WO2021088123A1 - 一种碳纤维树脂基复合材料热降解催化剂及其应用方法 - Google Patents

一种碳纤维树脂基复合材料热降解催化剂及其应用方法 Download PDF

Info

Publication number
WO2021088123A1
WO2021088123A1 PCT/CN2019/119390 CN2019119390W WO2021088123A1 WO 2021088123 A1 WO2021088123 A1 WO 2021088123A1 CN 2019119390 W CN2019119390 W CN 2019119390W WO 2021088123 A1 WO2021088123 A1 WO 2021088123A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
resin
based composite
composite material
component
Prior art date
Application number
PCT/CN2019/119390
Other languages
English (en)
French (fr)
Inventor
熊美蓉
吉建英
隋刚
胡忠民
费舍尔肯
吴天宇
Original Assignee
中国商用飞机有限责任公司北京民用飞机技术研究中心
波音(中国)投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司北京民用飞机技术研究中心, 波音(中国)投资有限公司 filed Critical 中国商用飞机有限责任公司北京民用飞机技术研究中心
Priority to EP19951758.2A priority Critical patent/EP4056633A4/en
Publication of WO2021088123A1 publication Critical patent/WO2021088123A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/14Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot liquids, e.g. molten metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the technical field of carbon fiber recycling, in particular to a carbon fiber resin-based composite material thermal degradation catalyst and an application method thereof.
  • Carbon fiber reinforced resin composites have excellent properties such as high specific strength, high specific modulus, heat resistance and corrosion resistance, so they are widely used in aviation, aerospace, automotive, energy, and sports and leisure fields.
  • carbon fiber reinforced resin-based composite materials are mostly processed by storing heat after burning, or by cutting into powder or particles as fillers, paving materials, etc., or even through landfill.
  • Carbon fiber reinforced resin composites contain high-value carbon fibers, and these treatment methods will undoubtedly cause a huge waste of carbon fiber resources.
  • the prior art has disclosed a variety of methods for decomposing the resin in the waste carbon fiber reinforced resin composite material to separate the carbon fibers in the waste carbon fiber reinforced resin composite material, so as to realize the recycling of the carbon fibers.
  • decomposition methods include thermal decomposition, strong inorganic acid decomposition, organic solvent decomposition, and sub/supercritical fluid decomposition.
  • Organic solvents can be decomposed and recycled to obtain clean carbon fibers, but a large amount of organic solvents are used in the recycling process, which will pollute the environment.
  • the solvent separation (separation, extraction, distillation, etc.) operation process after use is complicated, resulting in high recovery costs; and this method is selective for the type of carbon fiber reinforced resin composite matrix resin and even the type of curing agent, which is not suitable All matrix resins.
  • Due to the low acid resistance of epoxy resin the use of strong corrosive acids such as nitric acid can degrade the epoxy resin and recover carbon fibers with clean surfaces.
  • strong acids such as nitric acid have high requirements for reaction equipment due to their strong corrosiveness.
  • the safety factor of the operation is relatively high, and the post-reaction processing is more difficult.
  • the supercritical water treatment method has the characteristics of being clean and pollution-free, it needs to be carried out under high temperature and high pressure reaction conditions, which requires high reaction equipment. These methods are still in the laboratory stage or the pilot stage, and there is still a long way to go before the real industrialization.
  • Thermal decomposition methods include fluidized bed method and pyrolysis method.
  • the fluidized bed method is to decompose the waste carbon fiber reinforced resin composite material in hot air.
  • the recovered carbon fiber is severely oxidized due to severe motion and impact in the reactor, separator, etc., so that the surface of the carbon fiber is damaged.
  • the traditional pyrolysis method if operated in an air atmosphere, will adversely affect the properties of the recycled carbon fiber due to the high temperature and long heat treatment time.
  • waste carbon fiber-reinforced resin-based composite material is placed in an inert gas atmosphere such as nitrogen and helium for thermal decomposition and recovery, a large amount of residual carbon is easily formed on the surface of the carbon fiber, which will seriously affect the subsequent processing and processing and reuse performance of the recycled carbon fiber.
  • an inert gas atmosphere such as nitrogen and helium for thermal decomposition and recovery
  • the present invention provides a carbon fiber resin-based composite thermal degradation catalyst and its application method, which can fully degrade the resin matrix, remove residual impurities, and has high recovery efficiency, low cost, and the mechanical strength of the recycled carbon fiber. Can be maintained.
  • the present invention provides a carbon fiber resin-based composite material thermal degradation catalyst, characterized in that the catalyst includes a first component, a second component, and a third component;
  • the first component is potassium chloride or sodium chloride
  • the second component is zinc chloride or iron chloride
  • the third component is titanium dioxide or silicon oxide.
  • an implementation manner is further provided, wherein the mass ratio of the first component, the second component and the third component is 1:(0.5 ⁇ 2 ): (0.5 ⁇ 2).
