WO2021079660A1 - 炭化水素分解用触媒 - Google Patents

炭化水素分解用触媒 Download PDF

Info

Publication number
WO2021079660A1
WO2021079660A1 PCT/JP2020/035210 JP2020035210W WO2021079660A1 WO 2021079660 A1 WO2021079660 A1 WO 2021079660A1 JP 2020035210 W JP2020035210 W JP 2020035210W WO 2021079660 A1 WO2021079660 A1 WO 2021079660A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nickel
copper
layer
iron
Prior art date
Application number
PCT/JP2020/035210
Other languages
English (en)
French (fr)
Inventor
伊原良碩
天野裕之
小林剛
Original Assignee
株式会社伊原工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社伊原工業 filed Critical 株式会社伊原工業
Priority to US17/771,009 priority Critical patent/US20220370987A1/en
Priority to EP20878621.0A priority patent/EP4049751A4/en
Priority to JP2020550889A priority patent/JPWO2021079660A1/ja
Priority to CN202080003307.0A priority patent/CN113039016A/zh
Publication of WO2021079660A1 publication Critical patent/WO2021079660A1/ja
Priority to JP2022118022A priority patent/JP7193825B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a hydrocarbon decomposition catalyst.
  • nickel is known as a catalyst metal used for hydrogen gas production by direct decomposition of methane, but it is supported on silica in order to prevent aggregation of nickel fine particles due to sintering during a high temperature reaction of direct decomposition of methane.
  • Proposed ones Patent Document 1, Non-Patent Document 1
  • those supported on zeolite Patent Document 2, Patent Document 3
  • those supported on titania Patent Document 4
  • Patent Document 5 there is one in which carbon particles are interposed between nickel particles without using a carrier (Patent Document 5), and the conversion rate of methane is maintained at about 50% at a temperature of 500 ° C. and 65% at 600 ° C. Furthermore, at 800 ° C, it is said that a high conversion rate of about 90% was obtained at the initial stage, which reached the thermodynamic equilibrium conversion rate, but the continuous operation time of about several hours was demonstrated, and it deteriorated over time. The resulting catalyst needs to be regenerated by acid treatment and calcination.
  • Patent Document 6 there is a catalyst in which a catalyst material is supported on a similarly expandable porous carrier (Patent Document 6), which enables stable direct decomposition for a long time with a conversion rate of about 60% and hydrogen for 10 hours. It is said that it has become possible to generate a degree, but eventually it will be necessary to replace the cartridge.
  • Japanese Unexamined Patent Publication No. 2001-220103 Japanese Unexamined Patent Publication No. 2003-95605 Japanese Unexamined Patent Publication No. 2003-54904 Japanese Unexamined Patent Publication No. 2004-59340 Japanese Unexamined Patent Publication No. 2004-261771 Japanese Unexamined Patent Publication No. 2005-058908
  • the present invention provides a hydrocarbon decomposition catalyst for producing hydrogen in a high yield for a long time without easily deteriorating the catalyst characteristics.
  • One aspect of the invention made to achieve the above object comprises an exposed nickel-containing layer on a support layer made of iron, cast iron, steel, copper, nickel, copper alloys, or iron-nickel alloys. It is a catalyst for decomposition of hydrocarbons. In such a catalyst, the catalytic ability can be changed by setting the metal or alloy type of the support layer to the above type.
  • an intermediate layer containing copper is formed between the base material and the nickel-containing layer, or a copper base material or a copper alloy base material is used. According to this configuration, there is a tendency that the hydrogen generation efficiency is likely to be improved as compared with the case where the layer containing copper is not formed or the case where the copper base material or the copper alloy base material is not used.
  • the above-mentioned catalyst for decomposition of hydrocarbons is obtained by a step of plating the surface of the support layer with copper and performing a diffusion treatment in vacuum, nitrogen gas or argon gas, and a step of forming the nickel-containing layer.
  • it is preferably obtained by plating the surface of the support layer made of nickel or iron-nickel alloy with copper and subjecting it to diffusion treatment in vacuum, nitrogen gas or argon gas.
  • the plated copper diffuses inside the support layer, resulting in a nickel-containing layer appearing on the exposed surface, or hydrogen by separately forming an exposed nickel-containing layer even if the copper plating remains on the surface. There is a tendency to improve the production efficiency.
  • the thickness of the intermediate layer containing copper is 1 to 1000 ⁇ m.
  • the thickness of the layer containing copper is within the above range, it is difficult to melt even if continuous operation at 800 ° C. is performed, and the catalytic ability can be improved.
  • Another aspect of the present invention made to achieve the above object is to heat a hydrocarbon decomposition catalyst having any one of the above characteristics to 800 ° C. for 4 hours to 72 hours, and an average residence time. It is a hydrocarbon decomposition catalyst obtained by contacting methane gas for more than 14 minutes, more preferably 30 minutes or more and 120 minutes or less. When the treatment is performed under the above conditions, the catalytic performance tends to increase and the hydrogen production efficiency tends to stabilize.
  • a photograph showing one aspect of a catalyst test apparatus containing a hydrocarbon decomposition catalyst according to the present invention The schematic diagram which shows one aspect of the catalyst test apparatus which accommodated the hydrocarbon decomposition catalyst which concerns on this invention.
  • the graph which shows the time-dependent change of the catalyst performance of a pure Ni plate.
  • the graph which shows the result of the data logger of the last day of a pure Ni board.
  • the graph which shows the time-dependent change of the catalyst performance of the SPC / Ni plating plate. Results of the data logger on the last day of the SPC / Ni plating plate.
  • the graph which shows the time-dependent change of the hydrogen production efficiency of the catalyst obtained by performing Ni plating after the Cu plating applied to a Ni plate was diffused in vacuum.
  • the hydrocarbon decomposition catalyst of the present invention includes an exposed nickel-containing layer.
  • the "nickel-containing layer” means a layer containing a nickel-containing component as a catalyst component.
  • the nickel-containing component may be nickel alone or an alloy, and in addition to nickel, Cu, Rh, Ru, Ir, Pd, Pt, Re, Co, Fe, Cr, Al, Mo, Nb, It may contain one or more elements selected from Ti, W, Ta, P and the like.
  • the "exposed nickel-containing layer” means a nickel-containing layer to which the hydrocarbon reaction product can come into contact, and is not limited to the nickel-containing layer that is visually exposed.
  • the nickel-containing layer may be an exposed non-supported nickel-containing layer.
  • “Non-supported” means that nickel-containing components as catalyst components are not dispersed as particles on a porous carrier such as activated carbon or a porous oxide, but are organized together. Means. The "organization” may mean that the particles are welded to each other in a part of the region, or may be welded in the entire region, or the particles are melted and then cooled and solidified. It may be that.
  • the nickel-containing layer is preferably organized at the mm level, more preferably at the ⁇ m level, and even more preferably at the nm level.
  • the "exposed non-supported nickel-containing layer” means a non-supported nickel-containing layer to which the hydrocarbon reaction product can come into contact, and is not limited to the non-supported nickel-containing layer that can be visually confirmed.
  • the nickel-containing layer is preferably a nickel-containing plating layer or a nickel-containing thermal spraying layer.
  • the thickness of the nickel-containing layer is usually formed to be about 5 ⁇ m to 200 ⁇ m. If it is thicker than 200 ⁇ m, it may not be economically viable for the purpose of improving the catalytic capacity.
  • the nickel-containing layer As a method for forming the nickel-containing layer, known forming methods such as electrolytic plating, electroless plating, substitution plating, and vacuum vapor deposition can be adopted. As the electrolytic plating conditions, general conditions used for nickel plating on automobile parts and the like can be adopted.
  • the hydrocarbon decomposition catalyst of the present invention is a catalyst comprising iron, copper, nickel, steel, cast iron, iron-nickel alloy, or copper alloy as a support layer for the nickel-containing layer.
  • support layer means a layer that serves as a base for laminating nickel-containing layers. Therefore, the support layer does not have to be in direct contact with the nickel-containing layer, and the support layer may be formed via one or more intermediate layers.
