WO2022249795A1 - 回転検出器および回転検出方法 - Google Patents

回転検出器および回転検出方法 Download PDF

Info

Publication number
WO2022249795A1
WO2022249795A1 PCT/JP2022/018112 JP2022018112W WO2022249795A1 WO 2022249795 A1 WO2022249795 A1 WO 2022249795A1 JP 2022018112 W JP2022018112 W JP 2022018112W WO 2022249795 A1 WO2022249795 A1 WO 2022249795A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
rotating shaft
power generation
rotation
reference position
Prior art date
Application number
PCT/JP2022/018112
Other languages
English (en)
French (fr)
Inventor
優紀 田中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP22811069.8A priority Critical patent/EP4350298A1/en
Priority to CN202280036575.1A priority patent/CN117441089A/zh
Priority to JP2023523351A priority patent/JPWO2022249795A1/ja
Publication of WO2022249795A1 publication Critical patent/WO2022249795A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/85Determining the direction of movement of an encoder, e.g. of an incremental encoder

Definitions

  • the present disclosure relates to a rotation detector and a rotation detection method, and more particularly to a rotation detector and a rotation detection method for detecting rotation of a rotating shaft of a rotating body.
  • Patent Literature 1 discloses a disk-shaped magnet provided on a shaft, and three power generation units each composed of a magnetic wire and a pickup coil. A rotation detector is disclosed positioned on each of a plurality of sides of a constructed virtual triangle.
  • the present disclosure has been made to solve such problems, and aims to provide a rotation detector and a rotation detection method that can suppress the occurrence of erroneous detection.
  • a rotation detector includes a magnet that rotates along with a rotating shaft, a plurality of power generating elements that generate power by changes in magnetic field caused by the rotation of the magnet along with the rotating shaft, and corresponding to the plurality of power generating elements. and a plurality of magnetic sensors. an information processing unit that uses the plurality of magnetic sensors to determine the rotational position of the rotating shaft; and a generated power supply unit that supplies power only to the corresponding magnetic sensor.
  • a rotation detection method is a rotation detection method using a rotation detector.
  • the rotation detector includes a magnet that rotates along with the rotating shaft, a plurality of power generating elements that generate power according to changes in the magnetic field caused by the rotation of the magnet along with the rotating shaft, and a plurality of power generating elements that are provided corresponding to the plurality of power generating elements.
  • a magnetic sensor ; and a generated power supply unit that supplies electric power generated by each of the plurality of power generation elements only to a magnetic sensor corresponding to the power generation element among the plurality of magnetic sensors.
  • the rotation detection method based on power generation information indicating a power generating element among the plurality of power generating elements that generated power and detection information indicating a detection result of a magnetic sensor corresponding to the power generating element among the plurality of magnetic sensors, determining in which of a plurality of regions aligned in the rotating direction of the rotating shaft a reference position in the rotating direction of the rotating shaft is located, and determining whether the reference position is located among the plurality of regions; Store the determined area.
  • FIG. 1 is a diagram showing a motor provided with a rotation detector according to the first embodiment.
  • 2 is a diagram showing a substrate and a rotating plate of the rotation detector of FIG. 1.
  • FIG. 3 is a block diagram showing the functional configuration of the rotation detector of FIG. 1.
  • FIG. 4 is a diagram for explaining an example of the determination operation of the rotation detector of FIG. 1 when the rotating shaft rotates clockwise.
  • FIG. 5 is a diagram for explaining an example of the determination operation of the rotation detector of FIG. 1 when the rotating shaft rotates counterclockwise.
  • FIG. 6 is a diagram showing a rotation detector according to the second embodiment. 7 is a block diagram showing part of the functional configuration of the rotation detector of FIG. 6.
  • FIG. 8 is a block diagram showing another part of the functional configuration of the rotation detector of FIG. 6.
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
  • FIG. 1 shows a motor 1 having a rotation detector 14 according to the first embodiment.
  • FIG. 2 is a diagram showing the substrate 18 and rotating plate 16 of the rotation detector 14 of FIG.
  • FIG. 2(a) shows the substrate 18, and
  • FIG. 2(b) shows the rotating plate 16.
  • FIG. 1 shows the case 12, the magnet 20, and the reflection pattern 44 in cross section. 1, illustration of the power generation element 22 and the control circuit 32 shown in FIG. 2 is omitted. 2, illustration of the optical sensor 30 shown in FIG. 1 is omitted.
  • the motor 1 includes a main body 4, a rotor 6, a stator 8, a rotating shaft 10, a case 12, and a rotation detector 14.
  • the rotation axis direction is the direction in which the rotation axis A of the rotating shaft 10 extends (see arrow X in FIG. 1).
  • the rotor 6 and stator 8 are housed in the main body 4. Rotor 6 rotates with respect to stator 8 .
  • the rotating shaft 10 extends in the direction of the rotation axis and has a rod shape such as a columnar shape.
  • the axis of the rotating shaft 10 and the rotation axis A are aligned.
  • the rotating shaft 10 is fixed to the rotor 6 and rotates around the rotation axis A.
  • the direction of rotation of the rotating shaft 10 coincides with the circumferential direction about the axis of rotation A.
  • a rotation detector 14 is provided at one end of the rotating shaft 10 in the rotation axis direction.
  • a load (not shown) or the like that is rotationally driven by the rotation of the rotating shaft 10 is attached to the other end of the rotating shaft 10 in the rotation axis direction.
  • the rotating shaft 10 is made of magnetic metal such as iron.
  • the case 12 is attached to the main body 4 so as to cover one end of the rotating shaft 10 in the rotation axis direction and the rotation detector 14 .
  • the case 12 is made of magnetic metal such as iron.
  • the rotation detector 14 detects rotation of the rotating shaft 10 .
  • the rotation detector 14 detects the rotational position of the rotating shaft 10, the rotating direction of the rotating shaft 10, the rotation speed of the rotating shaft 10, and the like.
  • rotation detector 14 is an absolute encoder.
  • the rotation detector 14 is provided at one end of the rotation shaft 10 in the direction of the rotation axis, as described above.
  • the rotation detector 14 includes a rotating plate 16, a substrate 18, a magnet 20, a plurality of power generation elements 22 and 24, a plurality of magnetic sensors 26 and 28, and an optical sensor. 30 and a control circuit 32 .
  • the rotating plate 16 extends in a direction orthogonal to the rotation axis direction.
  • the rotating plate 16 has a disc shape having a main surface extending in a direction orthogonal to the rotation axis direction, and is circular when viewed from the rotation axis direction.
  • the rotating plate 16 is attached to one end of the rotating shaft 10 in the rotation axis direction.
  • the axis of the rotary plate 16 and the rotation axis A are aligned. The rotating plate 16 rotates together with the rotating shaft 10 .
  • the substrate 18 extends in a direction orthogonal to the rotation axis direction.
  • the substrate 18 has a disc shape having a main surface extending in a direction perpendicular to the rotation axis direction, and is circular when viewed from the rotation axis direction.
  • the substrate 18 is arranged to be spaced apart from one end of the rotating shaft 10 and the rotating plate 16 in the rotation axis direction, and faces the rotating plate 16 .
  • the axis of the substrate 18 and the rotation axis A are aligned.
  • the substrate 18 is fixed to the inner surface of the case 12 and does not rotate together with the rotating shaft 10 .
  • the magnet 20 rotates together with the rotating shaft 10. Specifically, magnet 20 rotates together with rotating shaft 10 and rotating plate 16 when rotating shaft 10 rotates.
  • the magnet 20 has an annular shape and is arranged along the rotation direction of the rotating shaft 10 .
  • the magnet 20 has a plate-like shape whose thickness direction is the rotation axis direction.
  • the magnets 20 are arranged on the main surface of the rotating plate 16 opposite to the substrate 18 .
  • the magnet 20 has an N pole and an S pole arranged side by side with the N pole in the rotation direction of the rotating shaft 10 .
  • One half of the magnet 20 is magnetized to the north pole, and the other half of the magnet 20 is magnetized to the south pole.
  • Each of the plurality of power generating elements 22 and 24 generates power by changing the magnetic field caused by the rotation of the magnet 20 together with the rotating shaft 10 .
  • the plurality of power generation elements 22 and 24 are arranged with a phase difference in the rotation direction of the rotating shaft 10 .
  • the plurality of power generating elements 22 and 24 are arranged in the rotational direction of the rotating shaft 10 so that one of the plurality of power generating elements 22 and 24 generates power when the rotating shaft 10 rotates clockwise.
  • the angular interval equal to or greater than the angular interval between the first position and the second position, which is the closest to the first position among the one or more positions at which the one power generating element generates power when the rotating shaft 10 rotates counterclockwise. are spaced apart.
  • clockwise means clockwise when viewed from the opposite side of the rotating plate 16 of the substrate 18 in the rotational axis direction
  • counterclockwise means rotating plate 16 of the substrate 18 in the rotational axis direction. means counterclockwise when viewed from the opposite side.
  • FIG. 4 is a diagram for explaining an example of the determination operation of the rotation detector 14 when the rotating shaft 10 rotates clockwise.
  • position i shown in FIG. 4 is an example of a first position where one power generation element 22 out of the plurality of power generation elements 22 and 24 generates power when the rotating shaft 10 rotates clockwise.
  • Position viii shown in FIG. 4 is an example of a second position closest to position i among one or more positions vi and viii at which one power generating element 22 generates power when rotating shaft 10 rotates counterclockwise. is.
  • the angular interval between position i and position viii in the rotational direction of rotating shaft 10 is 30 degrees, and the plurality of power generating elements 22 and 24 are spaced apart by an angular interval of 30 degrees or more in the rotating direction of rotating shaft 10. are placed.
  • the plurality of power generation elements 22 and 24 are arranged with an angular interval of 120 degrees in the rotation direction of the rotating shaft 10 .
  • the angular interval between the power generation elements 22 and 24 in the rotation direction of the rotating shaft 10 extends in the radial direction (see arrow Y in FIG. 2) about the rotation axis A, and the power generation element 22
  • the angle formed by the center line passing through the longitudinal center of the magnetic sensing portion 34 of the power generating element 24 and the center line extending in the radial direction around the rotation axis A and passing through the longitudinal center of the magnetic sensing portion 38 of the power generation element 24 be.
  • the power generating element 22 extends tangentially to the rotating direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 opposite to the rotating shaft 10 (opposite to the rotating plate 16).
  • the power generation element 22 has a magnetic sensing portion 34 and a coil 36 wound around the magnetic sensing portion 34 .
  • the magnetic sensing part 34 is a magnetic body extending in a tangential direction to the rotating direction of the rotating shaft 10 and is located on the opposite side of the substrate 18 to the rotating plate 16 .
  • the magneto-sensitive portion 34 is a magnetic material that produces a large Barkhausen effect, and is a Wiegand wire extending in the direction tangential to the rotating direction of the rotating shaft 10 .
  • a Wiegand wire is a magnetic material whose magnetization direction is aligned in one longitudinal direction when a magnetic field of a predetermined value or more is applied along the longitudinal direction of the Wiegand wire.
  • the magnetization direction of the Wiegand wire jumps and a voltage pulse is induced across the coil wound on the Wiegand wire.
  • the power generation element 22 generates power.
  • the power generating element 24 extends tangentially to the rotating direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 opposite to the rotating shaft 10 (on the opposite side to the rotating plate 16).
  • the power generation element 24 has a magnetic sensing portion 38 and a coil 40 wound around the magnetic sensing portion 38 .
  • the magnetic sensing part 38 is a magnetic body extending in a tangential direction to the rotating direction of the rotating shaft 10 and is located on the opposite side of the substrate 18 to the rotating plate 16 .
  • the magnetic field sensing portion 38 is a magnetic material that produces a large Barkhausen effect, and is a Wiegand wire extending tangentially to the rotating direction of the rotating shaft 10 .
  • the power generation element 24 generates power in the same manner as the power generation element 22 .
  • the plurality of magnetic sensors 26, 28 are provided corresponding to the plurality of power generation elements 22, 24, respectively.
  • the magnetic sensor 26 is provided corresponding to the power generation element 22 and operates based on the electric power generated by the power generation element 22 .
  • the magnetic sensor 28 is provided corresponding to the power generation element 24 and operates based on the electric power generated by the power generation element 24 .
  • the plurality of magnetic sensors 26 and 28 are arranged on the main surface of the substrate 18 on the rotating shaft 10 side (rotating plate 16 side).
  • a plurality of magnetic sensors 26 and 28 are arranged with a phase difference in the rotation direction of the rotating shaft 10 . Specifically, each of the plurality of magnetic sensors 26 and 28 is arranged at the same position as the corresponding power generation element among the plurality of power generation elements 22 and 24 in the rotation direction of the rotating shaft 10 .
  • the magnetic sensor 26 is arranged at the same position as the power generating element 22 in the rotating direction of the rotating shaft 10 .
  • the magnetic sensor 26 is arranged so that the center of the magnetic sensor 26 is positioned on a center line that extends in the radial direction around the rotation axis A and that passes through the longitudinal center of the magnetic sensing portion 34 of the power generation element 22 . ing.
  • the magnetic sensor 26 is aligned with the power generation element 22 and arranged outside the power generation element 22 in the radial direction about the rotation axis A. As shown in FIG.
  • the magnetic sensor 28 is arranged at the same position as the power generating element 24 in the rotating direction of the rotating shaft 10 .
  • the magnetic sensor 28 is arranged so that the center of the magnetic sensor 28 is positioned on a center line that extends in the radial direction around the rotation axis A and that passes through the longitudinal center of the magnetic sensing portion 38 of the power generating element 24 . ing.
  • the magnetic sensor 28 is aligned with the power generation element 24 and arranged outside the power generation element 24 in the radial direction about the rotation axis A. As shown in FIG.
  • the optical sensor 30 is an optical encoder that has a light emitting/receiving element 42 and a reflection pattern 44 and detects the amount of rotation of the rotating shaft 10 .
  • the light emitting/receiving element 42 is arranged on the main surface of the substrate 18 on the rotating plate 16 side, and operates based on power from an external power supply 150 (see the functional block diagram shown in FIG. 3).
  • the light emitting/receiving element 42 faces the reflecting pattern 44 in the rotation axis direction and emits light toward the reflecting pattern 44 . Further, the light receiving/emitting element 42 receives light reflected by the reflection pattern 44 .
  • the light reflected by the reflection pattern 44 changes according to the rotational position of the rotating shaft 10 .
  • the optical sensor 30 detects the amount of rotation of the rotating shaft 10 based on the light reflected by the reflection pattern 44 .
  • the light emitting/receiving element 42 corresponds to a light emitting element and a light receiving element.
  • the reflection pattern 44 is arranged on the main surface of the rotating plate 16 on the substrate 18 side.
  • the reflection pattern 44 is arranged along the rotation direction of the rotating shaft 10 and has an annular shape.
  • the reflective pattern 44 has a reflective area that easily reflects light and a non-reflective area that hardly reflects light.
  • the reflective areas and the non-reflective areas are alternately arranged in the rotation direction of the rotating shaft 10 .
  • the control circuit 32 is arranged on the main surface of the substrate 18 on the rotating shaft 10 side (rotating plate 16 side), and is electrically connected to the power generating element 22 and the like.
  • FIG. 3 is a block diagram showing the functional configuration of the rotation detector 14 of FIG.
  • the rotation detector 14 includes a generated power supply unit 46, a polarity determination unit 47, a magnetic pole determination unit 51, a signal processing unit 55, an information processing unit 56, a storage unit 58, and a communication unit. and a portion 60 .
  • the generated power supply unit 46 supplies the power generated by each of the power generation elements 22 and 24 only to the magnetic sensors 26 and 28 corresponding to the power generation elements.
  • the generated power supply unit 46 supplies the power generated by the power generation element 22 only to the magnetic sensor 26 among the plurality of magnetic sensors 26 and 28, and supplies the power generated by the power generation element 24 to the plurality of magnetic sensors 26, 28 is supplied only to the magnetic sensor 28 .
  • the generated power supply unit 46 includes a plurality of full-wave rectifiers 62, 64, a sensor power storage unit 66, a power storage unit 67, a plurality of switches 72, 74, 76, a plurality of internal power sources 78, 80, It has a plurality of power monitoring units 82 , 84 , 86 , 88 , 89 , a plurality of voltage adjusting units 90 , 92 , a plurality of discharging units 94 , 96 , 98 , and a plurality of switches 100 , 102 .
  • the full-wave rectifier 62 is connected to the power generation element 22 and rectifies the voltage pulse generated by the power generation element 22 .
  • the full-wave rectifier 64 is connected to the power generation element 24 and rectifies the voltage pulse generated by the power generation element 24 .