  • the present invention provides a method for degrading and catalyzing carbon fiber resin-based composite materials as described above, characterized in that the steps of the method include:
  • the above aspects and any possible implementation manners further provide an implementation manner.
  • the monofilament tensile strength of the recycled carbon fiber is above 4.45 Gpa, and the strength retention rate is above 90.8%.
  • an implementation manner is further provided, and the area of the cut carbon fiber resin matrix composite material is 15-25 cm 2 .
  • the thickness of the carbon fiber resin matrix composite material in the S2 is 2 to 3 mm.
  • the matrix resin in the carbon fiber resin matrix composite material is a thermosetting resin, specifically epoxy resin, bismaleimide resin, and One or more of saturated polyester and phenolic resin.
  • the carbon fibers in the carbon fiber resin-based composite material are PAN-based carbon fibers or pitch-based carbon fibers.
  • the carbon fiber form in the carbon fiber resin-based composite material is any of continuous fiber, long fiber, chopped fiber, powder fiber, and carbon fiber fabric. One or more.
  • the present invention provides a method for recycling carbon fibers in waste carbon fiber resin-based composite materials, which is characterized in that the thermal degradation catalyst described above is used to treat carbon fiber resin-based composites at a temperature of 300°C to 500°C. The composite material is degraded and carbon fiber is obtained.
  • the present invention can obtain the following technical effects: innovatively propose a catalyst formula, the presence of the catalyst can catalyze the degradation of the resin matrix in the waste carbon fiber reinforced resin composite material and remove the residual carbon fiber surface during the degradation process. Carbon can fully degrade the resin matrix and remove the residual impurities; this method is a method of catalyzed recovery of carbon fiber by the molten salt method. The recovery time is short, the efficiency is high, and the cost is low. After the recovery, the mechanical strength of the carbon fiber is also maintained. Provide support for the recycling economy of carbon fiber resin matrix composites.
  • Fig. 1 is a schematic diagram of the front and back of the catalytic degradation of carbon fiber by a thermal degradation catalysis method provided by an embodiment of the present invention
  • FIG 2 is an embodiment of the present invention provides a catalytic process for the thermal degradation of carbon fiber was heated at 500 °C 5min after added with TiO 2 and TiO 2 without processing the SEM photograph;
  • FIG 3 is an embodiment of the present invention provides a catalytic process for the thermal degradation of the carbon fiber is heated at 10min without added TiO 2 and TiO 2 treated SEM photograph at 500 deg.] C;
  • the present invention proposes a method for catalytic thermal degradation and recovery of carbon fibers in waste carbon fiber reinforced resin-based composite materials.
  • This method is a method of catalyzing carbon fiber recovery by molten salt method. It catalyzes the degradation of the resin matrix in the waste carbon fiber reinforced resin composite material and removes the residual carbon on the surface of the carbon fiber during the degradation process.
  • An innovative catalyst formula is proposed. The presence of the catalyst can The resin matrix is fully degraded, and the residual impurities are removed.
  • the method for catalyzing and thermally degrading and recycling carbon fibers in waste carbon fiber-reinforced resin-based composite materials of the present invention specifically includes the following steps:
  • FIG. 1 shows the degradation process of the carbon fiber composite laminate. From left to right, it is the undegraded state, the semi-degraded state and the completely degraded state.
  • the carbon fiber was subjected to a single-filament tensile test, and the single-filament tensile strength of the recycled carbon fiber was measured to be 4.50 Gpa, and the strength retention rate was over 90.8%.
  • the matrix resin in the waste carbon fiber resin-based composite material is a thermosetting resin, which is one or more of epoxy resin, bismaleimide resin, unsaturated polyester or phenolic resin; the carbon fiber in the carbon fiber resin-based composite material It is PAN-based carbon fiber or pitch-based carbon fiber; the carbon fiber form in the carbon fiber resin-based composite material is any one or more of continuous fiber, long fiber, chopped fiber, powder fiber and carbon fiber fabric.
  • FIG. 2 (a) is the SEM image of heating for 5 minutes without TiO 2
  • Figure 2(b) is the SEM image of heating for 5 minutes with TiO 2
  • Figure 3(a) is the SEM image of heating for 10 minutes without TiO 2
  • Figure 3 (b) is an SEM image of heating for 10 minutes containing TiO 2
  • Fig. 4(a) is an SEM image of heating for 20 minutes without TiO 2
  • Fig. 4(b) is an SEM image of heating for 20 minutes containing TiO 2.
  • the comparison shows that containing TiO 2 has a very beneficial effect on the recycling of carbon fibers, and its integrity and strength are better than those without TiO 2 ; with the extension of heating time, the recycling of carbon fibers also has a beneficial effect.
  • the selected waste carbon fiber resin-based composite material is Toray T700 carbon fiber, fiber monofilament tensile strength is 4.90GPa, resin matrix is 4,4'-diaminodiphenylmethane epoxy resin, and curing agent is diaminodiphenyl Sulfone (DDS), the carbon fiber is PAN-based carbon fiber, the form of the carbon fiber is continuous fiber, and the weight content of the carbon fiber is 60%.
