力する。アナログコンパレータ46は、第2磁気センサ22の出力電圧が閾値未満である場合に、出力端子46bからLレベルの信号を出力する。アナログコンパレータ46の出力端子46bは、計数部48の第2入力端子48bに接続されている。
照射部16は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて光を照射する。照射部16の電源端子16pは、電源線PLに接続されている。照射部16の接地端子16gは、接地線GLに接続されている。検出部17は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて光を検出する。検出部17の電源端子17pは、電源線PLに接続されている。検出部17の接地端子17gは、接地線GLに接続されている。検出部17の出力端子17cは、アナログコンパレータ47の入力端子47aに接続されている。
アナログコンパレータ47は、検出部17の検出結果(検出情報、検出信号)を処理する。アナログコンパレータ47は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて検出部17の検出結果を処理する。アナログコンパレータ47の電源端子47pは、電源線PLに接続されている。アナログコンパレータ47の接地端子47gは、接地線GLに接続されている。
アナログコンパレータ47は、例えば、アナログコンパレータ45と同様の構成である。アナログコンパレータ47は、検出部17の出力電圧が閾値以上である場合に出力端子47bからHレベルの信号を出力する。アナログコンパレータ47は、検出部17の出力電圧が閾値未満である場合に、出力端子47bからLレベルの信号を出力する。アナログコンパレータ47の出力端子47bは、計数部49の第2入力端子49bに接続されている。
計数部48は、例えばCMOS論理回路などを含む。計数部48は、例えば通常状態において、第1入力端子48aを介して供給される電圧(例、二値化された第1磁気センサ21の検出結果)、及び第2入力端子48bを介して供給される電圧(例、二値化された第2磁気センサ22の検出結果)を制御信号として、計数処理を行う。計数部48は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて回転軸SFの多回転情報を計数する。計数部48の電源端子48pは、電源線PLに接続されている。計数部48の接地端子48gは、接地線GLに接続されている。
計数部49は、例えば、計数部48と同様の構成である。計数部49は、例えばバックアップ態において、第1入力端子49aを介して供給される電圧(例、二値化された第1磁気センサ21の検出結果)、及び第2入力端子49bを介して供給される電圧(例、二値化された検出部17の検出結果)を制御信号として、計数処理を行う。計数部49は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて回転軸SFの多回転情報を計数する。計数部49の電源端子49pは、電源線PLに接続されている。計数部49の接地端子49gは、接地線GLに接続されている。
記憶部20は、図1の処理部18(例、計数部48、計数部49)が検出した回転位置情報の少なくとも一部(例、多回転情報)を、バッテリー6から供給される電力を用いて記憶する(書き込み動作を行う)。記憶部20は、例えば通常状態において、処理部18が検出した回転位置情報として、計数部48による計数の結果(多回転情報)を記憶する。記憶部20は、例えばバックアップ状態において、処理部18が検出した回転位置情報として、計数部49による計数の結果(多回転情報)を記憶する。
記憶部20は、例えば、電源線PLおよび接地線GLを介して供給される電力を用いて情報の書き込みを実行する。記憶部20の電源端子22pは、電源線PLに接続されている。記憶部20の接地端子22gは、接地線GLに接続されている。記憶部20は、例えば不揮発性メモリを含み、電力が供給されている間に書き込まれた情報を、電力が供給されない状態においても保持可能である。
本実施形態において、整流スタック41とレギュレータ42との間には、キャパシタ50が設けられている。キャパシタ50の第1電極50aは、整流スタック41とレギュレータ42の制御端子42cとを接続する信号線に接続されている。キャパシタ50の第2電極50bは、接地線GLに接続されている。このキャパシタ50は、例えば平滑キャパシタであり、脈動を低減してレギュレータの負荷を低減する。キャパシタ50の定数は、例えば、処理部18により回転位置情報を検出して記憶部20に回転位置情報を書き込むまでの期間に、バッテリー6から処理部18および記憶部20への電力供給が維持されるように設定される。
図6および図7は、本実施形態に係るエンコーダ装置の通常状態における動作を示す図である。図6および図7において、「回転角」は、スケールSの外部(例、信号発生部4)を基準とする座標系に対するスケールSの回転角である。ここでは、スケールSの角度位置Paが信号発生部4の位置に配置される回転角を0°とし、時計回りの回転角を正とする。図6は、回転角が0°以上180°未満の回転角に対応する。図7は、回転角が180°以上360°未満の回転角に対応する。回転角が360°の状態は、回転角が0°の状態と同様である。