  • the sensor power storage unit 66 stores power generated by each of the plurality of power generation elements 22 and 24 and supplied to the magnetic sensor corresponding to the power generation element among the plurality of magnetic sensors 26 and 28 .
  • the sensor power storage unit 66 stores the power generated by the power generation element 22 and supplied to the magnetic sensor 26 when the power generation element 22 generates power. Further, the sensor power storage unit 66 stores the power generated by the power generation element 24 and supplied to the magnetic sensor 28 when the power generation element 24 generates power.
  • the electric power storage unit 67 stores electric power generated by each of the plurality of power generation elements 22 and 24 and supplied to other than the plurality of magnetic sensors 26 and 28 .
  • the power storage unit 67 includes a first storage unit 68 that stores power generated by the power generation element 22 and is supplied to other than the magnetic sensor 26, and a first storage unit 68 that stores power generated by the power generation element 24 and is supplied to other than the magnetic sensor 28. It has a second storage part 70 to store.
  • the switch 72 is an example of a disconnector that can electrically disconnect the sensor power storage unit 66 and the power storage unit 67 .
  • the switch 72 is turned off to cut off power when both the power generation element 22 and the power generation element 24 are not generating power, thereby electrically disconnecting the sensor power storage unit 66 and the power storage unit 67 .
  • the switch 72 is in an ON state in which power can be transmitted while one of the power generation elements 22 and 24 is generating power.
  • the switch 74 is turned off to cut off power when the power generation element 22 is not generating power, and is turned on to allow power transmission while the power generation element 22 is generating power.
  • the switch 76 is turned off to cut off power when the power generation element 24 is not generating power, and is turned on to enable power transmission while the power generation element 24 is generating power.
  • the internal power supply 78 is a power supply for receiving power stored in the sensor power storage unit 66 and supplying the power to the magnetic sensor 26 or the magnetic sensor 28 .
  • the internal power supply 80 is a power supply for receiving power stored in the power storage unit 67 and supplying the power to the information processing unit 56 and the like other than the plurality of magnetic sensors 26 and 28 .
  • the power monitoring unit 82 monitors power between the sensor power storage unit 66 and the voltage adjusting unit 90 .
  • Power monitor 84 monitors power between voltage regulator 90 and internal power supply 78 .
  • Power monitor 86 monitors power between full wave rectifier 62 and first storage 68 .
  • Power monitor 88 monitors power between full wave rectifier 64 and second storage 70 .
  • Power monitor 89 monitors power between voltage adjuster 92 and internal power supply 80 .
  • the voltage adjustment unit 90 outputs a constant voltage using the ground potential as a reference potential and the voltage between the terminals of the capacitor of the sensor power storage unit 66 as an input voltage.
  • the output voltage of the voltage regulator 90 is supplied to the internal power supply 78 .
  • the voltage adjustment unit 92 outputs a constant voltage using the ground potential as a reference potential and the voltage across the terminals of the capacitor of the first storage unit 68 or the second storage unit 70 as an input voltage.
  • the output voltage of the voltage regulator 92 is supplied to the internal power supply 80 .
  • each of the plurality of voltage regulators 90 and 92 is an LDO (Low Drop Out) regulator.
  • the discharge unit 94 discharges the power stored in the sensor power storage unit 66 when the power generation elements 22 and 24 are not generating power.
  • the discharge unit 96 discharges the power stored in the first storage unit 68 when the power generation element 22 is not generating power.
  • the discharge unit 98 discharges the power stored in the second storage unit 70 when the power generation element 24 is not generating power.
  • the switch 100 When the power generation element 22 is not generating power, the switch 100 is in an OFF state that cuts off the power from the internal power supply 78 so as not to be supplied to the magnetic sensor 26, and during the period when the power generation element 22 is generating power, the power from the internal power supply 78 is turned off. to the magnetic sensor 26 is turned on.
  • the switch 102 When the power generation element 24 is not generating power, the switch 102 is in an OFF state to cut off the power from the internal power supply 78 so as not to be supplied to the magnetic sensor 28, and during the period when the power generation element 24 is generating power, the power from the internal power supply 78 is turned off. to the magnetic sensor 28 is turned on.
  • the polarity determination unit 47 determines the polarity of the power generated by each of the plurality of power generation elements 22 and 24.
  • the polarity determination unit 47 has a first determination unit 48 that determines the polarity of the power generated by the power generation element 22 and a second determination unit 50 that determines the polarity of the power generated by the power generation element 24. .
  • the magnetic pole determination unit 51 determines the magnetic poles detected by each of the plurality of magnetic sensors 26 and 28.
  • the magnetic pole determination section 51 has a first determination section 52 that determines the magnetic pole detected by the magnetic sensor 26 and a second determination section 54 that determines the magnetic pole detected by the magnetic sensor 28 .
  • the signal processing unit 55 is driven based on power from the external power supply 150 and transmits the detection result of the optical sensor 30 to the information processing unit 56 .
  • the information processing section 56 determines the rotational position of the rotating shaft 10 using a plurality of magnetic sensors 26 and 28 . Determination of the rotational position of the rotating shaft 10 by the information processing section 56 will be described later.
  • the storage unit 58 stores the rotational position, rotational direction, etc. of the rotating shaft 10 .
  • the storage unit 58 is configured by a non-volatile memory such as FRAM (registered trademark).
  • the communication unit 60 connects the information processing unit 56 and the signal processing unit 55 so as to be capable of wired communication or wireless communication.
  • FIG. 4 is a diagram for explaining an example of the determination operation of the rotation detector 14 in FIG. 1 when the rotating shaft 10 rotates clockwise.
  • FIG. 4(a) shows the state where the reference position B is located at the position i
  • FIG. 4(b) shows the state where the reference position B is located at the position ii
  • FIG. c) shows the state where the reference position B is located at the position iii
  • (d) of FIG. 4 shows the state where the reference position B is located at the position iv.
  • FIG. 5 is a diagram for explaining an example of the determination operation of the rotation detector 14 in FIG. 1 when the rotating shaft 10 rotates counterclockwise.
  • FIG. 5(a) shows the state where the reference position B is located at the position v
  • FIG. 5(b) shows the state where the reference position B is located at the position vi
  • FIG. c) shows the state where the reference position B is located at the position vii
  • (d) of FIG. 5 shows the state where the reference position B is located at the position viii.
  • the reference position B is a reference position in the rotation direction of the rotating shaft 10, and in this embodiment, the center of the north pole in the rotating direction of the rotating shaft 10 is used as the reference position.
  • one of the power generation element 22 and the power generation element 24 generates power when the reference position B is positioned at position i, position ii, position iii, and position iv.
  • the rotating shaft 10 rotates clockwise and the reference position B is located at the position i as shown in FIG. It is reversed and the power generation element 22 generates power.
  • the reference position B is located at the position i, the direction of the magnetic field in the longitudinal direction of the power generation element 24 is not reversed by the magnetic field of the magnet 20, and the power generation element 24 does not generate power.
  • the magnetic sensor 26 operates based on the power from the power generation element 22 .
  • the magnetic sensor 26 faces the S pole. Therefore, when the reference position B is located at the position i, the magnetic sensor 26 outputs a signal indicating that it faces the S pole.
  • the power generation element 24 When the rotating shaft 10 further rotates clockwise and the reference position B is positioned at position ii as shown in FIG. Then, the power generation element 24 generates power. On the other hand, when the reference position B is positioned at the position ii, the direction of the magnetic field in the longitudinal direction of the power generating element 22 is not reversed by the magnetic field of the magnet 20, and the power generating element 22 does not generate power.
  • the magnetic sensor 28 operates based on the power from the power generation element 24 .
  • the magnetic sensor 28 faces the S pole. Therefore, when the reference position B is positioned at position ii, the magnetic sensor 28 outputs a signal indicating that it faces the S pole.
  • the power generation element 22 When the rotating shaft 10 further rotates clockwise and the reference position B is positioned at position iii as shown in FIG. Then, the power generation element 22 generates power. On the other hand, when the reference position B is positioned at position iii, the direction of the magnetic field in the longitudinal direction of the power generating element 24 is not reversed by the magnetic field of the magnet 20, and the power generating element 24 does not generate power.
  • the magnetic sensor 26 operates based on the power from the power generation element 22 .
  • the magnetic sensor 26 faces the N pole. Therefore, when the reference position B is positioned at position iii, the magnetic sensor 26 outputs a signal indicating that it faces the N pole.
  • the magnetic sensor 28 operates based on the power from the power generation element 24 .
  • the magnetic sensor 28 faces the N pole. Therefore, when the reference position B is positioned at the position iv, the magnetic sensor 28 outputs a signal indicating that it faces the N pole.
  • one of the power generation elements 22 and 24 generates power when the reference position B is positioned at the position v, the position vi, the position vii, and the position viii.
  • the rotating shaft 10 rotates counterclockwise and the reference position B is positioned at the position v as shown in FIG. is reversed, and the power generation element 24 generates power.
  • the reference position B is positioned at the position v, the direction of the magnetic field in the longitudinal direction of the power generation element 22 is not reversed by the magnetic field of the magnet 20, and the power generation element 22 does not generate power.
  • the magnetic sensor 28 operates based on the power from the power generation element 24 .
  • the magnetic sensor 28 faces the N pole. Therefore, when the reference position B is positioned at the position v, the magnetic sensor 28 outputs a signal indicating that it faces the N pole.
  • the magnetic sensor 26 operates based on the power from the power generation element 22 .
  • the magnetic sensor 26 faces the N pole. Therefore, when the reference position B is positioned at the position vi, the magnetic sensor 26 outputs a signal indicating that it faces the N pole.
  • the magnetic sensor 28 operates based on the power from the power generation element 24 .
  • the magnetic sensor 28 faces the S pole. Therefore, when the reference position B is positioned at the position vii, the magnetic sensor 28 outputs a signal indicating that it faces the S pole.
  • the magnetic sensor 26 operates based on the power from the power generation element 22 .
  • the magnetic sensor 26 faces the S pole. Therefore, when the reference position B is positioned at position viii, the magnetic sensor 26 outputs a signal indicating that it faces the S pole.
  • the information processing unit 56 detects power generation information indicating which power generation element among the plurality of power generation elements 22 and 24 has generated power, and detection results indicating the detection result of the magnetic sensor corresponding to the power generation element among the plurality of magnetic sensors 26 and 28. Based on the information, it is determined in which of the plurality of regions I to IV aligned in the rotational direction of the rotating shaft 10 the reference position B in the rotating direction of the rotating shaft 10 is located. determine the rotational position of The storage unit 58 stores the area in which the information processing unit 56 determines that the reference position B is located among the plurality of areas I to IV.
  • the power generation information is 2-bit information that indicates 1 when the power generation element 22 generates power and indicates 0 when the power generation element 24 generates power.
  • the detection information indicates 1 when the magnetic sensor 26 detects the S pole and when the magnetic sensor 28 detects the S pole, and indicates 1 when the magnetic sensor 26 detects the N pole and the magnetic sensor 28 detects the S pole. This is 2-bit information indicating 0 when the N pole is detected.
  • each of the plurality of regions I to IV is aligned with two adjacent straight lines among a plurality of straight lines extending in the radial direction around the rotation axis A and arranged at equal intervals in the rotation direction of the rotation shaft 10. This is the sandwiched area.
  • region I the region containing position i and position viii is termed region I
  • region II the region containing position ii and position vii is termed region II
  • region III the region containing position iii and position vi
  • position iv and position v. is defined as region IV.
  • the information processing section 56 is made to store that an error has occurred.
  • the information processing unit 56 determines the rotational position of the rotating shaft 10 each time one of the power generating elements 22 and 24 generates power, and stores it in the storage unit 58. If the determined area is area I and the area in which the reference position B was previously determined to be located is area III, the storage unit 58 is caused to store that an error has occurred.
  • the information processing section 56 is made to store that a transition has occurred from the area in which the reference position B was previously determined to be located to the area in which the reference position B is currently determined to be located.
  • the information processing unit 56 determines that the area in which the reference position B is located this time is the area I and the area in which the reference position B is located last time is the area III, from the area III
  • the storage unit 58 is caused to store that the transition to the region I has occurred.
  • the information processing section 56 also determines the rotation direction of the rotating shaft 10 based on the power generation information, the detection information, and the polarity information indicating the polarity determined by the polarity determining section 47 .
  • the polarity information is 2-bit information that indicates 1 when the polarity of the power generated by the power generation element 22 is negative, and indicates 0 when the polarity of the power generated by the power generation element 22 is positive.
  • the polarity information is 2 bits indicating 0 when the polarity of the power generated by the power generation element 24 is negative and 1 when the polarity of the power generated by the power generation element 24 is positive. information.
  • the polarity of the power generated by the power generating element 22 when the reference position B is positioned at position i is opposite to the polarity of the power generated by the power generating element 22 when the reference position B is positioned at position viii. .
  • the polarity of the power generated by the power generating element 22 is positive when the reference position B is positioned at position i, and the polarity of the power generated by the power generating element 22 is negative when the reference position B is positioned at position viii.
  • the information processing unit 56 can determine that the rotating shaft 10 is rotating clockwise when the polarity information is 0, and can determine that the rotating shaft 10 is rotating counterclockwise when the polarity information is 1. It can be determined that
  • the information processing unit 56 determines that the area in which the reference position B is located this time among the plurality of areas I to IV is an area adjacent to the area in which the reference position B was previously determined to be located. In this case, if the transition from the polarity determined by the polarity determination unit 47 last time to the polarity determined by the polarity determination unit 47 this time is not normal, the storage unit 58 stores that an error has occurred.
  • Table 1 is a table showing the relationship between the power generation positions of the plurality of power generation elements 22 and 24 of the rotation detector 14 of FIG.
  • the polarity information indicates 0 when reference position B is positioned at position i, indicates 0 when reference position B is positioned at position ii, and indicates 0 when reference position B is positioned at position i. 1 is indicated when the reference position B is positioned at position iii, and 1 is indicated when the reference position B is positioned at position iv.
  • the polarity information indicates 0 when the reference position B is positioned at the position v, indicates 0 when the reference position B is positioned at the position vi, and indicates 0 when the reference position B is positioned at the position vii. is 1, and 1 is indicated when the reference position B is positioned at position viii.
  • the polarity information is If there is a transition from 1 to 1, it is known that the rotating shaft 10 has rotated counterclockwise and the reference position B has moved from the region II to the region I, and the detection of the rotational position of the rotating shaft 10 is normal. I can judge.
  • the information processing unit 56 determines that the region in which the reference position B is located this time is the region I and the region in which the reference position B was previously determined to be located is the region II, the polarity information is If there is a transition from 0 to 0, it can be seen that the rotating shaft 10 has rotated clockwise and the reference position B has moved from the region II to the region I, and the reference position B was located in the regions III and IV. Therefore, it can be determined that the detection of the rotational position of the rotating shaft 10 is abnormal. Therefore, the information processing unit 56 determines that the area in which the reference position B is located this time is the area I, and the area in which the reference position B is located last time is the area II. transitions from 0 to 0, it is determined that the transition from the polarity determined by the polarity determination unit 47 last time to the polarity determined by the polarity determination unit 47 this time is not normal, and the storage unit indicates that an error has occurred. 58.