  • the support layer may be the base material (which may be a structure described later) itself before the nickel-containing layer is laminated, or may be a layer laminated on the base material.
  • Iron means a simple substance of iron or an iron alloy having a carbon content of less than about 0.02%.
  • the steel means an iron alloy with a carbon content of about 0.02 to 2.14%.
  • the steel is not particularly limited, and examples thereof include mild steel (SPC), carbon tool steel, alloy tool steel, and stainless steel.
  • Cast iron means an iron alloy having a carbon content of more than about 2.14%.
  • the copper alloy means a copper alloy to which one or more metal elements and / or non-metal elements are added.
  • copper-nickel alloys such as constantan and monel metal
  • copper and nickel such as white copper and white copper are used.
  • Examples thereof include alloys containing other components, alloys containing elements other than nickel such as copper and copper, and may contain transition elements such as chromium, molybdenum and cobalt.
  • the iron-nickel alloy means an alloy of iron and nickel, or an iron and nickel to which one or more metal elements and / or non-metal elements are added as required.
  • the iron-nickel alloy include iron and nickel alloys. , Permalloy, amber and the like, and may contain transition elements such as chromium, molybdenum and cobalt.
  • Permalloys include not only permalloys having a higher nickel content than iron (for example, Permalloy A and Permalloy C in the JIS standard), but also some permalloys containing more iron than nickel (for example, Permalloy B in the JIS standard). Permalloy D) is also included.
  • Permalloy Permalloy
  • the composition of a typical permalloy is shown below.
  • the hydrocarbon decomposition catalyst of the present invention is a single Ni or copper nickel in which the nickel-containing layer and the support layer are integrated. It may be an alloy or an iron-nickel alloy itself, or a support layer made of Ni alone, a copper-nickel alloy or an iron-nickel alloy, in which a layer containing a nickel-containing component having a component composition different from that of the support layer is laminated. There may be.
  • the thickness of the support layer is appropriately selected from the viewpoint of heat resistance, processability, etc. of the base material, and is usually 0.5 mm to 10 mm.
  • the hydrocarbon decomposition catalyst of the present invention preferably has an intermediate layer containing copper between the support layer and the nickel-containing layer.
  • the intermediate layer containing copper means a layer made of elemental copper or a copper alloy, which is clearly distinguished from the support layer and the nickel-containing layer in terms of composition.
  • the copper alloy may contain one or more elements selected from Zn, Al, Sn, and Ni.
  • the thickness of the intermediate layer containing copper is preferably 1 to 1000 ⁇ m. If it is thinner than 1 ⁇ m, it is easily melted and may not be able to withstand a reaction temperature of about 800 ° C. On the other hand, even if it is thicker than 1000 ⁇ m, it may not be economically viable for the purpose of improving the catalytic ability.
  • a more preferable lower limit of the thickness of the intermediate layer is 1.5 ⁇ m, a further preferable lower limit is 2 ⁇ m, a more preferable upper limit is 500 ⁇ m, and a further preferable upper limit is 200 ⁇ m.
  • Known methods for forming the intermediate layer containing copper include plating (electrolytic plating, electroless plating), thermal spraying (plasma spraying, cluster ion beam, gas deposition, CS method, WS method, high-speed solid particle deposition method).
  • a forming method can be adopted, and in general, electrolytic plating can be mainly adopted when the layer thickness can be thin, and plasma spraying can be mainly adopted when the layer thickness can be increased.
  • electrolytic plating conditions general conditions used for copper electrolytic plating on automobile parts and the like can be adopted.
  • the plasma spraying conditions the general conditions of the plasma spraying method used for copper spraying on automobile parts and the like can be adopted.
  • the catalyst for hydrocarbon decomposition of the present invention was obtained by plating the surface of the support layer with copper and performing diffusion treatment in vacuum, nitrogen gas or argon gas, and forming a nickel-containing layer. Or, it is preferably obtained by plating the surface of a support layer made of nickel or an iron-nickel alloy with copper and subjecting it to diffusion treatment in vacuum, nitrogen gas or argon gas.
  • the diffusion treatment may be carried out by a conventionally known method, temperature and time, but the plated copper diffuses inside the support layer, and as a result, a nickel-containing layer appears on the exposed surface or the copper plating remains on the surface. Even if it is present, the condition is not particularly limited as long as the exposed nickel-containing layer can be separately formed.
  • each layer when the layers are clearly formed is not particularly limited except when the catalyst for hydrocarbon decomposition of the present invention is Ni alone, a copper nickel alloy or an iron nickel alloy itself, but the support layer / Surface layer, support layer / intermediate layer / surface layer, or support layer / first intermediate layer / second intermediate layer / surface layer in this order, for example, Fe / Cu / Ni, Fe / X / Cu / Ni, cold rolled steel plate.
  • X is selected from Zn, Sn, Rh, Ru, Ir, Pd, Pt, Re, Co, Fe, Cr, Al, Mo, Nb, Ti, W, Ta, P and the like, Cu or Ni. It is a layer composed of one or more elements other than.
  • the hydrocarbon decomposition catalyst of the present invention is preferably a structure catalyst. Since the structure is used, for example, even if the catalytic function of the nickel-based metal is deteriorated due to the adhesion of the solid product in the direct decomposition reaction of the hydrocarbon, the separation is easier than that of the powder catalyst, and the separation is easy. A wide variety of methods can be adopted.
  • a "structure catalyst” is a catalyst selected from particles, plates, porous bodies, felts, meshes, fabrics or expanded metals, or the structure itself functions as a catalyst, or the structure is referred to. It is the base catalyst.
  • the structure-based catalyst generally refers to a catalyst obtained by impregnating a slurry containing a catalyst component with a base material having a shape such as a honeycomb, but for the purpose of the present invention, the above-mentioned catalyst is generally used.
  • a non-supported catalyst layer (plating layer, thermal spraying layer) exposed by thermal spraying, plating, or the like is formed on the structure.
  • the particles are particles having a diameter of 0.1 to 30 mm, preferably 1 to 30 mm, and more preferably 5 to 30 mm.
  • the board may be composed of a single layer or may be two or more layers of plywood made of different materials.
  • the porous body is a porous body having continuous pores.
  • the porous body preferably has a three-dimensional network structure.
  • the pore diameter is usually about 300 to 4000 ⁇ m, preferably 1100 to 4000 ⁇ m, the porosity is 80% or more, preferably 90% or more, more preferably 95% or more, and the specific surface area is 200 m 2 / m 3 to 6000 m 2 /. m 3 , preferably 500 m 2 / m 3 to 8500 m 2 / m 3 .
  • a typical example is Celmet (registered trademark) manufactured by Sumitomo Electric Industries, Ltd.
  • the felt is a material obtained by randomly entwining and laminating fiber-like constituent materials and sintering them as necessary, and includes a needle punch web and a fiber sintered body.
  • the needle punch web and the fiber sintered body have a fiber diameter of 10 to 150 ⁇ m, a porosity of about 50 to 80%, a weight of 50 to ⁇ 50,000 g / m 2 , and a thickness of 0.1 mm to. It can be 5.0 mm.
  • a mesh is a fiber-like constituent material that is woven by any weave or knitting method regardless of whether it is plain weave or twill weave, or weft knitting or warp knitting, and the intersections are fused as appropriate.
  • the wire diameter is 30 to 800 ⁇ m, and the number of meshes is 5 to 300 / inch.
  • the fabric is a knit that connects meshes with each other by an arbitrary knitting method.
  • Expanded metal is a metal plate that is processed into a rhombus or hexagonal mesh by making staggered cuts at predetermined intervals and spreading it out with a special machine.
  • the mesh dimensions are usually 25 mm to 130 mm for SW and 20 mm to 320 mm for LW, and the strand dimensions are 1 mm to 8.5 mm for plate thickness and 1.2 mm to 9.5 mm for W.
  • the structure may be one of the above-listed ones, or may be a composite structure in which two or more kinds are combined.