図6および図7において、「位置関係」は、各回転角における固定側の部分(第1磁気センサ21、第2磁気センサ22、信号発生部4)と、回転側の部分(スケールS、光学パターン15、磁石3)との位置関係を示す。図6および図7において、磁石3は、N極がハッチングの領域で表される。図6および図7において、光学パターン15は、反射率が相対的に低い領域がハッチングの領域で表される。
図6および図7において、「第1磁気センサ磁界」は、第1磁気センサ21の位置に形成される磁界の向きを表す。バイアス磁界26aは、第1バイアス磁石23aが形成する磁界である。符号3aは、磁石3が形成する磁界である。符号MFaは、バイアス磁界26aと磁石3が形成する磁界3aとを合成した磁界である。
図6および図7において、「第2磁気センサ磁界」は、第2磁気センサ22の位置に形成される磁界の向きを表す。バイアス磁界26bは、第2バイアス磁石23bが形成する磁界である。符号3aは、磁石3が形成する磁界である。符号MFbは、バイアス磁界26bと磁石3が形成する磁界3aとを合成した磁界である。
図6および図7において、「第1磁気センサ」は、第1磁気センサ21の出力信号を示す。また、「第1アナログコンパレータ」は、アナログコンパレータ45が出力する第1出力信号を表す。第1出力信号は、例えば、二値化された第1磁気センサ21の検出結果(検出信号)である。図6および図7において、「第2磁気センサ」は、第2磁気センサ22の出力信号を示す。また、「第2アナログコンパレータ」は、アナログコンパレータ46が出力する第2出力信号を表す。第2出力信号は、例えば、二値化された第2磁気センサ22の検出結果(検出信号)である。
図1に示した処理部18(例、図5の計数部48)は、通常状態において、例えば磁気検出部19の検出結果を用いて多回転情報を算出する。例えば、処理部18は、通常状態において、磁気検出部19の検出結果に基づいた第1アナログコンパレータの第1出力信号と第2アナログコンパレータの第2出力信号とを、A相信号とB相信号とに利用して多回転情報を検出する。下記の[表1]は、通常状態における各回転角と信号のレベルとの関係を示す表である。[表1]の説明において、適宜、第1出力信号と第2出力信号との信号レベルを(H,H)のように組にして表す。例えば、回転角が0°において、第1出力信号のレベルがH(ハイレベル)であり、第2出力信号のレベルがL(ローレベル)である。この場合、信号レベルの組を(H,L)で表す。
信号レベルの組は、回転角が0°以上180°未満の範囲において、(H,L)、(L,L)、(L,H)、(H,H)の4種類である。計数部48は、例えば、前回の検出における信号レベルの組と、今回の検出における信号レベルの組とを用いて、回転の向きを判別可能である。例えば、前回の検出において信号レベルの組が(L,L)であったとする。この場合、前回の検出におけるスケールSの角度位置は、45°を含む区間に存在することが分かる。今回の検出において信号レベルの組が(L,H)であった場合、今回の検出におけるスケールSの角度位置は、90°を含む区間に存在することが分かる。この場合、前回の検出から今回の検出までの間にスケールSが時計回りに回転したことが分かる。また、今回の検出において信号レベルの組が(H,L)であった場合、今回の検出におけるスケールSの角度位置は、0°を含む区間に存在することが分かる。この場合、前回の検出から今回の検出までの間にスケールSが反時計回りに回転したことが分かる。
また、信号レベルの組は、回転角が180°以上360°未満の範囲において、回転角が0°以上180°未満の範囲と同様の4種類である。これら4種類の信号レベルの組は、回転角が0°以上180°未満の範囲と同じ順番で並んでいる(繰り返される)。計数部48は、回転角が180°以上360°未満の範囲において、回転角が0°以上180°未満の範囲と同様に回転の向きを判別可能である。
処理部18は、第1電源PW1の電力が投入された際に、光学式のエンコーダの検出結果に基づいて、初期の回転角が0°以上180°未満の第1範囲または180°以上360°未満の第2範囲のいずれであるかを判定する(区別する)。上記の光学式のエンコーダの検出結果は、例えば、アブソリュートパターンABSからの光を検出部12が検出した検出結果を含む。上記の光学式のエンコーダの検出結果は、光学パターン15からの光を検出部17が検出した検出結果を含んでもよい。処理部18は、初期の回転角の範囲を判定した後、上述したように第1出力信号および第2出力信号の組に基づいて、多回転情報を算出する。
計数部48は、例えば、上記の4種類の信号レベルの組のいずれかをトリガーとして、回転の向きに応じてカウンタ値をインクリメント(+1)またはデクリメント(−1)する。ここでは、計数部48は、信号レベルの組が(H,L)であったことをトリガーとして、カウンタ値をインクリメント(+1)またはデクリメント(−1)するものとして説明する。
計数部48は、例えば、信号レベルの組が(H,L)であった回数をカウントして、多回転情報を検出する。例えば、スケールSが1回転する間に、信号レベルの組が(H,L)である回数は、回転角が0°と180°との2回である。例えば、カウンタ値が+2である場合、スケールSが時計回りに360°回転したことに相当する。計数部48は、例えば、信号レベルの組が(H,L)であり、かつ時計回りの回転である場合にカウンタ値を+1する。また、計数部48は、例えば、信号レベルの組が(H,L)であり、かつ反時計回りの回転である場合にカウンタ値を−1する。
