WO2021079673A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2021079673A1
WO2021079673A1 PCT/JP2020/035739 JP2020035739W WO2021079673A1 WO 2021079673 A1 WO2021079673 A1 WO 2021079673A1 JP 2020035739 W JP2020035739 W JP 2020035739W WO 2021079673 A1 WO2021079673 A1 WO 2021079673A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
resin
tire
parts
Prior art date
Application number
PCT/JP2020/035739
Other languages
English (en)
French (fr)
Inventor
郭葵 中島
栄士 山口
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN202080069004.9A priority Critical patent/CN114555384A/zh
Priority to EP20878235.9A priority patent/EP4049855B1/en
Priority to JP2021521442A priority patent/JPWO2021079673A1/ja
Publication of WO2021079673A1 publication Critical patent/WO2021079673A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0064Reinforcements comprising monofilaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0057Reinforcements comprising preshaped elements, e.g. undulated or zig-zag filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2048Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by special physical properties of the belt plies
    • B60C2009/2051Modulus of the ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2061Physical properties or dimensions of the belt coating rubber
    • B60C2009/2064Modulus; Hardness; Loss modulus or "tangens delta"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2009Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords comprising plies of different materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2002Wires or filaments characterised by their cross-sectional shape
    • D07B2201/2003Wires or filaments characterised by their cross-sectional shape flat
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2007Wires or filaments characterised by their longitudinal shape
    • D07B2201/2008Wires or filaments characterised by their longitudinal shape wavy or undulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a tire having a belt layer on the tread portion.
  • Patent Document 1 proposes a pneumatic tire provided with a belt layer in which a belt cord made of a single steel wire having a specific major axis and a minor axis is coated with a cord topping rubber having a specific complex elastic modulus. ing.
  • Patent Document 1 is expected to improve fuel efficiency, noise performance and ride comfort performance in a well-balanced manner by reducing the weight.
  • the demand for low fuel consumption performance has increased, and further improvement has been expected for the tire of Patent Document 1.
  • the present invention has been devised in view of the above circumstances, and provides a tire provided with a belt layer capable of improving fuel efficiency while maintaining good noise performance, riding comfort performance and durability performance.
  • the main purpose is that.
  • the present invention is a tire in which a belt layer is arranged inside a tread portion, the belt layer includes at least one belt ply, and the belt ply is a belt cord made of a single steel wire having a flat cross section.
  • the topping rubber covering the belt cord, and the topping rubber has a complex elasticity ES * at 70 ° C. of 8.0 to 20.0 MPa and a loss tangent tan ⁇ at 70 ° C. of 0.04 to It is characterized by being 0.14.
  • the tread portion includes a tread rubber forming a tread contact patch, and the complex elastic modulus ET * of the tread rubber at 70 ° C. is 4.5 to 10.0 MPa and at 70 ° C. It is desirable that the loss tread tan ⁇ is 0.08 to 0.15.
  • the ratio (ET * / ES *) of the complex elastic modulus ET * of the tread rubber to the complex elastic modulus ES * of the topping rubber is 1.3 or less.
  • the loss tangent tan ⁇ of the topping rubber at 70 ° C. is 0.04 to 0.09.
  • the loss tangent tan ⁇ of the topping rubber at 70 ° C. is 0.04 to 0.06.
  • the steel single wire has a ratio (LD / SD) of a major axis LD to a minor axis SD in a cross-sectional shape of 1.05 to 1.35, and the major axis LD is 0.30 to 0. It is preferably .50 mm.
  • the steel single wire is wavy in at least one of the major axis direction and the minor axis direction in the cross-sectional shape, and the wavy pitch P of the steel single wire is 3.0 to 10.0 mm. It is desirable that the wavy height H of the steel single wire is 0.05 to 0.15 mm.
  • the topping rubber contains a cobalt element, and the ratio (c / L) of the concentration c (ppm) of the cobalt element to the outer peripheral length L (mm) in the cross-sectional shape of the steel single wire is 350. It is desirable that it is ⁇ 1000 ppm / mm.
  • the belt ply includes a belt cord made of a single steel wire having a flat cross section and a topping rubber covering the belt cord, and the topping rubber has a complex elastic modulus ES * at 70 ° C. of 8. It is 0 to 20.0 MPa, and the loss tangent tan ⁇ at 70 ° C. is 0.04 to 0.14.
  • topping rubber can suppress heat generation during running and improve the fuel efficiency of the tire without affecting the noise performance, riding comfort performance and durability performance of the tire. Therefore, the tire of the present invention can improve fuel efficiency while maintaining good noise performance, ride quality performance and durability performance.
  • FIG. 1 shows a cross-sectional view of the tire meridian including the rotation axis of the tire 1 in the normal state of the present embodiment.
  • the tire 1 of the present embodiment is suitably used as a rubber pneumatic tire mounted on a passenger car or the like.
  • the tire 1 is not specified as a rubber pneumatic tire for a passenger car.
  • a heavy load pneumatic tire, a resin pneumatic tire, and the inside of the tire are not filled with pressurized air. It can be applied to various tires such as non-pneumatic tires.
  • the "normal state” is a state in which, when the tire 1 is a rubber pneumatic tire, the tire 1 is rim-assembled on the regular rim and the tire 1 is adjusted to the regular internal pressure without load.
  • the dimensions and the like of each part of the tire 1 are values measured in this normal state.
  • a “regular rim” is a rim defined for each tire in the standard system including the standard on which the tire 1 is based.
  • ETRTO is "Measuring Rim”.
  • Regular internal pressure is the air pressure defined for each tire in the standard system including the standard on which tire 1 is based.
  • maximum air pressure for TRA, the table “TIRE LOAD LIMITS” The maximum value described in AT VARIOUS COLD INFLATION PRESSURES ", and if it is ETRTO, it is” INFLATION PRESSURE ".
  • the tire 1 of the present embodiment has a tread portion 2 extending in an annular shape, a pair of sidewall portions 3 extending on both sides of the tread portion 2, and a pair of beads extending continuously with the sidewall portion 3. Includes part 4 and.
  • the tire 1 of the present embodiment has a toroid-shaped carcass 6 extending across the bead cores 5 of the pair of bead portions 4, and a belt layer 7 arranged on the outer side of the carcass 6 in the radial direction of the tire and inside the tread portion 2.
  • the carcass 6 contains at least one carcass ply 6A in the present embodiment.
  • the carcass ply 6A includes, for example, a carcass cord (not shown) arranged at an angle of 75 to 90 ° with respect to the tire circumferential direction.
  • a carcass cord for example, an organic fiber cord such as aromatic polyamide or rayon can be adopted.
  • the carcass ply 6A is connected to, for example, a main body portion 6a extending from the tread portion 2 through the sidewall portion 3 to the bead core 5 of the bead portion 4 and the main body portion 6a, and the circumference of the bead core 5 is connected from the inside to the outside in the tire axial direction. It includes a folded-back portion 6b that is folded back into.
  • a bead apex rubber 8 extending outward in the radial direction of the tire from the bead core 5 is arranged between the main body portion 6a and the folded-back portion 6b of the carcass ply 6A, for example.
  • the belt layer 7 includes at least one belt ply 7A and 7B in the present embodiment.
  • the two belt plies 7A and 7B include, for example, a first belt ply 7A located inside the tire radial direction and a second belt ply 7B located outside the first belt ply 7A.
  • Such a belt layer 7 can increase the rigidity of the tread portion 2 and improve the durability performance of the tire 1.
  • FIG. 2 is an enlarged cross-sectional view of the belt ply 7A.
  • the belt ply 7A is illustrated in FIG. 2, the same structure can be adopted for the belt ply 7B.
  • at least one of the belt plies 7A and 7B of the present embodiment includes a belt cord 9 made of a steel single wire 9A having a flat cross section and a topping rubber 10 covering the belt cord 9. There is.
  • the topping rubber 10 preferably has a complex elastic modulus ES * at 70 ° C. of 8.0 to 20.0 MPa and a loss tangent tan ⁇ at 70 ° C. of 0.04 to 0.16.
  • ES * complex elastic modulus
  • tan ⁇ loss tangent tan ⁇ at 70 ° C. of 0.04 to 0.16.
  • the complex elastic modulus ES * and the loss tangent tan ⁇ of the topping rubber 10 at 70 ° C. are determined by GABO's dynamic viscoelasticity measuring device (Iplexer series) under the following conditions in accordance with the provisions of JIS-K6394. It is a value measured using.
  • the complex elastic modulus ES * of the topping rubber 10 at 70 ° C. is more preferably 14.0 to 20.0 MPa.
  • Such a topping rubber 10 can suppress deformation of the belt layer 7 and improve the durability performance of the tire 1.
  • the topping rubber 10 can improve the noise performance and the riding comfort performance when the complex elastic modulus ES * at 70 ° C. is 8.0 to 14.0 MPa.
  • the loss tangent tan ⁇ of the topping rubber 10 at 70 ° C. is more preferably 0.04 to 0.14, further preferably 0.04 to 0.09, and most preferably 0.04 to 0. It is 06.
  • Such a topping rubber 10 can further suppress heat generation during traveling, and can further improve the fuel efficiency performance of the tire 1 without affecting the noise performance, the riding comfort performance, and the durability performance.
  • the ratio (tan ⁇ / ES *) of the loss tangent tan ⁇ of the topping rubber 10 to the complex elastic modulus ES * (MPa) is preferably 0.002 to 0.017.
  • Such a topping rubber 10 can suppress heat generation during traveling and can improve the fuel efficiency performance of the tire 1 without affecting the noise performance, the riding comfort performance and the durability performance. Therefore, the tire 1 of the present embodiment can improve fuel efficiency while maintaining good noise performance, ride quality performance, and durability performance.
  • the rubber component used in the topping rubber 10 examples include isoprene rubber such as natural rubber (NR) and isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), and styrene isoprene butadiene rubber (SIBR). , Chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR) and other diene rubbers. From the viewpoint of durability performance, the topping rubber 10 is preferably a combination of natural rubber (NR) or natural rubber (NR) and isoprene rubber (IR).
  • isoprene rubber such as natural rubber (NR) and isoprene rubber (IR)
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • CR Chloroprene rubber
  • NBR acrylonitrile butadiene rubber
  • the topping rubber 10 is
  • the topping rubber 10 contains a cobalt element in the rubber.
  • the compound containing a cobalt element include organic acid cobalt salts such as cobalt stearate, cobalt naphthenate, cobalt neodecanoate, and cobalt trineodecanate.
  • organic acid cobalt salts such as cobalt stearate, cobalt naphthenate, cobalt neodecanoate, and cobalt trineodecanate.
  • cross-linking with the belt cord 9 is promoted by the cobalt element during vulcanization molding, and the adhesiveness with the belt cord 9 can be improved.
  • the topping rubber 10 preferably contains carbon black.
  • the content of carbon black is preferably 10 parts by mass or more, more preferably 40 parts by mass or more, and further preferably 50 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the upper limit of the carbon black content is preferably 100 parts by mass or less, and more preferably 70 parts by mass or less.
  • the carbon black is not particularly limited, and furnace black (furness carbon black) such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; acetylene black (acetylene carbon black).
  • furnace black furness carbon black
  • thermal black thermal carbon black
  • FT and MT thermal black
  • channel black channel carbon black
  • EPC MPC and CC
  • Nitrogen adsorption specific surface area of the carbon black for example 30 m 2 / g greater, less than 250m 2 / g.
  • the amount of dibutyl phthalate (DBP) absorbed by carbon black is, for example, more than 50 ml / 100 g and less than 250 ml / 100 g.
  • the nitrogen adsorption specific surface area of carbon black is measured according to ASTM D4820-93, and the amount of DBP absorbed is measured according to ASTM D2414-93.
  • Specific carbon black is not particularly limited, and examples thereof include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, and N762.
  • Commercially available products include, for example, Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. Can be used. These may be used alone or in combination of two or more.
  • the topping rubber 10 preferably further contains silica, if necessary.
  • BET specific surface area of silica is preferably 140 m 2 / g greater than that from the viewpoint of excellent durability is obtained, 160 m 2 / g greater is more preferable.
  • the upper limit of the BET specific surface area of the silica preferably less than 250 meters 2 / g, and more preferably less than 220 m 2 / g.
  • the BET specific surface area is the value of N 2 SA measured by the BET method according to ASTM D3037-93.
  • the content of silica with respect to 100 parts by mass of the rubber component is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more when not used in combination with a silane coupling agent.
  • the upper limit of the silica content when not used in combination with the silane coupling agent is preferably 25 parts by mass or less, more preferably 15 parts by mass or less. When used in combination with a silane coupling agent, 25 parts by mass or more is preferable.
  • the upper limit of the silica content when used in combination with the silane coupling agent is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less.
  • silica examples include dry silica (anhydrous silica) and wet silica (hydrous silica). Among these, wet silica is preferable as silica because it has many silanol groups.
  • silica for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
  • the silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-Triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3
  • silane coupling agent for example, products such as Degussa, Momentive, Shinetsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Azumax Co., Ltd., Toray Dow Corning Co., Ltd. can be used.
  • the content of the silane coupling agent is, for example, more than 3 parts by mass and less than 15 parts by mass with respect to 100 parts by mass of silica.
  • the topping rubber 10 may further contain a filler commonly used in the tire industry, such as calcium carbonate, talc, alumina, clay, aluminum hydroxide, and mica. Good. These contents are, for example, more than 0.1 parts by mass and less than 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the topping rubber 10 preferably contains a curable resin component such as a modified resorcin resin or a modified phenol resin.
  • a curable resin component such as a modified resorcin resin or a modified phenol resin.
  • the content of the curable resin component is preferably 1 part by mass or more, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the rubber component.
  • the upper limit of the content of the curable resin component is preferably 10 parts by mass or less, more preferably 8 parts by mass or less.
  • modified resorcin resin examples include Sumikanol 620 (modified resorcin resin) manufactured by Taoka Chemical Industry Co., Ltd., and examples of the modified phenol resin include PR12686 (cashew oil) manufactured by Sumitomo Bakelite Co., Ltd. Modified phenol resin) and the like.
  • the modified resorcin resin it is preferable to also contain a methylene donor as a curing agent.
  • a methylene donor include hexamethylenetetramine (HMT), hexamethoxymethylol melamine (HMMM), hexamethylol melamine pentamethyl ether (HMMPME), and the like, and 5 mass by mass with respect to 100 parts by mass of the curable resin component. It is preferably contained in an amount of, for example, about 15 parts by mass.
  • methylene donor for example, Sumikanol 507 manufactured by Taoka Chemical Industry Co., Ltd. can be used.
  • the topping rubber 10 preferably contains a softening agent such as an oil or a resin component, if necessary.
