WO2021083385A1 - 一种铜或铜合金材料的制备方法及精炼用精炼剂 - Google Patents

一种铜或铜合金材料的制备方法及精炼用精炼剂 Download PDF

Info

Publication number
WO2021083385A1
WO2021083385A1 PCT/CN2020/130669 CN2020130669W WO2021083385A1 WO 2021083385 A1 WO2021083385 A1 WO 2021083385A1 CN 2020130669 W CN2020130669 W CN 2020130669W WO 2021083385 A1 WO2021083385 A1 WO 2021083385A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
refining
copper alloy
agent
refining agent
Prior art date
Application number
PCT/CN2020/130669
Other languages
English (en)
French (fr)
Inventor
宋克兴
安士忠
周延军
刘海涛
吴保安
李韶林
解浩峰
肖柱
丁雨田
程楚
张彦敏
皇涛
国秀花
朱一明
Original Assignee
河南科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南科技大学 filed Critical 河南科技大学
Publication of WO2021083385A1 publication Critical patent/WO2021083385A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Definitions

  • the invention belongs to the technical field of non-ferrous metal smelting, and specifically relates to a method for preparing copper or copper alloy materials and a refining agent for refining.
  • Copper materials including pure copper and copper alloys, are widely used due to their excellent electrical conductivity, thermal conductivity, corrosion resistance and toughness.
  • the copper alloy is an alloy formed by adding one or more other elements with pure copper as the matrix, and the properties of the copper alloy are different due to the difference of the added elements. Therefore, in the prior art, the types and contents of added elements are often adjusted to improve the performance of copper alloys.
  • the raw materials are often smelted into a molten liquid first, but they are easily oxidized and adsorb other impurities during smelting.
  • oxygen and other impurities such as sulfur and phosphorus coexist in the copper material, it will have a certain impact on the performance of the copper material. For example, oxygen and sulfur form brittle compounds of Cu 2 O and Cu 2 S in copper, reducing the plasticity and conductivity of copper materials; although the solid solubility of phosphorus in copper is very small, it will significantly reduce the conductivity of copper materials.
  • the preparation process of copper materials generally includes: first smelting the raw materials into a molten liquid, then adding a refining agent for refining, removing the slag and casting.
  • the refining step is a key step to remove harmful impurities such as oxygen, phosphorus, and sulfur.
  • a refining agent that can react with oxygen and other harmful impurities to form other compounds is often used.
  • the density of the generated compounds is small and enters the slag phase to remove harmful impurities. Impurities.
  • the development of a refining agent with good impurity removal effect and low cost has become one of the work of researchers.
  • the purpose of the present invention is to provide a refining agent for refining copper or copper alloy materials, which can reduce the content of oxygen, phosphorus, and sulfur in the copper or copper alloy materials to the ppm level.
  • the object of the present invention is also to provide a method for preparing copper or copper alloy material, which has low cost and extremely low oxygen, phosphorus and sulfur content in the prepared copper or copper alloy material.
  • the technical scheme adopted by the refining agent for refining copper or copper alloy materials of the present invention is:
  • a refining agent for refining copper or copper alloy is an alloy composed of Cu element, RE element, and M element; said RE element is La element, Ce element, Pr element, Nd element, Pm element, Sm element One or more of Eu element, Y element, and Sc element, and the M element is one of Li element, Na element, K element, Be element, Mg element, and Ca element. Further preferably, the M element is Na element.
  • Alkali metals and alkaline earth metals have good reducibility and can be used as deoxidizers.
  • Rare earth (RE) elements can form refractory compounds with some harmful impurities to remove impurities, and RE also has the effect of refining crystal grains to improve the performance of the material.
  • the refining agent of the present invention is a copper alloy containing RE and alkali metal or alkaline earth metal, wherein RE can be a kind of rare earth or mixed rare earth.
  • RE and M are added to the melt in the form of an alloy, the distance between RE atoms and M atoms is small, and it can form RE- with less density with the impurity elements oxygen, phosphorus, and sulfur in the melt.
  • MO, RE-MS and RE-MP composite compounds are easy to float up in the melt and enter the slag phase to be removed.
  • the mass percentage of Cu element in the refining agent is 50-70%, the mass percentage of RE element is 10-30%, and the mass percentage of M element is 10-30%.
  • the reason why the mass percentage content of RE element and M element are controlled at 10-30% is: when the content of RE element and M element is too low, the refining effect is not obvious; if the content of RE element and M element is too high, In the refining process, it will burn too much and the utilization rate will not be high.
  • the mass percentage of the Cu element is 60-70%, the mass percentage of the RE element is 15-20%, and the mass percentage of the M element is 15-20%.
  • the technical scheme adopted by the preparation method of the copper or copper alloy material of the present invention is:
  • a method for preparing copper or copper alloy materials comprising the following steps: adding a refining agent to the melt covered with dry charcoal and a covering agent; the refining agent is the refining agent for refining copper or copper alloy materials, and the melting
  • the liquid is copper melt or copper alloy melt, and the covering agent is composed of sodium phosphate, sodium fluoroaluminate and sodium fluoride.