計数部48は、第1電源PW1の電力が投入された後の最初の計数処理において、初期の回転角を加味して多回転情報を算出する。例えば、初期の回転角が0°以上180°未満の第1範囲である場合、計数部48は、カウンタ値が+2になった際に多回転情報をカウントアップ(+1)する。また、計数部48は、初期の回転角が0°以上180°未満の第1範囲である場合、カウンタ値が−1になった際に多回転情報をカウントダウン(−1)する。また、計数部48は、初期の回転角が180°以上360°未満の第2範囲である場合、カウンタ値が+1になった際に多回転情報をカウントアップ(+1)する。また、計数部48は、初期の回転角が180°以上360°未満の第2範囲である場合、カウンタ値が−2になった際に多回転情報をカウントダウン(−1)する。計数部48は、以降の計数処理においては、カウンタ値が+2になるたびに多回転情報をカウントアップ(+1)し、カウンタ値が−2になるたびに多回転情報をカウントダウン(−1)する。
なお、計数部48がカウンタ値を+1または−1するトリガーとなる信号レベルの組は、上記の4パターンのいずれでもよい。処理部18は、例えば、第1電源PW1の電力が投入された際に初期の回転角の範囲を判定した後、通常状態において、光学式のエンコーダの検出結果(検出部12の検出結果、検出部17の検出結果)を用いないで、多回転情報を検出する。
図8および図9は、本実施形態に係るエンコーダ装置のバックアップ状態における動作を示す図である。図6および図7と重複する説明については、適宜、省略あるいは簡略化する。図8および図9において、「検出部」は、検出部12の検出結果(検出信号)である。また、「第3アナログコンパレータ」は、アナログコンパレータ47が出力する第3出力信号を表す。第3出力信号は、例えば、二値化された検出部17の検出結果(検出信号)である。図8および図9において、「信号発生部」は、信号発生部4(電力供給部2)から出力される検出信号である。
バックアップ状態において、第1磁気センサ21は、例えば正弦波の一部の信号を出力する。例えば、第1磁気センサ21は、「信号発生部」の検出信号に基づいて電力が供給される期間に、正弦波の一部に相当するパルス状の信号を出力する。例えば、第1磁気センサ21の出力信号は、回転角が0°の近傍(図8参照)において、信号レベルが立ち上がる。また、例えば、第1磁気センサ21の出力信号は、回転角が180°の近傍(図9参照)において、信号レベルが立ち上がる。第1磁気センサ21の出力信号は、例えば、回転軸SFの回転角が0°以上360°未満の範囲において信号レベルが2回立ち上がる。
「信号発生部」の検出信号は、回転角が0°、90°、180°、270のそれぞれにおいて信号レベルが立ち上がる。検出部17は、例えば、「信号発生部」の検出信号に基づいて電力供給部2から電力が供給される期間に、検出を実行する。「検出部」の検出信号は、例えば、回転角が0°以上180°未満の範囲において(図8参照)、「信号発生部」の検出信号と同期して信号レベルが立ち上がる。また、「検出部」の検出信号は、例えば、回転角が180°以上360°未満の範囲において(図9参照)、ローレベルである。なお、信号発生部4の検出信号は、回転体(例、回転軸SF)の1回転内において信号レベルが周期的(又はパルス状)に変化する(例、信号レベルが立ち上がる又は立ち下がる)。
処理部18(例、図5の計数部49)は、信号発生部4における検出信号に基づいて、磁気検出部19の検出結果と検出部17の検出結果とを用いて回転体(例、回転軸SF)の多回転情報を算出する。例えば、処理部18は、バックアップ状態において、磁気検出部19の検出結果に基づく第1アナログコンパレータの第1出力信号と、検出部17の検出結果に基づく第3アナログコンパレータの第3出力信号とを用いて多回転情報を検出する。処理部18は、例えば、バックアップ状態において、第2磁気センサ22の検出結果を用いないで、多回転情報を検出する。
本実施形態において、磁気検出部19(例、第1磁気センサ21)は、回転体(回転軸SF)の1回転内において信号レベルが2回以上立ち上がる(又は立ち下がる)信号を出力する。図8および図9に示したように、磁石3は、回転体(例、回転軸SF)の1回転内において信号レベルが2回以上立ち上がる(又は立ち下がる)ように、磁極の数が設定される。処理部18は、例えば、磁気検出部19の出信号の信号レベルと検出部17から得られる光学特性との1回転内における組合せに基づいて、回転体(例、回転軸SF)の多回転情報を算出する。検出部17から得られる光学特性は、例えば、「第3アナログコンパレータ」の第3出力信号のレベルと関係付けられる。また、処理部18は、磁気検出部19の検出結果として回転体の1回転内における信号レベルが2回以上立ち上がる又は立ち下がる信号を用いて、回転体(例、回転軸SF)の多回転情報を算出する。
下記の[表2]は、バックアップ状態における各回転角と信号のレベルとの関係(組合せ)を示す表である。[表2]の説明において、適宜、第1出力信号と第3出力信号との信号レベルを(H,H)のように組にして表す。例えば、回転角が90°において、第1出力信号のレベルがL(ハイレベル)であり、第3出力信号のレベルがH(ハイレベル)である。この場合、信号レベルの組を(L,H)で表す。
なお、信号発生部4で発生する検出信号のレベルは、回転角が0°、90°、180°、及び270°のそれぞれにおいてHになる(図5、図6参照)。例えば、第1磁気センサ21および検出部17は、バックアップ状態において、信号発生部4で発生する検出信号のレベルがHになった際にバッテリー6から供給される電力を用いて検出を実行する。[表2]には、信号発生部4で発生する検出信号のレベルがHになる回転角について、第1出力信号のレベルおよび第2出力信号のレベルを示した。