  • the total content of these is preferably more than 0.5 parts by mass and less than 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • oils and fats examples include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice oil, beni flower oil, sesame oil, Examples thereof include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more.
  • Specific process oils include, for example, Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Oil Co., Ltd., Showa Shell Sekiyu Co., Ltd. ( Products such as Fuji Kosan Co., Ltd. can be used.
  • the resin component may be solid or liquid at room temperature, and specific resin components include, for example, rosin-based resin, styrene-based resin, kumaron-based resin, terpene-based resin, C5 resin, and C9 resin. , C5C9 resin, acrylic resin and other resins, and two or more of them may be used in combination.
  • the content of the resin component is more than 2 parts by mass, preferably less than 45 parts by mass, and more preferably less than 30 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rosin-based resin is a resin containing rosin acid as a main component, which is obtained by processing pine fat.
  • This rosin-based resin (rosins) can be classified according to the presence or absence of modification, and can be classified into non-modified rosin (unmodified rosin) and rosin modified product (rosin derivative).
  • non-modified rosin include tall rosin (also known as tall oil rosin), gum rosin, wood rosin, asymmetric rosin, polymerized rosin, hydrogenated rosin, and other chemically modified rosins.
  • the rosin-modified product is a modified product of unmodified rosin, and examples thereof include rosin esters, unsaturated carboxylic acid-modified rosins, unsaturated carboxylic acid-modified rosin esters, rosin amide compounds, and rosin amine salts.
  • the styrene-based resin is a polymer using a styrene-based monomer as a constituent monomer, and examples thereof include a polymer obtained by polymerizing a styrene-based monomer as a main component (50% by mass or more).
  • Specific styrene-based resins include styrene-based monomers (styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p.
  • -Phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc. are each independently polymerized, and in addition to copolymers obtained by copolymerizing two or more styrene-based monomers, styrene Copolymers of the system monomer and other monomers copolymerizable therewith are also mentioned.
  • Other monomers include acrylonitriles such as acrylonitrile and methacrylonitrile, unsaturated carboxylic acids such as acrylics and methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, chloroprene and butadiene isoprene. Dienes such as 1-butane and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof; and the like can be exemplified.
  • acrylonitriles such as acrylonitrile and methacrylonitrile
  • unsaturated carboxylic acids such as acrylics and methacrylic acid
  • unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate
  • chloroprene and butadiene isoprene Dienes such as 1-butane and 1-pentene
  • ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydr
  • the kumaron inden resin is a resin containing kumaron and indene as monomer components constituting the skeleton (main chain) of the resin.
  • Examples of the monomer component contained in the skeleton other than kumaron and indene include styrene, ⁇ -methylstyrene, methylindene, vinyltoluene and the like.
  • the content of the kumaron inden resin is, for example, more than 1.0 part by mass and less than 50.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • the hydroxyl value (OH value) of the Kumaron indene resin is, for example, more than 15 mgKOH / g and less than 150 mgKOH / g.
  • the OH value is the amount of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when acetylating 1 g of the resin, and is expressed in milligrams.
  • Potassium K 0070 It is a value measured by 1992).
  • the softening point of the Kumaron inden resin is, for example, more than 30 ° C and less than 160 ° C.
  • the softening point is the temperature at which the ball drops when the softening point defined in JIS K 6220-1: 2001 is measured by a ring-ball type softening point measuring device.
  • terpene resin examples include polyterpenes, terpene phenols, aromatic-modified terpene resins and the like.
  • Polyterpenes are resins obtained by polymerizing terpene compounds and their hydrogenated products. Terpene compounds, hydrocarbon and oxygenated derivatives represented by a composition of (C 5 H 8) n, monoterpenes (C 10 H 16), sesquiterpene (C 15 H 24), diterpenes (C 20 H 32 ) Etc., and are compounds having a terpene as a basic skeleton. , 1,8-Cineol, 1,4-Cineol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol and the like.
  • polyterpene examples include terpene resins such as ⁇ -pinene resin, ⁇ -pinene resin, limonene resin, dipentene resin, and ⁇ -pinene / limonene resin made from the above-mentioned terpene compound, and hydrogen added to the terpene resin.
  • Additive terpene resin can also be mentioned.
  • the terpene phenol include a resin obtained by copolymerizing a terpene compound and a phenol-based compound, and a resin obtained by hydrogenating the resin.
  • Specific examples of the terpene phenol include a terpene compound, a phenol-based compound, and formalin condensed. Resin is mentioned.
  • Examples of the phenolic compound include phenol, bisphenol A, cresol, xylenol and the like.
  • examples of the aromatic-modified terpene resin include a resin obtained by modifying the terpene resin with an aromatic compound, and a resin obtained by hydrogenating the resin.
  • the aromatic compound is not particularly limited as long as it has an aromatic ring, and is, for example, a phenol compound such as phenol, alkylphenol, alkoxyphenol, and unsaturated hydrocarbon group-containing phenol; naphthol, alkylnaphthol, alkoxynaphthol, and the like.
  • Naftor compounds such as unsaturated hydrocarbon group-containing naphthol; styrene derivatives such as styrene, alkylstyrene, alkoxystyrene, and unsaturated hydrocarbon group-containing styrene; kumaron, inden and the like can be mentioned.
  • C5 resin refers to a resin obtained by polymerizing a C5 fraction.
  • the C5 fraction include petroleum fractions having 4 to 5 carbon atoms such as cyclopentadiene, pentene, pentadiene, and isoprene.
  • a dicyclopentadiene resin DCPD resin
  • DCPD resin dicyclopentadiene resin
  • the "C9 resin” refers to a resin obtained by polymerizing a C9 fraction, and may be hydrogenated or modified.
  • the C9 fraction include petroleum fractions having 8 to 10 carbon atoms such as vinyltoluene, alkylstyrene, indene, and methyl indene.
  • a kumaron inden resin, a kumaron resin, an inden resin, and an aromatic vinyl-based resin are preferably used.
  • aromatic vinyl resin a homopolymer of ⁇ -methylstyrene or styrene or a copolymer of ⁇ -methylstyrene and styrene is preferable because it is economical, easy to process, and excellent in heat generation. , A polymer of ⁇ -methylstyrene and styrene is more preferable.
  • aromatic vinyl-based resin for example, those commercially available from Clayton, Eastman Chemical, etc. can be used.
  • C5C9 resin refers to a resin obtained by copolymerizing a C5 fraction and a C9 fraction, and may be hydrogenated or modified.
  • Examples of the C5 fraction and the C9 fraction include the above-mentioned petroleum fraction.
  • As the C5C9 resin for example, those commercially available from Tosoh Corporation, LUHUA, etc. can be used.
  • the acrylic resin is not particularly limited, but for example, a solvent-free acrylic resin can be used.
  • the solvent-free acrylic resin is a high-temperature continuous polymerization method (high-temperature continuous lump polymerization method) (US Patent No. 4,414,370) without using a polymerization initiator, a chain transfer agent, an organic solvent, etc. as auxiliary raw materials as much as possible.
  • Examples thereof include a (meth) acrylic resin (polymer) synthesized by the method described in ⁇ 45 and the like).
  • (meth) acrylic means methacrylic and acrylic.
  • Examples of the monomer component constituting the acrylic resin include (meth) acrylic acid, (meth) acrylic acid ester (alkyl ester, aryl ester, aralkyl ester, etc.), (meth) acrylamide, and (meth) acrylamide derivative. (Meta) acrylic acid derivative of.
  • acrylic resin along with (meth) acrylic acid and (meth) acrylic acid derivative, styrene, ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene, divinylnaphthalene, etc.
  • Aromatic vinyl may be used as the monomer component constituting the acrylic resin.
  • the acrylic resin may be a resin composed of only a (meth) acrylic component or a resin having a component other than the (meth) acrylic component as a component. Further, the acrylic resin may have a hydroxyl group, a carboxyl group, a silanol group, or the like.
  • Examples of the resin component include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Tosoh Co., Ltd., Rutgers Chemicals Co., Ltd., BASF, Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., Co., Ltd. ) Products such as Nippon Catalyst, JX Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd. can be used.
  • the topping rubber 10 preferably contains an anti-aging agent.
  • the content of the anti-aging agent is, for example, more than 1 part by mass and less than 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • anti-aging agent examples include naphthylamine-based anti-aging agents such as phenyl- ⁇ -naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine; N. -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-Phenylenediamine-based anti-aging agents P-Phenylenediamine-based anti-aging agents; quinoline-based anti-aging agents such as polymers of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic anti-aging agents such as styrenated phenol; tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Preventive agents and the like can be mentioned. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • anti-aging agent for example, products of Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Industry Co., Ltd., Flexis Co., Ltd., etc. can be used.
  • the topping rubber 10 may contain stearic acid.
  • the content of stearic acid is, for example, more than 0.5 parts by mass and less than 10.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • stearic acid conventionally known ones can be used, and for example, products such as NOF Corporation, NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
  • the topping rubber 10 may contain zinc oxide.
  • the content of zinc oxide is, for example, more than 0.5 parts by mass and less than 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • Conventionally known zinc oxide can be used.
  • products of Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
  • the topping rubber 10 preferably contains a cross-linking agent such as sulfur.
  • the content of the cross-linking agent is, for example, more than 0.1 part by mass and less than 10.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • sulfur examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products of Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd., etc. can be used. ..
  • cross-linking agents other than sulfur examples include Tackilol V200 manufactured by Taoka Chemical Industry Co., Ltd., Duralink HTS (1,6-hexamethylene-sodium dithiosulfate / dihydrate) manufactured by Flexis, and Rankses.
  • examples thereof include a vulcanizing agent containing a sulfur atom such as KA9188 (1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane) and an organic peroxide such as dicumyl peroxide.
  • the topping rubber 10 preferably contains a vulcanization accelerator.
  • the content of the vulcanization accelerator is, for example, more than 0.3 parts by mass and less than 10.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • sulfide accelerator examples include thiazole-based sulfide-based sulfide accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiadylsulfenamide; tetramethylthiuram disulfide (TMTD).
  • thiazole-based sulfide-based sulfide accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiadylsulfenamide
  • TMTD tetramethylthiuram disulfide
  • TzTD Tetrabenzyl thiuram disulfide
  • TOT-N tetrakis (2-ethylhexyl) thiuram disulfide
  • other thiuram-based sulfide accelerators N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolyl sulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide, etc.
  • Sulfenamide-based sulfide accelerator Sulfenamide-based sulfide accelerator; guanidine-based sulfide accelerators such as diphenylguanidine, dioltotrilguanidine, orthotrilbiguanidine can be mentioned. These may be used alone or in combination of two or more.
  • the belt rubber composition used for the topping rubber 10 contains additives generally used in the tire industry, such as fatty acid metal salts, carboxylic acid metal salts, and organic peroxides. It may be further blended.
  • the content of these additives is, for example, more than 0.1 parts by mass and less than 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the ratio (c / L) of the above-mentioned concentration c (ppm) of the cobalt element to the outer peripheral length L (mm) in the cross-sectional shape of the steel single wire 9A is preferably 350 to 1000 ppm / mm.
  • the ratio (c / L) is 350 ppm / mm or more, the adhesiveness with the belt cord 9 can be improved and the durability performance of the tire 1 can be improved.
  • the ratio (c / L) is 1000 ppm / mm or less, the adhesive layer with the belt cord 9 is suppressed from becoming brittle, and even if repeated deformation due to the rotation of the tire 1 acts, peeling is suppressed, and the tire 1 is suppressed.
  • the durability performance of the tire can be improved. From this point of view, the ratio (c / L) is more preferably 400 to 740 ppm / mm.
  • the belt cord 9 of the present embodiment is arranged in the topping rubber 10 so that the minor axis direction of the steel single wire 9A is along the thickness direction of the belt plies 7A and 7B.
  • Such a belt cord 9 can maintain the rigidity of the tread portion 2 while reducing the thickness of the belt plies 7A and 7B, and achieves both fuel efficiency and durability due to the weight reduction of the tire 1. Useful for.
  • the steel single wire 9A preferably has a ratio (LD / SD) of a major axis LD to a minor axis SD in the cross-sectional shape of 1.05 to 1.35. If the ratio (LD / SD) of the steel single wire 9A is smaller than 1.05, the rigidity of the belt layer 7 becomes excessively high, and the noise performance and the riding comfort performance of the tire 1 may not be improved. If the ratio (LD / SD) of the steel single wire 9A is larger than 1.35, the strength of the steel single wire 9A may decrease, which may affect the durability performance of the tire 1.
  • the steel single wire 9A preferably has a major axis LD of 0.30 to 0.50 mm in cross-sectional shape. If the major axis LD of the steel single wire 9A is smaller than 0.30 mm, the strength of the steel single wire 9A may decrease, which may affect the durability performance of the tire 1. If the major axis LD of the steel single wire 9A is larger than 0.50 mm, the rigidity of the belt layer 7 becomes excessively high, which may affect the noise performance and ride comfort performance of the tire 1.
  • FIG. 3 is a schematic view of the steel single wire 9A as viewed from the major axis direction.
  • the steel single wire 9A is wavy in at least one of the major axis direction and the minor axis direction in the cross-sectional shape, and in both of the present embodiments.
  • Such a steel single wire 9A can appropriately relax the rigidity of the belt layer 7 and improve the noise performance and the riding comfort performance of the tire 1.
  • the wavy pitch P of the steel single wire 9A is preferably 3.0 to 10.0 mm.
  • the wavy pitch P is the length of one pitch in the longitudinal direction of the wavy steel single wire 9A. If the wavy pitch P of the steel single wire 9A is smaller than 3.0 mm, the effect of improving the noise performance and the riding comfort performance of the tire 1 may be reduced. If the wavy pitch P of the steel single wire 9A is larger than 10.0 mm, the strength of the steel single wire 9A may decrease, which may affect the durability performance of the tire 1.
  • the wavy pitch P of the steel single wire 9A of the present embodiment is substantially constant along the longitudinal direction of the steel single wire 9A.
  • the corrugated pitch P of the steel single wire 9A may vary in length along the longitudinal direction of the steel single wire 9A, for example.