  • the method for producing a structure catalyst as described above may include a step of blasting the original structure. If the original structure is made of a non-nickel metal, the structure catalyst can be produced by laminating a layer containing nickel on the surface of the original structure, usually by porous plating or nickel plating. If appropriate blasting is performed, a structure catalyst having a porous surface can be produced. On the other hand, if the original structure is made of a nickel-based metal, a structure catalyst having a porous surface can be produced by performing blasting. If the original structure is a nickel-aluminum alloy, a method of alkali dissolution treatment can also be adopted.
  • the hydrocarbons to be directly decomposed or steam-modified by the hydrocarbon decomposition catalyst of the present invention include aliphatic hydrocarbons such as methane, ethane, ethylene and propane, cyclic aliphatic hydrocarbons such as cyclohexane and diclopentane, and more.
  • aromatic hydrocarbons such as enzyme, toluene and xylene, but preferably linear aliphatic hydrocarbons, more preferably methane, ethane or propane, and even more preferably methane.
  • the above-mentioned hydrocarbon decomposition catalyst uses a hydrocarbon decomposition catalyst having at least one of the above-mentioned characteristics as a raw material, is heated to 800 ° C. for 4 hours to 72 hours, and has an average residence time of more than 14 minutes and 120 minutes. It may be obtained by contacting methane gas below. If the average residence time is 14 minutes or less, it may be difficult to obtain a surface structure having high catalytic activity, but if it exceeds 120 minutes, it is advantageous from the viewpoint of productivity of the hydrocarbon decomposition catalyst. There is no.
  • the preferable lower limit of the contact time with methane gas is 6 hours, the more preferable lower limit is 7 hours, and the preferable upper limit is 42 hours.
  • a more preferable lower limit of the average residence time is 30 minutes, and even more preferably 57 minutes.
  • Example 1-High temperature test using a pure Ni plate The circumference of the cylindrical SUS304 residence type small reactor 1 (reaction compartment volume: about 570 cm 3 ) shown in FIG. 1 is surrounded by the heater 2 (product number: FPS-100, control method: PID method, manufacturer: Fulltech Co., Ltd.) shown in FIG. Cover with (manufactured by), and from the upper end of the furnace, two pure nickel plate-shaped catalysts 3 (part number: K14062, ASTMB162 compliant and JIS SH4551 compliant, 900 ° C. 1 minute water quenching) with a thickness of 0.35 mm * width 30 mm * length 300 mm.
  • a gas heat conduction type gas analyzer 6 (zero gas: city gas 13A, span gas: 100% hydrogen, gas flow rate: 1.0 L / min, manufactured by Chino Corporation) was attached and measured. The results are shown in FIGS. 3a and 3b. As is clear from FIG. 3b, for safety, after continuous operation for 8 hours each day, the core was cooled and heated again from room temperature to 800 ° C. the next day. As a result, it was found that the hydrogen production efficiency of the nickel plate-shaped catalyst decreased to about 11% in terms of hydrogen gas concentration on the 4th day.
  • Hastelloy product number: Alloy C-276, manufactured by ThyssenKrupp
  • the hydrogen production efficiency was 10% with almost no change during the 3-day test period.
  • Example 3-Change test of catalyst performance when SPC is Ni-plated A cold-rolled steel sheet (product number: COLD ROLLED STEEL SHEET IN COIL DULL FINISHED, manufactured by JFE Steel Co., Ltd.) without carbon containing carbon and Ni-plated (thickness 10 ⁇ m) was used as a plate-like catalyst in Example 1 and The results of investigating the hydrogen production efficiency under the same conditions are shown in FIGS. 4a and 4b. Hydrogen production efficiency converged to 32.5% in 4 days.
  • Example 4-Change test of catalyst performance when Ni plating is performed after laminating an intermediate layer of Cu plating on SPC After laminating a Cu-plated intermediate layer (thickness 2 to 3 ⁇ m) on the cold-rolled steel sheet used in Example 3, Ni-plating under the same conditions as in Example 3 was used as a plate-like catalyst.
  • FIGS. 5a and 5b The results of investigating the hydrogen production efficiency under the same conditions as in Example 1 are shown in FIGS. 5a and 5b. Hydrogen production efficiency converged to 40% in 5 days.
  • Example 5-Change test of catalyst performance when Ni plating is applied to permalloy Permalloy (Permalloy B, YFN-45-R, Ni content 45%, manufactured by DOWA Metal Co., Ltd.) subjected to Ni plating under the same conditions as in Example 3 was used as a plate-like catalyst in the same manner as in Example 1.
  • the results of investigating the hydrogen production efficiency under the above conditions are shown in FIGS. 6a and 6b. Hydrogen production efficiency increased to 68% in 9 days. As described above, it was found that the hydrogen production efficiency increases with the passage of time even when permalloy, which is an iron-nickel alloy, is used as the support layer.
  • Example 6-Test for change in catalyst performance of a plate in which the Cu support layer is Ni-plated The results of investigating the hydrogen production efficiency under the same conditions as in Example 1 using Cu (1100) plated with Ni under the same conditions as in Example 3 are shown in FIGS. 7a and 7b. .. Hydrogen production efficiency converged to 93.8% in 4 days. The result was close to the theoretical value.
  • FIG. 8 shows the results of investigating the hydrogen production efficiency under the same conditions as in Example 1 using Constantin (product number: CN-49, manufactured by Daido Steel Co., Ltd.) as a plate-shaped catalyst. Hydrogen production efficiency increased to 37% in 5 days.
  • Example 8-Test of change in catalyst performance when constantan is Ni-plated The results of investigating the hydrogen production efficiency under the same conditions as in Example 1 using the same constantan plate used in Example 7 plated with Ni under the same conditions as in Example 3 as a plate catalyst. It is shown in FIGS. 9a and 9b. Hydrogen production efficiency has converged to 90%.
  • Example 9 When Cu is diffused in a vacuum on a Ni plate and then Ni-plated, A nickel plate having a thickness of 0.6 mm, a width of 30 mm, and a length of 300 mm was plated with copper having a thickness of 1 to 2 ⁇ m, and diffused in a vacuum furnace at 900 ° C. for 13 hours. When the surface to be treated of the obtained object to be treated was examined by an X-ray diffractometer, copper was not detected on the surface as a result of the copper-plated portion being diffused inside the nickel plate.
  • FIG. 10 shows the results of investigating the hydrogen production efficiency under the same conditions as in Example 1. Hydrogen production efficiency increased sharply in 4-8 hours and converged to 90% on day 3. After that, even if the methane supply pressure was gradually increased to 0.4 MPa on the 4th day and 0.5 MPa on the 5th day, there was almost no change. Furthermore, on the 6th day, a flow rate increase test was conducted.
  • the hydrogen production efficiency of the product obtained by the diffusion treatment was improved as compared with that of the product not subjected to the diffusion treatment (83%), and the start-up of the catalytic action was also improved.
  • FIG. 14 shows the results of investigating the hydrogen production efficiency under the same conditions as in Example 1 using this as a plate-shaped catalyst. Hydrogen production efficiency increased sharply in 4-8 hours and eventually converged to about 85%. It can be seen that this is a significant improvement in characteristics as compared with the result of Example 1 (pure Ni plate) shown in FIG. It is considered that the nickel surface layer portion was changed by the diffusion of Cu on the surface of the nickel plate.
  • the hydrogen generator incorporating the hydrocarbon decomposition catalyst of the present invention can be used as a fuel cell vehicle equipped with a polymer electrolyte fuel cell [PEFC] by attaching a device for increasing the purity of hydrogen contained in the produced gas at the subsequent stage. It is suitably applicable to hydrogen supply through on-site stations and the like.
  • PEFC polymer electrolyte fuel cell
  • Solid Oxide Fuel Cell which can directly use methane by utilizing the city gas infrastructure in addition to hydrogen, have been attracting attention.
  • SOFC Solid Oxide Fuel Cell
  • the problems of carbon precipitation on the surface of metallic nickel due to the thermal decomposition reaction of methane and the deterioration of performance due to the inhibitory action of the electrode reaction due to the adsorption of produced CO on the surface of metallic nickel have been recognized (Sato et al., " From the viewpoint of fuel cell / methane utilization technology ”, J. Plasma Fusion Res. Vol. 87, No. 1 (2011) pp. 36-41), the hydrocarbon decomposition of the present invention as a fuel reformer arranged in the preceding stage. It is expected that the use of a hydrogen generator incorporating a catalyst for SOFC will lead to a reduction in precipitated carbon and a longer life in SOFC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