[表2]に示す信号レベルの組は、回転角が0°以上360°未満の範囲において、(H,H)、(L,H)、(H,L)、(L,L)の4種類である。計数部49は、例えば、前回の検出における信号レベルの組と、今回の検出における信号レベルの組とを用いて、回転の向きを判別可能である。例えば、前回の検出において信号レベルの組が(L,H)であったとする。この場合、前回の検出におけるスケールSの角度位置は、90°を含む区間に存在することが分かる。今回の検出において信号レベルの組が(H,L)であった場合、今回の検出におけるスケールSの角度位置は、180°を含む区間に存在することが分かる。この場合、前回の検出から今回の検出までの間にスケールSが時計回りに回転したことが分かる。また、今回の検出において信号レベルの組が(H,H)であった場合、今回の検出におけるスケールSの角度位置は、0°を含む区間に存在することが分かる。この場合、前回の検出から今回の検出までの間にスケールSが反時計回りに回転したことが分かる。
計数部49は、例えば、上記の4種類の信号レベルの組のいずれかをトリガーとして、回転の向きに応じてカウンタ値をインクリメント(+1)またはデクリメント(−1)する。ここでは、計数部48は、信号レベルの組が(H,H)であったことをトリガーとして、カウンタ値をインクリメント(+1)またはデクリメント(−1)するものとして説明する。
計数部49は、例えば、信号レベルの組が(H,H)であった回数をカウントして、多回転情報を検出する。例えば、スケールSが1回転する間に信号レベルの組が(H,H)になる回数は、回転角が0°の1回である。例えば、カウンタ値が+1である場合、スケールSが時計回りに1回転したことに相当する。計数部49は、例えば、信号レベルの組が(H,H)であり、かつ時計回りの回転である場合にカウンタ値を+1する。また、計数部49は、例えば、信号レベルの組が(H,H)であり、かつ反時計回りの回転である場合にカウンタ値を−1する。なお、計数部49がカウンタ値を+1または−1するトリガーとなる信号レベルの組は、上記の4パターンのいずれでもよい。
れでもよい。
図1の説明に戻り、本実施形態に係るエンコーダ装置ECは、比較部51、合成部52、及び通信部53を備える。合成部52は、処理部13が検出した第2分解能の角度位置情報を取得する。また、合成部52は、記憶部20から回転軸SFの多回転情報を取得する。合成部52は、処理部13からの角度位置情報、及び多回転情報検出部1A(例、処理部18)からの多回転情報を合成し、回転軸SFの回転位置情報を算出する。例えば、処理部13の検出結果がθ[rad]であり、多回転情報検出部1Aの検出結果がn回転である場合に、合成部52は、回転位置情報として(2π×n+θ)[rad]を算出する。回転位置情報は、多回転情報と、1回転未満の角度位置情報とを組にした情報(位置情報)でもよい。
合成部52は、算出した回転位置情報を通信部53に送信する。通信部53(外部通信部、外部接続インターフェース)は、有線または無線によって、モータ制御部MCの通信部MC1と通信可能に接続されている。通信部53は、デジタル形式の回転位置情報を、モータ制御部MCの通信部MC1に供給する。モータ制御部MCは、角度検出部1Bの通信部53からの回転位置情報を適宜復号する。モータ制御部MCは、回転位置情報を使ってモータMへ供給される電力(駆動電力)を制御することにより、モータMの回転を制御する。
比較部51は、多回転情報検出部1Aの検出結果を比較する(比較処理を実行する)。比較部51は、多回転情報検出部1Aの少なくとも一部の検出結果と、角度検出部1Bの少なくとも一部の検出結果とを比較してもよい(比較処理を実行してもよい)。比較部51は、例えば、第1電源PW1からの電力供給を受けて、上記の比較処理を実行する。例えば、比較部51は、第1磁気センサ21、第2磁気センサ22、及び検出部12が検出を実行する状態において、上記の比較処理を実行する。比較部51は、例えば、比較処理の結果を示す報知情報(例、報知信号)を生成する。
比較部51は、第1磁気センサ21の検出結果、第2磁気センサ22の検出結果、及び検出部17の検出結果を比較する。例えば、比較部51は、二値化された第1磁気センサ21の検出結果、二値化された第2磁気センサ22の検出結果、及び二値化された検出部17の検出結果を比較する。例えば、比較部51は、アナログコンパレータ45の第1出力信号、アナログコンパレータ46の第2出力信号、及びアナログコンパレータ47の第3検出信号を比較する。比較部51は、例えば、第1出力信号のレベル、第2出力信号のレベル、及び第3出力信号のレベルが回転角に対して整合しない場合に、エラーの発生を示す報知情報(例、エラー情報、エラー信号)、あるいは警告を示す報知情報(警告情報、警告信号)を生成する。下記の[表3]は、通常状態における信号のレベルを示す表である。
例えば、多回転情報検出部1Aが正常に動作する場合、回転角が0°において、第1出力信号のレベルがHであり、第2出力信号のレベルがLであり、第3出力信号のレベルがHである。例えば、回転角が0°において、第3出力信号のレベルがLである場合、照射部16、検出部17、及びアナログコンパレータ47の少なくとも一部が動作不良である可能性がある。このような場合に、比較部51は、例えば上記のエラー信号あるいは報知信号を生成する。比較部51は、例えば、通信部53を介して、報知情報をエンコーダ装置ECの外部(例、モータ制御部MC)に出力する。