  • the information processing section 56 detects the Based on the rotational position of the rotating shaft 10 determined using a plurality of magnetic sensors 26 and 28 and the amount of rotation of the rotating shaft 10 detected by the optical sensor 30 after the power supply state, the position of the rotating shaft 10 is determined. Determine the rotational position.
  • the information processing unit 56 can move the optical sensor 30 to the rotational position of the rotating shaft 10 determined by using the plurality of magnetic sensors 26 and 28 immediately before the optical sensor 30 changes from the non-powered state to the powered state, and after the power is switched to the optical sensor. By adding the amount of rotation of the rotating shaft 10 detected by the formula sensor 30, the rotational position of the rotating shaft 10 is determined.
  • the information processing unit 56 determines the region in which the current reference position B is located among the plurality of regions I to IV, the polarity determined by the current polarity determination unit 47, and the plurality of regions I to IV.
  • the count value for calculating the number of rotations of the rotary shaft 10 is updated based on the region in which the reference position B was previously determined to be located and the polarity determined by the polarity determination unit 47 last time.
  • Table 2 is a table for explaining an example of the update operation of the count value of the rotation detector 14 of FIG.
  • the previous polarity information indicates 1, the previous detection information indicates 0, the previous power generation information indicates 0, the current polarity information indicates 0, and the current detection information indicates 1 and the current power generation information indicates 1, it is found that the rotating shaft 10 has rotated clockwise and the reference position B has moved from the area IV to the area I, and the information processing unit 56 calculates the count value. -1.
  • the previous polarity information indicates 0, the previous detection information indicates 0, the previous power generation information indicates 0, the current polarity information indicates 0, the current detection information indicates 1, and the current detection information indicates 1. indicates 1, it is found that the rotating shaft 10 rotates clockwise and the reference position B moves from the area IV to the area I, and the information processing unit 56 decrements the count value by -1.
  • the previous polarity information indicates 1, the previous detection information indicates 1, the previous power generation information indicates 1, the current polarity information indicates 0, the current detection information indicates 0, and the current detection information indicates 0. indicates 0, it is found that the rotating shaft 10 has rotated counterclockwise and the reference position B has moved from the area I to the area IV, and the information processing unit 56 increments the count value by one.
  • the previous polarity information indicates 0, the previous detection information indicates 1, the previous power generation information indicates 1, the current polarity information indicates 0, the current detection information indicates 0, and the current detection information indicates 0. indicates 0, it is found that the rotating shaft 10 has rotated counterclockwise and the reference position B has moved from the region I to the region IV, and the information processing unit 56 sets the count value to +1.
  • the number of revolutions of the rotating shaft 10 can be calculated by the information processing section 56 updating the count value.
  • the rotation detector 14 according to the first embodiment has been described above.
  • the rotation detector 14 includes a magnet 20 that rotates together with the rotating shaft 10, a plurality of power generating elements 22 and 24 that generate power by changes in the magnetic field caused by the rotation of the magnet 20 together with the rotating shaft 10, and a plurality of A plurality of magnetic sensors 26, 28 provided corresponding to the power generation elements 22, 24 are provided.
  • Rotation detector 14 according to the present embodiment further includes information processing unit 56 that determines the rotational position of rotating shaft 10 using a plurality of magnetic sensors 26 and 28, and a plurality of power generation elements 22 and 24 that detect A generated power supply unit 46 that supplies the generated power only to the magnetic sensor corresponding to the power generating element among the plurality of magnetic sensors 26 and 28 .
  • the electric power generated by the plurality of power generation elements 22 and 24 can be supplied only to the magnetic sensor corresponding to the power generation element among the plurality of magnetic sensors 26 and 28, so that the power generation elements 22 and 24 can suppress the consumption of the power generated by each of the above, and the power can be used to more reliably drive the magnetic sensor corresponding to the power generation element. Therefore, it is possible to suppress the occurrence of erroneous detection due to non-driving of the magnetic sensor corresponding to the power generation element.
  • information processing unit 56 determines the rotational position of rotating shaft 10, and information processing unit 56 determines the position of reference position B among a plurality of regions I to IV.
  • a storage unit 58 is further provided for storing the area determined to be present. Judgment of the rotary shaft 10 is performed based on power generation information indicating which power generation element among the plurality of power generation elements 22 and 24 has generated power, and detection information indicating the detection result of the magnetic sensor corresponding to the power generation element among the plurality of magnetic sensors 26 and 28. and in which of a plurality of regions I to IV arranged in the rotational direction of the rotating shaft 10 the reference position B in the rotating direction of the rotating shaft 10 is located.
  • the rotational position of the rotating shaft 10 can be determined using the power generation information and the detection information without using the polarity of the electric power generated by each of the plurality of power generation elements 22 and 24. Even if the power generated by each of 22 and 24 is small and the polarity of the power cannot be determined, the rotational position of rotating shaft 10 can be determined, and the occurrence of erroneous detection can be suppressed.
  • the information processing unit 56 determines that the region in which the current reference position B is located among the plurality of regions I to IV is the region where the previous reference position B is located. If the area is not adjacent to the area determined to be present, the storage unit 58 stores that an error has occurred.
  • the area in which the reference position B was determined to be located this time due to the fact that the plurality of magnetic sensors 26 and 28 were not driven is the same as the area in which the reference position B was determined to be located last time. If an erroneous detection occurs instead of an adjacent region, the fact that the erroneous detection has occurred can be stored, so that the occurrence of the erroneous detection can be easily recognized.
  • the information processing unit 56 determines that the region in which the current reference position B is located among the plurality of regions I to IV is the region in which the previous reference position B is located. If it is not an area adjacent to the area determined to be located at the reference position B, the storage unit indicates that a transition has occurred from the area determined to be the previous reference position B to the area determined to be the current reference position B. 58.
  • the rotation detector 14 further includes a polarity determination unit 47 that determines the polarity of the power generated by each of the plurality of power generation elements 22 and 24.
  • the information processing unit 56 stores power generation information and , and the polarity information indicating the polarity determined by the polarity determination unit 47, the rotation direction of the rotating shaft 10 is determined.
  • the information processing unit 56 determines that the region in which the current reference position B is located among the plurality of regions I to IV is the region in which the previous reference position B is located. If the current polarity determined by the polarity determination unit 47 is not normal when the current polarity determined by the polarity determination unit 47 is not normal when the current polarity determination unit 47 determines that the current polarity determination unit 47 It is stored in the storage unit 58 .
  • the error information indicating the occurrence of the erroneous detection can be stored, so that the occurrence of the erroneous detection can be easily recognized. can.
  • the information processing unit 56 determines the region in which the current reference position B is located among the plurality of regions I to IV, and the current polarity determination unit 47 determines The number of rotations of the rotary shaft 10 is determined based on the polarity determined, the region in which the reference position B was previously determined to be located among the plurality of regions I to IV, and the polarity determined by the polarity determination unit 47 last time. Update the count value for the calculation.
  • the count value for calculating the number of rotations of the rotating shaft 10 can be updated more accurately, so the occurrence of erroneous detection can be suppressed.
  • the rotation detector 14 further includes an optical sensor 30 that has a light emitting/receiving element 42 that operates based on power from the power supply 150 and that detects the amount of rotation of the rotating shaft 10 .
  • the optical sensor 30 changes from a non-power supply state in which power is not supplied from the power supply 150 to a power supply state in which power is supplied from the power supply 150
  • the information processing section 56 receives a plurality of The rotational position of the rotating shaft 10 is determined based on the rotational position of the rotating shaft 10 determined using the magnetic sensors 26 and 28 and the amount of rotation of the rotating shaft 10 detected by the optical sensor 30 after the power is supplied. judge.
  • the rotational position of the rotating shaft 10 can be determined using the plurality of magnetic sensors 26 and 28 when no power is supplied. Further, when the non-power-supplied state changes to the power-supplied state, the rotational position of the rotary shaft 10 determined by using the plurality of magnetic sensors 26 and 28 in the non-power-supplied state is changed to the optical sensor 30 after the power-supplied state. Since the rotational position of the rotating shaft 10 can be determined by adding the amount of rotation of the rotating shaft 10 detected by , the occurrence of erroneous detection can be further suppressed.
  • the generated power supply section 46 has a sensor power storage section 66 , a power storage section 67 and a switch 72 .
  • the sensor power storage unit 66 stores power generated by each of the plurality of power generation elements 22 and 24 and supplied to the magnetic sensor corresponding to the power generation element among the plurality of magnetic sensors 26 and 28 .
  • the power storage unit 67 stores power generated by each of the plurality of power generation elements 22 and 24 and supplied to the devices other than the plurality of magnetic sensors 26 and 28 .
  • Switch 72 can electrically disconnect sensor power storage unit 66 and power storage unit 67 .
  • the electric power generated by each of the plurality of power generating elements 22 and 24 can be reliably supplied to the corresponding magnetic sensor among the plurality of magnetic sensors 26 and 28, so that the magnetic sensor is not driven, resulting in erroneous detection. can be further suppressed.
  • the plurality of power generation elements 22 and 24 are rotated in the rotation direction of the rotation shaft 10 when the rotation shaft 10 rotates clockwise.
  • a first position where one of the power generating elements generates power, and a second position closest to the first position among one or more positions where the one power generating element generates power when the rotary shaft 10 rotates counterclockwise. are spaced apart by an angular distance greater than or equal to the angular distance between
  • Each of the plurality of magnetic sensors 26 and 28 is arranged at the same position as the corresponding power generation element among the plurality of power generation elements 22 and 24 in the rotation direction of the rotating shaft 10 .
  • the magnetic pole detected by the magnetic sensor 26 when the power generating element 22 generates power at a certain position and the magnetic pole detected by the magnetic sensor 26 when the power generating element 22 generates power at another position can be easily made different. Therefore, the rotational position of the rotating shaft 10 can be easily determined, and the occurrence of erroneous detection can be suppressed.
  • FIG. 6 shows a rotation detector 14a according to the second embodiment.
  • the rotation detector 14a is mainly different from the rotation detector 14 in that it further includes a power generation element 104 and a magnetic sensor 106 .
  • the power generation element 104 has the same configuration as the power generation elements 22 and 24, detailed description of the power generation element 104 is omitted.
  • the plurality of power generation elements 22 , 24 , 104 are arranged at regular intervals in the rotation direction of the rotating shaft 10 .
  • the magnetic sensor 106 Since the magnetic sensor 106 has the same configuration as the magnetic sensors 26 and 28, detailed description of the magnetic sensor 106 is omitted.
  • the magnetic sensor 106 is arranged at the same position as the power generating element 104 in the rotational direction of the rotating shaft 10 , and is arranged side by side with the power generating element 104 in the radial direction of the rotating shaft 10 outside the power generating element 104 .
  • the power generation elements 22, 24, 104 are detected from positions i to vi.
  • Any of the plurality of power generating elements 22, 24, 104 can generate power at positions vii to xii when the rotating shaft 10 rotates counterclockwise. This makes it possible to determine which of the six regions I to VI the reference position B is located in, and detect the position of the rotating shaft 10 more finely than the rotation detector 14 can.
  • FIG. 7 is a block diagram showing part of the functional configuration of the rotation detector 14a of FIG.
  • FIG. 8 is a block diagram showing another part of the functional configuration of the rotation detector 14a of FIG.
  • the rotation detector 14a includes a generated power supply section 46a different from the generated power supply section 46, and a polarity determination section 47a different from the polarity determination section 47. , and in that a magnetic pole determination section 51a different from the magnetic pole determination section 51 is provided.
  • the generated power supply unit 46a includes a full-wave rectification unit 112, a third storage unit 114, a switch 116, a power monitoring unit 118, a discharge unit 120, and a switch 122. Mainly different from part 46 .
  • the generated power supply unit 46 a can supply the power generated by the power generation element 104 only to the magnetic sensor 106 corresponding to the power generation element 104 among the plurality of magnetic sensors 26 , 28 , 106 .
  • the polarity determination unit 47a mainly differs from the polarity determination unit 47 in that it further includes a third determination unit 108 that determines the polarity of the power generated by the power generation element 104.
  • the polarity of the power generated by the power generation element 104 can be determined by the third determination unit 108 .
  • the magnetic pole determination section 51a mainly differs from the magnetic pole determination section 51 in that it further includes a third determination section 110 that determines the magnetic pole detected by the magnetic sensor 106.
  • the magnetic pole detected by the magnetic sensor 106 can be determined by the third determination unit 110 .
  • the magnet 20 has an annular shape, but it is not limited to this.
  • the magnet may not be ring-shaped, but may be disk-shaped, bar-shaped, or the like.
  • the optical sensor 30 may have a transmission pattern that transmits light, and may detect the rotational position of the rotation shaft by receiving the light transmitted through the transmission pattern.
  • each of the plurality of magnetic sensors 26 and 28 is arranged at the same position as the corresponding power generation element among the plurality of power generation elements 22 and 24 in the rotation direction of the rotating shaft 10. has been described, but is not limited to this.
  • each of the plurality of magnetic sensors may be arranged at a position shifted by 180 degrees from the corresponding power generation element among the plurality of power generation elements in the rotation direction of the rotating shaft.
  • the magnetic sensors 26 and 28 are arranged side by side with the power generation elements 22 and 24 and outside the power generation elements 22 and 24 in the radial direction about the rotation axis A.
  • the magnetic sensors 26 and 28 are not necessarily required to be placed outside the power generation elements 22 and 24, and may be placed inside the power generation elements 22 and 24.
  • the magnetic sensors 26, 28 are required to read the magnetic poles of the magnet 20 accurately. Therefore, it is preferable that the magnetic sensors 26 and 28 be arranged at positions where the S/N ratio is large in order to detect the magnetic flux of the magnet 20 .
  • the magnetic sensors 26 and 28 are viewed along the rotation axis A, the magnetic sensors 26 and 28 are arranged at positions that do not overlap the power generation elements 22 and 24 .
  • the magnetic sensors 26 and 28 have the advantage of being less susceptible to changes in magnetic flux due to power generation by the power generation elements 22 and 24 .
  • the magnetic sensors 26, 28 can be arranged even in the case of a substrate with a hole in the center, so that the central portion of the rotation detector 14 can be easily located. It can be hollow.
  • the present invention is not limited to this.
  • the plurality of power generation elements may be arranged on the main surface of the substrate on the rotating plate side.
  • the present invention is not limited to this.
  • a plurality of magnetic sensors may be arranged on the major surface of the substrate opposite the rotating plate.
  • the magnets 20 are arranged on the main surface of the rotor plate 16 opposite to the substrate 18 , but the present invention is not limited to this.
  • the magnets may be arranged on the substrate-side main surface of the rotating plate.
  • a rotation detector according to the present disclosure can be used to detect rotation of a rotating shaft of a motor that rotates a load.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