触媒特性が低下しにくい、水素を長時間高収率で製造するための炭化水素分解用触媒を提供する。 鉄、銅、ニッケル、鋳鉄、鋼鉄、銅合金、または、鉄ニッケル合金からなる支持層上に露出したニッケル含有層を備えた、炭化水素分解用触媒である。これを原材料として、800℃に昇温して4時間~72時間、平均滞留時間14分超でメタンガスを接触させることによって得られた炭化水素分解用触媒も好適である。支持層とニッケル含有層との間に銅を含む中間層を備えているか、または、支持層が銅もしくは銅合金であってもよい。

Description

炭化水素分解用触媒
 本発明は、炭化水素分解用触媒に関するものである。
 従来、メタン直接分解による水素ガス製造に使用される触媒金属としては、ニッケルが知られているが、メタン直接分解の高温反応時におけるニッケル微粒子同士の焼結による凝集を防ぐため、シリカ上に担持させたもの(特許文献1、非特許文献1)、ゼオライトに担持させるもの(特許文献2、特許文献3)、チタニアに担持させるもの(特許文献4)が提案されている。
 しかしながら、メタン分解により生じた炭素が触媒の活性点を覆ったり、ニッケル微粒子同士の焼結による凝集により、触媒活性が低下する問題は不可避である。
 ニッケル触媒の早期の失活を回避するため、2000年代後半以降、様々な触媒提案がなされている。
 例えば、担体を使用することなく、ニッケル粒子間に炭素粒子を介在させたものがあり(特許文献5)、温度500℃ではメタンの転化率が50%程度を維持し、600℃では65%、さらに800℃では初期で約90%と熱力学的平衡転化率に達するような高転化率が得られたとされるが、数時間程度の連続運転時間が実証された程度であり、経時的に劣化した触媒は、酸処理と焼成によって再生する必要がある。他にも、相似的に膨張可能な多孔性担体に触媒材料を担持した触媒があり(特許文献6)、転化率60%程度で長時間安定的に直接分解を行うことや、水素を10時間程度発生することが可能となったとあるが、最終的にはカートリッジ交換が必要になる。
特開2001-220103号公報 特開2003-95605号公報 特開2003-54904号公報 特開2004-59340号公報 特開2004-261771号公報 特開2005-058908号公報
Chemistry Letters Vol. 28 (1999) No. 11 p.1179-1180
 上記現状に鑑み、本発明は、触媒特性が低下しにくい、水素を長時間高収率で製造するための炭化水素分解用触媒を提供する。
 上記目的を達成するためになされた本発明の1つの側面は、鉄、鋳鉄、鋼鉄、銅、ニッケル、銅合金、または、鉄ニッケル合金からなる支持層上に露出したニッケル含有層を備えた、炭化水素分解用触媒である。斯かる触媒は、支持層の金属や合金種を上記種類とすることで、触媒能力を変化させることができる。
 上記炭化水素分解用触媒は、基材とニッケル含有層との間に銅を含む中間層が形成されているか、または銅基材もしくは銅合金基材を使用することが好ましい。本構成によれば、銅を含む層が形成されていない場合や銅基材もしくは銅合金基材を使用しない場合に比べて水素生成効率を向上しやすい傾向がみられる。
 上記炭化水素分解用触媒は、前記支持層表面に銅をめっきし、真空中、窒素ガス中もしくはアルゴンガス中で拡散処理を施す工程と、前記ニッケル含有層を形成する工程とによって得られたものであるか、または、前記ニッケルもしくは鉄ニッケル合金からなる支持層表面に銅をめっきし、真空中、窒素ガス中もしくはアルゴンガス中で拡散処理を施すことによって得られたものであることが好ましい。本構成により、めっきされた銅が支持層内部に拡散し、結果として露出面にニッケル含有層が現れるか、銅めっきが表面に残っている場合でも露出したニッケル含有層を別途形成することによって水素生成効率を向上しやすい傾向がみられる。
 上記炭化水素分解用触媒は、銅を含む中間層の厚みが、1~1000μmである。銅を含む層の厚みが上記範囲内であると、800℃での連続運転を行っても溶けにくく、触媒能力を向上することができる。
 上記目的を達成するためになされた本発明の他の側面は、以上のいずれか1つの特徴を備えた炭化水素分解用触媒を、800℃に昇温して4時間~72時間、平均滞留時間14分超、より好ましくは30分以上、120分以下でメタンガスを接触させることによって得られた炭化水素分解用触媒である。上記条件で処理を行うと、触媒性能は上昇し、水素製造効率も安定化する傾向にある。
 本発明によれば、長期間にわたって触媒の劣化が生じにくい高効率の炭化水素分解用触媒を得ることができる。
本発明に係る炭化水素分解用触媒を収容した触媒試験装置の1態様を示す写真。 本発明に係る炭化水素分解用触媒を収容した触媒試験装置の1態様を示す模式図。 純Ni板の触媒性能の経時変化を示すグラフ。 純Ni板の最終日のデータロガーの結果を示すグラフ。 SPC/Niめっき板の触媒性能の経時変化を示すグラフ。 SPC/Niめっき板の最終日のデータロガーの結果。 SPCにCuめっき中間層を積層後、Niめっき板をした場合の触媒性能の経時変化を示すグラフ。 SPCにCuめっき中間層を積層後、Niめっき板をした場合の最終日のデータロガーの結果。 パーマロイ/Niめっき板の触媒性能の変化を示すグラフ。 パーマロイ/Niめっき板の最終日のデータロガーの結果。 Cu/Niめっき板の触媒性能の経時変化を示すグラフ。 Cu/Niめっき板の3日目のデータロガーの結果。 コンスタンタン板の触媒性能の経時変化を示すグラフ。 コンスタンタン/Niめっき板の触媒性能の変化。 コンスタンタン/Niめっき板の最終日のデータロガーの結果。 Ni板に施したCuめっきを真空中拡散処理した後、Niめっきを施して得られた触媒の水素製造効率の経時変化を示すグラフ。 実験終了後に表面に付着した炭素を燃焼除去して得られた触媒表面の顕微鏡写真。 拡散処理後の被処理面写真。 拡散処理後の被処理面顕微鏡写真。 Ni板に施したCuめっきをAr中で拡散処理して得られた触媒の水素製造効率の経時変化を示すグラフ。
 本発明を実施するための形態について以下に適宜図面を参照して説明する。
 本発明の炭化水素分解用触媒は、露出したニッケル含有層を備えている。「ニッケル含有層」とは、触媒成分としてのニッケル含有成分を含む層を意味する。ニッケル含有成分は、ニッケル単体であってもよいし合金であってもよく、ニッケルのほか、Cu、Rh、Ru、Ir、Pd、Pt、Re、Co、Fe、Cr、Al、Mo、Nb、Ti、W、Ta、P等から選択される一つ以上の元素を含んでいてもよい。なお、「露出したニッケル含有層」とは、炭化水素反応物が接触可能なニッケル含有層を意味し、目視で露出しているニッケル含有層には限定されない。
 ニッケル含有層は、露出した非担持ニッケル含有層であってもよい。「非担持」とは、触媒成分としてのニッケル含有成分が、活性炭や多孔性酸化物等の多孔性担体上で粒子として分散して存在しているのではなく、互いに組織化されて存在することを意味する。「組織化」とは、粒子同士が一部領域において溶着していることであってもよいし、全部領域で溶着していることであってもよいし、全体が溶融した後、冷却固化していることであってもよい。ニッケル含有層は、好ましくはmmレベル、より好ましくはμmレベル、さらに好ましくはnmレベルで組織化している。なお、「露出した非担持ニッケル含有層」とは、炭化水素反応物が接触可能な非担持ニッケル含有層を意味し、目視で確認できる非担持ニッケル含有層には限定されない。ニッケル含有層は、好ましくは、ニッケル含有めっき層またはニッケル含有溶射層である。
 ニッケル含有層の厚みは、通常、5μm~200μm程度に形成される。200μmより厚いと、触媒能力を向上する目的では、経済的に見合わない場合がある。
 ニッケル含有層の形成方法としては、電解めっき、無電解めっき、置換めっき、真空蒸着法等の公知の形成方法を採用することができる。
 電解めっき条件としては、自動車部品等へのニッケルめっきに使用される一般的条件を採用することができる。
 本発明の炭化水素分解用触媒は、ニッケル含有層の支持層として、鉄、銅、ニッケル、鋼鉄、鋳鉄、鉄ニッケル合金、または、銅合金を備える触媒である。
 本明細書において、「支持層」とは、ニッケル含有層を積層する土台となる層を意味する。したがって、支持層は、ニッケル含有層に直接接している必要はなく、1または2層以上の中間層を介して支持層を形成していてもよい。支持層は、ニッケル含有層を積層する前の基材(後述する構造体であることもある)そのものであってもよいし、基材上に積層した層であってもよい。
 鉄とは、炭素量が約0.02%未満の鉄単体または鉄合金を意味する。
 鋼鉄としては、炭素量が約0.02から2.14%の鉄合金を意味する。鋼鉄としては、特に限定されないが、例えば、軟鋼(SPC)のほか、炭素工具鋼、合金工具鋼、ステンレス鋼等が挙げられる。
 鋳鉄とは、炭素量が約2.14%を超える鉄合金を意味する。