なお、エンコーダ装置ECは、比較部51が生成した報知情報をエンコーダ装置ECの外部に出力しなくてもよい。例えば、エンコーダ装置ECは、比較部51が生成した報知情報に基づいて、例えば警告ライトを点灯させてもよいし、警告音(例、アラーム音)を発してもよい。
図10は、本実施形態に係るエンコーダ装置の通常状態の動作を示す図である。図10に示すように、第1電源PW1は、通常状態において位置検出部1に電力を供給する。照射部11は、第1電源PW1から供給される電力を用いて、アブソリュートパターンABSおよびインクリメンタルスケールSのそれぞれに光を照射する。検出部12は、第1電源PW1から供給される電力を用いて、アブソリュートパターンABSからの光およびインクリメンタルスケールSからの光のそれぞれを検出する。検出部12は、検出結果を処理部13に出力する。処理部13は、第1電源PW1から供給される電力を用いて、検出部12からの検出信号を処理し、角度位置情報を算出する。処理部13は、算出した角度位置情報を合成部52に出力する。
また、第1磁気センサ21および第2磁気センサ22は、それぞれ、第1電源PW1から供給される電力を用いて、磁石3が形成する磁界を検出する。第1磁気センサ21は、その検出結果を処理部18および比較部51のそれぞれに出力する。第2磁気センサ22は、その検出結果を処理部18および比較部51のそれぞれに出力する。処理部18は、第1磁気センサ21の検出結果および第2磁気センサ22の検出結果に基づいて、多回転情報を検出する。処理部18は、多回転情報を合成部52に出力する。合成部52は、処理部13からの角度位置情報および処理部18からの多回転情報を合成し、回転位置情報を生成する。合成部52は、回転位置情報を出力する。
また、照射部16は、第1電源PW1から供給される電力を用いて、光学パターン15に光を照射する。検出部17は、第1電源PW1から供給される電力を用いて、光学パターン15からの光を検出する。検出部17は、検出結果を比較部51に出力する。比較部51は、第1電源PW1から供給される電力を用いて、第1磁気センサ21の検出結果、第2磁気センサ22の検出結果、及び検出部12の検出結果を比較する。比較部51は、例えば、第1磁気センサ21の検出結果、第2磁気センサ22の検出結果、及び検出部12の検出結果が所定の条件を満たす場合(例、回転角と整合しない場合)、報知情報を生成する。比較部51は、例えば、報知情報をエンコーダ装置ECの外部に出力する。実施形態に係るエンコーダ装置ECは、例えば、エラーなどの不具合を比較部51によって検出することができ、信頼性が高い。例えば、比較部51が生成する報知情報は、エラーの発生をユーザ等に報知することに利用され、装置の信頼性の向上に寄与する。
図11は、本実施形態に係るエンコーダ装置のバックアップ状態の動作を示す図である。図11に示すように、第1電源PW1は、バックアップ状態において位置検出部1に電力を供給しない。また、第2電源PW2(例、バッテリー6、電力供給部2)は、例えば、第1電源PW1が位置検出部1に電力を供給しない期間の少なくとも一部において、位置検出部1に電力を供給する。第2電源PW2は、例えば、上記の期間において電力を断続的に供給する。例えば、第2電源PW2は、回転軸SFが所定の角度位置になった際に電力を供給する。例えば、第2電源PW2は、回転軸SFが上記の所定の角度位置以外の位置にある場合に、電力を供給しない。この場合、例えばエンコーダ装置ECの少なくとも一部(例、図1のバッテリー6)について、動作が制限されることで消耗が低減される。
また、第2電源PW2は、例えば、位置検出部1の一部(以下、供給対象という)に対して電力を供給する。例えば、第2電源PW2は、多回転情報検出部1Aに対して電力を供給する。また、第2電源PW2は、例えば、位置検出部1のうち上記供給対象を除く部分に対して電力を供給しない。例えば、第2電源PW2は、角度検出部1Bに対して電力を供給しない。この場合、例えばエンコーダ装置ECの少なくとも一部(例、図1のバッテリー6、角度検出部1B)について、動作が制限されることで消耗が低減される。
第1磁気センサ21は、第2電源PW1から供給される電力を用いて、磁石3が形成する磁界を検出する。第1磁気センサ21は、その検出結果を処理部18に出力する。第1磁気センサ21は、その検出結果を比較部51に出力してもよいし、比較部51に出力しなくてもよい。第2磁気センサ22は、例えば、バックアップ状態において、磁石3が形成する磁界を検出しない。第2磁気センサ22は、例えば、バックアップ状態において、検出結果を処理部18に出力しない。
なお、第2磁気センサ22は、バックアップ状態において、磁石3が形成する磁界を検出してもよい。第2磁気センサ22は、バックアップ状態において、磁石3が形成する磁界を検出し、その検出結果を処理部18と比較部51との一方または双方に出力しなくてもよい。第2磁気センサ22は、バックアップ状態において、検出結果を処理部18と比較部51との一方または双方に出力してもよい。第2電源PW2は、バックアップ状態において、第2磁気センサ22に電力を供給してもよいし、供給しなくてもよい。
照射部16は、第2電源PW2から供給される電力を用いて、光学パターン15に光を照射する。検出部17は、第2電源PW2から供給される電力を用いて、光学パターン15からの光を検出する。検出部17は、その検出結果を処理部18に出力する。検出部17は、その検出結果を比較部51に出力してもよいし、比較部51に出力しなくてもよい。