誤検出の発生を抑制できる回転検出器を提供する。回転検出器(14)は、回転軸とともに回転する磁石(20)と、磁石(20)が回転軸とともに回転することによる磁界の変化によって発電する複数の発電素子(22),(24)と、複数の発電素子(22),(24)に対応して設けられる複数の磁気センサ(26),(28)と、を備える。回転検出器(14)は、さらに複数の磁気センサ(26),(28)を用いて、回転軸の回転位置を判定する情報処理部(56)と、複数の発電素子(22),(24)の各々によって発電された電力を、複数の磁気センサ(26),(28)のうち当該発電素子に対応する磁気センサにのみ供給する発電電力供給部(46)とを備える。

Description

回転検出器および回転検出方法
 本開示は、回転検出器および回転検出方法に関し、特に回転体の回転軸の回転を検出する回転検出器および回転検出方法に関する。
 従来、モータの回転軸の回転を検出する回転検出器が知られている。たとえば、特許文献1には、シャフトに設けられた円板形状の磁石と、磁性ワイヤおよびピックアップコイルで構成される3つの発電部とを備え、3つの発電部のそれぞれは、磁石の端面側に構成された仮想的な三角形の複数の辺のそれぞれに配置されている回転検出器が開示されている。
特許第6336232号公報
 しかしながら、特許文献1の回転検出器では、発電部によって発電された電力を適切に供給できず、誤検出が発生するという問題がある。
 本開示は、このような問題を解決するためになされたものであり、誤検出の発生を抑制できる回転検出器および回転検出方法を提供することを目的とする。
 本開示の一態様に係る回転検出器は、回転軸とともに回転する磁石と、前記磁石が前記回転軸とともに回転することによる磁界の変化によって発電する複数の発電素子と、前記複数の発電素子に対応して設けられる複数の磁気センサとを備える。さらに、前記複数の磁気センサを用いて、前記回転軸の回転位置を判定する情報処理部と、前記複数の発電素子の各々によって発電された電力を、前記複数の磁気センサのうち当該発電素子に対応する磁気センサにのみ供給する発電電力供給部とを備える。
 本開示の一態様に係る回転検出方法は、回転検出器を用いた回転検出方法である。前記回転検出器は、回転軸とともに回転する磁石と、前記磁石が前記回転軸とともに回転することによる磁界の変化によって発電する複数の発電素子と、前記複数の発電素子に対応して設けられる複数の磁気センサと、前記複数の発電素子の各々によって発電された電力を、前記複数の磁気センサのうち当該発電素子に対応する磁気センサにのみ供給する発電電力供給部とを備える。前記回転検出方法は、前記複数の発電素子のうち発電した発電素子を示す発電情報と、前記複数の磁気センサのうち当該発電素子に対応する磁気センサの検出結果を示す検出情報とに基づいて、前記回転軸の回転方向における基準位置が前記回転軸の回転方向に並ぶ複数の領域のうちいずれの領域に位置しているかを判定し、前記複数の領域のうち前記基準位置が位置していると判定された領域を記憶する。
 本開示によれば、誤検出の発生を抑制できる回転検出器および回転検出方法を提供できる。
図1は、第1の実施の形態に係る回転検出器を備えるモータを示す図である。 図2は、図1の回転検出器の基板および回転板を示す図である。 図3は、図1の回転検出器の機能構成を示すブロック図である。 図4は、回転軸が時計回りに回転した場合における、図1の回転検出器の判定動作の一例を説明するための図である。 図5は、回転軸が反時計回りに回転した場合における、図1の回転検出器の判定動作の一例を説明するための図である。 図6は、第2の実施の形態に係る回転検出器を示す図である。 図7は、図6の回転検出器の機能構成の一部を示すブロック図である。 図8は、図6の回転検出器の機能構成の他の一部を示すブロック図である。
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置および接続形態、ならびに、工程および工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、全図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 (第1の実施の形態)
 図1は、第1の実施の形態に係る回転検出器14を備えるモータ1を示す図である。図2は、図1の回転検出器14の基板18および回転板16を示す図である。図2の(a)は、基板18を示し、図2の(b)は、回転板16を示している。なお、図1では、ケース12、磁石20、および反射パターン44を断面で示している。また、図1では、図2に示す発電素子22および制御回路32の図示を省略している。また、図2では、図1に示す光学式センサ30の図示を省略している。
 図1に示すように、モータ1は、本体4と、回転子6と、固定子8と、回転軸10と、ケース12と、回転検出器14とを備えている。なお、回転軸線方向とは、回転軸10の回転軸線Aが延びている方向である(図1の矢印Xを参照)。
 回転子6および固定子8は、本体4に収容されている。回転子6は、固定子8に対して回転する。
 回転軸10は、回転軸線方向に延び、円柱状等の棒状である。回転軸10の軸心と回転軸線Aとは、一致している。回転軸10は、回転子6に固定されており、回転軸線A回りに回転する。たとえば、回転軸10は、モータ1に電力が供給されると、当該電力に基づいて、回転子6とともに回転軸線Aを回転中心として回転する。回転軸10の回転方向(図2の矢印Zを参照)は、回転軸線Aを中心とする周方向と一致する。回転軸線方向における回転軸10の一端部には、回転検出器14が設けられている。回転軸線方向における回転軸10の他端部には、回転軸10の回転によって回転駆動される負荷(図示せず)等が取り付けられている。たとえば、回転軸10は、鉄等の磁性体金属によって形成されている。
 ケース12は、回転軸線方向における回転軸10の一端部、および回転検出器14を覆うように、本体4に取り付けられている。たとえば、ケース12は、鉄等の磁性体金属によって形成されている。
 回転検出器14は、回転軸10の回転を検出する。たとえば、回転検出器14は、回転軸10の回転位置、回転軸10の回転方向、および回転軸10の回転数等を検出する。たとえば、回転検出器14は、アブソリュートエンコーダである。回転検出器14は、上述したように、回転軸線方向における回転軸10の一端部に設けられている。図1および図2に示すように、回転検出器14は、回転板16と、基板18と、磁石20と、複数の発電素子22,24と、複数の磁気センサ26,28と、光学式センサ30と、制御回路32とを有している。
 回転板16は、回転軸線方向に直交する方向に延びる。具体的には、回転板16は、回転軸線方向に直交する方向に延びる主面を有する円板状であり、回転軸線方向から見たとき円形である。回転板16は、回転軸線方向における回転軸10の一端部に取り付けられている。回転板16の軸心と回転軸線Aとは、一致している。回転板16は、回転軸10とともに回転する。
 基板18は、回転軸線方向に直交する方向に延びる。具体的には、基板18は、回転軸線方向に直交する方向に延びる主面を有する円板状であり、回転軸線方向から見たとき円形である。基板18は、回転軸線方向において、回転軸10の一端部および回転板16と間隔を空けて配置され、回転板16と対向している。基板18の軸心と回転軸線Aとは、一致している。基板18は、ケース12の内面に固定されており、回転軸10とともに回転しない。
 磁石20は、回転軸10とともに回転する。具体的には、磁石20は、回転軸10が回転すると、回転軸10および回転板16とともに回転する。磁石20は、円環状であり、回転軸10の回転方向に沿って配置されている。磁石20は、回転軸線方向を厚み方向とする板状である。磁石20は、回転板16の基板18とは反対側の主面に配置されている。磁石20は、N極と、回転軸10の回転方向において当該N極と並んで配置されているS極とを有している。磁石20の一方側の半分がN極に着磁されており、磁石20の他方側の半分がS極に着磁されている。
 複数の発電素子22,24の各々は、磁石20が回転軸10とともに回転することによる磁界の変化によって発電する。
 複数の発電素子22,24は、回転軸10の回転方向において、位相差を持って配置されている。具体的には、複数の発電素子22,24は、回転軸10の回転方向において、回転軸10が時計回りに回転したときに複数の発電素子22,24のうち1つの発電素子が発電する第1位置と、回転軸10が反時計回りに回転したときに当該1つの発電素子が発電する1つ以上の位置のうち第1位置に最も近い第2位置との間の角度間隔以上の角度間隔を空けて配置されている。なお、時計回りとは、回転軸線方向において、基板18の回転板16とは反対側から見たときの時計回りを意味し、反時計回りとは、回転軸線方向において、基板18の回転板16とは反対側から見たときの反時計回りを意味する。以下の説明においても同様である。
 図4は、回転軸10が時計回りに回転した場合における、回転検出器14の判定動作の一例を説明するための図である。たとえば、図4に示す位置iは、回転軸10が時計回りに回転したときに複数の発電素子22,24のうち1つの発電素子22が発電する第1位置の一例である。また、図4に示す位置viiiは、回転軸10が反時計回りに回転したときに1つの発電素子22が発電する1つ以上の位置vi,viiiのうち位置iに最も近い第2位置の一例である。回転軸10の回転方向における位置iと位置viiiとの間の角度間隔は30度であり、複数の発電素子22,24は、回転軸10の回転方向において、30度以上の角度間隔を空けて配置されている。この実施の形態では、複数の発電素子22,24は、回転軸10の回転方向において、120度の角度間隔を空けて配置されている。
 なお、たとえば、回転軸10の回転方向における発電素子22と発電素子24との間の角度間隔は、回転軸線Aを中心とする径方向(図2の矢印Yを参照)に延びかつ発電素子22の感磁部34の長手方向の中心を通る中心線と、回転軸線Aを中心とする径方向に延びかつ発電素子24の感磁部38の長手方向の中心を通る中心線とがなす角度である。
 発電素子22は、回転軸10の回転方向の接線方向に延び、基板18の回転軸10とは反対側(回転板16とは反対側)の主面に配置されている。発電素子22は、感磁部34と、感磁部34に巻回されるコイル36とを有している。感磁部34は、回転軸10の回転方向の接線方向に延びる磁性体であり、基板18の回転板16とは反対側に位置している。たとえば、感磁部34は、大バルクハウゼン効果を発現させる磁性体であり、回転軸10の回転方向の接線方向に延びるウィーガントワイヤ(Wiegand wire)である。ウィーガントワイヤは、所定値以上の磁界がウィーガントワイヤの長手方向に沿って印加されると、磁化方向が長手方向の一方に向かうように揃う磁性体である。ウィーガントワイヤの長手方向に沿って流れる磁束の向きが変化すると、ウィーガントワイヤの磁化方向が跳躍的に反転し、ウィーガントワイヤに巻回されているコイルの両端に電圧パルスが誘起される。このようにして、発電素子22は、発電する。
 発電素子24は、回転軸10の回転方向の接線方向に延び、基板18の回転軸10とは反対側(回転板16とは反対側)の主面に配置されている。発電素子24は、感磁部38と、感磁部38に巻回されるコイル40とを有している。感磁部38は、回転軸10の回転方向の接線方向に延びる磁性体であり、基板18の回転板16とは反対側に位置している。たとえば、感磁部38は、大バルクハウゼン効果を発現させる磁性体であり、回転軸10の回転方向の接線方向に延びるウィーガントワイヤである。発電素子24は、発電素子22と同じようにして、発電する。
 複数の磁気センサ26,28は、それぞれ複数の発電素子22,24に対応して設けられている。磁気センサ26は、発電素子22に対応して設けられ、発電素子22によって発電された電力に基づいて動作する。磁気センサ28は、発電素子24に対応して設けられ、発電素子24によって発電された電力に基づいて動作する。複数の磁気センサ26,28は、基板18の回転軸10側(回転板16側)の主面に配置されている。
 複数の磁気センサ26,28は、回転軸10の回転方向において、位相差を持って配置されている。具体的には、複数の磁気センサ26,28の各々は、回転軸10の回転方向において、複数の発電素子22,24のうち対応する発電素子と同じ位置に配置されている。
 磁気センサ26は、回転軸10の回転方向において発電素子22と同じ位置に配置されている。たとえば、磁気センサ26は、回転軸線Aを中心とする径方向に延びかつ発電素子22の感磁部34の長手方向の中心を通る中心線上に磁気センサ26の中心が位置するように、配置されている。磁気センサ26は、回転軸線Aを中心とする径方向において、発電素子22と並び、発電素子22よりも外方に配置されている。
 磁気センサ28は、回転軸10の回転方向において発電素子24と同じ位置に配置されている。たとえば、磁気センサ28は、回転軸線Aを中心とする径方向に延びかつ発電素子24の感磁部38の長手方向の中心を通る中心線上に磁気センサ28の中心が位置するように、配置されている。磁気センサ28は、回転軸線Aを中心とする径方向において、発電素子24と並び、発電素子24よりも外方に配置されている。
 光学式センサ30は、受発光素子42と、反射パターン44とを有し、回転軸10の回転量を検出する光学式のエンコーダである。