 銅合金とは、銅に1種以上の金属元素および/または非金属元素を添加したものを意味し、例えば、コンスタンタン、モネルメタル等の銅ニッケル合金のほか、洋白、白銅等の銅とニッケルとそれ以外の成分とを含む合金、黄銅等のニッケル以外の元素と銅とを含む合金が挙げられ、クロム、モリブデン、コバルト等の遷移元素が含まれていてもよい。
 鉄ニッケル合金とは、鉄とニッケルとの合金、または、鉄とニッケルに必要に応じて1種以上の金属元素および/もしくは非金属元素を添加したものを意味し、鉄ニッケル合金としては、例えば、パーマロイ、アンバー等が挙げられ、クロム、モリブデン、コバルト等の遷移元素が含まれていてもよい。パーマロイとしては、ニッケル含有量が鉄より多いパーマロイ(例えば、JIS規格でいうパーマロイA、パーマロイC)のみならず、ニッケルより鉄が多く含まれる一部のパーマロイ(例えば、JIS規格でいうパーマロイB、パーマロイD)も含まれる。参考までに典型的なパーマロイの組成を以下に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、ニッケル含有層の支持層がニッケル、銅ニッケル合金または鉄ニッケル合金である場合、本発明の炭化水素分解用触媒は、ニッケル含有層と支持層とが一体になった、Ni単体、銅ニッケル合金または鉄ニッケル合金そのものであってもよいし、Ni単体、銅ニッケル合金または鉄ニッケル合金からなる支持層上に該支持層とは異なる成分組成のニッケル含有成分を含む層が積層されたものであってもよい。
 支持層の厚さは、支持層が基材である場合は、基材の耐熱性や加工性等の観点で適宜選択され、通常0.5mm~10mmである。
 本発明の炭化水素分解用触媒は、支持層とニッケル含有層との間に銅を含む中間層を備えたものであることが好ましい。
 銅を含む中間層は、銅単体または銅合金からなる層であって、支持層やニッケル含有層とは組成上明確に区別される層を意味する。銅合金は、銅のほか、Zn、Al,Sn,Niから選択される一つ以上の元素を含んでいてよい。
 銅を含む中間層の厚みは、1~1000μmであることが好ましい。1μmより薄いと、溶けやすく800℃程度の反応温度に耐えられない場合がある。一方、1000μmより厚くても、触媒能力を向上する目的では、経済的に見合わない場合がある。中間層の厚みのより好ましい下限は、1.5μm、更に好ましい下限は、2μm、より好ましい上限は、500μm、更に好ましい上限は、200μmである。
 銅を含む中間層の形成方法としては、めっき(電解めっき、無電解めっき)、溶射(プラズマ溶射、クラスタイオンビーム、ガスデポジション、CS法、WS法、高速固体粒子堆積法)等の公知の形成方法を採用することができ、一般に、層厚が薄くてよい場合は、主に電解めっきを、厚くしたい場合は、主にプラズマ溶射を採用することができる。
 電解めっき条件としては、自動車部品等への銅電解めっきに使用される一般的条件を採用することができる。
 プラズマ溶射条件としては、自動車部品等への銅溶射に使用されるプラズマ溶射法の一般的条件を採用することができる。
 本発明の炭化水素分解用触媒は、支持層表面に銅をめっきし、真空中、窒素ガス中もしくはアルゴンガス中で拡散処理を施す工程と、ニッケル含有層を形成する工程とによって得られたものであるか、または、ニッケルもしくは鉄ニッケル合金からなる支持層表面に銅をめっきし、真空中、窒素ガス中もしくはアルゴンガス中で拡散処理を施すことで得られたものであることが好ましい。
拡散処理は、従来公知の手法、温度および時間で行ってもよいが、めっきされた銅が支持層内部に拡散し、結果として露出面にニッケル含有層が現れるか、銅めっきが表面に残っている場合でも露出したニッケル含有層を別途形成することができる条件であれば特に限定されない。またこの手法によって炭化水素分解用触媒を得る場合は、銅を含む中間層が明瞭に形成されなくてもよい。
なお、コスト的にはかさむが、銅めっきと拡散処理に代えて、ニッケルもしくは鉄ニッケル合金からなる支持層表面に銅をイオン注入する方法等も採用しうる。
 本発明の炭化水素分解用触媒がNi単体、銅ニッケル合金または鉄ニッケル合金そのものである場合以外で、明瞭に層が形成されている場合の各層の組み合わせとしては、特に限定されないが、支持層/表層、支持層/中間層/表層、又は、支持層/第1中間層/第2中間層/表層の順で、例えば、Fe/Cu/Ni、Fe/X/Cu/Ni、冷間圧延鋼板(SPC)/Ni、SPC/Cu/Ni、炭素工具鋼(SK5)/Ni、高張力鋼/Ni、パーマロイ/Ni、パーマロイ/Cu/Ni、パーマロイ/X/Cu/Ni、パーマロイ/Cu/X/Ni、コンスタンタン/Ni、コンスタンタン/X/Ni、Cu/Ni、Cu/X/Ni、Ni/Cu/Ni、Ni/X/Cu/Ni、Ni/Cu/X/Ni等が挙げられる。ここで、Xは、Zn、Sn,Rh、Ru、Ir、Pd、Pt、Re、Co、Fe、Cr、Al、Mo、Nb、Ti、W、Ta、P等から選択される、CuまたはNi以外の1つ以上の元素からなる層である。
 本発明の炭化水素分解用触媒は、構造体触媒であることが好ましい。構造体を使用することから、例えば、炭化水素の直接分解反応における固体生成物の付着により、ニッケル系金属の触媒機能が低下した場合でも、その分離が粉体触媒に比べて容易であり、分離手法についても多種多様な方法を採用することができる。
 本明細書において「構造体触媒」は、粒子、板、多孔体、フェルト、メッシュ、ファブリックまたはエキスパンドメタルから選択される構造体それ自体が触媒として機能する触媒であるか、または、当該構造体をベースとする触媒である。構造体をベースとする触媒としては、触媒成分を含むスラリー中にハニカム等の形状を有する基材を含浸して得られるものを指すのが一般的であるが、本発明の目的においては、上述のように、構造体上に、溶射、めっき等によって露出した非担持触媒層(めっき層、溶射層)を形成したものであることが好ましい。
 粒子は、直径が0.1~30mm、好ましくは1~30mm、より好ましくは5~30mmの粒径を有する粒子である。
 板は、単一層で構成されていても、異なる材料からなる2以上の層の合板であってもよい。
 多孔体は、連続気孔を持つ多孔体である。多孔体は、好ましくは3次元網目構造を有する。気孔径は、通常300~4000μm程度、好ましくは1100~4000μm、気孔率は、80%以上、好ましくは90%以上、さらに好ましくは95%以上、比表面積は、200m/m~6000m/m、好ましくは500m/m~8500m/mである。代表的なものとしては、住友電工社製のセルメット(登録商標)等が挙げられる。
 フェルトとは、ファイバー状の構成材をランダムに交絡させて積層し、必要に応じて焼結したものであり、ニードルパンチウェブ、繊維焼結体が含まれる。ニードルパンチウェブおよび繊維焼結体は、繊維径10~150μm、空隙率が約50~80%、目付け量(weight)にして50~±50,000g/m、厚み(thickness)0.1mm~5.0mmとすることができる。
 メッシュとは、ファイバー状の構成材を平織もしくは綾織の別、または、緯編みもしくは経編みの別を問わず、任意の織り方で織るか任意の編み方で編み、適宜交点を融着させたものであり、線径にして30~800μm、メッシュ数にして5~300/インチのものを好適に採用することができる。
 ファブリックとは、メッシュ同士を任意の編み方で連結した編み物である。
 エキスパンドメタルとは、金属板を特殊な機械によって所定間隔で千鳥状に切れ目を入れて押し広げ、菱形あるいは亀甲形の網目状に加工したものである。メッシュ寸法は、通常、SWが25mm~130mm、LWが20mm~320mm、ストランド寸法は、板厚が1mm~8.5mm、Wが1.2mm~9.5mmである。
 構造体は、上記列挙したもののうちの1種であってもよいし、2種以上を組み合わせた複合構造体であってもよい。
 以上のような構造体触媒の製造方法には、原構造体に対して、ブラスト加工を施す工程を含んでいてもよい。構造体触媒は、原構造体が非ニッケル系金属からなるものであれば、通常ポーラスメッキ加工またはニッケルメッキ加工によってニッケルを含む層を原構造体表面に積層することで製造することができ、次いで適宜ブラスト加工を行えば、表面が多孔質状の構造体触媒を製造することができる。一方、原構造体がニッケル系金属からなるものであれば、ブラスト加工を行うことで、表面が多孔質状の構造体触媒を製造することができる。原構造体がニッケル-アルミニウム合金であれば、アルカリ溶解処理する方法を採用することもできる。
 本発明の炭化水素分解用触媒が直接分解または水蒸気改質の対象とする炭化水素は、メタン、エタン、エチレン、プロパンなどの脂肪族炭化水素、シクロヘキサン、ジクロペンタンなどの環状脂肪族炭化水素、べンゼン、トルエン、キシレンなどの芳香族炭化水素などがあるが、好ましくは直鎖状脂肪族炭化水素であり、より好ましくは、メタン、エタンまたはプロパンであり、さらに好ましくはメタンである。