  • the wavy height H of the steel single wire 9A is preferably 0.05 to 0.15 mm. If the wavy height H of the steel single wire 9A is smaller than 0.05 mm, the effect of improving the noise performance and the riding comfort performance of the tire 1 may be reduced. If the wavy height H of the steel single wire 9A is larger than 0.15 mm, the strength of the steel single wire 9A may decrease, which may affect the durability performance of the tire 1.
  • the tread portion 2 of the present embodiment includes a tread rubber 2A forming a tread ground contact surface 2a.
  • the tread rubber 2A preferably has a complex elastic modulus ET * at 70 ° C. of 4.5 to 10.0 MPa and a loss tangent tan ⁇ at 70 ° C. of 0.08 to 0.15.
  • the complex elastic modulus ET * and the loss tangent tan ⁇ of the tread rubber 2A at 70 ° C. are the same as those of the topping rubber 10 described above, in accordance with the provisions of JIS-K6394, under the following conditions. It is a value measured using a viscoelasticity measuring device (Iplexer series). Initial distortion: 10% Amplitude of dynamic strain: ⁇ 1% Frequency: 10Hz Deformation mode: Tension measurement temperature: 70 ° C
  • Such a tread rubber 2A can suppress heat generation during running and can further improve the fuel efficiency performance of the tire 1 without affecting the noise performance, the riding comfort performance and the durability performance. Therefore, the tire 1 of the present embodiment can further improve the fuel efficiency performance while maintaining good noise performance, ride quality performance and durability performance.
  • the ratio (ET * / ES *) of the complex elastic modulus ET * of the tread rubber 2A to the complex elastic modulus ES * of the topping rubber 10 is preferably 1.3 or less.
  • Such a tread portion 2 is useful for improving the noise performance, ride quality performance, durability performance, and fuel efficiency performance of the tire 1 in a well-balanced manner.
  • the rubber component used in the tread rubber 2A examples include isoprene rubber such as natural rubber (NR) and isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), and styrene isoprene butadiene rubber (SIBR). , Chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), butyl rubber (IIR) and other diene rubbers. From the viewpoint of durability performance, the tread rubber 2A is preferably a combination of natural rubber (NR), butadiene rubber (BR) and styrene-butadiene rubber (SBR).
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • CR Chloroprene rubber
  • NBR acrylonitrile butad
  • the content of SBR in 100 parts by mass of the rubber component used in the tread rubber 2A is, for example, preferably more than 5 parts by mass, more preferably more than 50 parts by mass.
  • the upper limit of the SBR content is preferably 100 parts by mass or less, more preferably 65 parts by mass or less, and further preferably 60 parts by mass or less. By setting it within such a range, the effect of the present embodiment can be more easily obtained.
  • the weight average molecular weight of SBR is, for example, more than 100,000 and less than 2 million.
  • the styrene content of SBR is preferably more than 5% by mass, more preferably more than 10% by mass, and even more preferably more than 20% by mass.
  • the upper limit of the styrene content of SBR is preferably less than 50% by mass, more preferably less than 40% by mass, and even more preferably less than 35% by mass.
  • the vinyl bond amount (1,2-bonded butadiene unit amount) of SBR is, for example, more than 5% by mass and less than 70% by mass.
  • the structure identification of SBR can be performed using, for example, an apparatus of the JNM-ECA series manufactured by JEOL Ltd.
  • the SBR is not particularly limited, and for example, emulsion-polymerized styrene-butadiene rubber (E-SBR), solution-polymerized styrene-butadiene rubber (S-SBR), and the like can be used.
  • E-SBR emulsion-polymerized styrene-butadiene rubber
  • S-SBR solution-polymerized styrene-butadiene rubber
  • the SBR may be either a non-modified SBR or a modified SBR.
  • the modified SBR may be an SBR having a functional group that interacts with a filler such as silica.
  • a terminal-modified SBR in which at least one end of the SBR is modified with a compound having a functional group (denaturing agent).
  • a compound having a functional group denaturing agent
  • main chain modified SBR having a functional group in the main chain and main chain terminal modified SBR having a functional group in the main chain and the terminal (for example, having a functional group in the main chain)
  • at least one end is modified (coupling) with a main chain terminal modified SBR) modified with a denaturing agent or a polyfunctional compound having two or more epoxy groups in the molecule, and a hydroxyl group or an epoxy group is introduced.
  • Examples thereof include terminally denatured SBR.
  • Examples of such a functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group and a sulfide group. , Disulfide group, sulfonyl group, sulfinyl group, thiocarbonyl group, ammonium group, imide group, hydrazo group, azo group, diazo group, carboxyl group, nitrile group, pyridyl group, alkoxy group, hydroxyl group, oxy group, epoxy group, etc. Can be mentioned. In addition, these functional groups may have a substituent.
  • modified SBR for example, an SBR modified with a compound (modifying agent) represented by the following chemical formula 1 can be used.
  • R1, R2 and R3 represent the same or different alkyl group, alkoxy group, silyloxy group, acetal group, carboxyl group (-COOH), mercapto group (-SH) or derivatives thereof.
  • R4 and R5 represent the same or different hydrogen atoms or alkyl groups. R4 and R5 may be combined to form a ring structure with nitrogen atoms. n represents an integer.
  • SBR solution-polymerized styrene-butadiene rubber
  • an alkoxy group (preferably an alkoxy group having 1 to 8 carbon atoms, more preferably an alkoxy group having 1 to 4 carbon atoms) is preferable.
  • an alkyl group (preferably an alkyl group having 1 to 3 carbon atoms) is preferable.
  • n is preferably 1 to 5, more preferably 2 to 4, and even more preferably 3.
  • the alkoxy group also includes a cycloalkoxy group (cyclohexyloxy group, etc.) and an aryloxy group (phenoxy group, benzyloxy group, etc.).
  • Specific modifiers include 2-dimethylaminoethyltrimethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 2-dimethylaminoethyltriethoxysilane, 3-dimethylaminopropyltriethoxysilane, and 2-diethylaminoethyltrimethoxy.
  • Examples thereof include silane, 3-diethylaminopropyltrimethoxysilane, 2-diethylaminoethyltriethoxysilane, and 3-diethylaminopropyltriethoxysilane. These may be used alone or in combination of two or more.
  • modified SBR a modified SBR modified with the following compound (modifying agent) can also be used.
  • the modifier include polyglycidyl ethers of polyhydric alcohols such as ethylene glycol diglycidyl ether, glycerin triglycidyl ether, trimethylolethanetriglycidyl ether, and trimethylolpropane triglycidyl ether; and two or more diglycidylated bisphenol A and the like.
  • Polyepoxide compounds such as 1,4-diglycidylbenzene, 1,3,5-triglycidylbenzene, polyepoxidized liquid polybutadiene; 4,4'-diglycidyl-diphenyl Epoxide group-containing tertiary amines such as methylamine, 4,4'-diglycidyl-dibenzylmethylamine; diglycidylaniline, N, N'-diglycidyl-4-glycidyloxyaniline, diglycidyl orthotoluidine, tetraglycidyl metaxylene diamine , Tetraglycidylaminodiphenylmethane, tetraglycidyl-p-phenylenediamine, diglycidylaminomethylcyclohexane, tetraglycidyl-1,3-bisaminomethylcyclohexane and other diglycidylamino compounds; bis- (1-methylpropyl) carbamate chloride, Amin
  • silane compound Containing silane compound; N-substituted aziridine compound such as ethyleneimine and propyleneimine; methyltrietoki Sisilane, N, N-bis (trimethylsilyl) -3-aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) -3-aminopropyltriethoxysilane, N, N-bis (trimethylsilyl) aminoethyltrimethoxysilane, Alkoxysilanes such as N, N-bis (trimethylsilyl) aminoethyltriethoxysilane; 4-N, N-dimethylaminobenzophenone, 4-N, N-di-t-butylaminobenzophenone, 4-N, N-diphenylamino Benzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4
  • SBR for example, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Corporation, Asahi Kasei Co., Ltd., Zeon Corporation, etc. can be used. As the SBR, one type may be used alone, or two or more types may be used in combination.
  • the content (total content) of isoprene-based rubber in 100 parts by mass of the rubber component is preferably 5 parts by mass or more, preferably 25 parts by mass or more, from the viewpoint of obtaining good low heat generation and durability during high-speed running. More preferably, 35 parts by mass or more is further preferable.
  • the upper limit of the content of the isoprene rubber is not particularly limited, but from the viewpoint of wet grip performance, 100 parts by mass or less is preferable, 80 parts by mass or less is more preferable, and 50 parts by mass or less is further preferable.
  • examples of the isoprene-based rubber include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like.
  • NR for example, SIR20, RSS # 3, TSR20, etc., which are common in the tire industry, can be used.
  • the IR is not particularly limited, and for example, an IR 2200 or the like that is common in the tire industry can be used.
  • Modified NR includes deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc.
  • modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • Examples of the modified IR include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber and the like. These may be used alone or in combination of two or more.
  • the rubber composition used for the tread rubber 2A may further contain BR, if necessary.
  • the content of BR in 100 parts by mass of the rubber component is preferably more than 5 parts by mass, for example, from the viewpoint of wear resistance.
  • the upper limit of the BR content is not particularly limited, but is preferably 100 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less.
  • the weight average molecular weight of BR is, for example, more than 100,000 and less than 2 million.
  • the vinyl bond amount of BR is, for example, more than 1% by mass and less than 30% by mass.
  • the cis amount of BR is, for example, more than 1% by mass and less than 98% by mass.
  • the amount of trance of BR is, for example, more than 1% by mass and less than 60% by mass.
  • the BR is not particularly limited, and a BR having a high cis content (cis content of 90% or more), a BR having a low cis content, a BR containing syndiotactic polybutadiene crystals, and the like can be used.
  • the BR may be either a non-modified BR or a modified BR, and examples of the modified BR include a modified BR into which the above-mentioned functional group has been introduced. These may be used alone or in combination of two or more.
  • the cis content can be measured by infrared absorption spectroscopy.
  • BR for example, products such as Ube Industries, Ltd., JSR Co., Ltd., Asahi Kasei Co., Ltd., and Nippon Zeon Co., Ltd. can be used.
  • the rubber composition of the tread rubber 2A may contain a rubber (polymer) generally used in the production of tires such as nitrile rubber (NBR) as another rubber component.
  • a rubber polymer generally used in the production of tires such as nitrile rubber (NBR) as another rubber component.
  • the rubber composition of the tread rubber 2A preferably contains a filler.
  • the filler include silica, carbon black, calcium carbonate, talc, alumina, clay, aluminum hydroxide, mica and the like.
  • silica and carbon black can be preferably used as the reinforcing agent. .. When silica is used, it is preferable to use it in combination with a silane coupling agent.
  • the rubber composition of the tread rubber 2A preferably contains silica.
  • BET specific surface area of silica is preferably 140 m 2 / g greater than that from the viewpoint of excellent durability is obtained, 160 m 2 / g greater is more preferable. On the other hand, is preferably less than 250 meters 2 / g from the viewpoint of the resulting rolling resistance during high-speed travel, and more preferably less than 220 m 2 / g.
  • the BET specific surface area is the value of N 2 SA measured by the BET method according to ASTM D3037-93.
  • the content of silica with respect to 100 parts by mass of the rubber component is preferably more than 35 parts by mass, more preferably more than 40 parts by mass, from the viewpoint of obtaining good durability performance.
  • the upper limit of the silica content is preferably less than 70 parts by mass, more preferably less than 65 parts by mass, and even more preferably less than 60 parts by mass.
  • silica examples include dry silica (anhydrous silica) and wet silica (hydrous silica). Among these, wet silica is preferable as silica because it has many silanol groups.
  • silica for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
  • the rubber composition of the tread rubber 2A preferably contains a silane coupling agent together with silica.
  • the silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-Triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide,
  • silane coupling agent for example, products such as Degussa, Momentive, Shinetsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Azumax Co., Ltd., Toray Dow Corning Co., Ltd. can be used.
  • the content of the silane coupling agent is, for example, more than 3 parts by mass and less than 25 parts by mass with respect to 100 parts by mass of silica.
  • the rubber composition of the tread rubber 2A preferably contains carbon black.
  • the content of carbon black is, for example, more than 1 part by mass and less than 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the carbon black is not particularly limited, and furnace black (furness carbon black) such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; acetylene black (acetylene carbon black).
  • furnace black furness carbon black
  • thermal black thermal carbon black
  • FT and MT thermal black
  • channel black channel carbon black
  • EPC MPC and CC
  • Nitrogen adsorption specific surface area (N 2 SA) of carbon black is, for example, 30 m 2 / g greater, less than 250m 2 / g.
  • the amount of dibutyl phthalate (DBP) absorbed by carbon black is, for example, more than 50 ml / 100 g and less than 250 ml / 100 g.
  • the nitrogen adsorption specific surface area of carbon black is measured according to ASTM D4820-93, and the amount of DBP absorbed is measured according to ASTM D2414-93.
  • Specific carbon black is not particularly limited, and examples thereof include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, and N762.
  • Commercially available products include, for example, Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. Can be used. These may be used alone or in combination of two or more.
  • the rubber composition of tread rubber 2A further contains fillers commonly used in the tire industry, such as calcium carbonate, talc, alumina, clay, aluminum hydroxide, and mica. It may be contained. These contents are, for example, more than 0.1 parts by mass and less than 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition of the tread rubber 2A may contain oil (including spreading oil), liquid rubber, or the like as a softener.
  • the total content of these is preferably more than 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • the upper limit of the total content is preferably less than 70 parts by mass, more preferably less than 50 parts by mass, and even more preferably less than 30 parts by mass.
  • the oil content also includes the amount of oil contained in rubber (oil-extended rubber).
  • oils and fats examples include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice oil, beni flower oil, sesame oil, Examples thereof include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more.
  • Specific process oils include, for example, Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Oil Co., Ltd., Showa Shell Sekiyu Co., Ltd. ( Products such as Fuji Kosan Co., Ltd. can be used.
  • the liquid rubber mentioned as the softening agent is a polymer in a liquid state at room temperature (25 ° C.) and a polymer having a monomer similar to that of solid rubber as a constituent element.
  • the liquid rubber include farnesene-based polymers, liquid diene-based polymers, and hydrogenated additives thereof.
  • liquid diene polymer examples include a liquid styrene-butadiene copolymer (liquid SBR), a liquid butadiene polymer (liquid BR), a liquid isoprene polymer (liquid IR), a liquid styrene isoprene copolymer (liquid SIR), and the like. Be done.
  • liquid SBR liquid styrene-butadiene copolymer
  • liquid BR liquid butadiene polymer
  • liquid IR liquid isoprene polymer
  • liquid SIR liquid styrene isoprene copolymer
  • Liquid diene polymer has a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) (Mw) is, for example, 1.0 ⁇ 10 3 greater, less than 2.0 ⁇ 10 5.
  • Mw of the liquid diene polymer is a polystyrene-equivalent value measured by gel permeation chromatography (GPC).