 受発光素子42は、基板18の回転板16側の主面に配置されており、外部の電源150(図3に示す機能ブロック図参照)からの電力に基づいて動作する。受発光素子42は、回転軸線方向において、反射パターン44と対向しており、反射パターン44に向かって光を発する。また、受発光素子42は、反射パターン44によって反射した光を受光する。反射パターン44によって反射する光は、回転軸10の回転位置に応じて変化する。光学式センサ30は、反射パターン44によって反射される光に基づいて、回転軸10の回転量を検出する。この実施の形態では、受発光素子42が、発光素子および受光素子に相当する。
 反射パターン44は、回転板16の基板18側の主面に配置されている。反射パターン44は、回転軸10の回転方向に沿って配置され、環状である。たとえば、反射パターン44は、光を反射し易い反射領域と、光を反射し難い非反射領域とを有する。たとえば、反射領域および非反射領域は、回転軸10の回転方向に交互に配置されている。
 制御回路32は、基板18の回転軸10側(回転板16側)の主面に配置されており、発電素子22等と電気的に接続されている。
 図3は、図1の回転検出器14の機能構成を示すブロック図である。
 図3に示すように、回転検出器14は、発電電力供給部46と、極性判定部47と、磁極判定部51と、信号処理部55と、情報処理部56と、記憶部58と、通信部60とを、さらに備えている。
 発電電力供給部46は、複数の発電素子22,24の各々によって発電された電力を、複数の磁気センサ26,28のうち当該発電素子に対応する磁気センサにのみ供給する。たとえば、発電電力供給部46は、発電素子22によって発電された電力を複数の磁気センサ26,28のうち磁気センサ26にのみ供給し、発電素子24によって発電された電力を複数の磁気センサ26,28のうち磁気センサ28にのみ供給する。
 発電電力供給部46は、複数の全波整流部62,64と、センサ電力貯蔵部66と、電力貯蔵部67と、複数のスイッチ72,74,76と、複数の内部電源78,80と、複数の電源監視部82,84,86,88,89と、複数の電圧調整部90,92と、複数の放電部94,96,98と、複数のスイッチ100,102とを有している。
 全波整流部62は、発電素子22に接続されており、発電素子22で発電された電圧パルスを整流する。全波整流部64は、発電素子24に接続されており、発電素子24で発電された電圧パルスを整流する。
 センサ電力貯蔵部66は、複数の発電素子22,24の各々から発電されて複数の磁気センサ26,28のうち当該発電素子に対応する磁気センサに供給される電力を貯蔵する。センサ電力貯蔵部66は、発電素子22が発電した場合、発電素子22から発電されて磁気センサ26に供給される電力を貯蔵する。また、センサ電力貯蔵部66は、発電素子24が発電した場合、発電素子24から発電されて磁気センサ28に供給される電力を貯蔵する。
 電力貯蔵部67は、複数の発電素子22,24の各々から発電されて複数の磁気センサ26,28以外に供給される電力を貯蔵する。電力貯蔵部67は、発電素子22から発電されて磁気センサ26以外に供給される電力を貯蔵する第1貯蔵部68と、発電素子24から発電されて磁気センサ28以外に供給される電力を貯蔵する第2貯蔵部70とを有している。
 スイッチ72は、センサ電力貯蔵部66と電力貯蔵部67とを電気的に切断可能な切断部の一例である。スイッチ72は、発電素子22および発電素子24の両方が発電していないときには電力を遮断するオフ状態となり、センサ電力貯蔵部66と電力貯蔵部67とを電気的に切断する。スイッチ72は、発電素子22および発電素子24の一方が発電している期間において送電可能なオン状態となる。スイッチ74は、発電素子22が発電していないときには電力を遮断するオフ状態となり、発電素子22が発電している期間において送電可能なオン状態となる。スイッチ76は、発電素子24が発電していないときには電力を遮断するオフ状態となり、発電素子24が発電している期間において送電可能なオン状態となる。
 内部電源78は、センサ電力貯蔵部66に貯蔵されている電力の供給を受け、当該電力を磁気センサ26または磁気センサ28に供給するための電源である。内部電源80は、電力貯蔵部67に貯蔵されている電力の供給を受け、当該電力を複数の磁気センサ26,28以外たとえば情報処理部56等に供給するための電源である。
 電源監視部82は、センサ電力貯蔵部66と電圧調整部90との間における電力を監視する。電源監視部84は、電圧調整部90と内部電源78との間における電力を監視する。電源監視部86は、全波整流部62と第1貯蔵部68との間における電力を監視する。電源監視部88は、全波整流部64と第2貯蔵部70との間における電力を監視する。電源監視部89は、電圧調整部92と内部電源80との間における電力を監視する。
 電圧調整部90は、グランド電位を基準電位とし、センサ電力貯蔵部66のキャパシタの端子間電圧を入力電圧として、一定の電圧を出力する。電圧調整部90の出力電圧は、内部電源78に供給される。電圧調整部92は、グランド電位を基準電位とし、第1貯蔵部68または第2貯蔵部70のキャパシタの端子間電圧を入力電圧として、一定の電圧を出力する。電圧調整部92の出力電圧は、内部電源80に供給される。たとえば、複数の電圧調整部90,92のそれぞれは、LDO(Low Drop Out)レギュレータである。
 放電部94は、発電素子22および発電素子24が発電していないときにセンサ電力貯蔵部66に貯蔵されている電力を放電する。放電部96は、発電素子22が発電していないときに第1貯蔵部68に貯蔵されている電力を放電する。放電部98は、発電素子24が発電していないときに第2貯蔵部70に貯蔵されている電力を放電する。
 スイッチ100は、発電素子22が発電していないときには内部電源78からの電力が磁気センサ26に供給されないように遮断するオフ状態となり、発電素子22が発電している期間において内部電源78からの電力を磁気センサ26に送電可能なオン状態となる。スイッチ102は、発電素子24が発電していないときには内部電源78からの電力が磁気センサ28に供給されないように遮断するオフ状態となり、発電素子24が発電している期間において内部電源78からの電力を磁気センサ28に送電可能なオン状態となる。
 極性判定部47は、複数の発電素子22,24のそれぞれによって発電された電力の極性を判定する。極性判定部47は、発電素子22によって発電された電力の極性を判定する第1判定部48と、発電素子24によって発電された電力の極性を判定する第2判定部50とを有している。
 磁極判定部51は、複数の磁気センサ26,28のそれぞれによって検出された磁極を判定する。磁極判定部51は、磁気センサ26によって検出された磁極を判定する第1判定部52と、磁気センサ28によって検出された磁極を判定する第2判定部54とを有している。
 信号処理部55は、外部の電源150からの電力に基づいて駆動し、光学式センサ30の検出結果を情報処理部56に送信する。
 情報処理部56は、複数の磁気センサ26,28を用いて、回転軸10の回転位置を判定する。情報処理部56による回転軸10の回転位置の判定については、後述する。
 記憶部58は、回転軸10の回転位置および回転方向等を記憶する。たとえば、記憶部58は、FRAM(登録商標)等の不揮発性メモリによって構成される。
 通信部60は、情報処理部56と信号処理部55とを有線通信可能または無線通信可能に接続している。
 図4は、回転軸10が時計回りに回転した場合における、図1の回転検出器14の判定動作の一例を説明するための図である。図4の(a)は、基準位置Bが位置iに位置している状態を示し、図4の(b)は、基準位置Bが位置iiに位置している状態を示し、図4の(c)は、基準位置Bが位置iiiに位置している状態を示し、図4の(d)は、基準位置Bが位置ivに位置している状態を示している。
 図5は、回転軸10が反時計回りに回転した場合における、図1の回転検出器14の判定動作の一例を説明するための図である。図5の(a)は、基準位置Bが位置vに位置している状態を示し、図5の(b)は、基準位置Bが位置viに位置している状態を示し、図5の(c)は、基準位置Bが位置viiに位置している状態を示し、図5の(d)は、基準位置Bが位置viiiに位置している状態を示している。
 基準位置Bは、回転軸10の回転方向における基準位置であり、この実施の形態では、回転軸10の回転方向におけるN極の中心を基準位置としている。
 まず、図4を参照して、回転軸10が時計回りに回転する場合について説明する。この場合、基準位置Bが、位置i、位置ii、位置iii、および位置ivに位置したときに、発電素子22および発電素子24の一方が発電する。
 たとえば、回転軸10が時計回りに回転し、図4の(a)に示すように、基準位置Bが位置iに位置した場合、磁石20による磁界によって発電素子22の長手方向の磁界の向きが反転し、発電素子22が発電する。一方、基準位置Bが位置iに位置した場合、磁石20による磁界によって発電素子24の長手方向の磁界の向きは反転せず、発電素子24は発電しない。
 発電素子22が発電することによって、磁気センサ26は、発電素子22からの電力に基づいて動作する。基準位置Bが位置iに位置しているとき、磁気センサ26はS極と対向している。したがって、基準位置Bが位置iに位置しているとき、磁気センサ26は、S極と対向していることを示す信号を出力する。
 回転軸10がさらに時計回りに回転し、図4の(b)に示すように、基準位置Bが位置iiに位置した場合、磁石20による磁界によって発電素子24の長手方向の磁界の向きが反転し、発電素子24が発電する。一方、基準位置Bが位置iiに位置した場合、磁石20による磁界によって発電素子22の長手方向の磁界の向きは反転せず、発電素子22は発電しない。
 発電素子24が発電することによって、磁気センサ28は、発電素子24からの電力に基づいて動作する。基準位置Bが位置iiに位置しているとき、磁気センサ28はS極と対向している。したがって、基準位置Bが位置iiに位置しているとき、磁気センサ28は、S極と対向していることを示す信号を出力する。
 回転軸10がさらに時計回りに回転し、図4の(c)に示すように、基準位置Bが位置iiiに位置した場合、磁石20による磁界によって発電素子22の長手方向の磁界の向きが反転し、発電素子22が発電する。一方、基準位置Bが位置iiiに位置した場合、磁石20による磁界によって発電素子24の長手方向の磁界の向きは反転せず、発電素子24は発電しない。
 発電素子22が発電することによって、磁気センサ26は、発電素子22からの電力に基づいて動作する。基準位置Bが位置iiiに位置しているとき、磁気センサ26はN極と対向している。したがって、基準位置Bが位置iiiに位置しているとき、磁気センサ26は、N極と対向していることを示す信号を出力する。
 回転軸10がさらに反時計回りに回転し、図4の(d)に示すように、基準位置Bが位置ivに位置した場合、磁石20による磁界によって発電素子24の長手方向の磁界の向きが反転し、発電素子24が発電する。一方、基準位置Bが位置ivに位置した場合、磁石20による磁界によって発電素子22の長手方向の磁界の向きは反転せず、発電素子22は発電しない。
 発電素子24が発電することによって、磁気センサ28は、発電素子24からの電力に基づいて動作する。基準位置Bが位置ivに位置しているとき、磁気センサ28はN極と対向している。したがって、基準位置Bが位置ivに位置しているとき、磁気センサ28は、N極と対向していることを示す信号を出力する。
 次に、図5を参照して、回転軸10が反時計回りに回転する場合について説明する。この場合、基準位置Bが、位置v、位置vi、位置vii、および位置viiiに位置したときに、発電素子22および発電素子24の一方が発電する。
 たとえば、回転軸10が反時計回りに回転し、図5の(a)に示すように、基準位置Bが位置vに位置した場合、磁石20による磁界によって発電素子24の長手方向の磁界の向きが反転し、発電素子24が発電する。一方、基準位置Bが位置vに位置した場合、磁石20による磁界によって発電素子22の長手方向の磁界の向きは反転せず、発電素子22は発電しない。
 発電素子24が発電することによって、磁気センサ28は、発電素子24からの電力に基づいて動作する。基準位置Bが位置vに位置しているとき、磁気センサ28はN極と対向している。したがって、基準位置Bが位置vに位置しているとき、磁気センサ28は、N極と対向していることを示す信号を出力する。
 回転軸10がさらに反時計回りに回転し、図5の(b)に示すように、基準位置Bが位置viに位置した場合、磁石20による磁界によって発電素子22の長手方向の磁界の向きが反転し、発電素子22が発電する。一方、基準位置Bが位置viに位置した場合、磁石20による磁界によって発電素子24の長手方向の磁界の向きは反転せず、発電素子24は発電しない。
 発電素子22が発電することによって、磁気センサ26は、発電素子22からの電力に基づいて動作する。基準位置Bが位置viに位置しているとき、磁気センサ26はN極と対向している。したがって、基準位置Bが位置viに位置しているとき、磁気センサ26は、N極と対向していることを示す信号を出力する。
 回転軸10がさらに反時計回りに回転し、図5の(c)に示すように、基準位置Bが位置viiに位置した場合、磁石20による磁界によって発電素子24の長手方向の磁界の向きが反転し、発電素子24が発電する。一方、基準位置Bが位置viiに位置した場合、磁石20による磁界によって発電素子22の長手方向の磁界の向きは反転せず、発電素子22は発電しない。