 上記炭化水素分解用触媒は、以上に述べた少なくとも1つの特徴を備えた炭化水素分解用触媒を原材として、800℃に昇温して4時間~72時間、平均滞留時間14分超120分以下でメタンガスを接触させることによって得られたものであってもよい。平均滞留時間が14分以下であると、高い触媒活性を有する表面構造が得られにくくなる場合がある一方、120分を超えても、炭化水素分解用触媒の生産性の観点で有利になることはない。メタンガスとの接触時間の好ましい下限は、6時間、より好ましい下限は、7時間、好ましい上限は、42時間である。平均滞留時間のより好ましい下限は30分であり、更に好ましくは57分である。
以下、上述した構造体触媒を使用した装置の実施例について詳述する。
(実施例1-純Ni板を用いた昇温試験)
図1に示す円筒形のSUS304製滞留式小型反応炉1(反応区画容積:約570cm)の周囲を図2に示すヒーター2(品番:FPS-100、制御方式:PID方式、メーカー:フルテック社製)で覆い、炉の上端から厚さ0.35mm*幅30mm*長さ300mmの純ニッケル板状触媒3(品番:K14062、ASTMB162準拠およびJISH4551準拠、900℃1分水焼入れ)を2枚、互いに2mm間隔を開けて吊り下げ、炉の周壁上端付近に設けたメタン供給パイプ4から板状触媒と平行な流れになるように圧力0.2MPa、流量10mL/分でメタンを導入しながら装置温度を上げていき、800℃に到達してから1日あたり8時間連続して合計4日間、炭素直接分解反応を実施した。なお、温度は、炉の上蓋を貫通して中心部に達するように挿入した熱電対5によって常時計測を行いつつ、水素濃度は、炉の周壁下端に設けた大気放出する生成ガス排出パイプ8に気体熱伝導式ガスアナライザ6(ゼロガス:都市ガス13A、スパンガス:水素100%、ガス流量:1.0L/min、チノー社製)を取付けて計測した。結果を図3aおよび図3bに示す。なお、図3bから明らかなように、安全性のため、各日8時間連続運転後は、炉心を冷却し、翌日室温から再度800℃まで加熱した。その結果、ニッケル板状触媒の水素製造効率は、4日目には水素ガス濃度で約11%まで低下してしまうことがわかった。
(実施例2-ハステロイの触媒性能の変化試験)
 Ni合金であるハステロイ(品番:Alloy C-276、ThyssenKrupp製)を板状触媒としたときの水素製造効率は、3日間のテスト期間中ほぼ変動なく、10%であった。
(実施例3-SPCにNiめっきをした場合の触媒性能の変化試験)
 含有炭素のない冷間圧延鋼板(品番:COLD ROLLED STEEL SHEET IN COIL DULL FINISHED、JFEスチール株式会社製)にNiめっき(膜厚10μ)を施したものを板状触媒として用いて、実施例1と同様の条件で水素製造効率を調査した結果を図4aおよび図4bに示す。水素製造効率は、4日間で32.5%に収束した。
(実施例4-SPCにCuめっきの中間層を積層後、Niめっきをした場合の触媒性能の変化試験)
 実施例3で使用した冷間圧延鋼板にCuめっきの中間層(膜厚2~3μm)を積層後、実施例3と同様の条件でNiめっきを施したものを板状触媒として用いて、実施例1と同様の条件で水素製造効率を調査した結果を図5aおよび図5bに示す。水素製造効率は、5日間で40%に収束した。
以上の図4および図5を参照して水素濃度の経時変化について見ると、Ni等の単体材料の場合(実施例1)は、時間経過とともに水素製造効率が低下した一方、支持層として触媒の機能がない軟鋼である鉄を用いてこれにNiめっき被覆した場合(実施例3)は、水素製造効率が維持された。さらに、銅を含む中間層を設けた場合(実施例4)、中間層がない場合に比べて水素製造効率が向上する効果が得られた。
(実施例5-パーマロイにNiめっきをした場合の触媒性能の変化試験)
パーマロイ(パーマロイB、YFN-45-R、Ni含有率45%、DOWAメタル社製)に実施例3と同様の条件でNiめっきを施したものを板状触媒として用いて、実施例1と同様の条件で水素製造効率を調査した結果を図6aおよび図6bに示す。水素製造効率は、9日間で68%まで上昇した。このように、支持層として鉄ニッケル合金であるパーマロイを用いた場合も、時間経過と共に水素製造効率が上昇することがわかった。
(実施例6-Cu支持層にNiめっきをした板の触媒性能の変化試験)
Cu(1100)に実施例3と同様の条件でNiめっきを施したものを板状触媒として用いて、実施例1と同様の条件で水素製造効率を調査した結果を図7aおよび図7bに示す。水素製造効率は、4日間で93.8%に収束した。ほぼ理論値に近い結果が出た。
(実施例7-コンスタンタンの触媒性能の変化試験)
コンスタンタン(品番:CN-49、大同特殊鋼製)を板状触媒として用いて、実施例1と同様の条件で水素製造効率を調査した結果を図8に示す。水素製造効率は、5日間で37%まで上昇した。
(実施例8-コンスタンタンにNiめっきをした場合の触媒性能の変化試験)
実施例7で用いたのと同じコンスタンタン板に実施例3と同様の条件でNiめっきを施したものを板状触媒として用いて、実施例1と同様の条件で水素製造効率を調査した結果を図9aおよび図9bに示す。水素製造効率は、90%に収束した。
 図7および図9に示すように、支持層が銅または銅合金である場合、Niめっき触媒の水素製造効率は飛躍的に向上することがわかった。また図8に示すように、銅ニッケル合金自体も高い触媒性能を有することがわかった。
(実施例9-Ni板にCuを真空中拡散処理した後、Niめっきをした場合)
厚さ0.6mm*幅30mm*長さ300mmのニッケル板上に1~2μm厚の銅めっきを施し、900℃で13時間、真空炉内で拡散処理した。得られた被処理物の被処理面をX線回折装置で調べたところ、銅めっき部がニッケル板内部に拡散された結果、表面には銅は検出されなかった。この被処理物にさらに10μm厚のNiめっきを施したものを板状触媒として用いて、0.2MPaの内圧で3日間維持し、次いで0.4MPaで1日間、0.5MPaで2日間を維持した。実施例1と同様の条件で水素製造効率を調査した結果を図10に示す。水素製造効率は、4~8時間で急激に増大し、3日目に90%に収束した。その後、4日目の試験でメタン供給圧を0.4MPa、5日目に0.5MPaへと段階的に上昇させても殆ど変わらなかった。さらに6日目は流量の上昇試験を実施した。その結果、10ml/分~30ml/分までは88.0%~82.7%で推移し、40ml/分にしたところで、水素濃度が低下し、不安定になった。以上の結果から、平均滞留時間を3分の1に下げても触媒性能は劣化せず、十分な水素製造効率を保つことができることがわかった。
実験終了後に表面に付着した炭素を電熱ヒーターにより空気中で燃焼除去して得られた触媒表面を観察したところ、図11に示すように表面がモノリス構造化していた。
図10に示すように、拡散処理を行わなかったもの(83%)と比較して拡散処理を行ったものは、水素製造効率が上昇したのみならず、触媒作用の立ち上がりも向上していた。
(実施例10-Ni板にCuをAr雰囲気中で拡散処理した場合)
厚さ1.0mm*幅30mm*長さ300mmのニッケル板上に1~2μm厚の銅めっきを施し、Arガス中で拡散処理した。図12および図13に示す得られた被処理物の被処理面をX線回折装置(K線)で調べたところ、表面には銅は検出されなかった。これを板状触媒として用いて、実施例1と同様の条件で水素製造効率を調査した結果を図14に示す。水素製造効率は、4~8時間で急激に増大し、最終的には約85%に収束した。これは図14中に掲載した実施例1(純Ni板)の結果と比べると大きな特性向上であることがわかる。Cuがニッケル板表面に拡散することにより、ニッケル表層部が変化したものと考えられる。
なお、本発明の実施の形態は上記実施形態に何ら限定されるものではなく、また、上記実施形態に説明される構成のすべてが本発明の必須要件であるとは限らない。本発明は、その技術的思想を逸脱しない範囲において、当該技術的範囲に属する限り種々の改変等の形態を採り得る。
本発明の炭化水素分解用触媒を組み込んだ水素生成装置は、生成ガス中に含まれる水素純度を上げる装置を後段に付けることにより、固体高分子形燃料電池[PEFC]を搭載した燃料電池車へのオンサイトステーション等を通じた水素供給に好適に適用可能である。
また近年、水素に加えて、都市ガスインフラを活用してメタンを直接利用できる固体酸化物形燃料電池(Solid Oxide Fuel Cell : SOFC)が注目を集めている。SOFCでは、従来メタンの熱分解反応による金属ニッケル表面への炭素析出や、生成COの金属ニッケル表面への吸着による電極反応阻害作用による性能低下の問題が認識されているが(佐藤ら著、「燃料電池・メタン利用技術との観点から」、J.Plasma Fusion Res. Vol.87,No.1(2011)36-41頁)、この前段に配する燃料改質器として本発明の炭化水素分解用触媒を組み込んだ水素生成装置を利用すれば、SOFCにおける析出炭素の低減や長寿命化につながることが期待される。
1 小型反応炉
2 ヒーター
3 触媒
4 メタン供給パイプ
5 熱電対
6 ガスアナライザ
8 生成ガス排出パイプ