処理部18は、第2電源PW2から供給される電力を用いて、第1磁気センサ21の検出結果および検出部12の検出結果を処理し、回転位置情報のうち少なくとも多回転情報を算出する。例えば、処理部18は、多回転情報を算出し、角度位置情報を算出しない。この場合、多回転情報検出部の処理が低減され、消費電力が低減される。記憶部20は、処理部18から出力される多回転情報を、第2電源PW2から供給される電力を用いて記憶する。記憶部20は、第1電源PW1からの電力供給および第2電源PW2からの電力供給が断たれた状態においても、多回転情報を保持する。
本実施形態に係るエンコーダ装置ECは、信号発生部32に電気信号が発生してから短時間(例、検出信号が発生された時)又は上位コントローラにて予め設定された周期(又は不定期)で上位コントローラやエンコーダ装置ECから出力せるトリガー信号が発生してから短時間のうちに、バッテリー6から多回転情報検出部1Aに電力が供給され、多回転情報検出部1Aがダイナミック駆動(間欠駆動)する。多回転情報の検出および書き込みの終了後は、多回転情報検出部1Aへの電力供給は絶たれるが、計数値は、記憶部20に格納されているので保持される。このようなシーケンスは、外部からの電力供給が絶たれた状態においても、磁石31上の所定位置が信号発生部32の近傍を通過するたびに繰り返される。
記憶部20に記憶されている多回転情報は、例えば、次にモータMが起動される際にモータ制御部MCなどに読み出され、回転軸SFの初期位置などの算出に利用される。このようなエンコーダ装置ECは、信号発生部32で発生する検出信号に基づいて、位置検出部1(例、多回転情報検出部1A)で消費される電力の少なくとも一部をバッテリー6が供給するので、バッテリー6を長寿命にすることができる。バッテリー6のメンテナンス(例、交換)をなくしたり、メンテナンスの頻度を減らしたりすることができる。例えば、バッテリー6の寿命がエンコーダ装置ECの他の部分の寿命よりも長い場合、バッテリー6の交換を不要にすることもできる。
また、磁石3は、回転方向における4以上の所定の角度位置において磁界の向きが反転し、信号発生部4は、磁石3が形成する磁界の向きが反転する際に電気信号(例、パルス)が発生する。したがって、エンコーダ装置ECは、例えば信号発生部4の数が1つでも多回転情報を検出可能である。よって、エンコーダ装置ECは、例えば信号発生部4の数を減らすことによって、装置コストの低減、省スペース化等が可能である。
また、ウィーガントワイヤ等の感磁性ワイヤを利用すると、磁石31の回転が極めて低速であっても、信号発生部32からパルス電流の出力が得られる。そのため、例えばモータMへ電力供給がなされていない状態などにおいて、回転軸SF(磁石31)の回転が極めて低速な場合にも、信号発生部32の出力を検出信号として利用できる。
なお、多回転情報検出部1Aの一部は、角度検出部1Bと共用であってもよい。また、電力供給部2は、信号発生部32で発生する検出信号の電力を電源に用いてもよい。例えば、電力供給部2は、検出信号の電圧をレギュレータなどで所定電圧に調整し、検出信号の電力を位置検出部1に供給してもよい。また、上述の実施形態において、信号発生部32は、磁石31に対して所定の位置関係になった際に検出信号が発生する。エンコーダ装置EC(多回転情報検出部1A)は、信号発生部32を、回転軸SF(磁石31)の位置情報を検出するセンサとして備えてもよい。
なお、電力供給部2は、バックアップ状態において、連続的に電力を供給してもよい。また、電力供給部2は、バックアップ状態において、多回転情報検出部1Aと別の部分(例、角度検出部1Bの少なくとも一部)に電力を供給してもよい。多回転情報検出部1Aは、バックアップ状態において、通常状態と同様に角度位置情報を算出してもよい。例えば、バックアップ状態において、多回転情報検出部1Aおよび角度検出部1Bは、それぞれ角度位置情報を算出してもよい。この場合、比較部51は、バックアップ状態において多回転情報検出部1Aが算出した角度位置情報と、バックアップ状態において角度検出部1Bが算出した角度位置情報とを比較してもよい。
[第2実施形態]
第2実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図12は、本実施形態に係るスケール、磁石、磁気センサ、信号発生部を示す図である。本実施形態において、第2磁気センサ22は、信号発生部4から0°よりも大きく90°以下の角度位置に配置される。例えば、図12において、第2磁気センサ22は、信号発生部4から反時計回りに約90°の角度位置に配置される。第2磁気センサ22は、例えば、第1磁気センサ21から0°よりも大きく180°未満の角度位置に配置される。例えば、図12において、第2磁気センサ22は、第1磁気センサ21から時計回りに約45°の角度位置に配置される。
図13および図14は、本実施形態に係るエンコーダ装置の動作を示す図である。図13および図14は、「第1磁気センサ磁界」および「第2磁気センサ磁界」が図5および図6と異なる。各回転角における第1アナログコンパレータの第1出力信号のレベル、第2アナログコンパレータの第2出力信号のレベル、及び第3アナログコンパレータの第3出力信号のレベルは、図5および図6と同様である。図12に示した配置を用いる場合においても、エンコーダ装置ECは、第1実施形態と同様に多回転情報を検出可能である。
