WO2021070917A1 - ポリオレフィン微多孔膜 - Google Patents

ポリオレフィン微多孔膜 Download PDF

Info

Publication number
WO2021070917A1
WO2021070917A1 PCT/JP2020/038210 JP2020038210W WO2021070917A1 WO 2021070917 A1 WO2021070917 A1 WO 2021070917A1 JP 2020038210 W JP2020038210 W JP 2020038210W WO 2021070917 A1 WO2021070917 A1 WO 2021070917A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
polyolefin
microporous membrane
film
mass
Prior art date
Application number
PCT/JP2020/038210
Other languages
English (en)
French (fr)
Inventor
まな 川知
博 宮澤
学 関口
伸弥 久光
佳輝 小田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020227008877A priority Critical patent/KR20220048022A/ko
Priority to CN202080070450.1A priority patent/CN114555687B/zh
Priority to US17/765,190 priority patent/US20220389203A1/en
Priority to JP2021551709A priority patent/JP7140926B2/ja
Priority to EP20874698.2A priority patent/EP4043516A4/en
Publication of WO2021070917A1 publication Critical patent/WO2021070917A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a microporous polyolefin membrane.
  • Polyolefin microporous membranes are used for battery separators, capacitor separators, fuel cell materials, precision filtration membranes, etc. because they exhibit excellent electrical insulation and ion permeability, and are particularly used for lithium ion secondary batteries. It is used as a separator.
  • lithium-ion secondary batteries have also been used in small electronic devices such as mobile phones and notebook computers, and in electric vehicles such as electric vehicles and small electric motorcycles.
  • Lithium-ion secondary battery separators are required to have not only mechanical properties and ion permeability, but also high safety against collision tests and moderately low rigidity in the manufacturing process of square batteries.
  • control of physical properties by the strain rate at the time of stretching has been studied, and it has become possible to eliminate the trade-off of physical properties, which has been difficult to realize by controlling the strain rate (strain rate control).
  • Patent Document 1 proposes a method for producing a microporous polyolefin membrane having a small springback. It teaches that the internal stress of the entire film can be reduced and the springback can be reduced by performing a relaxation operation after the primary stretching. However, Patent Document 1 does not pay attention to the collision safety of the battery, and there is room for improvement in the collision safety.
  • Patent Document 2 defines the ratio of the thermal shrinkage rate at 120 ° C. to the thermal shrinkage rate at 130 ° C. in order to suppress thermal runaway of the battery, and the film maintains its dimensions at 120 ° C. and melts at 130 ° C.
  • the development of a membrane that can suppress the thermal runaway of the battery by shutting down is described.
  • the ratio of the strain rate of MD and TD at the time of biaxial stretching or sequential stretching is 1.2 or more and 1.8 or less, and the stretching strain in the heat fixing step is 20% / sec or more.
  • the relaxation rate is 10% / sec or less.
  • the film described in Patent Document 2 tends to sacrifice strength for controlling heat shrinkage, and there is room for improvement from the viewpoint of battery collision safety.
  • Patent Document 3 proposes a polyolefin microporous membrane having low puncture elongation and low TMA stress, and teaches that thermal runaway of a battery can be suppressed by controlling puncture elongation and stress within a specific range.
  • the strain rate ratio of TD in the primary stretching step and the heat fixing step is set to 2.0 or more and 10.0 or less, and the strain rate of MD during simultaneous biaxial stretching is 20% / sec or more and 50% or more. It is taught to set it to / sec or less.
  • Patent Document 3 does not study the strain rate of relaxation in the heat fixing step, and there is room for improvement in increasing the bending rigidity and the puncture strength of the film.
  • Patent Document 4 when the gel-like sheet is stretched, the strain rate is preferably set to 3% / sec or more to make the pore structure uniform and dense, and to realize both shutdown characteristics and heat resistance. Are considering. However, Patent Document 4 does not describe the strain rate of the relaxation treatment in the heat fixing step, nor does it mention the flexural rigidity of the polyolefin microporous film.