  • the copper or copper alloy material is refined by using the refining agent of the present invention, and the cost is low and the content of oxygen, phosphorus and sulfur in the prepared copper or copper alloy material is extremely low.
  • the feeding method is used when adding the refining agent.
  • the wire feeding method is a technique commonly used in the metal refining process to feed metal or alloy powder into the molten pool.
  • the wire feeding method makes the components of the refining agent more evenly distributed in the melt, which improves the purification effect.
  • the preparation method of the present invention can realize the large-scale production of copper or copper alloy materials without any modification to the existing copper product casting line.
  • the added amount of the refining agent is 0.001% to 1% of the copper mass in the melt. More preferably, the added amount of the refining agent is 0.1% to 1% of the copper mass in the melt.
  • the mass ratio of the dry charcoal to the covering agent is 70-90:10-30.
  • the covering agent is composed of sodium phosphate, sodium fluoroaluminate and sodium fluoride.
  • the above-mentioned covering agent can react with RE-MO, RE-MS and RE-MP composite compounds to generate (RE, M) [PO 4 ], (RE, M) F and other compounds, making it easier for the composite compounds to enter the slag.
  • the preferred mass percentage of sodium phosphate in the covering agent is 30-50%, and the mass percentage of sodium fluoroaluminate is 30--50%. 40%, the mass percentage of sodium fluoride is 20-40%.
  • the molten liquid is a molten liquid pretreated by deoxygenation and desulfurization.
  • the deoxidizer used in the pretreatment of deoxygenation and desulfurization is CO gas; the desulfurizer used is calcium or calcium oxide, and the added amount of the desulfurizer is 0.1-0.3% of the mass of the melt.
  • the refining agent in this implementation is composed of the following components by mass percentage: 60% Cu, 20% Ce, and 20% Na.
  • the refining agent of this embodiment is prepared by a method including the following steps: according to the percentage of each component, respectively weigh the copper raw materials, the cerium raw materials and the sodium raw materials with a purity of more than 99.9%; mix the raw materials uniformly and place them in a vacuum furnace Melting, the vacuum degree reaches 3*10 -3 Pa during smelting, protected by argon gas; then, it is obtained by casting.
  • the refining agent obtained by casting can be drawn into filaments for subsequent refining by the feeding method.
  • it can also be prepared into blocks or powders, and accordingly, different adding methods are adopted in the subsequent refining.
  • the refining agent of this embodiment is composed of the following components by mass percentage: 70% Cu, 15% La, 15% Na.
  • the refining agent of this embodiment is prepared by a method including the following steps: according to the percentage of each component, weigh the copper raw materials, lanthanum raw materials, and sodium raw materials with a purity of more than 99.9%; mix the raw materials uniformly and place them in a vacuum furnace Melting, the vacuum reaches 4*10 -3 Pa during smelting, protected by argon; then the alloy is obtained by casting.
  • the refining agent of this embodiment is composed of the following components by mass percentage: 50% Cu, 30% Y, and 20% Mg.
  • the refining agent of this embodiment is composed of the following components by mass percentage: 60% Cu, 10% Sm and Nd (the mass ratio of the two is 1:1), and 30% Ca.
  • the preparation method of the refining agent in this embodiment refers to the preparation method in Example 1.
  • the refining agent of this embodiment is composed of the following components by mass percentage: 70% Cu, 20% Sc, and 10% K.
  • the preparation method of the refining agent in this embodiment refers to the preparation method in Example 1.
  • the rare earth element may also be Pm and/or Eu element.
  • the M element used can also be Li element or Be element.
  • This embodiment is a preparation method of Cu-Cr (0.3%)-Zr (0.5%) alloy, which specifically includes the following steps:
  • This embodiment is a preparation method of Cu-Ni (0.4%)-Al (0.3%) alloy, which includes the following steps:
  • Example 3 The refining agent in Example 3 (drawn into a wire) with a mass of 1% of the copper mass in the copper alloy melt is added to the copper alloy melt by the wire feeding method, and graphite rods are used in the process of adding Stir the copper alloy melt;
  • the preparation method of the Cu-Fe (0.5%) alloy of this embodiment includes the following steps:
  • the covering agent is composed of the following mass percentage components: 30% sodium phosphate, 30% sodium fluoroaluminate and 40% sodium fluoride) heated to 1150°C to obtain a copper alloy melt;
  • the preparation method of the Cu-Ag (0.5%) alloy of this embodiment includes the following steps:
  • the covering agent is composed of the following components by mass percentage: 45% sodium phosphate, 30% sodium fluoroaluminate and 25% sodium fluoride) heated to 1160°C to obtain a copper alloy melt;
  • the impurity content and electrical conductivity of the copper or copper alloy prepared in Examples 6 to 10 were tested.
  • the oxygen impurity was measured by an oxygen analyzer and infrared method; the sulfur impurity was measured by a carbon-sulfur analyzer and a high-frequency combustion infrared absorption method. Determination; Phosphorus impurities are determined by ICP; conductivity is tested by eddy current method.
  • Table 1 (wt represents weight).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