  • liquid rubber for example, products such as Kuraray Co., Ltd. and Clay Valley Co., Ltd. can be used.
  • the rubber composition of the tread rubber 2A preferably contains a resin component, if necessary.
  • the resin component may be solid or liquid at room temperature, and specific resin components include styrene resin, kumaron resin, terpene resin, C5 resin, C9 resin, C5C9 resin, and acrylic resin. Resin components such as resin may be mentioned, and two or more kinds may be used in combination.
  • the content of the resin component is more than 2 parts by mass, preferably less than 45 parts by mass, and more preferably less than 30 parts by mass with respect to 100 parts by mass of the rubber component.
  • the styrene-based resin is a polymer using a styrene-based monomer as a constituent monomer, and examples thereof include a polymer obtained by polymerizing a styrene-based monomer as a main component (50% by mass or more).
  • Specific styrene-based resins include styrene-based monomers (styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p.
  • -Phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc. are each independently polymerized, and in addition to copolymers obtained by copolymerizing two or more styrene-based monomers, styrene Copolymers of the system monomer and other monomers copolymerizable therewith are also mentioned.
  • Other monomers include acrylonitriles such as acrylonitrile and methacrylonitrile, unsaturated carboxylic acids such as acrylics and methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, chloroprene and butadiene isoprene. Dienes such as 1-butane and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof; and the like can be exemplified.
  • acrylonitriles such as acrylonitrile and methacrylonitrile
  • unsaturated carboxylic acids such as acrylics and methacrylic acid
  • unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate
  • chloroprene and butadiene isoprene Dienes such as 1-butane and 1-pentene
  • ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydr
  • the kumaron inden resin is a resin containing kumaron and indene as monomer components constituting the skeleton (main chain) of the resin.
  • Examples of the monomer component contained in the skeleton other than kumaron and indene include styrene, ⁇ -methylstyrene, methylindene, vinyltoluene and the like.
  • the content of the kumaron inden resin is, for example, more than 1.0 part by mass and less than 50.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • the hydroxyl value (OH value) of the Kumaron indene resin is, for example, more than 15 mgKOH / g and less than 150 mgKOH / g.
  • the OH value is the amount of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when acetylating 1 g of the resin, and is expressed in milligrams.
  • Potassium K 0070 It is a value measured by 1992).
  • the softening point of the Kumaron inden resin is, for example, more than 30 ° C and less than 160 ° C.
  • the softening point is the temperature at which the ball drops when the softening point defined in JIS K 6220-1: 2001 is measured by a ring-ball type softening point measuring device.
  • terpene resin examples include polyterpenes, terpene phenols, aromatic-modified terpene resins and the like.
  • Polyterpenes are resins obtained by polymerizing terpene compounds and their hydrogenated products. Terpene compounds, hydrocarbon and oxygenated derivatives represented by a composition of (C 5 H 8) n, monoterpenes (C 10 H 16), sesquiterpene (C 15 H 24), diterpenes (C 20 H 32 ) Etc., and are compounds having a terpene as a basic skeleton. , 1,8-Cineol, 1,4-Cineol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol and the like.
  • polyterpene examples include terpene resins such as ⁇ -pinene resin, ⁇ -pinene resin, limonene resin, dipentene resin, and ⁇ -pinene / limonene resin made from the above-mentioned terpene compound, and hydrogen added to the terpene resin.
  • Additive terpene resin can also be mentioned.
  • the terpene phenol include a resin obtained by copolymerizing a terpene compound and a phenol-based compound, and a resin obtained by hydrogenating the resin.
  • Specific examples of the terpene phenol include a terpene compound, a phenol-based compound, and formalin condensed. Resin is mentioned.
  • Examples of the phenolic compound include phenol, bisphenol A, cresol, xylenol and the like.
  • examples of the aromatic-modified terpene resin include a resin obtained by modifying the terpene resin with an aromatic compound, and a resin obtained by hydrogenating the resin.
  • the aromatic compound is not particularly limited as long as it has an aromatic ring, and is, for example, a phenol compound such as phenol, alkylphenol, alkoxyphenol, and unsaturated hydrocarbon group-containing phenol; naphthol, alkylnaphthol, alkoxynaphthol, and the like.
  • Naftor compounds such as unsaturated hydrocarbon group-containing naphthol; styrene derivatives such as styrene, alkylstyrene, alkoxystyrene, and unsaturated hydrocarbon group-containing styrene; kumaron, inden and the like can be mentioned.
  • C5 resin refers to a resin obtained by polymerizing a C5 fraction.
  • the C5 fraction include petroleum fractions having 4 to 5 carbon atoms such as cyclopentadiene, pentene, pentadiene, and isoprene.
  • a dicyclopentadiene resin DCPD resin
  • DCPD resin dicyclopentadiene resin
  • the "C9 resin” refers to a resin obtained by polymerizing a C9 fraction, and may be hydrogenated or modified.
  • the C9 fraction include petroleum fractions having 8 to 10 carbon atoms such as vinyltoluene, alkylstyrene, indene, and methyl indene.
  • a kumaron inden resin, a kumaron resin, an inden resin, and an aromatic vinyl-based resin are preferably used.
  • aromatic vinyl resin a homopolymer of ⁇ -methylstyrene or styrene or a copolymer of ⁇ -methylstyrene and styrene is preferable because it is economical, easy to process, and excellent in heat generation. , A polymer of ⁇ -methylstyrene and styrene is more preferable.
  • aromatic vinyl-based resin for example, those commercially available from Clayton, Eastman Chemical, etc. can be used.
  • C5C9 resin refers to a resin obtained by copolymerizing a C5 fraction and a C9 fraction, and may be hydrogenated or modified.
  • Examples of the C5 fraction and the C9 fraction include the above-mentioned petroleum fraction.
  • As the C5C9 resin for example, those commercially available from Tosoh Corporation, LUHUA, etc. can be used.
  • the acrylic resin is not particularly limited, but for example, a solvent-free acrylic resin can be used.
  • the solvent-free acrylic resin is a high-temperature continuous polymerization method (high-temperature continuous lump polymerization method) (US Patent No. 4,414,370) without using a polymerization initiator, a chain transfer agent, an organic solvent, etc. as auxiliary raw materials as much as possible.
  • Examples thereof include a (meth) acrylic resin (polymer) synthesized by the method described in ⁇ 45 and the like).
  • (meth) acrylic means methacrylic and acrylic.
  • Examples of the monomer component constituting the acrylic resin include (meth) acrylic acid, (meth) acrylic acid ester (alkyl ester, aryl ester, aralkyl ester, etc.), (meth) acrylamide, and (meth) acrylamide derivative. (Meta) acrylic acid derivative of.
  • acrylic resin along with (meth) acrylic acid and (meth) acrylic acid derivative, styrene, ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene, divinylnaphthalene, etc.
  • Aromatic vinyl may be used as the monomer component constituting the acrylic resin.
  • the acrylic resin may be a resin composed of only a (meth) acrylic component or a resin having a component other than the (meth) acrylic component as a component. Further, the acrylic resin may have a hydroxyl group, a carboxyl group, a silanol group, or the like.
  • Examples of the resin component include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Tosoh Co., Ltd., Rutgers Chemicals Co., Ltd., BASF, Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., Co., Ltd. ) Products such as Nippon Catalyst, JX Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd. can be used.
  • the rubber composition of the tread rubber 2A preferably contains an anti-aging agent.
  • the content of the anti-aging agent is, for example, more than 1 part by mass and less than 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • anti-aging agent examples include naphthylamine-based anti-aging agents such as phenyl- ⁇ -naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine; N. -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-Phenylenediamine-based anti-aging agents P-Phenylenediamine-based anti-aging agents; quinoline-based anti-aging agents such as polymers of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic anti-aging agents such as styrenated phenol; tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Preventive agents and the like can be mentioned. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • anti-aging agent for example, products of Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Industry Co., Ltd., Flexis Co., Ltd., etc. can be used.
  • the rubber composition of the tread rubber 2A may contain stearic acid.
  • the content of stearic acid is, for example, more than 0.5 parts by mass and less than 10.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • stearic acid conventionally known ones can be used, and for example, products such as NOF Corporation, NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
  • the rubber composition of the tread rubber 2A may contain zinc oxide.
  • the content of zinc oxide is, for example, more than 0.5 parts by mass and less than 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • Conventionally known zinc oxide can be used.
  • products of Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
  • the rubber composition of the tread rubber 2A preferably contains wax.
  • the wax content is, for example, 0.5 to 20 parts by mass, preferably 1.0 to 15 parts by mass, and more preferably 1.5 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • the wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax and microcrystalline wax; natural wax such as plant wax and animal wax; and synthetic wax such as a polymer such as ethylene and propylene. These may be used alone or in combination of two or more.
  • wax for example, products such as Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., and Seiko Kagaku Co., Ltd. can be used.
  • the rubber composition of the tread rubber 2A preferably contains a cross-linking agent such as sulfur.
  • the content of the cross-linking agent is, for example, more than 0.1 part by mass and less than 10.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • sulfur examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products of Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd., etc. can be used. ..
  • cross-linking agent other than sulfur examples include Tackylol V200 manufactured by Taoka Chemical Industry Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate / dihydrate) manufactured by Flexis, and KA9188 manufactured by Rankses.
  • examples thereof include a vulcanizing agent containing a sulfur atom such as (1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane) and an organic peroxide such as dicumyl peroxide.
  • the rubber composition of the tread rubber 2A preferably contains a vulcanization accelerator.
  • the content of the vulcanization accelerator is, for example, more than 0.3 parts by mass and less than 10.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • sulfide accelerator examples include thiazole-based sulfide-based sulfide accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiadylsulfenamide; tetramethylthiuram disulfide (TMTD).
  • thiazole-based sulfide-based sulfide accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiadylsulfenamide
  • TMTD tetramethylthiuram disulfide
  • TzTD Tetrabenzyl thiuram disulfide
  • TOT-N tetrakis (2-ethylhexyl) thiuram disulfide
  • other thiuram-based sulfide accelerators N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolyl sulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide, etc.
  • Sulfenamide-based sulfide accelerator Sulfenamide-based sulfide accelerator; guanidine-based sulfide accelerators such as diphenylguanidine, dioltotrilguanidine, orthotrilbiguanidine can be mentioned. These may be used alone or in combination of two or more.
  • the rubber composition of the tread rubber 2A is further blended with additives generally used in the tire industry, such as fatty acid metal salts, carboxylic acid metal salts, and organic peroxides. May be good.
  • additives generally used in the tire industry such as fatty acid metal salts, carboxylic acid metal salts, and organic peroxides. May be good.
  • the content of these additives is, for example, more than 0.1 parts by mass and less than 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • a 175 / 70R13 size tire having the tire meridian cross section of FIG. 1 was prototyped based on the specifications of Tables 1 to 4. Tire strength, noise performance, ride quality performance, durability performance and fuel efficiency performance were evaluated using the prototype tires.
  • the manufacturing method and test method of each prototype tire are as follows.
  • Blending material for rubber composition for tread rubber First, each blending material shown below was prepared.
  • Rubber component (a) NR: TSR20
  • SBR Modified solution polymerization SBR prepared according to the method described in the next paragraph. (Styrene content: 30% by mass, vinyl bond amount: 52% by mass, Mw: 250,000)
  • C BR: UBEPOL-BR150 manufactured by Ube Industries, Ltd.
  • the above SBR was prepared according to the procedure shown below. First, cyclohexane, tetrahydrofuran, styrene, and 1,3-butadiene were charged into a nitrogen-substituted autoclave reactor. After adjusting the temperature of the contents of the reactor to 20 ° C., n-butyllithium was added to initiate polymerization. Polymerization was carried out under adiabatic conditions, and the maximum temperature reached 85 ° C. When the polymerization conversion rate reaches 99%, 1,3-butadiene is added, and after further polymerization for 5 minutes, N, N-bis (trimethylsilyl) -3-aminopropyltriethoxysilane is added as a denaturant.
  • (B) Compounding materials other than rubber components (a) Carbon black: Diamond Black N220 manufactured by Mitsubishi Chemical Corporation (B) Silica: Evonik's Ultrasil VN3 (BET specific surface area: 165 m 2 / g) (C) Silane coupling agent: Si266 manufactured by Degussa (Bis (3-triethoxysilylpropyl) disulfide) (D) Oil: Process X-140 manufactured by Japan Energy Co., Ltd. (E) Resin (polymer component): SA85 manufactured by Arizona Chemical Co., Ltd. ( ⁇ ? Methylstyrene resin) (F) Wax: Ozo Ace 0355 manufactured by Nippon Seiro Co., Ltd.
  • Anti-aging agent-1 Nocrack 6C manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd. (N-Phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine)
  • Anti-aging agent-2 Nocrack 224 manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd. (2,2,4-trimethyl-1,2-dihydroquinoline polymer)
  • Zinc oxide Zinc oxide No.
  • Blending material for rubber composition for belt First each blending material shown below was prepared.
  • (B) Compounding materials other than rubber components (a) Carbon black-1: Show black N326 manufactured by Cabot Japan Co., Ltd. (N 2 SA: 78m 2 / g) (B) Carbon Black-2: Show Black N550 manufactured by Cabot Japan Co., Ltd. (N 2 SA: 42m 2 / g) (C) Curable resin component-1: PR12686 manufactured by Sumitomo Bakelite Co., Ltd. (Cashew oil modified phenol resin) (D) Curable resin component-2: Sumicanol 620 manufactured by Taoka Chemical Industry Co., Ltd. (Modified resorcin resin) (E) Hardener: Sumikanol 507 manufactured by Taoka Chemical Industry Co., Ltd.
  • Cobalt organic acid-1 COST manufactured by DIC Co., Ltd. (Cobalt content: 9.5% by mass)
  • G Cobalt organic acid-2: DICNAME NBC-2 manufactured by DIC Co., Ltd. (Cobalt boron neodecanoate, cobalt content 22.5% by mass)
  • H Zinc oxide: Zinc oxide No. 1 (ri) anti-aging agent manufactured by Mitsui Mining & Smelting Co., Ltd.-1: Nocrack 6C manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • the composition of the tread rubber is shown in Table 1.
  • composition of the topping rubber is shown in Table 2.
  • the rubber composition for tread rubber is extruded into the shape of a tread, and two layers of the belt members are bonded together with other tire members so as to intersect each other to form an unvulcanized tire, which is used under the condition of 170 ° C. for 10 minutes.
  • a test tire was manufactured by press vulcanization.
  • the tire of the example can improve the fuel efficiency performance while maintaining good noise performance, ride quality performance and durability performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