  • Patent Document 5 the composition of the surface layer and the intermediate layer in the laminated film is kept within a specified range, so that the heat shrinkage rate at 120 ° C. in TMA measurement is kept within 10% or more and 40% or less, whereby during hot pressing. It is described that the distortion of the battery or the deterioration of the cycle characteristics is suppressed.
  • Patent Document 5 has a film design that suppresses the strength in order to suppress the heat shrinkage rate, and there is room for improvement in battery safety.
  • Lithium-ion secondary batteries are available in various shapes such as cylindrical, square, and pouch types depending on the application.
  • the method of manufacturing a battery differs depending on the shape of the battery, but in manufacturing a square battery, there is a step of pressing a wound body or a laminated body of an electrode and a polyolefin film and inserting it into a rectangular parallelepiped outer can.
  • the wound body repels and springs back due to the rigidity of the polyolefin microporous film immediately after the press pressure is released.
  • the thickness of the wound body is larger than the thickness of the outer can. Therefore, when using a highly rigid polyolefin microporous film, it is necessary to reduce the number of wounds of the wound body in consideration of the springback amount. It was. Reducing the number of turns of the winder leads to a decrease in the energy density of the battery because the amount of electrodes used decreases. Therefore, development has been carried out to increase the number of turns of the wound body as much as possible.
  • the adoption of the zigzag method has been increasing in laminated bodies from the viewpoint of improving energy density.
  • the positive electrode and the negative electrode are inserted alternately while alternately folding back so that the upper and lower surfaces of the separator are interchanged.
  • the bent portion is springed back in an attempt to return to the original shape due to the rigidity of the polyolefin microporous film. Therefore, as in the case of the wound body, it is necessary to reduce the number of layers in consideration of the springback amount, so that the problem is that the energy density is lowered.
  • the problem to be solved by the present invention is to realize a high energy density of a square battery, and to ensure collision safety while having a high energy density. It is to provide a porous membrane.
  • the present inventors have found that the above problems can be solved by specifying the flexural rigidity and the puncture strength in terms of grain of the polyolefin microporous film, and have completed the present invention. That is, the present invention is as follows. [1] The bending coefficient is a value obtained by dividing the flexural rigidity (gf ⁇ cm 2 / cm) in the longitudinal direction (MD) by the cube of the film thickness ( ⁇ m) when the film thickness is 1.0 ⁇ m or more and 17.0 ⁇ m or less.
  • the present invention by controlling the flexural rigidity of the polyolefin microporous film to low rigidity, springback when inserting the wound body and the laminated body into the outer can in the manufacturing process of the square battery is suppressed, which in turn suppresses springback.
  • the number of turns and the number of layers can be increased. This makes it possible to increase the energy density of the square battery.
  • the microporous polyolefin membrane of the present invention can achieve both low rigidity and collision safety.
  • FIG. 1 is a schematic view for explaining the measurement mechanism of the pure bending test.
  • the point P is fixed, the point Q is movable, and the point Q moves as shown by the curve of FIG. 1 during the test to increase the bending rigidity.
  • the MD shown in FIG. 1 is a sample setting direction when measuring the flexural rigidity of the MD.
  • FIG. 2 is a schematic view of a collision test.
  • the longitudinal direction (MD) means the mechanical direction of continuous molding of the microporous membrane
  • the width direction (TD) means the direction across the MD of the microporous membrane at an angle of 90 °.
  • One aspect of the present invention is a polyolefin microporous membrane.
  • the polyolefin microporous membrane used in the square battery is preferably one having low flexural rigidity in consideration of springback when winding the electrode and the separator. Further, since the polyolefin microporous membrane can be used as a separator for a secondary battery, it is preferable that the piercing strength is high from the viewpoint of battery collision safety.
  • the microporous polyolefin membrane according to the embodiment of the present invention has a bending coefficient of 0.3 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or more and 1.5 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less. It is characterized by.
  • the bending coefficient is a value obtained by dividing the bending rigidity [gf ⁇ cm 2 / cm] in the longitudinal direction (MD) measured by a pure bending tester by the cube of the film thickness [ ⁇ m].