  • DDS diaminodiphenyl Sulfone
  • This embodiment provides a method for recycling carbon fibers in a waste carbon fiber resin-based composite material, and the specific steps are as follows:
  • the monofilament tensile test was performed on the carbon fiber, and the monofilament tensile strength was 4.50 Gpa, and the strength retention rate was 91.8%.
  • the selected waste carbon fiber resin-based composite material is Toray T700 carbon fiber, fiber monofilament tensile strength is 4.90GPa, resin matrix is 4,4'-diaminodiphenylmethane epoxy resin, and curing agent is diaminodiphenyl Sulfone (DDS), the carbon fiber is PAN-based carbon fiber, the form of carbon fiber is long fiber, and the weight content of carbon fiber is 60%.
  • DDS diaminodiphenyl Sulfone
  • This embodiment provides a method for recycling carbon fibers in a waste carbon fiber resin-based composite material, and the specific steps are as follows:
  • the monofilament tensile test was performed on the carbon fiber, and the monofilament tensile strength was 4.55 Gpa, and the strength retention rate was 92.9%.
  • This embodiment provides a method for recycling carbon fibers in a waste carbon fiber resin-based composite material, and the specific steps are as follows:
  • the monofilament tensile test was performed on the carbon fiber, and the monofilament tensile strength was 4.47 Gpa, and the strength retention rate was 91.2%.
  • the selected waste carbon fiber resin-based composite material is Toray T700 carbon fiber, fiber monofilament tensile strength is 4.90GPa, resin matrix is 4,4'-diaminodiphenylmethane epoxy resin, and curing agent is diaminodiphenyl Sulfone (DDS), carbon fiber is pitch-based carbon fiber, the form of carbon fiber is powder fiber, and the weight content of carbon fiber is 60%.
  • DDS diaminodiphenyl Sulfone
  • This embodiment provides a method for recycling carbon fibers in a waste carbon fiber resin-based composite material, and the specific steps are as follows:
  • the monofilament tensile test was performed on the carbon fiber, and the monofilament tensile strength was 4.47 Gpa, and the strength retention rate was 91.2%.
  • the selected waste carbon fiber resin-based composite material is carbon fiber Toray T800, fiber monofilament tensile strength is 5.49GPa, resin matrix is bisphenol A unsaturated polyester, curing agent is methyl ethyl ketone peroxide, and carbon fiber is PAN-based carbon fiber ,
  • the form of carbon fiber is carbon fiber fabric, in which the weight content of carbon fiber is 60%.
  • This embodiment provides a method for recycling carbon fibers in a waste carbon fiber resin-based composite material, and the specific steps are as follows:
  • the monofilament tensile test was performed on the carbon fiber, and the monofilament tensile strength was 5.21 Gpa, and the strength retention rate was 94.9%.
  • the carbon fiber of the selected waste carbon fiber resin-based composite material is Toray T700, the tensile strength of fiber monofilament is 4.90GPa, the resin matrix is bismaleimide resin, the carbon fiber is PAN-based carbon fiber, and the shape of the carbon fiber is continuous fiber. Carbon fiber weight content is 60%.
  • This embodiment provides a method for recycling carbon fibers in a waste carbon fiber resin-based composite material, and the specific steps are as follows:
  • the monofilament tensile test was performed on the carbon fiber, and the monofilament tensile strength was 4.45 Gpa, and the strength retention rate was 90.8%.
  • the selected waste carbon fiber resin-based composite material contains carbon fiber of Toray T700, fiber monofilament tensile strength of 4.90 GPa, resin matrix phenolic resin, carbon fiber of PAN-based carbon fiber, and carbon fiber in the form of chopped fiber.
  • the weight content of carbon fiber is 60. %.
  • This embodiment provides a method for recycling carbon fibers in a waste carbon fiber resin-based composite material, and the specific steps are as follows:
  • the monofilament tensile test was performed on the carbon fiber, and the monofilament tensile strength was 4.57 Gpa, and the strength retention rate was 93.3%.
  • this application has a simple operation process, lower requirements on operating equipment, and is suitable for industrial scale-up production; the catalyst system used is inexpensive and easy to obtain, which can accelerate the degradation process of the resin matrix and shorten the degradation Time, the resin matrix is fully degraded.
  • the degradation temperature can be reduced by 100°C to 150°C.
  • the swelling effect of the catalyst is used to promote the peeling of the composite material, which solves the problem that the composite material laminate is difficult to peel off, and avoids the uneven performance and quality caused by the difference in the reaction time of the outer fiber and the inner fiber.
  • the quality of the recycled carbon fiber is uniform, and the catalyst can be reused through a recycling process.
  • the process operation cost is reduced, and the adverse effects on the surface properties and mechanical properties of the fiber are avoided. Therefore, the present invention has the advantages of high efficiency, convenience, economy, good product quality, etc., and has broad market prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明提供了一种碳纤维树脂基复合材料热降解催化剂及其应用方法,涉及碳纤维回收技术领域,回收效率高,成本低,回收后碳纤维的力学强度也得到了保持,能够为碳纤维树脂基复合材料的循环经济提供支持;该催化剂包括第一组分、第二组分和第三组分;所述第一组分为氯化钾或氯化钠,所述第二组分为氯化锌或氯化铁,所述第三组分为二氧化钛或氧化硅;第一组分、第二组分和第三组分的质量比为1:0.5:0.5~1:2:2;使用时,将碳纤维树脂基复合材料裁剪并置于熔融状态的所述催化剂中,300~500℃保温反应10min~30min,取出进行超声清洗。本发明提供的技术方案适用于碳纤维回收的过程中。