 

Claims (7)

  1.  鉄、鋳鉄、鋼鉄、銅、ニッケル、銅合金、または、鉄ニッケル合金からなる支持層上に露出したニッケル含有層を備えた、炭化水素分解用触媒。
  2.  支持層とニッケル含有層との間に銅を含む中間層を備えているか、または、支持層が銅もしくは銅合金である請求項1に記載の炭化水素分解用触媒。
  3.  前記支持層表面に銅をめっきし、真空中、窒素ガス中もしくはアルゴンガス中で拡散処理を施す工程と、ニッケル含有層を形成する工程とによって得られた請求項1または請求項2に記載の炭化水素分解用触媒。
  4.  前記ニッケルまたは鉄ニッケル合金からなる支持層表面に銅をめっきし、真空中、窒素ガス中もしくはアルゴンガス中で拡散処理を施すことによって得られた請求項1または請求項2に記載の炭化水素分解用触媒。
  5.  銅を含む中間層の厚みは、1~1000μmである請求項1乃至請求項4のいずれか一項に記載の炭化水素分解用触媒。
  6.  請求項1乃至請求項5のいずれか一項に記載の炭化水素分解用触媒を原材料として、800℃に昇温して4時間~72時間、平均滞留時間14分超でメタンガスを接触させることによって得られた炭化水素分解用触媒。
  7.  平均滞留時間が57分である請求項6に記載の炭化水素分解用触媒。

     
PCT/JP2020/035210 2019-10-23 2020-09-17 炭化水素分解用触媒 WO2021079660A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/771,009 US20220370987A1 (en) 2019-10-23 2020-09-17 Catalyst for decomposition of hydrocarbons
EP20878621.0A EP4049751A4 (en) 2019-10-23 2020-09-17 CATALYST FOR HYDROCARBON DECOMPOSITION USE
JP2020550889A JPWO2021079660A1 (ja) 2019-10-23 2020-09-17
CN202080003307.0A CN113039016A (zh) 2019-10-23 2020-09-17 用于烃裂解的催化剂
JP2022118022A JP7193825B2 (ja) 2019-10-23 2022-07-25 炭化水素分解用触媒

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-192383 2019-10-23
JP2019192383 2019-10-23
JP2020065450 2020-04-01
JP2020-065450 2020-04-01

Publications (1)

Publication Number Publication Date
WO2021079660A1 true WO2021079660A1 (ja) 2021-04-29

Family

ID=75619778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035210 WO2021079660A1 (ja) 2019-10-23 2020-09-17 炭化水素分解用触媒

Country Status (5)