  • the bending coefficient is lower than 0.3 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 , the rigidity of the polyolefin microporous film becomes too weak, and wrinkles occur when the electrodes and separator are wound and laminated. .3 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or more is preferable. Further, by suppressing the bending coefficient to 1.5 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less, the spring back after pressing in the wound body and the spring bag in the folded portion in the zigzag laminated body. It is possible to improve the energy density because the number of times the electrodes are wound and the number of layers can be increased.
  • the polydispersity (Mw / Mn) of the polyolefin raw material In order to control the film thickness, bending coefficient, and puncture strength in terms of grain size in a good balance, the polydispersity (Mw / Mn) of the polyolefin raw material, the stretching ratio in the longitudinal direction in the stretching step, and the strain of stretching in the heat fixing step. It is important to control the speed, the strain rate of relaxation in the heat fixing step, and the temperature and stretching ratio in the fine stretching step.
  • Flexural rigidity is an index that indicates the difficulty of bending deformation of a material, and indicates the force that the material tries to return to its original shape when the material is bent.
  • the bending rigidity is proportional to the cube of the thickness.
  • the film thickness of the polyolefin microporous membrane is reduced in order to reduce the rigidity, the amount of resin per unit area is reduced and the safety of the battery is lowered. Therefore, in the present embodiment, we have developed a polyolefin microporous membrane that realizes low rigidity and can suppress springback and has good battery safety.
  • the flexural rigidity is defined as FIG. 1 as shown in FIG. 1 by fixing two opposing sides of a sample cut out to MD 20 cm ⁇ TD 20 cm with a chuck, fixing one of them, and moving one opposite side in a curved shape. It means the force that the sample tries to return to its original flat state when it is bent into a curved shape. Generally, this acting force is called “flexural rigidity" and is an index showing the flexibility of the sample with respect to the bending motion.
  • the present invention is characterized in that the value obtained by dividing the bending rigidity by the cube of the film thickness is small, and a film having high flexibility to bending is preferable.
  • the bending coefficient is 1.5 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less, springback does not occur in the electrode laminating process by the spiral folding method, and by extension, the spring is also used when inserting the wound body into the outer can of the battery. Since it is not necessary to consider the back amount, it is possible to increase the number of laminated electrodes by that amount, and the energy density is improved.
  • the rigidity of the film is low when the electrode and the polyolefin microporous film are wound, so that the wound body of the electrode and the microporous film is wound. Even if you press, it does not spring back, and it is not necessary to consider the springback amount when inserting the winding body into the outer can of the battery, so it is possible to increase the number of times the electrode is wound by that amount, and the battery It is possible to improve the energy density of.
  • the lower limit of the bending coefficient of the polyolefin microporous film is 0.3 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or more, and 0.4 ( ⁇ gf ⁇ cm). 2 / cm) / ⁇ m 3 or more is preferable, and 0.5 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or more is more preferable.
  • the upper limit is 1.5 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less, preferably 1.35 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less, as described above.
  • 1.1 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less is more preferable, 1.0 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less is further preferable, and 0.9 ( ⁇ gf ⁇ cm 2).
  • / Cm) / ⁇ m 3 or less is more preferable, 0.8 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less is particularly preferable, and 0.7 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less is most preferable.
  • the piercing strength (gf) is measured as the maximum piercing load using a handy compression tester KES-G5 (trademark) manufactured by Kato Tech, and the value obtained by dividing the piercing strength by the basis weight is defined as the basis weight equivalent puncture strength. did.
  • the basis weight equivalent puncture strength is 70 gf / (g / m 2 ) or more.
  • the puncture strength As the puncture strength is increased, the rate of shrinkage when the microporous membrane receives heat (hereinafter referred to as heat shrinkage) generally increases. From the viewpoint of suppressing heat shrinkage, the upper limit of the basis weight equivalent puncture strength is 160 gf / (g / m 2 ) or less.
  • polyolefin microporous film examples include a porous film containing a polyolefin resin, a resin such as polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimideamide, polyaramid, polycycloolefin, nylon, and polytetrafluoroethylene.
  • a porous membrane containing a polyolefin resin (hereinafter, also referred to as “polyolefin microporous membrane”) is preferable from the viewpoint of achieving both high puncture strength and low flexural rigidity.
  • the polyolefin resin porous membrane will be described.