一种铜或铜合金材料的制备方法及精炼用精炼剂,铜或铜合金材料精炼用精炼剂为由Cu元素、RE元素、M元素构成的合金;所述RE元素为稀土元素,所述M元素为碱金属元素或碱土金属元素;能够与氧、磷、硫杂质生成密度较小的化合物,从而达到去除杂质的目的。采用该精炼剂精炼后的铜或铜合金材料中的氧、磷以及硫的含量均为ppm级,并且制备成本较低。

Description

一种铜或铜合金材料的制备方法及精炼用精炼剂 技术领域
本发明属于有色金属冶炼技术领域,具体涉及一种铜或铜合金材料的制备方法及精炼用精炼剂。
背景技术
铜材料,包括纯铜和铜合金,由于极好的导电、导热、耐腐蚀性及韧性等特点被广泛使用。其中铜合金为以纯铜为基体加入一种或几种其他元素所构成的合金,加入的元素不同使得铜合金的性能有所差异。因此现有技术中常通过调整添加的元素种类以及含量来改善铜合金的性能。在铜材料尤其是铜合金的制备过程中,常将原料先熔炼成熔液,但在熔炼时极易被氧化和吸附其他杂质。当氧和其他杂质如硫、磷等在铜材料中共存时,对铜材料的性能有一定的影响。如氧、硫在铜中形成Cu 2O和Cu 2S脆性化合物,降低铜材料的塑性以及导电性;磷在铜的固溶度虽然很小,但会使铜材料的电导率显著降低。
为去除氧磷硫等有害杂质,铜材料的制备过程一般包括:先将原料熔炼成熔液,然后加入精炼剂进行精炼,扒渣后浇铸。其中精炼步骤是去除氧、磷、硫等有害杂质的关键步骤,在精炼过程中常采用能够与氧及其他有害杂质反应生成其他化合物的精炼剂,生成的化合物的密度较小进入渣相从而除去有害杂质。目前,开发出除杂效果好并且成本低的精炼剂已成为研究者的工作之一。
发明内容
本发明的目的在于提供一种铜或铜合金材料精炼用精炼剂,该精炼剂能够使铜或铜合金材料中氧、磷、硫的含量降至ppm级。
本发明的目的还在于提供一种铜或铜合金材料的制备方法,该制备方法成本低并且制得的铜或铜合金材料中氧、磷、硫含量极低。
本发明的铜或铜合金材料精炼用精炼剂采用的技术方案为:
一种铜或铜合金精炼用精炼剂,该精炼剂为由Cu元素、RE元素、M元素构成的合金;所述RE元素为La元素、Ce元素、Pr元素、Nd元素、Pm元素、Sm元素、Eu元素、Y元素、Sc元素中的一种或多种,所述M元素为Li元素、Na元素、K元素、Be元素、Mg元素、Ca元素中的一种。进一步优选的,所述M元素为Na元素。
碱金属及碱土金属有较好的还原性,能够作为脱氧剂使用。稀土(RE)元素能够与一些 有害杂质形成难熔化合物从而除去杂质,并且RE还具有细化晶粒从而提高材料的性能的作用。本发明的精炼剂为含RE与碱金属或碱土金属的铜合金,其中RE可以为一种稀土也可以为混合稀土。在精炼时,由于RE与M是以合金的形式加入到熔液中,RE原子与M原子之间的间距较小,能够与熔液中杂质元素氧、磷、硫形成密度较小的RE-M-O、RE-M-S及RE-M-P复合化合物,容易在熔液中上浮进入渣相而除去。