 発電素子24が発電することによって、磁気センサ28は、発電素子24からの電力に基づいて動作する。基準位置Bが位置viiに位置しているとき、磁気センサ28はS極と対向している。したがって、基準位置Bが位置viiに位置しているとき、磁気センサ28は、S極と対向していることを示す信号を出力する。
 回転軸10がさらに反時計回りに回転し、図5の(d)に示すように、基準位置Bが位置viiiに位置した場合、磁石20による磁界によって発電素子22の長手方向の磁界の向きが反転し、発電素子22が発電する。一方、基準位置Bが位置viiiに位置した場合、磁石20による磁界によって発電素子24の長手方向の磁界の向きは反転せず、発電素子24は発電しない。
 発電素子22が発電することによって、磁気センサ26は、発電素子22からの電力に基づいて動作する。基準位置Bが位置viiiに位置しているとき、磁気センサ26はS極と対向している。したがって、基準位置Bが位置viiiに位置しているとき、磁気センサ26は、S極と対向していることを示す信号を出力する。
 たとえば、情報処理部56は、複数の発電素子22,24のうち発電した発電素子を示す発電情報と、複数の磁気センサ26,28のうち当該発電素子に対応する磁気センサの検出結果を示す検出情報とに基づいて、回転軸10の回転方向における基準位置Bが回転軸10の回転方向に並ぶ複数の領域I~IVのうちいずれの領域に位置しているかを判定することによって、回転軸10の回転位置を判定する。記憶部58は、複数の領域I~IVのうち情報処理部56によって基準位置Bが位置していると判定された領域を記憶する。
 たとえば、発電情報は、発電素子22が発電した場合には1を示し、発電素子24が発電した場合には0を示す2ビットの情報である。また、たとえば、検出情報は、磁気センサ26がS極を検出した場合および磁気センサ28がS極を検出した場合には1を示し、磁気センサ26がN極を検出した場合および磁気センサ28がN極を検出した場合には0を示す2ビットの情報である。
 また、たとえば、複数の領域I~IVの各々は、各々が回転軸線Aを中心とする径方向に延びかつ回転軸10の回転方向に等間隔に並ぶ複数の直線のうち隣り合う2つの直線に挟まれる領域である。この実施の形態では、位置iおよび位置viiiを含む領域を領域Iとし、位置iiおよび位置viiを含む領域を領域IIとし、位置iiiおよび位置viを含む領域を領域IIIとし、位置ivおよび位置vを含む領域を領域IVとしている。
 上述したように、基準位置Bが位置iに位置した場合、発電素子22が発電し、磁気センサ26がS極を検出する。また、基準位置Bが位置viiiに位置した場合、発電素子22が発電し、磁気センサ26がS極を検出する。つまり、これらの場合、(検出情報、発電情報)=(1、1)となる。したがって、情報処理部56は、(検出情報、発電情報)=(1、1)の場合、基準位置Bが位置iまたは位置viiiの近傍に位置しており、基準位置Bが領域Iに位置していると判定する。
 また、基準位置Bが位置iiに位置した場合、発電素子24が発電し、磁気センサ28がS極を検出する。また、基準位置Bが位置viiに位置した場合、発電素子24が発電し、磁気センサ28がS極を検出する。つまり、これらの場合、(検出情報、発電情報)=(1、0)となる。したがって、情報処理部56は、(検出情報、発電情報)=(1、0)の場合、基準位置Bが位置iiまたは位置viiの近傍に位置しており、基準位置Bが領域IIに位置していると判定する。
 また、基準位置Bが位置iiiに位置した場合、発電素子22が発電し、磁気センサ26がN極を検出する。また、基準位置Bが位置viに位置した場合、発電素子22が発電し、磁気センサ26がN極を検出する。つまり、これらの場合、(検出情報、発電情報)=(0、1)となる。したがって、情報処理部56は、(検出情報、発電情報)=(0、1)の場合、基準位置Bが位置iiiまたは位置viの近傍に位置しており、基準位置Bが領域IIIに位置していると判定する。
 また、基準位置Bが位置ivに位置した場合、発電素子24が発電し、磁気センサ28がN極を検出する。また、基準位置Bが位置vに位置した場合、発電素子24が発電し、磁気センサ28がN極を検出する。つまり、これらの場合、(検出情報、発電情報)=(0、0)となる。したがって、情報処理部56は、(検出情報、発電情報)=(0、0)の場合、基準位置Bが位置ivまたは位置vの近傍に位置しており、基準位置Bが領域IVに位置していると判定する。
 また、情報処理部56は、複数の領域I~IVのうち今回基準位置Bが位置していると判定した領域が前回基準位置Bが位置していると判定した領域と隣り合う領域でない場合、エラーが発生したことを記憶部58に記憶させる。
 たとえば、情報処理部56は、発電素子22および発電素子24のいずれかが発電する度に回転軸10の回転位置を判定して記憶部58に記憶させ、今回基準位置Bが位置していると判定した領域が領域Iであり、前回基準位置Bが位置していると判定した領域が領域IIIである場合、エラーが発生したことを記憶部58に記憶させる。
 また、情報処理部56は、複数の領域I~IVのうち今回基準位置Bが位置していると判定した領域が前回基準位置Bが位置していると判定した領域と隣り合う領域でない場合、前回基準位置Bが位置していると判定した領域から今回基準位置Bが位置していると判定した領域への遷移が発生したことを記憶部58に記憶させる。
 たとえば、情報処理部56は、今回基準位置Bが位置していると判定した領域が領域Iであり、前回基準位置Bが位置していると判定した領域が領域IIIである場合、領域IIIから領域Iへの遷移が発生したことを記憶部58に記憶させる。
 また、情報処理部56は、発電情報と、検出情報と、極性判定部47によって判定された極性を示す極性情報とに基づいて、回転軸10の回転方向を判定する。
 たとえば、極性情報は、発電素子22によって発電された電力の極性が負の場合には1を示し、発電素子22によって発電された電力の極性が正の場合には0を示す2ビットの情報である。言い換えると、たとえば、極性情報は、発電素子24によって発電された電力の極性が負の場合には0を示し、発電素子24によって発電された電力の極性が正の場合には1を示す2ビットの情報である。
 たとえば、基準位置Bが位置iに位置した場合に発電素子22が発電する電力の極性と、基準位置Bが位置viiiに位置した場合に発電素子22が発電する電力の極性とは反転している。たとえば、基準位置Bが位置iに位置した場合に発電素子22が発電する電力の極性を正とし、基準位置Bが位置viiiに位置した場合に発電素子22が発電する電力の極性を負とした場合、情報処理部56は、極性情報が0である場合には回転軸10が時計回りに回転していると判定でき、極性情報が1である場合には回転軸10が反時計回りに回転していると判定できる。
 また、情報処理部56は、複数の領域I~IVのうち今回基準位置Bが位置していると判定した領域が、前回基準位置Bが位置していると判定した領域と隣り合う領域である場合において、前回極性判定部47によって判定された極性から今回極性判定部47によって判定された極性への遷移が正常でない場合、エラーが発生したことを記憶部58に記憶させる。
 表1は、図1の回転検出器14の複数の発電素子22,24の発電位置と回転軸10の回転方向等との関係を示す表である。表1に示すように、たとえば、極性情報は、基準位置Bが位置iに位置した場合には0を示し、基準位置Bが位置iiに位置した場合には0を示し、基準位置Bが位置iiiに位置した場合には1を示し、基準位置Bが位置ivに位置した場合には1を示す。また、たとえば、極性情報は、基準位置Bが位置vに位置した場合には0を示し、基準位置Bが位置viに位置した場合には0を示し、基準位置Bが位置viiに位置した場合には1を示し、基準位置Bが位置viiiに位置した場合には1を示す。
Figure JPOXMLDOC01-appb-T000001
 たとえば、情報処理部56は、今回基準位置Bが位置していると判定した領域が領域Iであり、前回基準位置Bが位置していると判定した領域が領域IIである場合、極性情報が1から1に遷移していれば、回転軸10が反時計回りに回転して基準位置Bが領域IIから領域Iに移動したことがわかり、回転軸10の回転位置の検出が正常であると判定できる。一方、情報処理部56は、今回基準位置Bが位置していると判定した領域が領域Iであり、前回基準位置Bが位置していると判定した領域が領域IIである場合、極性情報が0から0に遷移していれば、回転軸10が時計回りに回転して基準位置Bが領域IIから領域Iに移動したことがわかり、基準位置Bが領域IIIおよび領域IVに位置していたことを判定できておらず、回転軸10の回転位置の検出が異常であると判定できる。したがって、情報処理部56は、今回基準位置Bが位置していると判定した領域が領域Iであり、前回基準位置Bが位置していると判定した領域が領域IIである場合において、極性情報が0から0に遷移していれば、前回極性判定部47によって判定された極性から今回極性判定部47によって判定された極性への遷移が正常でないと判定し、エラーが発生したことを記憶部58に記憶させる。
 また、情報処理部56は、光学式センサ30が電源150から電力の供給を受けていない無給電状態から電源150から電力の供給を受けている給電状態になった場合、無給電状態のときに複数の磁気センサ26,28を用いて判定された回転軸10の回転位置と、給電状態になった後に光学式センサ30によって検出された回転軸10の回転量とに基づいて、回転軸10の回転位置を判定する。
 たとえば、情報処理部56は、光学式センサ30が無給電状態から給電状態になる直前に複数の磁気センサ26,28を用いて判定した回転軸10の回転位置に、給電状態になった後に光学式センサ30によって検出された回転軸10の回転量を加えることによって、回転軸10の回転位置を判定する。
 また、情報処理部56は、複数の領域I~IVのうち今回基準位置Bが位置していると判定した領域と、今回極性判定部47によって判定された極性と、複数の領域I~IVのうち前回基準位置Bが位置していると判定した領域と、前回極性判定部47によって判定された極性とに基づいて、回転軸10の回転数を算出するためのカウント値を更新する。
 表2は、図1の回転検出器14のカウント値の更新動作の一例を説明するための表である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、たとえば、前回の極性情報が1を示し、前回の検出情報が0を示し、前回の発電情報が0を示し、今回の極性情報が0を示し、今回の検出情報が1を示し、今回の発電情報が1を示す場合、回転軸10が時計回りに回転して、基準位置Bが領域IVから領域Iに移動したことがわかり、情報処理部56は、カウント値を-1する。
 また、たとえば、前回の極性情報が0を示し、前回の検出情報が0を示し、前回の発電情報が0を示し、今回の極性情報が0を示し、今回の検出情報が1を示し、今回の発電情報が1を示す場合、回転軸10が時計回りに回転して、基準位置Bが領域IVから領域Iに移動したことがわかり、情報処理部56は、カウント値を-1する。
 また、たとえば、前回の極性情報が1を示し、前回の検出情報が1を示し、前回の発電情報が1を示し、今回の極性情報が0を示し、今回の検出情報が0を示し、今回の発電情報が0を示す場合、回転軸10が反時計回りに回転して、基準位置Bが領域Iから領域IVに移動したことがわかり、情報処理部56は、カウント値を+1する。
 また、たとえば、前回の極性情報が0を示し、前回の検出情報が1を示し、前回の発電情報が1を示し、今回の極性情報が0を示し、今回の検出情報が0を示し、今回の発電情報が0を示す場合、回転軸10が反時計回りに回転して、基準位置Bが領域Iから領域IVに移動したことがわかり、情報処理部56は、カウント値を+1とする。
 上述したように、情報処理部56がカウント値を更新することによって、回転軸10の回転数を算出できる。
 以上、第1の実施の形態に係る回転検出器14について説明した。
 本実施の形態に係る回転検出器14は、回転軸10とともに回転する磁石20と、磁石20が回転軸10とともに回転することによる磁界の変化によって発電する複数の発電素子22,24と、複数の発電素子22,24に対応して設けられる複数の磁気センサ26,28と、を備える。本実施の形態に係る回転検出器14は、さらに、複数の磁気センサ26,28を用いて、回転軸10の回転位置を判定する情報処理部56と、複数の発電素子22,24の各々によって発電された電力を、複数の磁気センサ26,28のうち当該発電素子に対応する磁気センサにのみ供給する発電電力供給部46とを備える。
 これによれば、複数の発電素子22,24のによって発電された電力を、複数の磁気センサ26,28のうち当該発電素子に対応する磁気センサにのみ供給できるので、複数の発電素子22,24の各々によって発電された電力の消費を抑制でき、当該電力を用いてより確実に当該発電素子に対応する磁気センサを駆動させることができる。したがって、当該発電素子に対応する磁気センサが駆動しないことによる誤検出の発生を抑制できる。