Country Link
US (1) US20220370987A1 (ja)
EP (1) EP4049751A4 (ja)
JP (3) JPWO2021079660A1 (ja)
CN (1) CN113039016A (ja)
WO (1) WO2021079660A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260119A (ja) * 1987-10-29 1991-11-20 Exxon Res & Eng Co 等方強化網状微小複合体
JP2001220103A (ja) 2000-02-10 2001-08-14 Yusaku Takita 炭化水素分解による水素製造方法
JP2003054904A (ja) 2001-08-22 2003-02-26 National Institute Of Advanced Industrial & Technology 水素の製造方法
JP2003095605A (ja) 2001-09-18 2003-04-03 National Institute Of Advanced Industrial & Technology 水素の製造方法
JP2004059340A (ja) 2002-07-25 2004-02-26 Japan Storage Battery Co Ltd 水素製造装置
JP2004261771A (ja) 2003-03-04 2004-09-24 Japan Steel Works Ltd:The 無担持炭化水素直接分解触媒およびその製造方法ならびに炭化水素直接分解による水素と炭素の製造方法
JP2005058908A (ja) 2003-08-12 2005-03-10 Japan Steel Works Ltd:The 低級炭化水素直接分解反応用触媒および低級炭化水素直接分解反応器ならびに低級炭化水素直接分解反応装置
JP2006255695A (ja) * 2005-03-08 2006-09-28 Hc Starck Gmbh 形状にされた触媒体、その製造法、該触媒体を含む反応器、該触媒体の使用および水素化可能な化合物を水素化する方法
JP2007319737A (ja) * 2006-05-30 2007-12-13 Toda Kogyo Corp 金属カルボニルを除去する触媒、水素を含む混合改質ガスを製造する方法、金属カルボニルを除去する方法、燃料電池システム
JP2015171712A (ja) * 2014-02-24 2015-10-01 株式会社不二越 水素製造用触媒、水素製造装置および水素製造方法
JP2019034259A (ja) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 水素製造用触媒及びその製造方法、並びに水素製造装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998758A (en) * 1973-02-21 1976-12-21 Clyde Robert A Supported catalyst
US5977013A (en) * 1996-12-19 1999-11-02 Battelle Memorial Institute Catalyst and method for aqueous phase reactions
WO2004087312A1 (de) * 2003-03-31 2004-10-14 Forschungszentrum Jülich GmbH Verfahren zur belegung eines metallischen nickelhaltigen trägerwerkstoffs mit nickelkatalysator
KR101319137B1 (ko) * 2005-08-11 2013-10-17 도다 고교 가부시끼가이샤 탄화수소를 분해하는 촉매, 상기 촉매를 이용한 탄화수소의분해 방법 및 수소의 제조 방법, 및 발전 시스템
EP2035682A2 (en) * 2006-06-13 2009-03-18 Monsanto Technology LLP Reformed alcohol power systems
CN101337193B (zh) * 2008-08-04 2010-07-14 山东大学 一种对贵金属催化剂表面纳米化改性的方法
JP2011031162A (ja) * 2009-07-31 2011-02-17 Tokyo Univ Of Agriculture & Technology 炭化水素水蒸気改質反応用プレート状ニッケル触媒体
CN101711986B (zh) * 2009-11-20 2012-07-25 华东理工大学 一种醇胺催化脱氢用催化剂的制备方法
CN102029159B (zh) * 2010-11-02 2013-06-05 天津工业大学 一种催化硼氢化钠水解制备氢气的催化剂及其制备方法
CN104707611A (zh) * 2013-12-17 2015-06-17 高晓蕊 一种煤层气脱氧催化剂及其制备方法
CN107108206A (zh) * 2014-12-01 2017-08-29 沙特基础工业全球技术公司 通过均相沉积沉淀合成三金属纳米颗粒,以及负载型催化剂用于甲烷的二氧化碳重整的应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260119A (ja) * 1987-10-29 1991-11-20 Exxon Res & Eng Co 等方強化網状微小複合体
JP2001220103A (ja) 2000-02-10 2001-08-14 Yusaku Takita 炭化水素分解による水素製造方法
JP2003054904A (ja) 2001-08-22 2003-02-26 National Institute Of Advanced Industrial & Technology 水素の製造方法
JP2003095605A (ja) 2001-09-18 2003-04-03 National Institute Of Advanced Industrial & Technology 水素の製造方法
JP2004059340A (ja) 2002-07-25 2004-02-26 Japan Storage Battery Co Ltd 水素製造装置
JP2004261771A (ja) 2003-03-04 2004-09-24 Japan Steel Works Ltd:The 無担持炭化水素直接分解触媒およびその製造方法ならびに炭化水素直接分解による水素と炭素の製造方法
JP2005058908A (ja) 2003-08-12 2005-03-10 Japan Steel Works Ltd:The 低級炭化水素直接分解反応用触媒および低級炭化水素直接分解反応器ならびに低級炭化水素直接分解反応装置
JP2006255695A (ja) * 2005-03-08 2006-09-28 Hc Starck Gmbh 形状にされた触媒体、その製造法、該触媒体を含む反応器、該触媒体の使用および水素化可能な化合物を水素化する方法
JP2007319737A (ja) * 2006-05-30 2007-12-13 Toda Kogyo Corp 金属カルボニルを除去する触媒、水素を含む混合改質ガスを製造する方法、金属カルボニルを除去する方法、燃料電池システム
JP2015171712A (ja) * 2014-02-24 2015-10-01 株式会社不二越 水素製造用触媒、水素製造装置および水素製造方法
JP2019034259A (ja) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 水素製造用触媒及びその製造方法、並びに水素製造装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMISTRY LETTERS, vol. 28, no. 11, 1999, pages 1179 - 1180
SATOH ET AL.: "Fuel Cells - From a viewpoint of methane utilization techniques", J. PLASMA FUSION RES, vol. 87, no. 1, 2011, pages 36 - 41
See also references of EP4049751A4

Also Published As

Publication number Publication date
EP4049751A1 (en) 2022-08-31
EP4049751A4 (en) 2023-11-08
JP2023011910A (ja) 2023-01-24
JP7193825B2 (ja) 2022-12-21
CN113039016A (zh) 2021-06-25
JP7295543B2 (ja) 2023-06-21
JP2022160507A (ja) 2022-10-19
JPWO2021079660A1 (ja) 2021-04-29
US20220370987A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP5395322B2 (ja) 水素分離用エレメント
EP2664378A2 (en) Metal structure catalyst and preparation method thereof
CN111910166B (zh) 一种耐腐蚀金属多孔材料及其制备方法和应用
WO2016132811A1 (ja) ニッケル合金多孔体の製造方法
EP3380651B1 (en) Metal hollow fiber electrode
WO2021079660A1 (ja) 炭化水素分解用触媒
JP2001162144A (ja) 気体分離器
JP7178049B2 (ja) 固体生成物の排出回収システムおよび方法
JP5489508B2 (ja) 水素触媒部材
US3311505A (en) Gas electrodes and their fabrication
WO2017037482A2 (en) Open-cell metal foams and process for their preparation
JPWO2020049851A1 (ja) 金属多孔体、燃料電池および金属多孔体の製造方法
CA3106485C (en) Method for producing an open-pored metal body having an oxide layer and metal body produced by said method
JP2013126685A (ja) 多孔質体および無機選択性膜の製造方法
US20210376332A1 (en) Active element for an electrochemical apparatus
KR101978999B1 (ko) 니켈 알루미늄 합금체, 이를 이용한 장치 및 그 제조 방법
JP2009013030A (ja) ウィスカー形成体及びその製造方法
KR20140123218A (ko) 수소 분리막 및 상기 수소 분리막을 포함하는 수소 분리 장치
JP4178143B2 (ja) 水素分離膜及びその製造方法
CA2945286C (en) Method and system for fabrication of hydrogen-permeable membranes
JP2001023672A (ja) 燃料電池用触媒反応器および燃料電池システム
JP2005324166A (ja) 水素分離シート及びその製造方法
Saji Dealloyed nanoporous platinum alloy electrocatalysts
KR101799384B1 (ko) 전기분무를 이용한 탄화수소 연료 개질용 촉매 제조 방법
KR20230123732A (ko) 액체 유기 수소 운반체 기반 탈수소화 반응 촉매 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020550889

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020878621

Country of ref document: EP

Effective date: 20220523