优选的,所述精炼剂中Cu元素的质量百分含量为50~70%,RE元素的质量百分含量为10~30%,M元素的质量百分含量为10~30%。将RE元素以及M元素的质量百分含量均控制在10~30%的原因是:当RE元素以及M元素的含量过低时,精炼效果不明显;若RE元素以及M元素的含量过高,则在精炼过程中会烧损过大,利用率不高。进一步优选的,所述Cu元素的质量百分含量为60~70%,RE元素的质量百分含量为15~20%,M元素的质量百分含量为15~20%。
本发明的铜或铜合金材料的制备方法采用的技术方案为:
一种铜或铜合金材料的制备方法,包括以下步骤:向覆盖有干燥木炭和覆盖剂的熔液中加入精炼剂;所述精炼剂为上述铜或铜合金材料精炼用精炼剂,所述熔液为铜熔液或铜合金熔液,所述覆盖剂由磷酸钠、氟铝酸钠和氟化钠组成。
采用本发明的精炼剂对铜或铜合金材料进行精炼,成本低并且制得的铜或铜合金材料中氧、磷、硫的含量极低。
优选的,加入精炼剂时采用喂丝法。喂丝法是金属精炼过程中常用的将金属或合金粉送入熔池的技术。采用喂丝法使得精炼剂各组分较为均匀地分布在熔液中,提高了净化效果。并且本发明的制备方法不需要对现有铜产品铸线进行任何改动即可实现铜或铜合金材料的大规模生产。
优选的,为避免残余精炼剂过多,所述精炼剂的添加量为熔液中铜质量的0.001%~1%。进一步优选的,所述精炼剂的添加量为熔液中铜质量的0.1%~1%。
优选的,所述干燥木炭与覆盖剂的质量比为70~90:10~30。
优选的,所述覆盖剂由磷酸钠、氟铝酸钠和氟化钠组成。上述覆盖剂能够和RE-M-O、RE-M-S及RE-M-P复合化合物反应生成(RE,M)[PO 4]、(RE,M)F等化合物,使复合化合物更容易进入炉渣。
综合考虑覆盖剂各成分的熔点、密度以及对生成的渣相的吸附作用,优选的覆盖剂中磷酸钠的质量百分含量为30~50%,氟铝酸钠的质量百分含量为30~40%,氟化钠的质量百分含量为20~40%。
优选的,为进一步保证净化效果,所述熔液为经过脱氧脱硫预处理的熔液。优选的,脱氧脱硫预处理时所用脱氧剂为CO气体;所用脱硫剂为钙或氧化钙,脱硫剂的添加量为熔液质量的0.1~0.3%。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
一、铜或铜合金材料精炼用精炼剂的实施例
实施例1
本实施的精炼剂由以下质量百分含量的组分组成:60%的Cu,20%的Ce,20%的Na。本实施例的精炼剂由包括以下步骤的方法制备:根据各组分的百分比,分别称取纯度均在99.9%以上铜原料、铈原料以及钠原料;将各原料混合均匀后置于真空炉中熔炼,熔炼时真空度达到3*10 -3Pa,氩气保护;然后进行铸造,即得。为便于精炼使用,可以将铸造得到的精炼剂拉拔成丝以备后续采用喂丝法进行精炼,当然也可以制备成块状或粉末,相应的在后续精炼中采取不同的加入方式。
实施例2
本实施例的精炼剂由以下质量百分含量的组分组成:70%的Cu,15%的La,15%的Na。本实施例的精炼剂由包括以下步骤的方法制备:根据各组分的百分比,分别称取纯度均在99.9%以上铜原料、镧原料以及钠原料;将各原料混合均匀后置于真空炉中熔炼,熔炼时真空度达到4*10 -3Pa,氩气保护;然后进行铸造得合金,即得。