 また、本実施の形態に係る回転検出器14において、情報処理部56は、回転軸10の回転位置を判定し、複数の領域I~IVのうち情報処理部56によって基準位置Bが位置していると判定された領域を記憶する記憶部58をさらに備える。回転軸10の判定は、複数の発電素子22,24のうち発電した発電素子を示す発電情報と、複数の磁気センサ26,28のうち当該発電素子に対応する磁気センサの検出結果を示す検出情報とに基づいて、回転軸10の回転方向における基準位置Bが回転軸10の回転方向に並ぶ複数の領域I~IVのうちいずれの領域に位置しているかを判定することによって行われる。
 これによれば、複数の発電素子22,24のそれぞれによって発電された電力の極性を用いることなく、発電情報と検出情報とを用いて回転軸10の回転位置を判定できるので、複数の発電素子22,24の各々によって発電された電力が小さく当該電力の極性を判定できない場合であっても回転軸10の回転位置を判定でき、誤検出の発生を抑制できる。
 また、本実施の形態に係る回転検出器14において、情報処理部56は、複数の領域I~IVのうち今回基準位置Bが位置していると判定した領域が前回基準位置Bが位置していると判定した領域と隣り合う領域でない場合、エラーが発生したことを記憶部58に記憶させる。
 これによれば、複数の磁気センサ26,28が駆動しなかったこと等によって、今回基準位置Bが位置していると判定した領域が、前回基準位置Bが位置していると判定した領域と隣り合う領域でなく、誤検出が発生した場合、誤検出が発生したことを記憶できるので、誤検出の発生を容易に認識できる。
 また、本実施の形態に係る回転検出器14において、情報処理部56は、複数の領域I~IVのうち今回基準位置Bが位置していると判定した領域が、前回基準位置Bが位置していると判定した領域と隣り合う領域でない場合、前回基準位置Bが位置していると判定した領域から今回基準位置Bが位置していると判定した領域への遷移が発生したことを記憶部58に記憶させる。
 これによれば、基準位置Bがどの領域からどの領域へ遷移した場合に誤検出が発生したのかを容易に認識できるので、誤検出の原因を容易に特定できる。
 また、本実施の形態に係る回転検出器14は、複数の発電素子22,24のそれぞれによって発電された電力の極性を判定する極性判定部47をさらに備え、情報処理部56は、発電情報と、検出情報と、極性判定部47によって判定された極性を示す極性情報とに基づいて、回転軸10の回転方向を判定する。
 これによれば、回転軸10の回転位置に加えて回転軸10の回転方向を判定することによって、誤検出の発生を容易に認識できる。
 また、本実施の形態に係る回転検出器14において、情報処理部56は、複数の領域I~IVのうち今回基準位置Bが位置していると判定した領域が、前回基準位置Bが位置していると判定した領域と隣り合う領域である場合において、前回極性判定部47によって判定された極性から今回極性判定部47によって判定された極性への遷移が正常でない場合、エラーが発生したことを記憶部58に記憶させる。
 これによれば、複数の磁気センサ26,28が駆動しなかったこと等によって誤検出が発生した場合、誤検出が発生したことを示すエラー情報を記憶できるので、誤検出の発生を容易に認識できる。
 また、本実施の形態に係る回転検出器14において、情報処理部56は、複数の領域I~IVのうち今回基準位置Bが位置していると判定した領域と、今回極性判定部47によって判定された極性と、複数の領域I~IVのうち前回基準位置Bが位置していると判定した領域と、前回極性判定部47によって判定された極性とに基づいて、回転軸10の回転数を算出するためのカウント値を更新する。
 これによれば、回転軸10の回転数を算出するためのカウント値をより正確に更新できるので、誤検出の発生を抑制できる。
 また、本実施の形態に係る回転検出器14において、電源150からの電力に基づいて動作する受発光素子42を有し、回転軸10の回転量を検出する光学式センサ30をさらに備える。光学式センサ30が電源150から電力の供給を受けていない無給電状態から電源150から電力の供給を受けている給電状態になった場合、情報処理部56は、無給電状態のときに複数の磁気センサ26,28を用いて判定された回転軸10の回転位置と、給電状態になった後に光学式センサ30によって検出された回転軸10の回転量とに基づいて、回転軸10の回転位置を判定する。
 これによれば、無給電状態のときには、複数の磁気センサ26,28を用いて回転軸10の回転位置を判定できる。また、無給電状態から給電状態になったときには、無給電状態のときに複数の磁気センサ26,28を用いて判定された回転軸10の回転位置に、給電状態になった後に光学式センサ30によって検出された回転軸10の回転量を加えて、回転軸10の回転位置を判定できるので、誤検出の発生をさらに抑制できる。
 また、本実施の形態に係る回転検出器14において、発電電力供給部46は、センサ電力貯蔵部66と、電力貯蔵部67と、スイッチ72とを有する。センサ電力貯蔵部66は、複数の発電素子22,24の各々から発電されて複数の磁気センサ26,28のうち当該発電素子に対応する磁気センサに供給される電力を貯蔵する。電力貯蔵部67は、複数の発電素子22,24の各々から発電されて複数の磁気センサ26,28以外に供給される電力を貯蔵する。スイッチ72は、センサ電力貯蔵部66と電力貯蔵部67とを電気的に切断可能とする。
 これによれば、複数の発電素子22,24のそれぞれから発電された電力を複数の磁気センサ26,28のうち対応する磁気センサにより確実に供給できるので、当該磁気センサが駆動しないことによる誤検出の発生をさらに抑制できる。
 また、本実施の形態に係る回転検出器14において、複数の発電素子22,24は、回転軸10の回転方向において、回転軸10が時計回りに回転したときに複数の発電素子22,24のうち1つの発電素子が発電する第1位置と、回転軸10が反時計回りに回転したときに当該1つの発電素子が発電する1つ以上の位置のうち第1位置に最も近い第2位置との間の角度間隔以上の角度間隔を空けて配置される。複数の磁気センサ26,28の各々は、回転軸10の回転方向において、複数の発電素子22,24のうち対応する発電素子と同じ位置に配置される。
 これによれば、発電素子22がある位置で発電したときに磁気センサ26が検出する磁極と、発電素子22が他の位置で発電したときに磁気センサ26が検出する磁極とを容易に異ならせることができるので、回転軸10の回転位置を容易に判定でき、誤検出の発生を抑制できる。
 (第2の実施の形態)
 図6は、第2の実施の形態に係る回転検出器14aを示す図である。
 図6に示すように、回転検出器14aは、発電素子104と磁気センサ106とをさらに備えている点において、回転検出器14と主に異なっている。
 発電素子104は発電素子22および発電素子24と同様の構成であるので、発電素子104の詳細な説明については省略する。複数の発電素子22,24,104は、回転軸10の回転方向において、等間隔で配置されている。
 磁気センサ106は磁気センサ26および磁気センサ28と同様の構成であるので、磁気センサ106の詳細な説明については省略する。磁気センサ106は、回転軸10の回転方向において、発電素子104と同じ位置に配置され、回転軸10の径方向において発電素子104と並んで発電素子104よりも外方に配置されている。
 このように、発電素子104と発電素子104に対応する磁気センサ106とをさらに設けることによって、回転軸10が時計回りに回転する場合に位置iからviにおいて複数の発電素子22,24,104のいずれかを発電させることができ、回転軸10が反時計回りに回転する場合に位置viiからxiiにおいて複数の発電素子22,24,104のいずれかを発電させることができる。これによって、基準位置Bが領域IからVIの6つの領域のうちいずれに位置しているかを判定でき、回転検出器14よりもさらに細かく回転軸10の位置を検出できる。
 図7は、図6の回転検出器14aの機能構成の一部を示すブロック図である。図8は、図6の回転検出器14aの機能構成の他の一部を示すブロック図である。
 図7および図8に示すように、回転検出器14aは、発電電力供給部46とは異なる発電電力供給部46aを備えている点、極性判定部47とは異なる極性判定部47aを備えている点、および磁極判定部51とは異なる磁極判定部51aを備えている点において、回転検出器14と主に異なっている。
 発電電力供給部46aは、全波整流部112と、第3貯蔵部114と、スイッチ116と、電源監視部118と、放電部120と、スイッチ122とを有している点において、発電電力供給部46と主に異なっている。
 発電電力供給部46aによって、発電素子104によって発電された電力を複数の磁気センサ26,28,106のうち発電素子104に対応する磁気センサ106にのみ供給できる。
 極性判定部47aは、発電素子104によって発電された電力の極性を判定する第3判定部108をさらに有している点において、極性判定部47と主に異なっている。第3判定部108によって、発電素子104から発電された電力の極性を判定できる。
 磁極判定部51aは、磁気センサ106によって検出された磁極を判定する第3判定部110をさらに有している点において、磁極判定部51と主に異なっている。第3判定部110によって、磁気センサ106によって検出された磁極を判定できる。
 (他の実施の形態等)
 以上のように、本出願において開示する技術の例示として、実施の形態について説明した。しかしながら、本開示による技術は、これらに限定されず、本開示の趣旨を逸脱しない限り、適宜、変更、置き換え、付加、省略等を行った実施の形態または変形例にも適用可能である。
 上述した実施の形態では、磁石20が、円環状である場合について説明したが、これに限定されない。たとえば、磁石は、環状でなくてもよく、円板状または棒状等であってもよい。
 また、上述した実施の形態では、光学式センサ30が、反射パターン44を有している場合について説明したが、これに限定されない。たとえば、光学式センサは、光を透過させる透過パターンを有しており、透過パターンを透過した光を受光することによって回転軸の回転位置を検出してもよい。
 また、上述した実施の形態では、複数の磁気センサ26,28の各々が、回転軸10の回転方向において、複数の発電素子22,24のうち対応する発電素子と同じ位置に配置されている場合について説明したが、これに限定されない。たとえば、複数の磁気センサの各々は、回転軸の回転方向において、複数の発電素子のうち対応する発電素子と180度ずれた位置に配置されていてもよい。
 また、上述した実施の形態では、磁気センサ26,28が、回転軸線Aを中心とする径方向において、発電素子22,24と並び、かつ発電素子22,24よりも外方に配置されている場合について説明したが、磁気センサ26,28の配置は必ずしも発電素子22,24の外側にあることが求められるわけではなく、発電素子22,24の内側に配置されていてもよい。ここで、磁気センサ26,28は磁石20の磁極を正確に読み取ることを求められる。したがって、磁気センサ26,28は磁石20の磁束を検知するために、S/N比が大きい位置に配置されることが好ましい。そこで、回転軸線Aに沿って磁気センサ26,28を見たときに、磁気センサ26,28は発電素子22,24と重ならない位置に配置する。これにより、磁気センサ26,28は発電素子22,24の発電による磁束の変化の影響を受けにくい利点がある。磁気センサ26,28を発電素子22,24の外方に配置した場合、中心に穴が開いた基板である場合でも磁気センサ26,28を配置可能なので、容易に回転検出器14の中央部を中空にできる。
 また、上述した実施の形態では、複数の発電素子22,24が、基板18の回転板16とは反対側の主面に配置されている場合について説明したが、これに限定されない。たとえば、複数の発電素子は、基板の回転板側の主面に配置されていてもよい。
 また、上述した実施の形態では、複数の磁気センサ26,28が、基板18の回転板16側の主面に配置されている場合について説明したが、これに限定されない。たとえば、複数の磁気センサは、基板の回転板とは反対側の主面に配置されていてもよい。
 また、上述した実施の形態では、磁石20が、回転板16の基板18とは反対側の主面に配置されている場合について説明したが、これに限定されない。たとえば、磁石は、回転板の基板側の主面に配置されていてもよい。
 本開示に係る回転検出器は、負荷を回転駆動させるモータの回転軸等の回転検出に利用可能である。
 14,14a   回転検出器
 16   回転板
 18   基板
 20   磁石
 22,24,104   発電素子
 26,28,106   磁気センサ
 30   光学式センサ
 32   制御回路
 34,38   感磁部
 36,40   コイル
 42   受発光素子
 44   反射パターン
 46,46a   発電電力供給部
 47,47a   極性判定部
 48,52   第1判定部
 50,54   第2判定部
 51,51a  磁極判定部
 55   信号処理部
 56   情報処理部
 58   記憶部
 60   通信部
 62,64,112   全波整流部
 66   センサ電力貯蔵部
 67   電力貯蔵部
 68   第1貯蔵部
 70   第2貯蔵部
 72,74,76,100,102,116,122   スイッチ
 78,80   内部電源
 82,84,86,88,89,118   電源監視部
 90,92   電圧調整部
 94,96,98,120   放電部
 108,110   第3判定部
 114   第3貯蔵部