Description

一种碳纤维树脂基复合材料热降解催化剂及其应用方法 【技术领域】
本发明涉及碳纤维回收技术领域,尤其涉及一种碳纤维树脂基复合材料热降解催化剂及其应用方法。
【背景技术】
碳纤维增强树脂复合材料具有比强度高、比模量高、耐热性和耐腐蚀性等优异性能,因而被广泛应用于航空、航天、汽车、能源和体育休闲领域。
在生产制造阶段产生的边角料或者使用寿命结束时报废的碳纤维增强树脂基复合材料废弃物都存在处理的问题。目前处理碳纤维增强树脂基复合材料多通过燃烧后贮存热量,或通过切磨成粉末或颗粒作为填料、铺路材料等甚至通过填埋方式处理。碳纤维增强树脂复合材料中含有高价值的碳纤维,这些处理方式无疑会造成碳纤维资源的巨大浪费。
现有技术已经公开了多种对废弃碳纤维增强树脂复合材料中的树脂进行分解,使其中的碳纤维被分离出来,从而实现碳纤维回收的方法。这些分解方法包括热分解、无机强酸分解、有机溶剂分解及亚/超临界流体分解等。
有机溶剂分解回收可得到干净的碳纤维,但是回收过程中使用大量的有机溶剂,会对环境产生污染。使用后的溶剂分离(分液、萃取、蒸馏等)操作过程复杂,导致回收成本较高;并且该方法中对碳纤维增强树脂复合材料基体树脂的种类、甚至固化剂的种类有选择性,并非适合所有的基体树脂。由于环氧树脂较低的耐酸性,利用硝酸等强腐蚀性酸可对环氧树脂进行降解,可回收得到表面干净的碳纤维,但是硝酸等强 酸由于腐蚀性强,对反应设备的要求较高,且对操作的安全系数要求较高,反应后处理较难。超临界水处理方法虽然具有清洁无污染的特点,但是需要在高温高压的反应条件下进行,对反应设备的要求较高。这些方法目前还处于实验室阶段或者中试阶段,离真正工业化还有一段距离。
现有技术已经公开的最具有工业化可行性的是热分解处理废弃碳纤维增强树脂复合材料的方法,热分解方法包括流化床法和热解法。其中的流化床法是将废弃碳纤维增强树脂复合材料置于热空气中分解,但是回收得到的碳纤维因氧化反应严重,并且因在反应器、分离器等中剧烈运动撞击,所以导致碳纤维表面有大量沟壑以及纤维长度的缩短和纤维性能的大幅下降,且该方法操作较为复杂。传统的热解法,如果在空气气氛下操作,由于温度高、热处理时间长,会对回收的碳纤维性能带来不利影响。若将废弃碳纤维增强树脂基复合材料置于氮气、氦气等惰性气体氛围中进行热分解回收得到的碳纤维表面易形成大量残碳,将严重影响回收碳纤维后续加工以及加工再利用性能。
因此,有必要研究一种碳纤维树脂基复合材料热降解催化剂,并应用在碳纤维回收中,来应对现有技术的不足,以解决或减轻上述一个或多个问题。
【发明内容】
有鉴于此,本发明提供了一种碳纤维树脂基复合材料热降解催化剂及其应用方法,能够使树脂基体充分降解,残余杂质被清除,且回收效率高,成本低,回收后碳纤维的力学强度也能得到保持。
一方面,本发明提供一种碳纤维树脂基复合材料热降解催化剂,其特征在于,所述催化剂包括第一组分、第二组分和第三组分;
所述第一组分为氯化钾或氯化钠,所述第二组分为氯化锌或氯化铁, 所述第三组分为二氧化钛或氧化硅。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第一组分、所述第二组分和所述第三组分的质量比为1:(0.5~2):(0.5~2)。
另一方面,本发明提供一种如上任一所述的催化剂降解催化碳纤维树脂基复合材料的方法,其特征在于,所述方法的步骤包括:
S1、将所述催化剂置于300℃~500℃的热解炉内保温;
S2、对碳纤维树脂基复合材料进行裁剪,并将其放入热解炉内,300~500℃保温反应10min~30min;
S3、将产物取出,用水超声清洗,得到回收的碳纤维。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在ASTM-D3379标准下,回收的碳纤维的单丝拉伸强度在4.45Gpa以上,强度保持率在90.8%以上。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,裁剪后的碳纤维树脂基复合材料的面积为15~25cm 2
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述S2中碳纤维树脂基复合材料的厚度为2~3mm。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述碳纤维树脂基复合材料中的基体树脂为热固性树脂,具体为环氧树脂、双马来酰亚胺树脂、不饱和聚酯和酚醛树脂中的一种或多种。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述碳纤维树脂基复合材料中的碳纤维为PAN基碳纤维或沥青基碳纤维。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述碳纤维树脂基复合材料中的碳纤维形态为连续纤维、长纤维、短切纤维、粉末纤维和碳纤维织物中的任意一种或多种。
再一方面,本发明提供一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,其特征在于,在300℃~500℃的温度下,使用如上任一所述的热降解催化剂对碳纤维树脂基复合材料进行降解,并获得碳纤维。