良好なノイズ性能、乗り心地性能及び耐久性能を維持させつつ、低燃費性能を向上させ得るベルト層を備えたタイヤを提供する。 トレッド部2の内部にベルト層7が配されたタイヤ1である。ベルト層7は、少なくとも1枚のベルトプライ7A、7Bを含んでいる。ベルトプライ7A、7Bは、断面偏平形状のスチール単線9Aからなるベルトコード9と、ベルトコード9を被覆するトッピングゴム10とを含んでいる。トッピングゴム10は、70℃における複素弾性率ES*が8.0~20.0MPaであり、かつ、70℃における損失正接tanδが0.04~0.14である。

Description

タイヤ
 本発明は、トレッド部にベルト層を備えたタイヤに関する。
 従来、ベルト層に断面偏平形状のスチール単線からなるベルトコードを用いたタイヤが知られている。例えば、下記特許文献1には、特定の長径と短径とを有するスチール単線からなるベルトコードを、特定の複素弾性率を有するコードトッピングゴムで被覆したベルト層を備えた空気入りタイヤが提案されている。
特許第4467107号公報
 特許文献1のタイヤは、軽量化による低燃費性能、ノイズ性能及び乗り心地性能をバランスよく改善することを期待している。しかしながら、近年、低燃費性能に対する要求が高くなり、特許文献1のタイヤにおいても、更なる改善が期待されていた。
 本発明は、以上のような実状に鑑み案出されたもので、良好なノイズ性能、乗り心地性能及び耐久性能を維持させつつ、低燃費性能を向上させ得るベルト層を備えたタイヤを提供することを主たる目的としている。
 本発明は、トレッド部の内部にベルト層が配されたタイヤであって、前記ベルト層は、少なくとも1枚のベルトプライを含み、前記ベルトプライは、断面偏平形状のスチール単線からなるベルトコードと、前記ベルトコードを被覆するトッピングゴムとを含み、前記トッピングゴムは、70℃における複素弾性率ES*が8.0~20.0MPaであり、かつ、70℃における損失正接tanδが0.04~0.14であることを特徴とする。
 本発明のタイヤにおいて、前記トレッド部は、トレッド接地面を形成するトレッドゴムを含み、前記トレッドゴムの70℃における複素弾性率ET*が4.5~10.0MPaであり、かつ、70℃における損失正接tanδが0.08~0.15であるのが望ましい。
 本発明のタイヤにおいて、前記トレッドゴムの複素弾性率ET*と前記トッピングゴムの複素弾性率ES*との比(ET*/ES*)が、1.3以下であるのが望ましい。
 本発明のタイヤにおいて、前記トッピングゴムの70℃における損失正接tanδが、0.04~0.09であるのが望ましい。
 本発明のタイヤにおいて、前記トッピングゴムの70℃における損失正接tanδが、0.04~0.06であるのが望ましい。
 本発明のタイヤにおいて、前記スチール単線は、断面形状における長径LDと短径SDとの比(LD/SD)が1.05~1.35であり、かつ、前記長径LDが0.30~0.50mmであるのが望ましい。
 本発明のタイヤにおいて、前記スチール単線は、断面形状における長径方向及び短径方向の少なくとも一方に波付けされており、前記スチール単線の波付けピッチPが、3.0~10.0mmであり、前記スチール単線の波付け高さHが、0.05~0.15mmであるのが望ましい。
 本発明のタイヤにおいて、前記トッピングゴムは、コバルト元素を含み、前記コバルト元素の濃度c(ppm)と前記スチール単線の断面形状における外周長L(mm)との比(c/L)は、350~1000ppm/mmであるのが望ましい。
 本発明のタイヤにおいて、ベルトプライは、断面偏平形状のスチール単線からなるベルトコードと、前記ベルトコードを被覆するトッピングゴムとを含み、前記トッピングゴムは、70℃における複素弾性率ES*が8.0~20.0MPaであり、かつ、70℃における損失正接tanδが0.04~0.14である。
 このようなトッピングゴムは、走行時の発熱を抑制し、タイヤのノイズ性能、乗り心地性能及び耐久性能に影響を与えることなく、タイヤの低燃費性能を向上させることができる。このため、本発明のタイヤは、良好なノイズ性能、乗り心地性能及び耐久性能を維持しつつ、低燃費性能を向上することができる。
本発明のタイヤの一実施形態を示す断面図である。 ベルトプライの断面図である。 スチール単線の模式図である。
 以下、本発明の実施の一形態が図面に基づき詳細に説明される。
 図1には、本実施形態のタイヤ1の正規状態における回転軸を含むタイヤ子午線断面図が示されている。本実施形態のタイヤ1は、乗用車等に装着されるゴム製の空気入りタイヤとして好適に用いられる。なお、タイヤ1は、乗用車用のゴム製空気入りタイヤに特定されるものではなく、例えば、重荷重用の空気入りタイヤや樹脂製の空気入りタイヤ、タイヤの内部に加圧された空気が充填されない非空気式タイヤ等の様々なタイヤに応用され得る。
 ここで、「正規状態」とは、タイヤ1がゴム製空気入りタイヤの場合、タイヤ1が正規リムにリム組みされ、かつ、正規内圧に調整された無負荷の状態である。以下、特に言及しない場合、タイヤ1の各部の寸法等は、この正規状態で測定された値である。
 「正規リム」は、タイヤ1が基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めているリムであり、例えばJATMAであれば "標準リム" 、TRAであれば "Design Rim" 、ETRTOであれば"Measuring Rim" である。
 「正規内圧」は、タイヤ1が基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば "最高空気圧" 、TRAであれば表"TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" である。
 図1に示されるように、本実施形態のタイヤ1は、環状に延びるトレッド部2と、トレッド部2の両側に延びる一対のサイドウォール部3と、サイドウォール部3に連なって延びる一対のビード部4とを含んでいる。本実施形態のタイヤ1は、一対のビード部4のビードコア5間に跨って延びるトロイド状のカーカス6と、カーカス6のタイヤ半径方向外側かつトレッド部2の内部に配されたベルト層7とを有している。
 カーカス6は、少なくとも1枚、本実施形態では1枚のカーカスプライ6Aを含んでいる。カーカスプライ6Aは、例えば、タイヤ周方向に対して75~90°の角度で配されたカーカスコード(図示省略)を含んでいる。カーカスコードとしては、例えば、芳香族ポリアミド、レーヨン等の有機繊維コードが採用され得る。
 カーカスプライ6Aは、例えば、トレッド部2からサイドウォール部3を経てビード部4のビードコア5に至る本体部6aと、この本体部6aに連なり、かつ、ビードコア5の廻りをタイヤ軸方向内側から外側に折り返された折返し部6bとを含んでいる。カーカスプライ6Aの本体部6aと折返し部6bとの間には、例えば、ビードコア5からタイヤ半径方向外側にのびるビードエーペックスゴム8が配されている。
 ベルト層7は、少なくとも1枚、本実施形態では2枚のベルトプライ7A、7Bを含んでいる。2枚のベルトプライ7A、7Bは、例えば、タイヤ半径方向内側に位置する第1ベルトプライ7Aと、第1ベルトプライ7Aの外側に位置する第2ベルトプライ7Bとを含んでいる。このようなベルト層7は、トレッド部2の剛性を高め、タイヤ1の耐久性能を向上させることができる。
 図2は、ベルトプライ7Aの拡大断面図である。図2では、ベルトプライ7Aが例示されているが、ベルトプライ7Bも同様の構造を採用することができる。図2に示されるように、本実施形態のベルトプライ7A、7Bの少なくとも1枚は、断面偏平形状のスチール単線9Aからなるベルトコード9と、ベルトコード9を被覆するトッピングゴム10とを含んでいる。
 トッピングゴム10は、好ましくは、70℃における複素弾性率ES*が8.0~20.0MPaであり、かつ、70℃における損失正接tanδが0.04~0.16である。このようなトッピングゴム10は、走行時の発熱を抑制し、ノイズ性能、乗り心地性能及び耐久性能に影響を与えることなく、タイヤ1の低燃費性能を向上させることができる。このため、本実施形態のタイヤ1は、良好なノイズ性能、乗り心地性能及び耐久性能を維持しつつ、低燃費性能を向上することができる。
 ここで、トッピングゴム10の70℃における複素弾性率ES*及び損失正接tanδは、JIS-K6394の規定に準拠して、下記の条件で、GABO社製動的粘弾性測定装置(イプレクサーシリーズ)を用いて測定された値である。
 初期歪:10%
 動歪の振幅:±1%
 周波数:10Hz
 変形モード:引張
 測定温度:70℃
 トッピングゴム10の70℃における複素弾性率ES*は、より好ましくは、14.0~20.0MPaである。このようなトッピングゴム10は、ベルト層7の変形を抑制し、タイヤ1の耐久性能を向上させることができる。一方、トッピングゴム10は、70℃における複素弾性率ES*が8.0~14.0MPaであると、ノイズ性能及び乗り心地性能を向上させることができる。
 トッピングゴム10の70℃における損失正接tanδは、より好ましくは、0.04~0.14であり、さらに好ましくは、0.04~0.09であり、最も好ましくは、0.04~0.06である。このようなトッピングゴム10は、走行時の発熱をさらに抑制し、ノイズ性能、乗り心地性能及び耐久性能に影響を与えることなく、タイヤ1の低燃費性能をより向上させることができる。
 トッピングゴム10の損失正接tanδと複素弾性率ES*(MPa)との比(tanδ/ES*)は、0.002~0.017であるのが望ましい。このようなトッピングゴム10は、走行時の発熱を抑制し、ノイズ性能、乗り心地性能及び耐久性能に影響を与えることなく、タイヤ1の低燃費性能を向上させることができる。このため、本実施形態のタイヤ1は、良好なノイズ性能、乗り心地性能及び耐久性能を維持しつつ、低燃費性能を向上することができる。
 トッピングゴム10に用いられるゴム成分としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)等のイソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等のジエン系ゴムが挙げられる。トッピングゴム10は、耐久性能の観点から、天然ゴム(NR)又は天然ゴム(NR)とイソプレンゴム(IR)とを併用することが好ましい。
 トッピングゴム10は、ゴム中にコバルト元素を含むのが望ましい。コバルト元素を含む化合物としては、例えば、ステアリン酸コバルト、ナフテン酸コバルト、ネオデカン酸コバルト、ホウ素三ネオデカン酸コバルト等の有機酸コバルト塩が挙げられる。このようなトッピングゴム10は、加硫成形時にコバルト元素によりベルトコード9との架橋が促進され、ベルトコード9との接着性を向上させることができる。
 トッピングゴム10は、カーボンブラックを含むことが好ましい。カーボンブラックの含有量は、耐久性能の観点からゴム成分100質量部に対して、10質量部以上が好ましく、40質量部以上がより好ましく、50質量部以上であることがさらに好ましい。一方、発熱性の観点から、カーボンブラックの含有量の上限としては、100質量部以下であることが好ましく、70質量部以下であるとより好ましい。
 カーボンブラックとしては特に限定されず、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイト等を挙げることができる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 カーボンブラックの窒素吸着比表面積(N2SA)は、例えば30m/g超、250m/g未満である。カーボンブラックのジブチルフタレート(DBP)吸収量は、例えば50ml/100g超、250ml/100g未満である。なお、カーボンブラックの窒素吸着比表面積は、ASTM D4820-93に従って測定され、DBP吸収量は、ASTM D2414-93に従って測定される。
 具体的なカーボンブラックとしては特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 トッピングゴム10は、必要に応じて、さらに、シリカを含むことが好ましい。シリカのBET比表面積は、良好な耐久性能が得られる観点から140m/g超が好ましく、160m/g超がより好ましい。一方、良好な低燃費性を得る観点から、シリカのBET比表面積の上限としては、250m/g未満が好ましく、220m/g未満であることがより好ましい。なお、このBET比表面積は、ASTM D3037-93に準じてBET法で測定されるNSAの値である。
 ゴム成分100質量部に対するシリカの含有量は、シランカップリング剤と併用しない場合においては、3質量部以上が好ましく、5質量部以上がより好ましい。一方、シランカップリング剤と併用しない場合のシリカの含有量の上限としては、25質量部以下が好ましく、15質量部以下がより好ましい。また、シランカップリング剤との併用を行う場合には、25質量部以上が好ましい。一方、シランカップリング剤との併用を行う場合のシリカの含有量の上限としては、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましい。
 シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)等が挙げられる。シリカとしては、これらの中でも、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
 上述したように、シリカの使用に際しては、シランカップリング剤を併用することも可能である。シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド等のスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Z等のメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン等のアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロ系等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 シランカップリング剤としては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
 シランカップリング剤の含有量は、シリカ100質量部に対して、例えば、3質量部超、15質量部未満である。
 トッピングゴム10は、カーボンブラック、シリカの他に、タイヤ工業において一般的に用いられている、例えば、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等の充填剤をさらに含有してもよい。これらの含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
 トッピングゴム10は、変性レゾルシン樹脂、変性フェノール樹脂等の硬化性樹脂成分を含有することが好ましい。これにより、発熱性、破断時伸びを大きく悪化させることなく、スチールコードとの接着性を改善することができる。
 硬化性樹脂成分の含有量は、ゴム成分100質量部に対して、例えば、1質量部以上が好ましく、2質量部以上がより好ましい。一方、硬化性樹脂成分の含有量の上限としては、10質量部以下が好ましく、8質量部以下がより好ましい。
 具体的な変性レゾルシン樹脂としては、例えば、田岡化学工業(株)製のスミカノール620(変性レゾルシン樹脂)等が挙げられ、変性フェノール樹脂としては、例えば、住友ベークライト(株)製のPR12686(カシューオイル変性フェノール樹脂)等が挙げられる。
 変性レゾルシン樹脂の使用に際しては、硬化剤として、メチレン供与体を併せて含有することが好ましい。メチレン供与体としては、例えば、ヘキサメチレンテトラミン(HMT)、ヘキサメトキシメチロールメラミン(HMMM)やヘキサメチロールメラミンペンタメチルエーテル(HMMPME)等が挙げられ、硬化性樹脂成分100質量部に対して、5質量部以上、例えば、15質量部程度含有されることが好ましい。
 具体的なメチレン供与体としては、例えば、田岡化学工業(株)製のスミカノール507等を使用できる。
 トッピングゴム10は、加工性(粘着性付与)の観点から、必要に応じて、オイルや樹脂成分等の軟化剤を含有することが好ましい。これらの合計含有量は、ゴム成分100質量部に対して0.5質量部超、10質量部未満が好ましい。
 オイルとしては、例えば、鉱物油(一般にプロセスオイルと言われる)、植物油脂、又はその混合物が挙げられる。鉱物油(プロセスオイル)としては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイル等を用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 具体的なプロセスオイル(鉱物油)としては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。
 樹脂成分は、常温で固体であっても、液体であってもよく、具体的な樹脂成分としては、例えば、ロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂等の樹脂が挙げられ、2種以上を併用してもよい。樹脂成分の含有量は、ゴム成分100質量部に対して、2質量部超で、45質量部未満が好ましく、30質量部未満がより好ましい。
 ロジン系樹脂は、松脂を加工することにより得られるロジン酸を主成分とする樹脂である。このロジン系樹脂(ロジン類)は、変性の有無によって分類可能であり、無変性ロジン(未変性ロジン)、ロジン変性体(ロジン誘導体)に分類できる。無変性ロジンとしては、トールロジン(別名トール油ロジン)、ガムロジン、ウッドロジン、不均斉化ロジン、重合ロジン、水素化ロジン、その他の化学的に修飾されたロジン等が挙げられる。ロジン変性体は無変性ロジンの変性体であって、ロジンエステル類、不飽和カルボン酸変性ロジン類、不飽和カルボン酸変性ロジンエステル類、ロジンのアミド化合物、ロジンのアミン塩等が挙げられる。
 スチレン系樹脂は、スチレン系単量体を構成モノマーとして用いたポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的なスチレン系樹脂としては、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーも挙げられる。
 他の単量体としては、アクリロニトリル、メタクリロニトリル等のアクリロニトリル類、アクリル類、メタクリル酸等の不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチル等の不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレン等のジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物;等が例示できる。
 クマロン系樹脂の中でも、クマロンインデン樹脂が好ましい。クマロンインデン樹脂は、樹脂の骨格(主鎖)を構成するモノマー成分として、クマロン及びインデンを含む樹脂である。クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエン等が挙げられる。
 クマロンインデン樹脂の含有量は、ゴム成分100質量部に対して、例えば、1.0質
量部超、50.0質量部未満である。
 クマロンインデン樹脂の水酸基価(OH価)は、例えば、15mgKOH/g超、150mgKOH/g未満である。なお、OH価とは、樹脂1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムの量をミリグラム数で表したものであり、電位差滴定法(JIS K 0070:1992)により測定した値である。
 クマロンインデン樹脂の軟化点は、例えば、30℃超、160℃未満である。なお、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
 テルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂等が挙げられる。ポリテルペンは、テルペン化合物を重合して得られる樹脂及びそれらの水素添加物である。テルペン化合物は、(Cの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)等に分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオール等が挙げられる。
 ポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂等のテルペン樹脂の他、該テルペン樹脂に水素添加処理した水素添加テルペン樹脂も挙げられる。テルペンフェノールとしては、テルペン化合物とフェノール系化合物とを共重合した樹脂、及び該樹脂に水素添加処理した樹脂が挙げられ、具体的なテルペンフェノールとしては、テルペン化合物、フェノール系化合物及びホルマリンを縮合させた樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノール等が挙げられる。芳香族変性テルペン樹脂としては、テルペン樹脂を芳香族化合物で変性して得られる樹脂、及び該樹脂に水素添加処理した樹脂が挙げられる。なお、芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノール等のフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトール等のナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレン等のスチレン誘導体;クマロン、インデン等が挙げられる。
 「C5樹脂」とは、C5留分を重合することにより得られる樹脂をいう。C5留分としては、例えば、シクロペンタジエン、ペンテン、ペンタジエン、イソプレン等の炭素数4~5個相当の石油留分が挙げられる。C5系石油樹脂しては、ジシクロペンタジエン樹脂(DCPD樹脂)が好適に用いられる。