实施例3
本实施例的精炼剂由以下质量百分含量的组分组成:50%的Cu,30%的Y,20%的Mg。本实施例的精炼剂的制备方法参照实施例1的制备方法。
实施例4
本实施例的精炼剂由以下质量百分含量的组分组成:60%的Cu,10%的Sm和Nd(二者质量比为1:1),30%的Ca。本实施例的精炼剂的制备方法参照实施例1中的制备方法。
实施例5
本实施例的精炼剂由以下质量百分含量的组分组成:70%的Cu,20%的Sc,10%的K。本实施例的精炼剂的制备方法参照实施例1中的制备方法。
本发明的精炼剂的其他实施例中,稀土元素还可以采用Pm和/或Eu元素。
本发明的精炼剂的其他实施例中,所用M元素还可以采用Li元素或Be元素。
二、铜或铜合金材料的制备方法的实施例
实施例6
本实施例的制备方法,包括以下步骤:
(1)向熔炼炉中加入铜块、铜边角料、废铜料(共10000g),然后在各原料上平铺覆盖(覆盖要严密)20mm厚的干燥木炭和覆盖剂的混合物,(干燥木炭和覆盖剂的质量比为80:20,覆盖剂由以下质量百分比的组分组成:30%的磷酸钠,40%的氟铝酸钠以及30%的氟化钠)加热到1250℃,得铜熔液;
(2)向铜熔液中通入CO气体进行脱氧预处理,CO通入时间为30min;向铜熔液中加入脱硫剂(钙,添加量为铜熔液质量的0.3%)进行脱硫预处理,经过脱氧以及脱硫预处理后的铜熔液中的氧含量为15ppm,硫含量为20ppm,磷含量为8ppm;
(3)采用喂丝法向步骤(2)所得铜熔液中加入质量为铜熔液质量的1%的实施例1中的精炼剂(已拉拔成丝料),在加入过程中用石墨棒对铜熔液进行搅拌;
(4)用木棒进行扒渣,然后将1200℃的铜熔液浇铸到准备就绪的铸型内,即得纯铜。
实施例7
本实施例为Cu-Cr(0.3%)-Zr(0.5%)合金的制备方法,具体包括以下步骤:
(1)向熔炼炉中加入Cu块、Cr块、Zr块,然后在各原料上平铺覆盖(覆盖要严密)30mm厚的干燥木炭和覆盖剂的混合物,(干燥木炭和覆盖剂的质量比为75:25,覆盖剂由以下质量百分比的组分组成:50%的磷酸钠,30%的氟铝酸钠以及20%的氟化钠)加热到1300℃,得铜合金熔液;
(2)向铜合金熔液中吹入CO进行脱氧预处理,时间为30min;向铜合金熔液中加入脱硫剂(氧化钙,添加量为铜合金熔液质量的0.2%)进行预脱硫处理;经过脱氧脱硫预处理后的铜合金熔液中氧含量为19ppm,硫含量为18ppm,磷含量为10ppm;
(3)采用喂丝法向步骤(2)所得铜合金熔液中加入铜合金熔液中铜质量的0.8%实施例2中的精炼剂(已拉拔成丝料),在加入过程中用石墨棒对铜合金熔液进行搅拌;
(4)用木棒进行扒渣,然后将1250℃的铜合金熔液浇铸到准备就绪的铸型内,即得Cu-Cr-Zr合金。
实施例8
本实施例为Cu-Ni(0.4%)-Al(0.3%)合金的制备方法,包括以下步骤:
(1)向熔炼炉中加入Cu块、Ni块、Al块,然后在各原料上平铺覆盖(覆盖要严密)20mm厚的干燥木炭和覆盖剂的混合物,(干燥木炭和覆盖剂的质量比为70:30,覆盖剂由以下质量百分比的组分组成:50%的磷酸钠,30%的氟铝酸钠以及20%的氟化钠)加热到1200℃, 得铜合金熔液;