与现有技术相比,本发明可以获得包括以下技术效果:创新性地提出一种催化剂配方,催化剂的存在可以催化降解废弃碳纤维增强树脂复合材料中的树脂基体并去除降解过程中碳纤维表面的残碳,可以使树脂基体充分降解,残余杂质被清除;该方法是一种熔盐法催化回收碳纤维的方法,回收时间短、效率高、成本低,回收后碳纤维的力学强度也得到了保持,能够为碳纤维树脂基复合材料的循环经济提供支持。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明一个实施例提供的热降解催化方法催化降解碳纤维的前后示意图;
图2是本发明一个实施例提供的热降解催化方法碳纤维在500℃加热5min下添加TiO 2和不加TiO 2处理后的SEM照片;
图3是本发明一个实施例提供的热降解催化方法碳纤维在500℃加热10min下添加TiO 2和不加TiO 2处理后的SEM照片;
图4是本发明一个实施例提供的热降解催化方法碳纤维在500℃加热20min下添加TiO 2和不加TiO 2处理后的SEM照片。
【具体实施方式】
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
针对传统热解法温度高、处理时间长、碳纤维性能受损严重等问题,本发明提出一种催化热降解回收废弃碳纤维增强树脂基复合材料中碳纤维的方法。该方法是一种熔盐法催化回收碳纤维的方法,催化降解废弃碳纤维增强树脂复合材料中的树脂基体并去除降解过程中碳纤维表面的残碳,创新性地提出一种催化剂配方,催化剂的存在可以使树脂基体充分降解,残余杂质被清除。
本发明的催化热降解回收废弃碳纤维增强树脂基复合材料中碳纤维的方法,具体包括以下步骤:
1、将催化剂,如氯化钾、氯化锌和二氧化钛的混合物,以一定质量比混合在坩埚中,置于保温300℃~500℃的热解炉内,使其呈熔融态;
2、将2~3mm厚的碳纤维树脂基复合材料裁剪成15~25cm 2大小,并将其放入热解炉内的坩埚中,300℃~500℃保温反应10min~30min;
3、将产物取出,用水超声清洗。
用本发明的热降解催化方法对碳纤维树脂基复合材料进行催化降 解时碳纤维的前后示意图如图1所示。图1为对碳纤维复合材料层压板进行降解的过程,从左到右依次为未降解状态、半降解状态和完全降解状态。
根据ASTM-D3379标准,对碳纤维进行单丝拉伸测试,测得该回收碳纤维的单丝拉伸强度为4.50Gpa,强度保持率为90.8%以上。
废弃碳纤维树脂基复合材料中的基体树脂为热固性树脂,为环氧树脂、双马来酰亚胺树脂、不饱和聚酯或酚醛树脂中的一种或多种;碳纤维树脂基复合材料中的碳纤维为PAN基碳纤维或沥青基碳纤维;碳纤维树脂基复合材料中的碳纤维形态为连续纤维、长纤维、短切纤维、粉末纤维和碳纤维织物中的任意一种或多种。
催化剂中含有三种组分,第一组分为氯化钾或氯化钠,第二组分为氯化锌或氯化铁,第三组分为二氧化钛或氧化硅。氯化钾(或氯化钠)、氯化锌(或氯化铁)、二氧化钛(或氧化硅)质量比为1:(0.5~2):(0.5~2),即第一组分和第二组分以及第一组分和第三组分的质量比均为1:(0.5~2)。
采用KCl/ZnCl 2两种组分的催化剂热解后的碳纤维在500℃下分别添加TiO 2和不加TiO 2进行加热,得到的碳纤维样品的SEM图如图2-4所示,其中图2(a)是不含TiO 2加热5分钟的SEM图,图2(b)是含TiO 2加热5分钟的SEM图;图3(a)是不含TiO 2加热10分钟的SEM图,图3(b)是含TiO 2加热10分钟的SEM图;图4(a)是不含TiO 2加热20分钟的SEM图,图4(b)是含TiO 2加热20分钟的SEM图。对比可知,含有TiO 2对碳纤维的回收有非常有益的效果,其完整度和强度都比不含TiO 2的情况更优;随着加热时间的延长,对碳纤维的回收也是具有有益效果的。
实施例1
所选废弃的碳纤维树脂基复合材料中碳纤维为东丽T700,纤维单丝拉伸强度为4.90GPa,树脂基体为4,4'-二氨基二苯甲烷环氧树脂,固化剂为二氨基二苯砜(DDS),碳纤维为PAN基碳纤维,碳纤维的形态为连续纤维,其中碳纤维重量含量60%。
本实施例提供一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,具体步骤如下:
1、将氯化钾、氯化锌、二氧化钛以质量比1:1:1混合在坩埚中,置于保温300℃的热解炉内,使其呈熔融态。
2、将2mm厚的碳纤维树脂基复合材料裁剪成25cm 2大小,并将其放入热解炉内的坩埚中,300℃保温反应30min。
3、将产物取出,用水超声清洗。
根据ASTM-D3379标准,对碳纤维进行单丝拉伸测试,得到单丝拉伸强度为4.50Gpa,强度保持率为91.8%。
实施例2
所选废弃的碳纤维树脂基复合材料中碳纤维为东丽T700,纤维单丝拉伸强度为4.90GPa,树脂基体为4,4'-二氨基二苯甲烷环氧树脂,固化剂为二氨基二苯砜(DDS),碳纤维为PAN基碳纤维,碳纤维的形态为长纤维,其中碳纤维重量含量60%。
本实施例提供一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,具体步骤如下:
1、将氯化钾、氯化铁、二氧化钛以质量比1:0.5:0.5混合在坩埚中,置于保温500℃的热解炉内,使其呈熔融态。
2、将2mm厚的碳纤维树脂基复合材料裁剪成20cm 2大小,并将其放入热解炉内的坩埚中,500℃保温反应10min。
3、将产物取出,用水超声清洗。
根据ASTM-D3379标准,对碳纤维进行单丝拉伸测试,得到单丝拉伸强度为4.55Gpa,强度保持率为92.9%。
实施例3