[第3実施形態]
第3実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図15は、本実施形態に係るエンコーダ装置を示す図である。本実施形態において、エンコーダ装置ECは、照射部11は、図1の照射部16の代わりに光学パターン15に光を照射する。本実施形態において、エンコーダ装置ECは、図1の照射部16を備えなくてもよい。
第1電源PW1から電力が投入された際に、照射部11は、アブソリュートパターンABS、インクリメンタルパターンINC、及び光学パターン15のそれぞれに対して、光を照射する。検出部12は、アブソリュートパターンABSからの光、及びインクリメンタルパターンINCからの光のそれぞれを検出する。検出部12は、アブソリュートパターンABSを検出した検出結果を処理部18に出力する。処理部18は、検出部12からの検出結果に基づいて、初期の回転角が0°以上180°未満の第1範囲または180°以上360°未満の第2範囲のいずれに属するかを判定する。処理部18は、初期の回転角を加味して多回転情報の最初の計数処理を実行した後、磁気検出部19の検出結果に基づいて以降の計数処理を実行する。
なお、処理部18は、検出部12の検出結果の代わりに検出部17の検出結果を用いて、初期の回転角を判定してもよい。例えば、第1電源PW1から電力が投入された際に、検出部17は、光学パターン15からの光を検出する。検出部17は、光学パターン15からの光を検出した検出結果を処理部18に出力する。処理部18は、検出部17からの検出結果に基づいて、初期の回転角が0°以上180°未満の第1範囲または180°以上360°未満の第2範囲のいずれに属するかを判定する。処理部18は、初期の回転角を加味して多回転情報の最初の計数処理を実行した後、磁気検出部19の検出結果に基づいて以降の計数処理を実行する。処理部18は、検出部12の検出結果および検出部17の検出結果を用いて、初期の回転角を判定してもよい。
また、エンコーダ装置ECは、比較部55および比較部56を備える。比較部55は、光学式のエンコーダの検出結果(検出部12の検出結果)から得られる多回転情報と、磁気式のエンコーダの検出結果(磁気検出部19の検出結果)から得られる多回転情報とを比較する。処理部13は、例えば通常状態において、角度位置情報を比較部55に出力する。比較部55は、処理部13からの角度位置情報に基づいて、多回転情報を算出(推定)する。比較部55は、例えばキャリー(桁上げ)あるいはボロー(桁下げ)によって、多回転情報を推定する。
例えば、前回の検出部12の検出結果から得られる角度位置情報(絶対位置)は、180°以上360°未満の値(例、350°)であるとする。また、今回の検出部12の検出結果から得られる角度位置情報(絶対位置)は、0°以上180°未満の値(例、10°)であるとする。この場合、比較部55は、前回の検出から今回の検出の間に、回転の数が+1になったと推定する。また、前回の検出部12の検出結果から得られる角度位置情報(絶対位置)は、0°以上180°未満の値(例、10°)であるとする。また、今回の検出部12の検出結果から得られる角度位置情報(絶対位置)は、180°以上360°未満の値(例、350°)であるとする。この場合、比較部55は、前回の検出から今回の検出の間に、回転の数が−1になったと推定する。
また、処理部18は、例えば通常状態において、多回転情報を比較部55に出力する。比較部55は、角度位置情報に基づいて推定した多回転情報と、処理部18からの多回転情報とを比較する。比較部55は、例えば、角度位置情報に基づいて推定した多回転情報と、処理部18からの多回転情報とが整合しない場合に、報知情報(例、エラー、アラーム)を出力する。
また、比較部56は、各種センサ(例、検出部12、検出部17、磁気検出部19)の検出結果を比較する。比較部56は、処理部13によって処理される前の検出結果(検出信号)、及び処理部18によって処理される前の検出結果(検出信号)を比較する。比較部56は、例えば、検出部12の検出結果、検出部17の検出結果、及び磁気検出部19の検出結果のうち、1つの検出結果が他の検出結果と整合しない場合に、1つの検出結果を出力する検出系の異常を知らせる報知情報(例、エラー、アラーム)を出力する。例えば、比較部56は、検出部12の検出結果と検出部17の検出結果とが整合し、かつ検出部12の検出結果と磁気検出部19の検出結果とが整合しないと判定した場合、磁気検出部19を含む検出系の異常を知らせる報知情報を出力する。
エンコーダ装置ECは、例えば、比較部55による報知情報と、比較部56による報知情報とを個別に出力する。エンコーダ装置ECは、比較部55による報知情報と、比較部56による報知情報とを含む報知情報を出力してもよい。なお、エンコーダ装置ECは、比較部55と比較部56との一方または双方を備えなくてもよい。また、比較部55と比較部56との一方または双方は、図1に示したように照射部11と照射部16とが分かれたエンコーダ装置ECに設けられてもよい。
[駆動装置]
次に、実施形態に係る駆動装置について説明する。図16は、駆動装置MTRの一例を示す図である。以下の説明において、上記した実施形態と同一または同等の構成部分については、適宜、同一符号を付けて説明を省略または簡略化する。この駆動装置MTRは、電動モータを含むモータ装置である。駆動装置MTRは、回転軸SFと、回転軸SFを回転駆動する本体部(駆動部)BDと、回転軸SFの回転位置情報を検出するエンコーダ装置ECとを備える。