(2)向铜合金熔液中吹入CO进行脱氧预处理,时间为20min;向铜合金熔液中加入脱硫剂(氧化钙,添加量为铜合金熔液质量的0.2%)进行脱硫预处理;经过脱氧脱硫预处理后的铜合金熔液中氧含量为13ppm,硫含量为15ppm,磷含量为11ppm;
(3)采用喂丝法向铜合金熔液中加入质量为铜合金熔液中铜质量的1%的实施例3中的精炼剂(已拉拔成丝料),在加入过程中并用石墨棒对铜合金熔液进行搅拌;
(4)用木棒进行扒渣,然后将1200℃的铜合金熔液浇铸到准备就绪的铸型内,即得。
实施例9
本实施例Cu-Fe(0.5%)合金的制备方法,包括以下步骤:
(1)向熔炼炉中加入Cu块、Fe块,然后在各原料上平铺覆盖(覆盖要严密)20mm厚的干燥木炭和覆盖剂的混合物,(干燥木炭和覆盖剂的质量比为90:10,覆盖剂由以下质量百分比的组分组成:30%的磷酸钠,30%的氟铝酸钠以及40%的氟化钠)加热到1150℃,得铜合金熔液;
(2)向铜合金熔液中吹入CO进行脱氧预处理,时间为40min;向铜合金熔液中加入脱硫剂(氧化钙,添加量为铜合金熔液质量的0.1%)进行脱硫预处理;经过脱氧以及脱硫预处理后的铜合金熔液中氧含量为10ppm,硫含量为12ppm,磷含量为9ppm;
(3)采用喂丝法向步骤(2)所得铜合金熔液中加入质量为铜合金熔液中铜质量的0.5%的实施例4中的精炼剂(已拉拔成丝料),在加入过程中用石墨棒对铜合金熔液进行搅拌;
(4)用木棒进行扒渣,然后将1130℃的铜合金熔液浇铸到准备就绪的铸型内,即得。
实施例10
本实施例Cu-Ag(0.5%)合金的制备方法,包括以下步骤:
(1)向熔炼炉中加入Cu块、Ag块,然后在各原料上平铺覆盖(覆盖要严密)20mm厚的干燥木炭和覆盖剂的混合物,(干燥木炭和覆盖剂的质量比为85:15,覆盖剂由以下质量百分比的组分组成:45%的磷酸钠,30%的氟铝酸钠以及25%的氟化钠)加热到1160℃,得铜合金熔液;
(2)向铜合金熔液中吹入CO气体进行脱氧预处理,吹入时间为50min;向铜合金熔液中加入脱硫剂(氧化钙,添加量为铜合金熔液质量的0.3%)进行脱硫预处理;经过脱氧脱硫预处理后的铜合金熔液中氧含量为8ppm,硫含量为9ppm,磷含量为6ppm;
(3)采用喂丝法向步骤(2)所得铜合金熔液中加入质量为铜合金熔液中铜质量的0.1%的实施例5中的精炼剂(已拉拔成丝料),在加入过程中用石墨棒对铜合金熔液进行搅拌;
(4)用木棒进行扒渣,然后将1180℃的铜合金熔液浇铸到准备就绪的铸型内,即得。
试验例1
对实施例6~10制得的铜或铜合金中的杂质含量以及导电率进行测试,其中氧杂质采用定氧仪采用红外法进行测定;硫杂质采用碳硫仪采用高频燃烧红外吸收法进行测定;磷杂质采用ICP测定;导电率采用涡流法测试。测试结果如表1所示(wt表示重量)。
表1 铜或铜合金中杂质含量及其导电率
Figure PCTCN2020130669-appb-000001