所选废弃的碳纤维树脂基复合材料中碳纤维为东丽T700,纤维单丝拉伸强度为4.90GPa,树脂基体为4,4'-二氨基二苯甲烷环氧树脂,固化剂为二氨基二苯砜(DDS),碳纤维为PAN基碳纤维,碳纤维的形态为短切纤维,其中碳纤维重量含量60%。
本实施例提供一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,具体步骤如下:
1、将氯化钠、氯化锌、二氧化钛以质量比1:2:2混合在坩埚中,置于保温350℃的热解炉内,使其呈熔融态。
2、将2.5mm厚的碳纤维树脂基复合材料裁剪成15cm 2大小,并将其放入热解炉内的坩埚中,350℃保温反应30min。
3、将产物取出,用水超声清洗。
根据ASTM-D3379标准,对碳纤维进行单丝拉伸测试,得到单丝拉伸强度为4.47Gpa,强度保持率为91.2%。
实施例4
所选废弃的碳纤维树脂基复合材料中碳纤维为东丽T700,纤维单丝拉伸强度为4.90GPa,树脂基体为4,4'-二氨基二苯甲烷环氧树脂,固化剂为二氨基二苯砜(DDS),碳纤维为沥青基碳纤维,碳纤维的形态为粉末纤维,其中碳纤维重量含量60%。
本实施例提供一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,具体步骤如下:
1、将氯化钾、氯化锌、氧化硅以质量比1:2:2混合在坩埚中,置于保温350℃的热解炉内,使其呈熔融态。
2、将2.5mm厚的碳纤维树脂基复合材料裁剪成15cm 2大小,并将其放入热解炉内的坩埚中,350℃保温反应30min。
3、将产物取出,用水超声清洗。
根据ASTM-D3379标准,对碳纤维进行单丝拉伸测试,得到单丝拉伸强度为4.47Gpa,强度保持率为91.2%。
实施例5
所选废弃的碳纤维树脂基复合材料中碳纤维为东丽T800,纤维单丝拉伸强度为5.49GPa,树脂基体为双酚A型不饱和聚酯,固化剂为过氧化甲乙酮,碳纤维为PAN基碳纤维,碳纤维的形态为碳纤维织物,其中碳纤维重量含量60%。
本实施例提供一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,具体步骤如下:
1、将氯化钾、氯化锌、氧化硅以质量比1:1.2:1.5混合在坩埚中,置于保温450℃的热解炉内,使其呈熔融态。
2、将2.5mm厚的碳纤维树脂基复合材料裁剪成25cm 2大小,并将其放入热解炉内的坩埚中,450℃保温反应30min。
3、将产物取出,用水超声清洗。
根据ASTM-D3379标准,对碳纤维进行单丝拉伸测试,得到单丝拉伸强度为5.21Gpa,强度保持率为94.9%。
实施例6
所选废弃的碳纤维树脂基复合材料中碳纤维为东丽T700,纤维单丝拉伸强度为4.90GPa,树脂基体双马来酰亚胺树脂,碳纤维为PAN基碳纤维,碳纤维的形态为连续纤维,其中碳纤维重量含量60%。
本实施例提供一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,具体步骤如下:
1、将氯化钠、氯化铁、氧化硅以质量比1:1:0.5混合在坩埚中,置于保温450℃的热解炉内,使其呈熔融态。
2、将2.5mm厚的碳纤维树脂基复合材料裁剪成20cm 2大小,并将其放入热解炉内的坩埚中,450℃保温反应10min。
3、将产物取出,用水超声清洗。
根据ASTM-D3379标准,对碳纤维进行单丝拉伸测试,得到单丝拉伸强度为4.45Gpa,强度保持率为90.8%。
实施例7
所选废弃的碳纤维树脂基复合材料中碳纤维为东丽T700,纤维单丝拉伸强度为4.90GPa,树脂基体酚醛树脂,碳纤维为PAN基碳纤维,碳纤维的形态为短切纤维,其中碳纤维重量含量60%。
本实施例提供一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,具体步骤如下:
1、将氯化钾、氯化锌、二氧化钛以质量比1:1.5:1混合在坩埚中,置于保温350℃的热解炉内,使其呈熔融态。
2、将3mm厚的碳纤维树脂基复合材料裁剪成25cm 2大小,并将其放入热解炉内的坩埚中,350℃保温反应30min。
3、将产物取出,用水超声清洗。
根据ASTM-D3379标准,对碳纤维进行单丝拉伸测试,得到单丝拉伸强度为4.57Gpa,强度保持率为93.3%。
与现有的碳纤维回收技术相比,本申请操作工艺简单,对操作设备的要求较低,适于工业化放大生产;使用的催化剂体系价格低廉且易于获得,能够加速树脂基体的降解过程,缩短降解时间,使树脂基体充分降解,与现有公开技术相比,降解温度可降低100℃~150℃。并且利用催化剂的溶胀效果促进复合材料的层间剥离,解决了复合材料层压板难 以层间剥离的问题,避免了外层纤维与内层纤维反应时间的差距而导致的性能质量不均,保证了回收后碳纤维的质量均一,催化剂可经循环过程再次利用。减少工艺操作成本,避免了对纤维表面性能和力学性能造成不利影响。因此本发明具有高效,方便,经济,产品质量好等优点,具有广阔的市场前景。
本发明创新性地提出一种催化剂配方,该催化剂的存在可以使树脂基体充分降解,残余杂质被清除。降解过程中所需成本较低,工艺简单,易于进行放大生产。回收得到的纤维微观结构完整,性能保留率高,回收效果能满足循环使用条件,
以上对本申请实施例所提供的一种碳纤维树脂基复合材料热降解催化剂及其应用方法,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意 在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。