  • the polyolefin resin porous film is a polyolefin in which the polyolefin resin accounts for 50% by mass or more and 100% by mass or less of the resin component constituting the porous film from the viewpoint of improving the shutdown performance when the polyolefin microporous film for a secondary battery is formed. It is preferably a porous membrane formed of the resin composition.
  • the proportion of the polyolefin resin in the polyolefin resin composition is more preferably 60% by mass or more and 100% by mass or less, further preferably 70% by mass or more and 100% by mass or less, and most preferably 95% by mass or more and 100% by mass. It is mass% or less.
  • the polyolefin resin contained in the polyolefin resin composition is not particularly limited, and for example, ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like are used as monomers. Examples thereof include the obtained homopolymer, copolymer, and multistage polymer. Further, these polyolefin resins may be used alone or in combination of two or more.
  • polyethylene, polypropylene, ethylene-propylene copolymer, copolymer of ethylene-propylene-other monomers, and a mixture thereof are preferable as the polyolefin resin.
  • polyethylene examples include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ultra-high molecular weight polyethylene, and the like.
  • polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, and tacticic. Polypropylene, etc.
  • copolymer examples include ethylene-propylene random copolymer and ethylene propylene rubber.
  • the polyolefin resin porous membrane has a polyethylene composition in which polyethylene accounts for 50% by mass or more and 100% by mass or less of the resin component constituting the microporous membrane from the viewpoint of increasing the puncture strength when the polyolefin microporous membrane for a secondary battery is formed. It is preferably a porous membrane formed of an object.
  • the proportion of polyethylene in the resin component constituting the porous membrane is more preferably 60% by mass or more and 100% by mass or less, further preferably 70% by mass or more and 100% by mass or less, and most preferably 90% by mass. It is 100% by mass or less.
  • the polyolefin resin is preferably polyethylene having a melting point in the range of 120 ° C. or higher and 150 ° C. or lower, more preferably 125 ° C. or higher and 140 ° C. or lower.
  • the proportion of polyethylene in the polyolefin resin is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and preferably 100% by mass or less, 97 It is more preferably mass% or less, and further preferably 95 mass% or less.
  • the proportion of polyethylene in the polyolefin resin is 100% by mass, it is preferable from the viewpoint of developing strength.
  • polyethylene as a polyolefin resin, particularly medium It is preferable to use high density polyethylene (MDPE) or high density polyethylene (HDPE).
  • MDPE high density polyethylene
  • HDPE high density polyethylene
  • the medium density polyethylene refers to polyethylene having a density of 0.930 to 0.942 g / cm 3
  • the high density polyethylene refers to polyethylene having a density of 0.942 to 0.970 g / cm 3 . From the viewpoint of further reducing the flexural rigidity, medium density polyethylene is preferable.
  • the density of polyethylene means a value measured according to the density gradient tube method described in JIS K7112 (1999).
  • a mixture of polyethylene and polypropylene may be used as the polyolefin resin.
  • the ratio of polypropylene to the total polyolefin resin in the polyolefin resin composition is larger than 0% by mass, 20% by mass or less, or 1% by mass or more and 20% by mass from the viewpoint of reducing the bending rigidity of the film. It is preferably 2% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 10% by mass or less.
  • the ratio of polypropylene to the total polyolefin resin in the polyolefin resin composition is preferably 3% by mass or more and 10% by mass or less, and preferably 5% by mass or more and 10% by mass or less.
  • Additives include, for example, polymers other than polyolefin resins; inorganic fillers; antioxidants such as phenol-based, phosphorus-based, and sulfur-based; metal soaps such as calcium stearate and zinc stearate; ultraviolet absorbers; light stabilizers. ; Antistatic agent; Antifogging agent; Colored pigment and the like.
  • the total amount of these additives added is preferably 20% by mass or less with respect to 100% by mass of the polyolefin resin from the viewpoint of improving shutdown performance and the like, more preferably 10% by mass or less, still more preferably 5% by mass. % Or less.
  • the viscosity average molecular weight (Mv) of the polyolefin resin used as a raw material is preferably 30,000 or more and 5,000,000 or less, more preferably 80,000 or more and 3 It is less than ⁇ 1,000,000, more preferably 150,000 or more and less than 2,000,000.