Claims (8)

  1. 一种铜或铜合金材料精炼用精炼剂,其特征在于,所述精炼剂为由Cu元素、RE元素、M元素构成的合金;所述RE元素为La元素、Ce元素、Pr元素、Nd元素、Pm元素、Sm元素、Eu元素、Y元素、Sc元素中的一种或多种,所述M元素为Li元素、Na元素、K元素、Be元素、Mg元素、Ca元素中的一种。
  2. 根据权利要求1所述的铜或铜合金材料精炼用精炼剂,其特征在于,所述精炼剂中Cu元素的质量百分含量为50~70%,RE元素的质量百分含量为10~30%,M元素的质量百分含量为10~30%。
  3. 一种铜或铜合金材料的制备方法,其特征在于,所述制备方法包括以下步骤:精炼时向覆盖有干燥木炭和覆盖剂的熔液中加入精炼剂;所述精炼剂为权利要求1或2所述的铜或铜合金材料精炼用精炼剂,所述熔液为铜熔液或铜合金熔液,所述覆盖剂由磷酸钠、氟铝酸钠和氟化钠组成。
  4. 根据权利要求3所述的铜或铜合金材料的制备方法,其特征在于,加入精炼剂时采用喂丝法。
  5. 根据权利要求3所述的铜或铜合金材料的制备方法,其特征在于,所述精炼剂的添加量为熔液中铜质量的0.001%~1%。
  6. 根据权利要求3所述的铜或铜合金材料的制备方法,其特征在于,所述干燥木炭与覆盖剂的质量比为70~90:10~30。
  7. 根据权利要求3所述的铜或铜合金材料的制备方法,其特征在于,所述覆盖剂中,磷酸钠的质量百分含量为30~50%,氟铝酸钠的质量百分含量为30~40%,氟化钠的质量百分含量为20~40%。
  8. 根据权利要求3~7任一项所述的铜或铜合金材料的制备方法,其特征在于,所述熔液为经过脱氧脱硫预处理的熔液。
PCT/CN2020/130669 2019-11-25 2020-11-20 一种铜或铜合金材料的制备方法及精炼用精炼剂 WO2021083385A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911168574.9 2019-11-25
CN201911168574.9A CN110951985B (zh) 2019-11-25 2019-11-25 一种铜或铜合金材料的制备方法及精炼用精炼剂

Publications (1)

Publication Number Publication Date
WO2021083385A1 true WO2021083385A1 (zh) 2021-05-06

Family

ID=69976794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130669 WO2021083385A1 (zh) 2019-11-25 2020-11-20 一种铜或铜合金材料的制备方法及精炼用精炼剂

Country Status (3)

Country Link
CN (1) CN110951985B (zh)
LU (1) LU500368B1 (zh)
WO (1) WO2021083385A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951985B (zh) * 2019-11-25 2021-05-11 河南科技大学 一种铜或铜合金材料的制备方法及精炼用精炼剂
CN111809074B (zh) * 2020-07-21 2022-03-08 四川科派新材料有限公司 一种镧-碳-镁复合材料、碲铜合金材料及其制备方法
CN111893345A (zh) * 2020-08-06 2020-11-06 贵溪骏达特种铜材有限公司 一种铝青铜的铸锭工艺
CN112410604A (zh) * 2020-11-17 2021-02-26 宁波长振铜业有限公司 一种降低黄铜熔体中杂质铝的方法
CN113930639A (zh) * 2021-10-20 2022-01-14 江西金叶大铜科技有限公司 一种用于紫杂铜精炼除杂质的铜钙稀土合金及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786469A (en) * 1985-08-23 1988-11-22 London & Scandinavian Metallurgical Co Limited Grain refining metals
CN103146943A (zh) * 2013-01-14 2013-06-12 中南大学 一种紫杂铜精炼剂及其制备方法
EP2669028A1 (en) * 2011-01-25 2013-12-04 Nagoya Institute of Technology Crystal grain refining agent for casting and method for producing the same
CN104046831A (zh) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 一种汽车用铜合金电线的制备方法
CN104060121A (zh) * 2014-06-05 2014-09-24 锐展(铜陵)科技有限公司 一种汽车用高耐磨铜合金线的制备方法
CN104152728A (zh) * 2014-06-05 2014-11-19 锐展(铜陵)科技有限公司 一种汽车线束用高导热铜合金线的制备方法
CN107058777A (zh) * 2017-04-18 2017-08-18 中南大学 一种去除废旧铋黄铜中Bi、Pb的精炼剂及其制备方法
CN110951985A (zh) * 2019-11-25 2020-04-03 河南科技大学 一种铜或铜合金材料的制备方法及精炼用精炼剂