Claims (10)

  1. 一种碳纤维树脂基复合材料热降解催化剂,其特征在于,所述催化剂包括第一组分、第二组分和第三组分;
    所述第一组分为氯化钾或氯化钠,所述第二组分为氯化锌或氯化铁,所述第三组分为二氧化钛或氧化硅。
  2. 根据权利要求1所述的碳纤维树脂基复合材料热降解催化剂,其特征在于,所述第一组分、所述第二组分和所述第三组分的质量比为1:(0.5~2):(0.5~2)。
  3. 一种如权利要求1或2所述的催化剂降解催化碳纤维树脂基复合材料的方法,其特征在于,所述方法的步骤包括:
    S1、将所述催化剂置于300℃~500℃的热解炉内保温;
    S2、对碳纤维树脂基复合材料进行裁剪,并将其放入热解炉内,300~500℃保温反应10min~30min;
    S3、将产物取出,用水超声清洗,得到回收的高单丝拉伸强度和高强度保持率的碳纤维。
  4. 根据权利要求3所述的催化剂降解催化碳纤维树脂基复合材料的方法,其特征在于,在ASTM-D3379标准下,回收的碳纤维的单丝拉伸强度在4.45Gpa以上,强度保持率在90.8%以上。
  5. 根据权利要求3所述的催化剂降解催化碳纤维树脂基复合材料的方法,其特征在于,裁剪后的碳纤维树脂基复合材料的面积为15~25cm 2
  6. 根据权利要求3所述的催化剂降解催化碳纤维树脂基复合材料的方法,其特征在于,所述S2中碳纤维树脂基复合材料的厚度为2~3mm。
  7. 根据权利要求3所述的催化剂降解催化碳纤维树脂基复合材料的方法,其特征在于,所述碳纤维树脂基复合材料中的基体树脂为热固性树脂,具体为环氧树脂、双马来酰亚胺树脂、不饱和聚酯或酚醛树脂中的 一种或多种。
  8. 根据权利要求3所述的催化剂降解催化碳纤维树脂基复合材料的方法,其特征在于,所述碳纤维树脂基复合材料中的碳纤维为PAN基碳纤维或沥青基碳纤维。
  9. 根据权利要求8所述的催化剂降解催化碳纤维树脂基复合材料的方法,其特征在于,所述碳纤维树脂基复合材料中的碳纤维形态为连续纤维、长纤维、短切纤维、粉末纤维或碳纤维织物中的任意一种或多种。
  10. 一种回收废弃的碳纤维树脂基复合材料中碳纤维的方法,其特征在于,在300℃~500℃的温度下,使用如权利要求1或2所述的热降解催化剂对碳纤维树脂基复合材料进行降解,并获得碳纤维。
PCT/CN2019/119390 2019-11-04 2019-11-19 一种碳纤维树脂基复合材料热降解催化剂及其应用方法 WO2021088123A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19951758.2A EP4056633A4 (en) 2019-11-04 2019-11-19 CATALYST FOR THERMAL DEGRADATION OF COMPOSITE MATERIAL BASED ON CARBON FIBERS AND RESIN AND ASSOCIATED APPLICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911063662.2 2019-11-04
CN201911063662.2A CN110922633B (zh) 2019-11-04 2019-11-04 一种碳纤维树脂基复合材料热降解催化剂及其应用方法

Publications (1)

Publication Number Publication Date
WO2021088123A1 true WO2021088123A1 (zh) 2021-05-14

Family

ID=69850233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119390 WO2021088123A1 (zh) 2019-11-04 2019-11-19 一种碳纤维树脂基复合材料热降解催化剂及其应用方法

Country Status (3)

Country Link
EP (1) EP4056633A4 (zh)
CN (1) CN110922633B (zh)
WO (1) WO2021088123A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621171A (zh) * 2021-09-11 2021-11-09 哈尔滨工业大学 一种在温和条件下无损回收废弃含羰基的热固性树脂中增强体的方法
CN115873301A (zh) * 2022-12-27 2023-03-31 昆明理工大学 一种微波熔盐协同催化处理碳纤维复合材料回收碳纤维的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522885B (zh) * 2021-07-09 2023-05-09 东莞理工学院 一种近临界流体处理废弃印刷线路板的方法
CN114044936B (zh) * 2021-12-29 2023-06-13 北京化工大学 一种催化水蒸汽热解回收碳纤维树脂基复合材料的方法
CN114656271A (zh) * 2022-04-19 2022-06-24 浙江德鸿碳纤维复合材料有限公司 一种碳碳坩埚及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117822A (ja) * 1985-11-15 1987-05-29 Gunei Kagaku Kogyo Kk 活性炭繊維の製造法
CN104016851A (zh) * 2013-03-01 2014-09-03 杨晓林 一种阳离子交换树脂的回收方法
CN106748688A (zh) * 2016-11-29 2017-05-31 中国科学院兰州化学物理研究所苏州研究院 一种苯甲醛及其衍生物的制备方法
CN106807425A (zh) * 2017-04-01 2017-06-09 北京化工大学 废弃碳纤维树脂基复合材料热解催化剂及回收碳纤维方法
CN107236580A (zh) * 2017-08-15 2017-10-10 重庆千卡科技有限公司 一种煤炭高效固硫催化组合物
DE102017216685A1 (de) * 2017-09-20 2019-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Anlage zur Rückgewinnung von Kohlenstofffasern aus mindestens einem Faserverbundwerkstoff