  • the viscosity average molecular weight is 30,000 or more, the strength tends to be high due to the entanglement of the polymers, which is preferable.
  • the viscosity average molecular weight is 5,000,000 or less, it is preferable from the viewpoint of controlling the rigidity of the polyolefin microporous film.
  • the polyolefin microporous membrane according to the embodiment of the present invention can be produced by a method for producing a polyolefin microporous membrane including the steps (A) to (E) described below as an example of the production method thereof.
  • the polydispersity (Mw / Mn) of the polyolefin raw material is preferably 4.0 or more and 12.0 or less.
  • the polydispersity (Mw / Mn) is measured according to a measurement method described later. When the polydispersity (Mw / Mn) is within this range, a certain amount of each of the high molecular weight component and the low molecular weight component is present, and the bending rigidity of the polyolefin microporous film is reduced while ensuring the puncture strength and heat resistance. It is preferable because it tends to be possible.
  • the lower limit of the polydispersity (Mw / Mn) of the polyolefin raw material is preferably 6.0 or more, more preferably 7.0 or more.
  • the upper limit thereof is preferably 12.0 or less, more preferably 10.0 or less, from the viewpoint of reducing the porosity during the heat fixing (HS) step. Therefore, the range of polydispersity of the polyolefin raw material is 6.0 or more and 12.0 or less, 7.0 or more and 12.0 or less, 4.0 or more and 10.0 or less, 6.0 or more and 10.0 or less, 7 It is preferable in the order of 0.0 or more and 10.0 or less.
  • the flexural rigidity to low rigidity it is preferable to contain 50% by mass or more of the raw materials having a polydispersity (Mw / Mn) of 4.0 or more and 12.0 or less, and 70% by mass or more. More preferred.
  • the polyolefin raw material for controlling the polydispersity is preferably polyethylene.
  • the ratio (Mz / Mw) of the Z average molecular weight and the weight average molecular weight of the polyolefin raw material is preferably 2.0 or more and 7.0 or less.
  • the ratio (Mz / Mw) is measured according to the measurement method in the examples described later.
  • the Mz / Mw of the polyolefin raw material is more preferably 4.0 or more, and further preferably 5.0 or more. Therefore, the range of Mz / Mw of the polyolefin raw material is preferably 4.0 or more and 7.0 or less, and 5.0 or more and 7.0 or less in this order.
  • the polyolefin microporous membrane Since the polyolefin microporous membrane has a porous structure in which a large number of very small pores are gathered to form dense communication pores, the polyolefin microporous membrane has excellent ion permeability and high strength in a state containing an electrolytic solution. It has the feature.
  • the microporous membrane may be a monolayer membrane made of the above-mentioned materials or a laminated membrane.
  • the lower limit of the film thickness of the microporous membrane is 1 ⁇ m (1.0 ⁇ m) or more in order to have mechanical strength and maintain insulation.
  • the film thickness is preferably 2 ⁇ m (2.0 ⁇ m) or more, and more preferably 3 ⁇ m (3.0 ⁇ m) or more.
  • the film thickness is preferably 6 ⁇ m (6.0 ⁇ m) or more.
  • the film thickness of the microporous membrane is 17.0 ⁇ m or less, preferably 15 ⁇ m (15.0 ⁇ m) or less, and more preferably 11 ⁇ m (11.0 ⁇ m) or less from the viewpoint of increasing the capacity of the secondary battery.
  • the film thickness of the microporous film can be adjusted by controlling the distance between the rolls of the cast roll, the stretching ratio in the stretching step, and the like.
  • the porosity of the microporous membrane is preferably 25% or more and 60% or less, more preferably 30% or more and 50% or less, and further preferably 35% or more and 45% or less.
  • the porosity of the microporous membrane is preferably 25% or more, more preferably 30% or more, still more preferably 35% or more from the viewpoint of output. From the viewpoint of battery safety, the porosity of the microporous membrane is preferably 60% or less, more preferably 50% or less, still more preferably 45% or less.