Claims (11)

  1.  回転軸とともに回転する磁石と、
     前記磁石が前記回転軸とともに回転することによる磁界の変化によって発電する複数の発電素子と、
     前記複数の発電素子に対応して設けられる複数の磁気センサと、
     前記複数の磁気センサを用いて、前記回転軸の回転位置を判定する情報処理部と、
     前記複数の発電素子の各々によって発電された電力を、前記複数の磁気センサのうち当該発電素子に対応する磁気センサにのみ供給する発電電力供給部とを備える、
     回転検出器。
  2.  前記情報処理部は、前記複数の発電素子のうち発電した発電素子を示す発電情報と、前記複数の磁気センサのうち当該発電素子に対応する磁気センサの検出結果を示す検出情報とに基づいて、前記回転軸の回転方向における基準位置が前記回転軸の回転方向に並ぶ複数の領域のうちいずれの領域に位置しているかを判定することによって、前記回転軸の回転位置を判定し、
     前記複数の領域のうち前記情報処理部によって前記基準位置が位置していると判定された領域を記憶する記憶部をさらに備える、
     請求項1に記載の回転検出器。
  3.  前記情報処理部は、前記複数の領域のうち今回前記基準位置が位置していると判定した領域が前回前記基準位置が位置していると判定した領域と隣り合う領域でない場合、エラーが発生したことを前記記憶部に記憶させる、
     請求項2に記載の回転検出器。
  4.  前記情報処理部は、前記複数の領域のうち今回前記基準位置が位置していると判定した領域が前回前記基準位置が位置していると判定した領域と隣り合う領域でない場合、前回前記基準位置が位置していると判定した領域から今回前記基準位置が位置していると判定した領域への遷移が発生したことを前記記憶部に記憶させる、
     請求項2または3に記載の回転検出器。
  5.  前記複数の発電素子の各々によって発電された電力の極性を判定する極性判定部をさらに備え、
     前記情報処理部は、前記発電情報と、前記検出情報と、前記極性判定部によって判定された極性を示す極性情報とに基づいて、前記回転軸の回転方向を判定する、
     請求項2から4のいずれか1項に記載の回転検出器。
  6.  前記情報処理部は、前記複数の領域のうち今回前記基準位置が位置していると判定した領域が前回前記基準位置が位置していると判定した領域と隣り合う領域である場合において、前回前記極性判定部によって判定された極性から今回前記極性判定部によって判定された極性への遷移が正常でない場合、エラーが発生したことを前記記憶部に記憶させる、
     請求項5に記載の回転検出器。
  7.  前記情報処理部は、前記複数の領域のうち今回前記基準位置が位置していると判定した領域と、今回前記極性判定部によって判定された極性と、前記複数の領域のうち前回前記基準位置が位置していると判定した領域と、前回前記極性判定部によって判定された極性とに基づいて、前記回転軸の回転数を算出するためのカウント値を更新する、
     請求項5または6に記載の回転検出器。
  8.  電源からの電力に基づいて動作する発光素子および受光素子を有し、前記回転軸の回転量を検出する光学式センサをさらに備え、
     前記光学式センサが前記電源から電力の供給を受けていない無給電状態から前記電源から電力の供給を受けている給電状態になった場合、前記情報処理部は、前記無給電状態のときに前記複数の磁気センサを用いて判定された前記回転軸の回転位置と、前記給電状態になった後に前記光学式センサによって検出された前記回転軸の回転量とに基づいて、前記回転軸の回転位置を判定する、
     請求項1から7のいずれか1項に記載の回転検出器。
  9.  前記発電電力供給部は、前記複数の発電素子の各々から発電されて前記複数の磁気センサのうち当該発電素子に対応する磁気センサに供給される電力を貯蔵するセンサ電力貯蔵部と、前記複数の発電素子の各々から発電されて前記複数の磁気センサ以外に供給される電力を貯蔵する電力貯蔵部と、前記センサ電力貯蔵部と前記電力貯蔵部とを電気的に切断可能な切断部とを有する、
     請求項1から8のいずれか1項に記載の回転検出器。
  10.  前記複数の発電素子は、前記回転軸の回転方向において、前記回転軸が時計回りに回転したときに前記複数の発電素子のうち1つの発電素子が発電する第1位置と、前記回転軸が反時計回りに回転したときに当該1つの発電素子が発電する1つ以上の位置のうち前記第1位置に最も近い第2位置との間の角度間隔以上の角度間隔を空けて配置され、
     前記複数の磁気センサの各々は、前記回転軸の回転方向において、前記複数の発電素子のうち対応する発電素子と同じ位置、または当該発電素子と180度ずれた位置に配置される、
     請求項1から9のいずれか1項に記載の回転検出器。
  11.  回転検出器を用いた回転検出方法であって、
     前記回転検出器は、回転軸とともに回転する磁石と、前記磁石が前記回転軸とともに回転することによる磁界の変化によって発電する複数の発電素子と、前記複数の発電素子に対応して設けられる複数の磁気センサと、前記複数の発電素子の各々によって発電された電力を、前記複数の磁気センサのうち当該発電素子に対応する磁気センサにのみ供給する発電電力供給部とを備え、
     前記複数の発電素子のうち発電した発電素子を示す発電情報と、前記複数の磁気センサのうち当該発電素子に対応する磁気センサの検出結果を示す検出情報とに基づいて、前記回転軸の回転方向における基準位置が前記回転軸の回転方向に並ぶ複数の領域のうちいずれの領域に位置しているかを判定し、
     前記複数の領域のうち前記基準位置が位置していると判定された領域を記憶する、
     回転検出方法。
PCT/JP2022/018112 2021-05-27 2022-04-19 回転検出器および回転検出方法 WO2022249795A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22811069.8A EP4350298A1 (en) 2021-05-27 2022-04-19 Rotation detector and rotation detection method
CN202280036575.1A CN117441089A (zh) 2021-05-27 2022-04-19 旋转检测器和旋转检测方法
JP2023523351A JPWO2022249795A1 (ja) 2021-05-27 2022-04-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-088894 2021-05-27
JP2021088894 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022249795A1 true WO2022249795A1 (ja) 2022-12-01

Family

ID=84229940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018112 WO2022249795A1 (ja) 2021-05-27 2022-04-19 回転検出器および回転検出方法

Country Status (4)

Country Link
EP (1) EP4350298A1 (ja)
JP (1) JPWO2022249795A1 (ja)
CN (1) CN117441089A (ja)
WO (1) WO2022249795A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124874A (ja) * 2011-12-13 2013-06-24 Ntn Corp 回転センサ
JP2018048902A (ja) * 2016-09-21 2018-03-29 株式会社ニコン エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6336232B1 (ja) 2017-03-21 2018-06-06 三菱電機株式会社 回転数検出器
WO2021215076A1 (ja) * 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 回転検出器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124874A (ja) * 2011-12-13 2013-06-24 Ntn Corp 回転センサ
JP2018048902A (ja) * 2016-09-21 2018-03-29 株式会社ニコン エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6336232B1 (ja) 2017-03-21 2018-06-06 三菱電機株式会社 回転数検出器
WO2021215076A1 (ja) * 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 回転検出器

Also Published As

Publication number Publication date
EP4350298A1 (en) 2024-04-10
JPWO2022249795A1 (ja) 2022-12-01
CN117441089A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
JP6610697B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
US11243096B2 (en) Encoder apparatus, drive apparatus, stage apparatus, and robot apparatus
TWI482948B (zh) 多圈編碼器
US9843241B2 (en) Motor, motor system, and motor encoder
CN114270673B (zh) 旋转检测器和具有该旋转检测器的电动机
US20240100689A1 (en) Encoder device, drive device, stage device, and robot device
WO2021215076A1 (ja) 回転検出器
JPWO2021044758A5 (ja)
JP6772698B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6848306B2 (ja) エンコーダ装置、駆動装置、ステージ装置、ロボット装置、及びエンコーダ装置の取り付け方法
JPWO2021215076A5 (ja)
WO2022249795A1 (ja) 回転検出器および回転検出方法
JP6926434B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2018059875A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6870372B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2018036138A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2020064018A (ja) エンコーダおよびそれを備えたブラシレスモータ
JP2018054573A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2018048902A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JPWO2022249795A5 (ja)
JP2021001908A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP7243712B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6878899B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2022116385A (ja) 回転検出器及びそれを備えたモータ
JP2018054488A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523351

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280036575.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022811069

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022811069

Country of ref document: EP

Effective date: 20240102