 「C9樹脂」とは、C9留分を重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C9留分としては、例えば、ビニルトルエン、アルキルスチレン、インデン、メチルインデン等の炭素数8~10個相当の石油留分が挙げられる。具体例としては、例えば、クマロンインデン樹脂、クマロン樹脂、インデン樹脂、及び芳香族ビニル系樹脂が好適に用いられる。芳香族ビニル系樹脂としては、経済的で、加工しやすく、発熱性に優れているという理由から、α-メチルスチレンもしくはスチレンの単独重合体又はα-メチルスチレンとスチレンとの共重合体が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。芳香族ビニル系樹脂としては、例えば、クレイトン社、イーストマンケミカル社等より市販されているものを使用することができる。
 「C5C9樹脂」とは、C5留分とC9留分を共重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C5留分及びC9留分としては、前記の石油留分が挙げられる。C5C9樹脂としては、例えば、東ソー(株)、LUHUA社等より市販されているものを使用することができる。
 アクリル系樹脂としては特に限定されないが、例えば、無溶剤型アクリル系樹脂を使用できる。
 無溶剤型アクリル系樹脂は、副原料となる重合開始剤、連鎖移動剤、有機溶媒等を極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4,414,370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5,010,166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)が挙げられる。なお、本発明において、(メタ)アクリルは、メタクリル及びアクリルを意味する。
 アクリル系樹脂を構成するモノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(アルキルエステル、アリールエステル、アラルキルエステル等)、(メタ)アクリルアミド、及び(メタ)アクリルアミド誘導体等の(メタ)アクリル酸誘導体が挙げられる。
 また、アクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体と共に、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン等の芳香族ビニルを使用してもよい。
 アクリル系樹脂は、(メタ)アクリル成分のみで構成される樹脂であっても、(メタ)アクリル成分以外の成分をも構成要素とする樹脂であってもよい。また、アクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していてもよい。
 樹脂成分としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
トッピングゴム10は、老化防止剤を含むことが好ましい。老化防止剤の含有量は、ゴム成分100質量部に対して、例えば、1質量部超、10質量部未満である。
 老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレキシス社等の製品を使用できる。
 トッピングゴム10は、ステアリン酸を含んでもよい。ステアリン酸の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10.0質量部未満である。ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
 トッピングゴム10は、酸化亜鉛を含んでもよい。酸化亜鉛の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、15質量部未満である。酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
 トッピングゴム10は、硫黄等の架橋剤を含むことが好ましい。架橋剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、10.0質量部未満である。
 硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 なお、硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレキシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
 硫黄以外の架橋剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のデュラリンク HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)等の硫黄原子を含む加硫剤や、ジクミルパーオキサイド等の有機過酸化物等が挙げられる。
 トッピングゴム10は、加硫促進剤を含むことが好ましい。加硫促進剤の含有量は、ゴム成分100質量部に対して、例えば、0.3質量部超、10.0質量部未満である。
 加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 トッピングゴム10に用いられるベルト用ゴム組成物には、これらの成分の他、タイヤ工業において一般的に用いられている添加剤、例えば、脂肪酸金属塩、カルボン酸金属塩、有機過酸化物等をさらに配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
 上述のコバルト元素の濃度c(ppm)とスチール単線9Aの断面形状における外周長L(mm)との比(c/L)は、好ましくは、350~1000ppm/mmである。比(c/L)が350ppm/mm以上であることで、ベルトコード9との接着性を向上させ、タイヤ1の耐久性能を向上させることができる。比(c/L)が1000ppm/mm以下であることで、ベルトコード9との接着層が脆くなることを抑制し、タイヤ1の回転による繰り返し変形が作用したとしても剥離が抑制され、タイヤ1の耐久性能を向上させることができる。このような観点から、比(c/L)は、より好ましくは、400~740ppm/mmである。
 本実施形態のベルトコード9は、スチール単線9Aの短径方向がベルトプライ7A、7Bの厚さ方向に沿うようにトッピングゴム10内に配されている。このようなベルトコード9は、ベルトプライ7A、7Bの厚さを小さくしつつ、トレッド部2の剛性を維持させることができ、タイヤ1の軽量化に伴う低燃費性能と耐久性能とを両立させることに役立つ。
 スチール単線9Aは、好ましくは、断面形状における長径LDと短径SDとの比(LD/SD)が1.05~1.35である。スチール単線9Aの比(LD/SD)が1.05よりも小さいと、ベルト層7の剛性が過度に高くなり、タイヤ1のノイズ性能及び乗り心地性能が改善されないおそれがある。スチール単線9Aの比(LD/SD)が1.35よりも大きいと、スチール単線9Aの強度が低下し、タイヤ1の耐久性能に影響を及ぼすおそれがある。
 スチール単線9Aは、好ましくは、断面形状における長径LDが0.30~0.50mmである。スチール単線9Aの長径LDが0.30mmよりも小さいと、スチール単線9Aの強度が低下し、タイヤ1の耐久性能に影響を及ぼすおそれがある。スチール単線9Aの長径LDが0.50mmよりも大きいと、ベルト層7の剛性が過度に高くなり、タイヤ1のノイズ性能及び乗り心地性能に影響を及ぼすおそれがある。
 図3は、スチール単線9Aの長径方向から見た模式図である。図3に示されるように、スチール単線9Aは、断面形状における長径方向及び短径方向の少なくとも一方に、本実施形態では両方に、波付けされている。このようなスチール単線9Aは、ベルト層7の剛性を適度に緩和し、タイヤ1のノイズ性能及び乗り心地性能を向上させることができる。
 スチール単線9Aの波付けピッチPは、好ましくは、3.0~10.0mmである。ここで、波付けピッチPは、波付けされたスチール単線9Aの長手方向の1ピッチの長さである。スチール単線9Aの波付けピッチPが3.0mmよりも小さいと、タイヤ1のノイズ性能及び乗り心地性能の改善効果が小さくなるおそれがある。スチール単線9Aの波付けピッチPが10.0mmよりも大きいと、スチール単線9Aの強度が低下し、タイヤ1の耐久性能に影響を及ぼすおそれがある。
 本実施形態のスチール単線9Aの波付けピッチPは、スチール単線9Aの長手方向に沿って略一定である。スチール単線9Aの波付けピッチPは、例えば、スチール単線9Aの長手方向に沿って長さが変化していてもよい。
 スチール単線9Aの波付け高さHは、好ましくは、0.05~0.15mmである。スチール単線9Aの波付け高さHが0.05mmよりも小さいと、タイヤ1のノイズ性能及び乗り心地性能の改善効果が小さくなるおそれがある。スチール単線9Aの波付け高さHが0.15mmよりも大きいと、スチール単線9Aの強度が低下し、タイヤ1の耐久性能に影響を及ぼすおそれがある。
 図1に示されるように、本実施形態のトレッド部2は、トレッド接地面2aを形成するトレッドゴム2Aを含んでいる。トレッドゴム2Aは、好ましくは、70℃における複素弾性率ET*が4.5~10.0MPaであり、かつ、70℃における損失正接tanδが0.08~0.15である。
 ここで、トレッドゴム2Aの70℃における複素弾性率ET*及び損失正接tanδは、上述のトッピングゴム10と同様に、JIS-K6394の規定に準拠して、下記の条件で、GABO社製動的粘弾性測定装置(イプレクサーシリーズ)を用いて測定された値である。
 初期歪:10%
 動歪の振幅:±1%
 周波数:10Hz
 変形モード:引張
 測定温度:70℃
 このようなトレッドゴム2Aは、走行時の発熱を抑制し、ノイズ性能、乗り心地性能及び耐久性能に影響を与えることなく、タイヤ1の低燃費性能をより向上させることができる。このため、本実施形態のタイヤ1は、良好なノイズ性能、乗り心地性能及び耐久性能を維持させつつ、低燃費性能をより向上させることができる。
 トレッドゴム2Aの複素弾性率ET*とトッピングゴム10の複素弾性率ES*との比(ET*/ES*)は、1.3以下であるのが好ましい。このようなトレッド部2は、タイヤ1のノイズ性能、乗り心地性能、耐久性能及び低燃費性能をバランスよく向上させることに役立つ。
 トレッドゴム2Aに用いられるゴム成分としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)等のイソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)等のジエン系ゴムが挙げられる。トレッドゴム2Aは、耐久性能の観点から、天然ゴム(NR)、ブタジエンゴム(BR)及びスチレンブタジエンゴム(SBR)を併用することが好ましい。
トレッドゴム2Aに用いられるゴム成分100質量部中のSBRの含有量は、例えば、5質量部超が好ましく、50質量部超がより好ましい。一方、SBRの含有量の上限としては、100質量部以下が好ましく、65質量部以下がより好ましく、60質量部以下がさらに好ましい。このような範囲内とすることにより、本実施形態の効果がより得られやすくなる。SBRの重量平均分子量は、例えば、10万超、200万未満である。SBRのスチレン含量は、5質量%超が好ましく、10質量%超がより好ましく、20質量%超がさらに好ましい。一方、発熱性と耐久性能の観点から、SBRのスチレン含量の上限は、50質量%未満が好ましく、40質量%未満がより好ましく、35質量%未満がさらに好ましい。SBRのビニル結合量(1,2-結合ブタジエン単位量)は、例えば、5質量%超、70質量%未満である。なお、SBRの構造同定(スチレン含量、ビニル結合量の測定)は、例えば、日本電子(株)製JNM-ECAシリーズの装置を用いて行うことができる。
 SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。SBRは、非変性SBR、変性SBRのいずれであってもよい。
 変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に官能基を有する末端変性SBR)や、主鎖に官能基を有する主鎖変性SBRや、主鎖及び末端に官能基を有する主鎖末端変性SBR(例えば、主鎖に官能基を有し、少なくとも一方の末端を変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。
 このような官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。
 また、変性SBRとしては、例えば、以下の化学式1で表される化合物(変性剤)により変性されたSBRを使用できる。
Figure JPOXMLDOC01-appb-C000001
 なお、化学式1中、R1、R2及びR3は、同一又は異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基(-COOH)、メルカプト基(-SH)又はこれらの誘導体を表す。R4及びR5は、同一又は異なって、水素原子又はアルキル基を表す。R4及びR5は結合して窒素原子と共に環構造を形成してもよい。nは整数を表す。
 この化学式で表される化合物(変性剤)により変性された変性SBRとしては、溶液重合のスチレンブタジエンゴム(S-SBR)の重合末端(活性末端)をこの化学式で表される化合物により変性されたSBR(特開2010-111753号公報に記載の変性SBR等)を使用できる。
 R1、R2及びR3としては、アルコキシ基(好ましくは炭素数1~8、より好ましくは炭素数1~4のアルコキシ基)が好適である。R4及びR5としては、アルキル基(好ましくは炭素数1~3のアルキル基)が好適である。nは、好ましくは1~5、より好ましくは2~4、さらに好ましくは3である。また、R4及びR5が結合して窒素原子と共に環構造を形成する場合、4~8員環であることが好ましい。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等)も含まれる。
 具体的な変性剤としては、2-ジメチルアミノエチルトリメトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、2-ジメチルアミノエチルトリエトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、2-ジエチルアミノエチルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、2-ジエチルアミノエチルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、変性SBRとしては、以下の化合物(変性剤)により変性された変性SBRも使用できる。変性剤としては、例えば、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル;ジグリシジル化ビスフェノールA等の2個以上のフェノール基を有する芳香族化合物のポリグリシジルエーテル;1,4-ジグリシジルベンゼン、1,3,5-トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエン等のポリエポキシ化合物;4,4’-ジグリシジル-ジフェニルメチルアミン、4,4’-ジグリシジル-ジベンジルメチルアミン等のエポキシ基含有3級アミン;ジグリシジルアニリン、N,N’-ジグリシジル-4-グリシジルオキシアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のジグリシジルアミノ化合物;ビス-(1-メチルプロピル)カルバミン酸クロリド、4-モルホリンカルボニルクロリド、1-ピロリジンカルボニルクロリド、N,N-ジメチルカルバミド酸クロリド、N,N-ジエチルカルバミド酸クロリド等のアミノ基含有酸クロリド;1,3-ビス-(グリシジルオキシプロピル)-テトラメチルジシロキサン、(3-グリシジルオキシプロピル)-ペンタメチルジシロキサン等のエポキシ基含有シラン化合物;(トリメチルシリル)[3-(トリメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリブトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジブトキシシリル)プロピル]スルフィド等のスルフィド基含有シラン化合物;エチレンイミン、プロピレンイミン等のN-置換アジリジン化合物;メチルトリエトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリエトキシシラン等のアルコキシシラン;4-N,N-ジメチルアミノベンゾフェノン、4-N,N-ジ-t-ブチルアミノベンゾフェノン、4-N,N-ジフェニルアミノベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジフェニルアミノ)ベンゾフェノン、N,N,N’,N’-ビス-(テトラエチルアミノ)ベンゾフェノン等のアミノ基及び/又は置換アミノ基を有する(チオ)ベンゾフェノン化合物;4-N,N-ジメチルアミノベンズアルデヒド、4-N,N-ジフェニルアミノベンズアルデヒド、4-N,N-ジビニルアミノベンズアルデヒド等のアミノ基及び/又は置換アミノ基を有するベンズアルデヒド化合物;N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-フェニル-2-ピロリドン、N-t-ブチル-2-ピロリドン、N-メチル-5-メチル-2-ピロリドン等のN-置換ピロリドンN-メチル-2-ピペリドン、N-ビニル-2-ピペリドン、N-フェニル-2-ピペリドン等のN-置換ピペリドン;N-メチル-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-メチル-ω-ラウリロラクタム、N-ビニル-ω-ラウリロラクタム、N-メチル-β-プロピオラクタム、N-フェニル-β-プロピオラクタム等のN-置換ラクタム類;の他、N,N-ビス-(2,3-エポキシプロポキシ)-アニリン、4,4-メチレン-ビス-(N,N-グリシジルアニリン)、トリス-(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-トリオン類、N,N-ジエチルアセトアミド、N-メチルマレイミド、N,N-ジエチル尿素、1,3-ジメチルエチレン尿素、1,3-ジビニルエチレン尿素、1,3-ジエチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、4-N,N-ジメチルアミノアセトフェン、4-N,N-ジエチルアミノアセトフェノン、1,3-ビス(ジフェニルアミノ)-2-プロパノン、1,7-ビス(メチルエチルアミノ)-4-ヘプタノン等を挙げることができる。なお、この化合物(変性剤)による変性は、公知の方法で実施可能である。
 SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。なお、SBRは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ゴム成分100質量部中のイソプレン系ゴムの含有量(合計含有量)は、良好な高速走行時の低発熱性と耐久性能が得られる観点から、5質量部以上が好ましく、25質量部以上がより好ましく、35質量部以上がさらに好ましい。一方、イソプレン系ゴムの含有量の上限としては特に限定されないが、ウェットグリップ性能の観点から、100質量部以下が好ましく、80質量部以下がより好ましく、50質量部以下がさらに好ましい。イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。
 NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 トレッドゴム2Aに用いられるゴム組成物は、必要に応じて、さらにBRを含んでもよい。この場合、ゴム成分100質量部中のBRの含有量は、例えば、耐摩耗性の観点から、5質量部超が好ましい。一方、BRの含有量の上限としては特に限定されないが、100質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下であることがさらに好ましい。BRの重量平均分子量は、例えば、10万超、200万未満である。BRのビニル結合量は、例えば、1質量%超、30質量%未満である。BRのシス量は、例えば1質量%超、98質量%未満である。BRのトランス量は、例えば、1質量%超、60質量%未満である。
 BRとしては特に限定されず、高シス含量(シス含量が90%以上)のBR、低シス含量のBR、シンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。BRは、非変性BR、変性BRのいずれでもよく、変性BRとしては、上述の官能基が導入された変性BRが挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。なお、シス含量は、赤外吸収スペクトル分析法によって測定できる。
 BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
 また、トレッドゴム2Aのゴム組成物は、その他のゴム成分として、ニトリルゴム(NBR)等のタイヤの製造に一般的に用いられるゴム(ポリマー)を含んでもよい。
 本実施形態において、トレッドゴム2Aのゴム組成物は、充填剤を含有することが好ましい。具体的な充填剤としては、例えば、シリカ、カーボンブラック、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等が挙げられ、これらの中でも、シリカ、カーボンブラックが、補強剤として好ましく使用できる。なお、シリカを使用する場合には、シランカップリング剤と併用することが好ましい。