  • the pore ratio of the microporous film controls the mixing ratio of the polyolefin resin composition and the plasticizer, the stretching temperature, the stretching ratio, the heat fixing temperature, the stretching ratio at the time of heat fixing, the relaxation rate at the time of heat fixing, etc., or these Can be adjusted by combining.
  • the air permeability of the microporous film is preferably is preferably 30 sec / 100 cm 3 or more 250 sec / 100 cm 3 or less, more preferably 70 sec / 100 cm 3 or more 200 sec / 100 cm 3 or less, more preferably of 80 sec / 100 cm 3 or more 180 sec / 100 cm 3 , more preferably not more than 90 sec / 100 cm 3 or more 150 sec / 100 cm 3.
  • the air permeability of the microporous membrane is preferably 70 sec / 100 cm 3 or more from the viewpoint of ensuring puncture strength, and is preferably 200 sec / 100 cm 3 or less from the viewpoint of output characteristics.
  • the average pore size of the microporous membrane is preferably 0.010 ⁇ m or more and 0.080 ⁇ m or less, more preferably 0.020 ⁇ m or more, in order to achieve high ion permeability, excellent withstand voltage and high strength. It is more preferably 0.030 ⁇ m or more, particularly preferably 0.035 ⁇ m or more, or 0.040 ⁇ m or more, and most preferably 0.045 ⁇ m or more.
  • the upper limit of the average pore size is more preferably 0.075 ⁇ m or less, further preferably 0.070 ⁇ m or less, and particularly preferably 0.065 ⁇ m or less.
  • the average pore size can be adjusted by controlling the stretching temperature, stretching ratio, heat fixing temperature, stretching ratio at the time of heat fixing, relaxation rate at the time of heat fixing, or a combination thereof.
  • the puncture strength not converted into the basis weight of the microporous membrane is preferably 100 gf or more and 950 gf or less.
  • the puncture strength is preferably 100 gf or more from the viewpoint of battery safety, and is preferably 950 gf or less from the viewpoint of flexural rigidity and heat shrinkage of the polyolefin microporous membrane.
  • the lower limit of the puncture strength of the microporous membrane is more preferably 300 gf or more, and by setting it to 300 gf or more, when the battery collides or foreign matter is mixed between the electrode and the polyolefin microporous membrane.
  • the upper limit of the puncture strength of the microporous film is more preferably 870 gf or less, and by setting it to 870 gf or less, the polyolefin film is thermally shrunk even when the temperature inside the battery cell rises for some reason. It is more preferable because the insulation property is maintained and the safety is improved.
  • the puncture strength is more preferably 360 gf or more and 800 gf or less, particularly preferably 400 gf or more and less than 740 gf, and most preferably 450 gf or more and 700 gf or less.
  • the basis weight in terms of puncture strength of the microporous film is preferably 70gf / (g / m 2) or more from the viewpoint of safety in the battery, in view of the low rigidity of the film 160gf / (g / m 2 ) The following is preferable.
  • Basis weight in terms of puncture strength, in view of the balance between safety and thermal contraction of the battery 75gf / (g / m 2 ) or more 150gf / (g / m 2) and more preferably less, 80gf / (g / m 2 ) or more 140 gf / (g / m 2 ) or less is more preferable, 85 gf / (g / m 2 ) or more and 130 gf / (g / m 2 ) or less is particularly preferable, and 90 gf / (g / m 2 ) or more and 120 gf / (g / m 2) or more. 2 ) The following is most preferable.
  • the basis weight of the polyolefin microporous film is preferably 0.1 g / m 2 or more from the viewpoint of suppressing thermal runaway of the battery, and 20 g / m 2 or less from the viewpoint of increasing the capacity of the battery. More preferably, the basis weight of the polyolefin microporous membrane is 1 g / m 2 or more and 10 g / m 2 or less.
  • the absolute value of the withstand voltage of the microporous membrane is preferably 0.5 kV or more, more preferably 0.7 kV or more, further preferably 0.9 kV or more, and most preferably 1.1 kV or more from the viewpoint of battery safety.
  • the withstand voltage per unit film thickness of the microporous membrane is preferably 0.130 kV / ⁇ m or more, more preferably 0.140 kV / ⁇ m or more, and further preferably 0.150 kV / ⁇ m or more.