回転軸SFは、負荷側端部SFaと、反負荷側端部SFbとを有する。負荷側端部SFaは、減速機など他の動力伝達機構に接続される。反負荷側端部SFbには、固定部を介してスケールSが固定される。このスケールSの固定とともに、エンコーダ装置ECが取り付けられている。エンコーダ装置ECは、上述した実施形態に係るエンコーダ装置である。
エンコーダ装置ECは、固定部材25を備える。固定部材25は、例えば、円筒状の部材であり、駆動装置MRTにおける固定子側の部材(例、本体部BD)と固定される。本体部BDは、駆動装置MRTにおける電機子(例、可動子)および磁石(例、固定子)を収容する。駆動装置MRTにおける電機子は、回転軸SFと接続される。固定部材25は、例えば、その内部にスケールSを収容する。例えば、スケールSは、フランジ状の部材であり、その軸AXがベアリング55を介して固定部材25に支持される。回転軸SFは、その先端側(+Z側)が固定部材25の内部に挿入され、スケールSの軸AXと固定される。
支持部材24は、例えば、固定部材25の開口を塞ぐように配置される。支持部材24は、固定部材25に固定される。支持部材24は、固定部材25を介して、モータMの本体部BDに固定される。支持部材24および固定部材25は、例えば、外部と仕切られた空間を形成し、この空間にスケールSが収容される。
この駆動装置MTRは、エンコーダ装置ECの検出結果(例、多回転情報などの位置情報)を使って、図1などに示したモータ制御部MCが本体部BDを制御する。例えば、実施形態に係るエンコーダ装置ECはメンテナンスの頻度が低減されるので、駆動装置MTRもメンテナンスの頻度が低減される。なお、駆動装置MTRは、モータ装置に限定されず、油圧や空圧を利用して回転する軸部を有する他の駆動装置であってもよい。
[ステージ装置]
次に、ステージ装置について説明する。図17は、ステージ装置STGを示す図である。このステージ装置STGは、図16に示した駆動装置MTRの回転軸SFのうち負荷側端部SFaに、ステージ(回転テーブルTB、移動物体)を取り付けた構成である。以下の説明において、上記した実施形態と同一または同等の構成部分については、適宜、同一符号を付けて説明を省略または簡略化する。
ステージ装置STGは、駆動装置MTRを駆動して回転軸SFを回転させる。この回転は、回転テーブルTBに伝達され、その際にエンコーダ装置ECは、回転軸SFの角度位置等を検出する。エンコーダ装置ECからの出力を用いることにより、回転テーブルTBの角度位置を検出することができる。なお、駆動装置MTRの負荷側端部SFaと回転テーブルTBとの間に減速機等が配置されてもよい。
例えば、実施形態に係るエンコーダ装置ECはメンテナンスの頻度が低減されるので、ステージ装置STGもメンテナンスの頻度が低減される。なお、ステージ装置STGは、例えば、旋盤等の工作機械に備える回転テーブル等に適用できる。
[ロボット装置]
次に、ロボット装置について説明する。図18は、ロボット装置RBTを示す斜視図である。なお、図18には、ロボット装置RBTの一部(関節部分)を模式的に示した。以下の説明において、上記した実施形態と同一または同等の構成部分については同一符号を付けて説明を省略または簡略化する。このロボット装置RBTは、第1アームAR1と、第2アームAR2と、関節部JTとを備える。第1アームAR1は、関節部JTを介して、第2アームAR2と接続されている。
第1アームAR1は、腕部101、軸受101a、及び軸受101bを備える。第2アームAR2は、腕部102および接続部102aを有する。接続部102aは、関節部JTにおいて、軸受101aと軸受101bの間に配置されている。接続部102aは、回転軸SF2と一体的に設けられている。回転軸SF2は、関節部JTにおいて、軸受101aと軸受101bの両方に挿入されている。回転軸SF2のうち軸受101bに挿入される側の端部は、軸受101bを貫通して減速機RGに接続されている。
減速機RGは、駆動装置MTRに接続されており、駆動装置MTRの回転を例えば100分の1等に減速して回転軸SF2に伝達する。図18に図示しないが、駆動装置MTRの回転軸SFのうち負荷側端部SFaは、減速機RGに接続されている。また、駆動装置MTRの回転軸SFのうち反負荷側端部SFbには、エンコーダ装置ECのスケールSが取り付けられている。
ロボット装置RBTは、駆動装置MTRを駆動して回転軸SFを回転させると、この回転が減速機RGを介して回転軸SF2に伝達される。回転軸SF2の回転により接続部102aが一体的に回転し、これにより第2アームAR2が、第1アームAR1に対して回転する。その際、エンコーダ装置ECは、回転軸SFの角度位置等を検出する。従って、エンコーダ装置ECからの出力を用いることにより、第2アームAR2の角度位置を検出することができる。
例えば、実施形態に係るエンコーダ装置ECはメンテナンスの頻度が低減されるので、ロボット装置RBTもメンテナンスの頻度が低減される。なお、ロボット装置RBTは、上記の構成に限定されず、駆動装置MTRは、複数の関節を備える各種ロボット装置(例、双腕多軸型ロボット)に適用できる。複数の関節を備えるロボット装置の場合、そのロボット装置は各関節(各軸)又は一部の関節に本実施形態のエンコーダ装置ECが配置される。
なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。