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350244A (en) * 1965-04-19 1967-10-31 Dunbar L Shanklin Flux life extender
JP2004091720A (ja) * 2002-09-03 2004-03-25 National Institute Of Advanced Industrial & Technology 炭素繊維と樹脂との分離方法
CN102115547B (zh) * 2010-12-17 2014-11-12 中国科学院长春应用化学研究所 一种熔融浴及用其回收热固性环氧树脂或复合材料的方法
CN106957451B (zh) * 2017-04-01 2019-09-10 北京化工大学 一种从废弃碳纤维树脂基复合材料中回收碳纤维的方法
US11926710B2 (en) * 2017-12-28 2024-03-12 University Of Southern California Aerobic depolymerization of fiber-reinforced composites
CN108912389B (zh) * 2018-07-19 2021-11-09 中国科学院山西煤炭化学研究所 一种碳纤维/双马树脂复合材料中碳纤维的回收方法
CN109206659B (zh) * 2018-08-03 2020-12-18 陈亮广 一种连续的回收碳纤维的方法及连续性碳纤维回收装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117822A (ja) * 1985-11-15 1987-05-29 Gunei Kagaku Kogyo Kk 活性炭繊維の製造法
CN104016851A (zh) * 2013-03-01 2014-09-03 杨晓林 一种阳离子交换树脂的回收方法
CN106748688A (zh) * 2016-11-29 2017-05-31 中国科学院兰州化学物理研究所苏州研究院 一种苯甲醛及其衍生物的制备方法
CN106807425A (zh) * 2017-04-01 2017-06-09 北京化工大学 废弃碳纤维树脂基复合材料热解催化剂及回收碳纤维方法
CN107236580A (zh) * 2017-08-15 2017-10-10 重庆千卡科技有限公司 一种煤炭高效固硫催化组合物
DE102017216685A1 (de) * 2017-09-20 2019-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Anlage zur Rückgewinnung von Kohlenstofffasern aus mindestens einem Faserverbundwerkstoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056633A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621171A (zh) * 2021-09-11 2021-11-09 哈尔滨工业大学 一种在温和条件下无损回收废弃含羰基的热固性树脂中增强体的方法
CN113621171B (zh) * 2021-09-11 2023-08-18 哈尔滨工业大学 一种在温和条件下无损回收废弃含羰基的热固性树脂中增强体的方法
CN115873301A (zh) * 2022-12-27 2023-03-31 昆明理工大学 一种微波熔盐协同催化处理碳纤维复合材料回收碳纤维的方法

Also Published As

Publication number Publication date
EP4056633A4 (en) 2024-01-24
CN110922633A (zh) 2020-03-27
CN110922633B (zh) 2021-03-12
EP4056633A1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
WO2021088123A1 (zh) 一种碳纤维树脂基复合材料热降解催化剂及其应用方法
JP7098639B2 (ja) 複合材料廃棄物から炭素繊維を回収する方法
JP7138572B2 (ja) 複合材廃棄物から炭素繊維を回収するための方法
JP6688332B2 (ja) 炭素繊維回收方法
CN104262675A (zh) 一种碳纤维复合材料回收碳纤维的方法
CN108610507A (zh) 一种高效回收碳纤维的方法
CN106496631A (zh) 超临界混合流体回收碳纤维增强树脂基复合材料的方法
CN103333360B (zh) 基于强化方式的高性能纤维增强树脂基复合材料回收方法
CN111572115A (zh) 具有高疲劳强度的cf/peek复合材料及其制备方法
Deng et al. Efficient recycling of carbon fiber from carbon fiber reinforced composite and reuse as high performance electromagnetic shielding materials with superior mechanical strength
CN114044936B (zh) 一种催化水蒸汽热解回收碳纤维树脂基复合材料的方法
JP7328019B2 (ja) 強化複合材料を再生する方法
CN111410758A (zh) 高抗冲界面改性的cf/peek复合材料及其制备方法
CN111196879A (zh) 从碳纤维增强热固性树脂基复合材料中回收碳纤维的方法
CN108690218A (zh) 一种可以高效回收可直接再利用的碳纤维的回收方法
JP2022030256A (ja) 炭素繊維強化樹脂からの炭素繊維の回収方法
CN110857341A (zh) 一种碳纤维树脂基复合材料的降解溶剂及降解方法
CN115873301A (zh) 一种微波熔盐协同催化处理碳纤维复合材料回收碳纤维的方法
CN112048098B (zh) 一种超临界流体回收碳纤维的方法
CN117264416A (zh) 一种cfrp废弃物炭化再生树脂基复合材料及其制备方法
CN117644598A (zh) 一种退役风电叶片内部热解处理回收方法
CN116063735A (zh) 一种从碳纤维复合材料中回收碳纤维的方法及其应用
Matsuda et al. Recycling of wet carbon fiber-reinforced plastic laminates by thermal decomposition coupled with electrical treatment
CN116023706A (zh) 一种提高树脂基纤维增强复合材料热解回收效率的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019951758

Country of ref document: EP

Effective date: 20220607