  • the meltdown temperature of the microporous membrane is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, and even more preferably 170 ° C. or higher.
  • a meltdown temperature of 150 ° C. or higher means that the microporous membrane does not break up to 150 ° C., so that the safety of the secondary battery can be ensured.
  • the meltdown temperature can be adjusted within the range of 150 ° C. or higher depending on the molecular weight of the polyolefin, stretching and heat fixing conditions.
  • the shutdown temperature of the microporous membrane is preferably 150 ° C. or lower, more preferably 147 ° C. or lower, still more preferably 143 ° C. or lower, and most preferably 140 ° C. or lower.
  • a shutdown temperature of 150 ° C. or lower means that when some abnormal reaction occurs and the temperature inside the battery rises, the separator holes are closed by the time the temperature reaches 150 ° C. Therefore, the lower the shutdown temperature, the faster the flow of lithium ions between the electrodes stops at a low temperature, which improves safety.
  • the shutdown temperature of the microporous membrane is preferably 125 ° C. or higher, more preferably 130 ° C. or higher.
  • Tensile strength of the microporous membrane, MD, TD together is preferably 500 kgf / cm 2 or more, preferably 700 kgf / cm 2 or more, preferably 1000 kgf / cm 2 or more, or 1000 kgf / cm It is preferably 2 or more and 5000 kgf / cm 2 or less.
  • the membrane cannot withstand the stress applied when the electrode and the polyolefin microporous membrane are wound, and the membrane may break. From the viewpoint of suppressing thermal shrinkage of the polyolefin microporous membrane. Is preferably lower than 5000 kgf / cm 2.
  • the MD / TD tensile strength ratio of the polyolefin microporous membrane is preferably 0.80 or more and 1.20 or less, more preferably 0.85 to 1.15, and further preferably 0.90 or more 1 .10 or less, most preferably 0.95 or more and 1.05 or less.
  • the tensile elongation of the microporous membrane is preferably 10% or more, more preferably 30% or more, and most preferably 50% or more for both MD and TD. If the tensile elongation is lower than 10%, when the battery is deformed due to an external impact or the like, the deformation cannot be followed and the film breaks, so that the electrodes may come into contact with each other and cause a short circuit.
  • the production method of the present invention is not particularly limited, and an example thereof includes a method including the following steps: (A) A step of extruding a polyolefin composition containing a polyolefin resin and a pore-forming material to form a gel-like sheet; (B) A step of biaxially stretching a gel-like sheet to form a stretched sheet; (C) A step of extracting a pore-forming material from a stretched sheet to form a porous film; (D) A step of heat-fixing the porous film; and (E) A step of finely stretching the porous film to MD.
  • step (A) a polyolefin raw material having a polydispersity of 4.0 or more and 12.0 or less is used in an amount of 50% by mass or more, and the magnification in the longitudinal direction in step (B) is increased. It is 6 times or more and 10 times or less, and the stretching operation and the relaxation operation are included at least once in the step (D), and the strain rate of stretching in the step (D) is 11% / sec or less, and the stretching operation in the step (D).
  • the strain rate of relaxation is 10% / sec or less
  • MD microstretching of 1.0 to 5.0% is carried out at a temperature of the melting point of the polyolefin microporous film of ⁇ 70 ° C. to the melting point of ⁇ 30 ° C. It is characterized by that.
  • the manufacturing process and preferred embodiments of the polyolefin microporous membrane will be described below.
  • step (A) the polyolefin composition is extruded to form a gel-like sheet.
  • the polyolefin composition may contain a polyolefin resin, a pore-forming agent, and the like.
  • the gel-like sheet can be obtained by melt-kneading the polyolefin resin and the pore-forming material to form a sheet.
  • the polyolefin resin and the pore-forming material are melt-kneaded.
  • a melt-kneading method for example, a polyolefin resin and, if necessary, other additives are put into a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer to heat and melt the resin components.
  • a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer to heat and melt the resin components.
  • a method of introducing a pore-forming material at an arbitrary ratio and kneading include a method of introducing a pore-forming material at an arbitrary ratio and kneading.