 トレッドゴム2Aのゴム組成物は、シリカを含むことが好ましい。シリカのBET比表面積は、良好な耐久性能が得られる観点から140m/g超が好ましく、160m/g超がより好ましい。一方、良好な高速走行時の転がり抵抗性を得られる観点からは250m/g未満が好ましく、220m/g未満であることがより好ましい。なお、このBET比表面積は、ASTM D3037-93に準じてBET法で測定されるNSAの値である。
 充填補強剤としてシリカを用いる場合、ゴム成分100質量部に対するシリカの含有量は、良好な耐久性能を得る観点から、35質量部超が好ましく、40質量部超がより好ましい。一方、良好な転がり抵抗性を得る観点から、シリカの含有量の上限としては、70質量部未満が好ましく、65質量部未満がより好ましく、60質量部未満がさらに好ましい。
 シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)等が挙げられる。シリカとしては、これらの中でも、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
 トレッドゴム2Aのゴム組成物は、シリカと共にシランカップリング剤を含むことが好ましい。シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド等のスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Z等のメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン等のアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロ系等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 シランカップリング剤としては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
 シランカップリング剤の含有量は、シリカ100質量部に対して、例えば、3質量部超、25質量部未満である。
 トレッドゴム2Aのゴム組成物は、カーボンブラックを含むことが好ましい。カーボンブラックの含有量は、ゴム成分100質量部に対して、例えば、1質量部超、200質量部未満である。
 カーボンブラックとしては特に限定されず、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイト等を挙げることができる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 カーボンブラックの窒素吸着比表面積(NSA)は、例えば、30m/g超、250m/g未満である。カーボンブラックのジブチルフタレート(DBP)吸収量は、例えば、50ml/100g超、250ml/100g未満である。なお、カーボンブラックの窒素吸着比表面積は、ASTM D4820-93に従って測定され、DBP吸収量は、ASTM D2414-93に従って測定される。
 具体的なカーボンブラックとしては特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 トレッドゴム2Aのゴム組成物は、カーボンブラック、シリカの他に、タイヤ工業において一般的に用いられている、例えば、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等の充填剤をさらに含有してもよい。これらの含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
 トレッドゴム2Aのゴム組成物は、オイル(伸展油を含む)や液状ゴム等を軟化剤として含んでもよい。これらの合計含有量は、ゴム成分100質量部に対して5質量部超が好ましい。合計含有量の上限としては、70質量部未満が好ましく、50質量部未満がより好ましく、30質量部未満がさらに好ましい。なお、オイルの含有量には、ゴム(油展ゴム)に含まれるオイルの量も含まれる。
 オイルとしては、例えば、鉱物油(一般にプロセスオイルと言われる)、植物油脂、又はその混合物が挙げられる。鉱物油(プロセスオイル)としては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイル等を用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 具体的なプロセスオイル(鉱物油)としては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。
 軟化剤として挙げた液状ゴムとは、常温(25℃)で液体状態の重合体であり、かつ、固体ゴムと同様のモノマーを構成要素とする重合体である。液状ゴムとしては、ファルネセン系ポリマー、液状ジエン系重合体及びそれらの水素添加物等が挙げられる。
 液状ジエン系重合体としては、液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)等が挙げられる。
 液状ジエン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が、例えば、1.0×10超、2.0×10未満である。なお、本明細書において、液状ジエン系重合体のMwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算値である。
 液状ゴムとしては、例えば、クラレ(株)、クレイバレー社等の製品を使用できる。
 また、トレッドゴム2Aのゴム組成物は、必要に応じて、樹脂成分を含有することが好ましい。樹脂成分は、常温で固体であっても、液体であってもよく、具体的な樹脂成分としては、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂等の樹脂成分が挙げられ、2種以上を併用してもよい。樹脂成分の含有量は、ゴム成分100質量部に対して、2質量部超で、45質量部未満が好ましく、30質量部未満がより好ましい。
 スチレン系樹脂は、スチレン系単量体を構成モノマーとして用いたポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的なスチレン系樹脂としては、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーも挙げられる。
 他の単量体としては、アクリロニトリル、メタクリロニトリル等のアクリロニトリル類、アクリル類、メタクリル酸等の不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチル等の不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレン等のジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物;等が例示できる。
 クマロン系樹脂としては、クマロンインデン樹脂が好ましく使用される。クマロンインデン樹脂は、樹脂の骨格(主鎖)を構成するモノマー成分として、クマロン及びインデンを含む樹脂である。クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエン等が挙げられる。
 クマロンインデン樹脂の含有量は、ゴム成分100質量部に対して、例えば、1.0質量部超、50.0質量部未満である。
 クマロンインデン樹脂の水酸基価(OH価)は、例えば、15mgKOH/g超、150mgKOH/g未満である。なお、OH価とは、樹脂1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムの量をミリグラム数で表したものであり、電位差滴定法(JIS K 0070:1992)により測定した値である。
 クマロンインデン樹脂の軟化点は、例えば、30℃超、160℃未満である。なお、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
 テルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂等が挙げられる。ポリテルペンは、テルペン化合物を重合して得られる樹脂及びそれらの水素添加物である。テルペン化合物は、(Cの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)等に分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオール等が挙げられる。
 ポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂等のテルペン樹脂の他、該テルペン樹脂に水素添加処理した水素添加テルペン樹脂も挙げられる。テルペンフェノールとしては、テルペン化合物とフェノール系化合物とを共重合した樹脂、及び該樹脂に水素添加処理した樹脂が挙げられ、具体的なテルペンフェノールとしては、テルペン化合物、フェノール系化合物及びホルマリンを縮合させた樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノール等が挙げられる。芳香族変性テルペン樹脂としては、テルペン樹脂を芳香族化合物で変性して得られる樹脂、及び該樹脂に水素添加処理した樹脂が挙げられる。なお、芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノール等のフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトール等のナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレン等のスチレン誘導体;クマロン、インデン等が挙げられる。
 「C5樹脂」とは、C5留分を重合することにより得られる樹脂をいう。C5留分としては、例えば、シクロペンタジエン、ペンテン、ペンタジエン、イソプレン等の炭素数4~5個相当の石油留分が挙げられる。C5系石油樹脂しては、ジシクロペンタジエン樹脂(DCPD樹脂)が好適に用いられる。
 「C9樹脂」とは、C9留分を重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C9留分としては、例えば、ビニルトルエン、アルキルスチレン、インデン、メチルインデン等の炭素数8~10個相当の石油留分が挙げられる。具体例としては、例えば、クマロンインデン樹脂、クマロン樹脂、インデン樹脂、及び芳香族ビニル系樹脂が好適に用いられる。芳香族ビニル系樹脂としては、経済的で、加工しやすく、発熱性に優れているという理由から、α-メチルスチレンもしくはスチレンの単独重合体又はα-メチルスチレンとスチレンとの共重合体が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。芳香族ビニル系樹脂としては、例えば、クレイトン社、イーストマンケミカル社等より市販されているものを使用することができる。
 「C5C9樹脂」とは、C5留分とC9留分を共重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C5留分及びC9留分としては、前記の石油留分が挙げられる。C5C9樹脂としては、例えば、東ソー(株)、LUHUA社等より市販されているものを使用することができる。
 アクリル系樹脂としては特に限定されないが、例えば、無溶剤型アクリル系樹脂を使用できる。
 無溶剤型アクリル系樹脂は、副原料となる重合開始剤、連鎖移動剤、有機溶媒等を極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4,414,370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5,010,166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)が挙げられる。なお、本発明において、(メタ)アクリルは、メタクリル及びアクリルを意味する。
 アクリル系樹脂を構成するモノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(アルキルエステル、アリールエステル、アラルキルエステル等)、(メタ)アクリルアミド、及び(メタ)アクリルアミド誘導体等の(メタ)アクリル酸誘導体が挙げられる。
 また、アクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体と共に、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン等の芳香族ビニルを使用してもよい。
 アクリル系樹脂は、(メタ)アクリル成分のみで構成される樹脂であっても、(メタ)アクリル成分以外の成分をも構成要素とする樹脂であってもよい。また、アクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していてよい。
 樹脂成分としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
 トレッドゴム2Aのゴム組成物は、老化防止剤を含むことが好ましい。老化防止剤の含有量は、ゴム成分100質量部に対して、例えば、1質量部超、10質量部未満である。
 老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレキシス社等の製品を使用できる。
 トレッドゴム2Aのゴム組成物は、ステアリン酸を含んでもよい。ステアリン酸の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10.0質量部未満である。ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
 トレッドゴム2Aのゴム組成物は、酸化亜鉛を含んでもよい。酸化亜鉛の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10質量部未満である。酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
 トレッドゴム2Aのゴム組成物は、ワックスを含むことが好ましい。ワックスの含有量は、ゴム成分100質量部に対して、例えば、0.5~20質量部、好ましくは1.0~15質量部、より好ましくは1.5~10質量部である。
 ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックス等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 なお、ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。
 トレッドゴム2Aのゴム組成物は、硫黄等の架橋剤を含むことが好ましい。架橋剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、10.0質量部未満である。
 硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 なお、硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレキシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
 硫黄以外の架橋剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)等の硫黄原子を含む加硫剤や、ジクミルパーオキサイド等の有機過酸化物等が挙げられる。
 トレッドゴム2Aのゴム組成物は、加硫促進剤を含むことが好ましい。加硫促進剤の含有量は、ゴム成分100質量部に対して、例えば、0.3質量部超、10.0質量部未満である。
 加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 トレッドゴム2Aのゴム組成物には、これらの成分の他、タイヤ工業において一般的に用いられている添加剤、例えば、脂肪酸金属塩、カルボン酸金属塩、有機過酸化物等をさらに配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
 以上、本発明の特に好ましい実施形態について詳述したが、本発明は、上述の実施形態に限定されることなく、種々の態様に変形して実施され得る。
 図1のタイヤ子午線断面を有する175/70R13のサイズのタイヤが、表1ないし表4の仕様に基づいて試作された。試作されたタイヤを用いて、タイヤ強度、ノイズ性能、乗り心地性能、耐久性能及び低燃費性能が評価された。各試作タイヤの製造方法及びテスト方法は、以下のとおりである。
<トレッドゴム用ゴム組成物及びベルト用ゴム組成物の製造>
 最初に、トレッドゴムに用いられるトレッドゴム用ゴム組成物及びトレッドゴムに用いられるベルト用ゴム組成物の製造を行った
(1)トレッドゴム用ゴム組成物の配合材料
 まず、以下に示す各配合材料を準備した。
(a)ゴム成分
(イ)NR:TSR20
(ロ)SBR:次段落に記載の方法に従って作製された変性溶液重合SBR
      (スチレン含量:30質量%、ビニル結合量:52質量%、Mw:25万)
(ハ)BR:宇部興産(株)製のUBEPOL-BR150
 上述のSBRは、以下に示す手順に従って作製した。まず、窒素置換されたオートクレーブ反応器に、シクロヘキサン、テトラヒドロフラン、スチレン、及び1,3-ブタジエンを仕込んだ。反応器の内容物の温度を20℃に調整した後、n-ブチルリチウムを添加して重合を開始した。断熱条件で重合し、最高温度は85℃に達した。重合転化率が99%に達した時点で1,3-ブタジエンを追加し、さらに5分重合させた後、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシランを変性剤として加えて反応を行った。重合反応終了後、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥してSBRを得た。
(b)ゴム成分以外の配合材料
(イ)カーボンブラック:三菱化学(株)製のダイヤブラックN220
(ロ)シリカ:エボニック社製のウルトラシルVN3
            (BET比表面積:165m/g)
(ハ)シランカップリング剤:デグサ社製のSi266
            (ビス(3-トリエトキシシリルプロピル)ジスルフィド)
(ニ)オイル:(株)ジャパンエナジー製のプロセスX-140
(ホ)樹脂(ポリマー成分):アリゾナケミカル社製のSA85
            (α?メチルスチレン系樹脂)
(ヘ)ワックス:日本精蝋(株)製のオゾエース0355
(ト)老化防止剤-1:大内新興化学工業(株)製のノクラック 6C
       (N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン)
(チ)老化防止剤-2:大内新興化学工業(株)製のノクラック 224
       (2,2,4-トリメチル-1,2-ジヒドロキノリン重合体)
(リ)酸化亜鉛:三井金属鉱業社製の亜鉛華1号
(ヌ)ステアリン酸:日油(株)製のステアリン酸「椿」
(ル)架橋剤及び加硫促進剤
   硫黄:鶴見化学工業(株)製の粉末硫黄
   加硫促進剤-1:大内新興化学工業(株)製のノクセラー CZ-G(CBS)
         (N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
   加硫促進剤-2:大内新興化学工業(株)製のノクセラー D(DPG)
         (1,3-ジフェニルグアニジン)
(2)ベルト用ゴム組成物の配合材料
 まず、以下に示す各配合材料を準備した。
(a)ゴム成分
   NR:RSS3
(b)ゴム成分以外の配合材料
(イ)カーボンブラック-1:キャボットジャパン(株)製のショウブラックN326
             (NSA:78m/g)
(ロ)カーボンブラック-2:キャボットジャパン(株)製のショウブラックN550
             (NSA:42m/g)
(ハ)硬化性樹脂成分-1:住友ベークライト(株)製のPR12686
            (カシューオイル変性フェノール樹脂)
(ニ)硬化性樹脂成分-2:田岡化学工業(株)製のスミカノール620
            (変性レゾルシン樹脂)
(ホ)硬化剤:田岡化学工業(株)製のスミカノール507
          (メチレン供与体/樹脂硬化剤)
(ヘ)有機酸コバルト-1:DIC(株)製のCOST
          (コバルト含有量:9.5質量%)
(ト)有機酸コバルト-2:DIC(株)製のDICNATE NBC-2
          (ネオデカン酸ホウ素コバルト、コバルト含有量22.5質量%)
(チ)酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
(リ)老化防止剤-1:大内新興化学工業(株)製のノクラック6C
       (N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン)
(ヌ)老化防止剤-2:川口化学工業(株)製のアンテージRD
       (2,2,4-トリメチル-1,2-ジヒドロキノリン)
(ル)オイル:(株)ジャパンエナジー製のプロセスX-140
(ヲ)架橋剤、加硫促進剤及び架橋助剤
      硫黄:フレキシス(株)製 クリステックスHSOT20
       (硫黄80質量%及びオイル分20質量%含む不溶性硫黄)
      加硫促進剤:大内新興化学工業(株)製のノクセラー DZ
       (N,N-ジシクロヘキシル-2-べンゾチアゾリルスルフェンアミド)
      架橋助剤:フレキシス社製のデュラリンクHTS
(3)ゴム組成物の製造
 表1及び表2に示す各配合内容に従い、バンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りして、混練物を得た。なお、各配合量は、質量部である。
 トレッドゴムの配合が表1に示される。
Figure JPOXMLDOC01-appb-T000002
 