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2181156A (en) * 1985-10-04 1987-04-15 London Scandinavian Metall Grain refining copper-bowed metals
CN104195363A (zh) * 2014-09-25 2014-12-10 江苏鑫成铜业有限公司 一种紫杂铜回收精炼剂
CN104404263B (zh) * 2014-12-19 2016-10-26 中南大学 一种废杂铜复合精炼剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786469A (en) * 1985-08-23 1988-11-22 London & Scandinavian Metallurgical Co Limited Grain refining metals
EP2669028A1 (en) * 2011-01-25 2013-12-04 Nagoya Institute of Technology Crystal grain refining agent for casting and method for producing the same
CN103146943A (zh) * 2013-01-14 2013-06-12 中南大学 一种紫杂铜精炼剂及其制备方法
CN104046831A (zh) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 一种汽车用铜合金电线的制备方法
CN104060121A (zh) * 2014-06-05 2014-09-24 锐展(铜陵)科技有限公司 一种汽车用高耐磨铜合金线的制备方法
CN104152728A (zh) * 2014-06-05 2014-11-19 锐展(铜陵)科技有限公司 一种汽车线束用高导热铜合金线的制备方法
CN107058777A (zh) * 2017-04-18 2017-08-18 中南大学 一种去除废旧铋黄铜中Bi、Pb的精炼剂及其制备方法
CN110951985A (zh) * 2019-11-25 2020-04-03 河南科技大学 一种铜或铜合金材料的制备方法及精炼用精炼剂

Also Published As

Publication number Publication date
CN110951985A (zh) 2020-04-03
CN110951985B (zh) 2021-05-11
LU500368B1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2021083385A1 (zh) 一种铜或铜合金材料的制备方法及精炼用精炼剂
CN110578073B (zh) Gh4169镍基合金的冶炼方法
CN111378848B (zh) 提高gh4169合金返回料纯净度的电渣重熔用预熔渣及制备方法
CN103146943B (zh) 一种紫杂铜精炼剂及其制备方法
CN105624448A (zh) 铸造铝合金熔炼用含稀土除渣精炼熔剂及其制备方法
CN102304641A (zh) 铸造铝青铜除气脱氧工艺
CN109777919A (zh) 降低电渣锭氧含量的重熔方法及重熔渣系
WO2021179835A1 (zh) 一种抗燃镁合金及其制备方法
CN113832357B (zh) 一种利用再生铜制备高性能无氧铜的方法
CN105821235B (zh) 用于紫杂铜脱氧精炼的中间合金、应用及制备方法
CN1164782C (zh) 真空感应熔炼Ti-Ni及Ti-Ni-Nb形状记忆合金的工艺
CN110616339B (zh) 铜或铜合金的脱氧方法、高纯铜或铜合金的制备方法及由该方法得到的高纯铜或铜合金
CN110983080B (zh) 一种采用真空熔炼设备制备超低硫白铜的方法
CN106636668B (zh) 一种废旧电磁线铜精炼剂及其制备方法和应用
CN111809051B (zh) 一种铍铜废渣的精炼提纯方法
CN114381628A (zh) 一种精炼剂及其制备方法和应用
CN113930639A (zh) 一种用于紫杂铜精炼除杂质的铜钙稀土合金及其制备方法和应用
CN1224727C (zh) 镍铜硅铁合金
CN103146932A (zh) 纯铜熔炼洁净剂及其制备方法
CN110629038B (zh) 铜或铜合金的脱氧脱硫方法、高纯铜或铜合金及其制备方法
CN115572843B (zh) 一种高纯金属钽的制备方法
CN114635049B (zh) 一种高纯镍铌中间合金的生产方法
CN112626356B (zh) 一种从镍铁合金中分离镍、铁的方法
CN103060647B (zh) 一种钌羰基配合物变质的高性能铝合金材料及其制备方法
RU2749406C1 (ru) Способ получения коррозионностойкого сплава ХН63МБ на никелевой основе с содержанием углерода менее 0,005%

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881952

Country of ref document: EP

Kind code of ref document: A1