 トッピングゴムの配合が表2に示される。
Figure JPOXMLDOC01-appb-T000003
 
 次に、得られた混練物に、硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、トレッド用ゴム組成物及びベルト用ゴム組成物を得た。
<タイヤの製造>
 表3及び表4に示すスチールワイヤーを引き出して配列させ、得られたベルト用ゴム組成物を用いて、その上下に、トータル厚みが0.95mmとなるようにトッピングした後、加硫後にタイヤ周方向に対してスチールコードが24°となるように切り出してベルト部材を得た。
 その後、トレッドゴム用ゴム組成物をトレッドの形状に押し出し、他のタイヤ部材と共に、ベルト部材を互いに交差するように2層貼り合わせて未加硫タイヤを形成し、170℃の条件下で10分間プレス加硫して、テストタイヤを製造した。
<タイヤ強度>
 試作タイヤを突出物で突いてタイヤがバーストするまでのエネルギーが測定された。結果は、比較例1を100とする指数で表され、数値が大きいほどエネルギーが大きく、タイヤ強度が高いことを示す。
<ノイズ性能>
 試作タイヤが全輪に装着された前輪駆動の小型乗用車のテスト車両にテストドライバー1名が乗車し、ロードノイズ計測路を走行したときのノイズが測定された。結果は、比較例1を100とする指数で表され、数値が大きいほどノイズが小さく、ノイズ性能に優れていることを示す。
<乗り心地性能>
 試作タイヤに加振機にて振動を与え、加振から振動が収束するまでの時間が測定された。結果は、比較例1を100とする指数で表され、数値が大きいほど振動収束性が良好であり、乗り心地性能に優れていることを示す。
<耐久性能>
 試作タイヤが台上耐久試験機に装着され、タイヤが破損するまでの走行距離が測定された。結果は、比較例1を100とする指数で表され、数値が大きいほど走行距離が長く、耐久性能に優れていることを示す。
<低燃費性能>
 試作タイヤが転がり抵抗試験機に装着され、荷重負荷状態で走行させたときの転がり抵抗が測定された。結果は、比較例1を100とする指数で表され、数値が大きいほど転がり抵抗が小さく、低燃費性能に優れていることを示す。
 テストの結果が表3及び表4に示される。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
 テストの結果、実施例のタイヤは、良好なノイズ性能、乗り心地性能及び耐久性能を維持しつつ、低燃費性能を向上し得ることが確認された。
 1     タイヤ
 2     トレッド部
 7     ベルト層
 7A、7B ベルトプライ
 9     ベルトコード
 9A    スチール単線
10     トッピングゴム
 

Claims (8)

  1.  トレッド部の内部にベルト層が配されたタイヤであって、
     前記ベルト層は、少なくとも1枚のベルトプライを含み、
     前記ベルトプライは、断面偏平形状のスチール単線からなるベルトコードと、前記ベルトコードを被覆するトッピングゴムとを含み、
     前記トッピングゴムは、70℃における複素弾性率ES*が8.0~20.0MPaであり、かつ、70℃における損失正接tanδが0.04~0.14である、
     タイヤ。
  2.  前記トレッド部は、トレッド接地面を形成するトレッドゴムを含み、
     前記トレッドゴムの70℃における複素弾性率ET*が4.5~10.0MPaであり、かつ、70℃における損失正接tanδが0.08~0.15である、請求項1に記載のタイヤ。
  3.  前記トレッドゴムの複素弾性率ET*と前記トッピングゴムの複素弾性率ES*との比(ET*/ES*)が、1.3以下である、請求項2に記載のタイヤ。
  4.  前記トッピングゴムの70℃における損失正接tanδが、0.04~0.09である、請求項1ないし3のいずれか1項に記載のタイヤ。
  5.  前記トッピングゴムの70℃における損失正接tanδが、0.04~0.06である、請求項1ないし3のいずれか1項に記載のタイヤ。
  6.  前記スチール単線は、断面形状における長径LDと短径SDとの比(LD/SD)が1.05~1.35であり、かつ、前記長径LDが0.30~0.50mmである、請求項1ないし5のいずれか1項に記載のタイヤ。
  7.  前記スチール単線は、断面形状における長径方向及び短径方向の少なくとも一方に波付けされており、
     前記スチール単線の波付けピッチPが、3.0~10.0mmであり、
     前記スチール単線の波付け高さHが、0.05~0.15mmである、請求項1ないし6のいずれか1項に記載のタイヤ。
  8.  前記トッピングゴムは、コバルト元素を含み、
     前記コバルト元素の濃度c(ppm)と前記スチール単線の断面形状における外周長L(mm)との比(c/L)は、350~1000ppm/mmである、請求項1ないし7のいずれか1項に記載のタイヤ。
PCT/JP2020/035739 2019-10-25 2020-09-23 タイヤ WO2021079673A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080069004.9A CN114555384A (zh) 2019-10-25 2020-09-23 轮胎
EP20878235.9A EP4049855B1 (en) 2019-10-25 2020-09-23 Tire
JP2021521442A JPWO2021079673A1 (ja) 2019-10-25 2020-09-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019194502 2019-10-25
JP2019-194502 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021079673A1 true WO2021079673A1 (ja) 2021-04-29

Family

ID=75620646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035739 WO2021079673A1 (ja) 2019-10-25 2020-09-23 タイヤ

Country Status (4)

Country Link
EP (1) EP4049855B1 (ja)
JP (1) JPWO2021079673A1 (ja)
CN (1) CN114555384A (ja)
WO (1) WO2021079673A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414370A (en) 1981-01-09 1983-11-08 S. C. Johnson & Son, Inc. Process for continuous bulk copolymerization of vinyl monomers
JPS596207B2 (ja) 1977-09-06 1984-02-09 三洋化成工業株式会社 陶管シ−リング材の注型方法
JPH0131352B2 (ja) 1979-10-05 1989-06-26 Kenwood Corp
US5010166A (en) 1987-03-05 1991-04-23 S. C. Johnson & Son, Inc. Process and apparatus for producing polyol polymers and polyol polymers so produced
JPH0558005B2 (ja) 1984-02-29 1993-08-25 Johnson & Son Inc S C
JP2001080313A (ja) * 1999-09-17 2001-03-27 Ohtsu Tire & Rubber Co Ltd :The 空気入りタイヤ
JP2008156418A (ja) * 2006-12-21 2008-07-10 Sumitomo Rubber Ind Ltd スチールコード被覆用ゴム組成物、ならびにそれでスチールコードを被覆して得られるベルトまたはブレーカーを有するタイヤ
JP2010111753A (ja) 2008-11-05 2010-05-20 Sumitomo Rubber Ind Ltd ゴム組成物及びタイヤ
JP2013122038A (ja) * 2011-11-08 2013-06-20 Sumitomo Rubber Ind Ltd タイヤコード被覆、ブレーカーエッジストリップ、ブレーカークッション又はコード隣接ストリップ用ゴム組成物、及び空気入りタイヤ
JP2014095017A (ja) * 2012-11-08 2014-05-22 Sumitomo Rubber Ind Ltd スチールコード被覆、スチールコード隣接ストリップ又はタイガム用ゴム組成物及び空気入りタイヤ
JP2017048351A (ja) * 2015-09-04 2017-03-09 横浜ゴム株式会社 空気入りタイヤ
JP2017178994A (ja) * 2016-03-28 2017-10-05 住友ゴム工業株式会社 乗用車用タイヤ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322404A (ja) * 2000-05-12 2001-11-20 Bridgestone Corp 空気入りラジアルタイヤ
US8215357B2 (en) * 2006-07-19 2012-07-10 Bridgestone Corporation Pneumatic tire
JP5041515B2 (ja) * 2006-12-13 2012-10-03 株式会社ブリヂストン 空気入りタイヤ
JP5216077B2 (ja) * 2010-12-29 2013-06-19 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JP5986513B2 (ja) * 2013-02-07 2016-09-06 住友ゴム工業株式会社 重荷重用タイヤ
JP2015129239A (ja) * 2014-01-08 2015-07-16 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596207B2 (ja) 1977-09-06 1984-02-09 三洋化成工業株式会社 陶管シ−リング材の注型方法
JPH0131352B2 (ja) 1979-10-05 1989-06-26 Kenwood Corp
US4414370A (en) 1981-01-09 1983-11-08 S. C. Johnson & Son, Inc. Process for continuous bulk copolymerization of vinyl monomers
JPH0558005B2 (ja) 1984-02-29 1993-08-25 Johnson & Son Inc S C
US5010166A (en) 1987-03-05 1991-04-23 S. C. Johnson & Son, Inc. Process and apparatus for producing polyol polymers and polyol polymers so produced
JP4467107B2 (ja) 1999-09-17 2010-05-26 住友ゴム工業株式会社 空気入りタイヤ
JP2001080313A (ja) * 1999-09-17 2001-03-27 Ohtsu Tire & Rubber Co Ltd :The 空気入りタイヤ
JP2008156418A (ja) * 2006-12-21 2008-07-10 Sumitomo Rubber Ind Ltd スチールコード被覆用ゴム組成物、ならびにそれでスチールコードを被覆して得られるベルトまたはブレーカーを有するタイヤ
JP2010111753A (ja) 2008-11-05 2010-05-20 Sumitomo Rubber Ind Ltd ゴム組成物及びタイヤ
JP2013122038A (ja) * 2011-11-08 2013-06-20 Sumitomo Rubber Ind Ltd タイヤコード被覆、ブレーカーエッジストリップ、ブレーカークッション又はコード隣接ストリップ用ゴム組成物、及び空気入りタイヤ
JP2014095017A (ja) * 2012-11-08 2014-05-22 Sumitomo Rubber Ind Ltd スチールコード被覆、スチールコード隣接ストリップ又はタイガム用ゴム組成物及び空気入りタイヤ
JP2017048351A (ja) * 2015-09-04 2017-03-09 横浜ゴム株式会社 空気入りタイヤ
JP2017178994A (ja) * 2016-03-28 2017-10-05 住友ゴム工業株式会社 乗用車用タイヤ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4049855A4
TOAGOSEI, ANNUAL REPORT TREND2000, vol. 3, no. 3, pages 42 - 45

Also Published As

Publication number Publication date
JPWO2021079673A1 (ja) 2021-04-29
EP4049855A4 (en) 2022-12-07
EP4049855A1 (en) 2022-08-31
EP4049855B1 (en) 2024-05-29
CN114555384A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
JP6800435B1 (ja) 空気入りタイヤ
JP6835284B1 (ja) 空気入りタイヤ
JP6880541B1 (ja) 空気入りタイヤ
JP2021054137A (ja) 空気入りタイヤ
US11724543B2 (en) Pneumatic tire
WO2022145121A1 (ja) 空気入りタイヤ
JP6861954B1 (ja) 空気入りタイヤ
JP6851579B1 (ja) 空気入りタイヤ
WO2022123854A1 (ja) タイヤ
JP6819028B1 (ja) 空気入りタイヤ
JP6819026B1 (ja) 空気入りタイヤ
JP2022089491A (ja) 空気入りタイヤ
JP2022024962A (ja) 空気入りタイヤ
WO2021079673A1 (ja) タイヤ
JP6945807B1 (ja) 空気入りタイヤ
WO2021215092A1 (ja) タイヤ用コード及びタイヤ
JP6819027B1 (ja) 乗用車用空気入りタイヤ
WO2022145112A1 (ja) 空気入りタイヤ
JP2022106495A (ja) 空気入りタイヤ
JP2022105944A (ja) 空気入りタイヤ
WO2022145122A1 (ja) 空気入りタイヤ
WO2022050153A1 (ja) 空気入りタイヤ
JP2022105946A (ja) 空気入りタイヤ
JP2021176723A (ja) 乗用車用空気入りラジアルタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021521442

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020878235

Country of ref document: EP

Effective date: 20220525