  • the polyolefin resin contained in the polyolefin composition can be determined according to a predetermined resin raw material of the obtained polyolefin microporous film.
  • the polyolefin resin used in the extrusion step (A) may be the polyolefin resin described in relation to the polyolefin microporous membrane according to the embodiment of the present invention.
  • the proportion of the polyolefin resin in the polyolefin composition is preferably 10 to 80% by mass, more preferably 15 to 60% by mass, still more preferably 20 to 40, based on the mass of the polyolefin composition. It is mass%.
  • the polyolefin raw material preferably has a polydispersity (Mw / Mn) of 4.0 or more and 12.0 or less, and Mw / Mn of 4.0 or more and 12. Polyethylene of 0 or less is more preferable.
  • Mw / Mn polydispersity
  • the polyolefin resin contained in the polyolefin composition for step (A) can include polyethylene, or can include polyethylene and polypropylene.
  • the proportion of polyethylene may be 50% by mass or more and 100% by mass or less, and the proportion of polypropylene may be 0% or more and 20% by mass or less.
  • pore-forming material examples include plasticizers, inorganic materials, and combinations thereof.
  • the plasticizer is not particularly limited, but it is preferable to use a non-volatile solvent capable of forming a uniform solution above the melting point of polyolefin.
  • a non-volatile solvent capable of forming a uniform solution above the melting point of polyolefin.
  • specific examples of the non-volatile solvent include hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol. After extraction, these plasticizers may be recovered and reused by an operation such as distillation.
  • liquid paraffin has high compatibility with polyethylene or polypropylene when the polyolefin resin is polyethylene, and even if the melt-kneaded product is stretched, interfacial peeling between the resin and the plasticizer is unlikely to occur, and uniform stretching is possible. It is preferable because it tends to be easy to carry out.
  • the ratio of the polyolefin resin composition to the plasticizer can be determined according to the uniform melt-kneading and sheet moldability.
  • the mass fraction of the plasticizer in the composition composed of the polyolefin resin composition and the plasticizer is preferably 20 to 90% by mass, more preferably 50 to 70% by mass.
  • the mass fraction of the plasticizer is 90% by mass or less, the melt tension during melt molding tends to be sufficient for improving the moldability.
  • the mass fraction of the plasticizer is 20% by mass or more, the polyolefin molecular chain is not broken even when the mixture of the polyolefin resin composition and the plasticizer is stretched at a high magnification, and a uniform and fine pore structure is formed. It is easy to do, and the strength is also easy to increase.
  • the non-equipment is not particularly limited, and for example, oxide-based ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, itria, zinc oxide, and iron oxide; silicon nitride, titanium nitride, nitride.
  • oxide-based ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, itria, zinc oxide, and iron oxide
  • Nitride ceramics such as boron; silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite.
  • silica is particularly preferable because it is easy to extract.
  • the ratio of the polyolefin resin composition to the inorganic material is preferably 3% by mass or more, and more preferably 10% by mass or more, based on the total mass of these, from the viewpoint of obtaining good isolation.
  • it is preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the melt-kneaded product is molded into a sheet to obtain a gel-like sheet.
  • the ratio of the extrusion speed of the polyolefin composition that is, the discharge rate Q: kg / hour of the extruder
  • the screw rotation speed N (rpm) of the extruder Q / N
  • the unit: kg / (h ⁇ rpm)) is preferably 0.1 or more and 7.0 or less, more preferably 0.5 or more and 6.0 or less, and further preferably 1.0 or more and 5.0 or less.
  • the melt-kneaded product is extruded into a sheet shape via a T-die or the like, brought into contact with a heat conductor, and cooled to a temperature sufficiently lower than the crystallization temperature of the resin component.
  • a heat conductor used for cooling and solidifying
  • the heat conductor used for cooling and solidifying include metals, water, air, and plasticizers.
  • sandwiching it between the rolls further enhances the efficiency of heat conduction, and the sheet is oriented to increase the film strength and the surface smoothness of the sheet.
  • the distance between the rolls of the cast rolls when the melt-kneaded product is extruded from the T-die into a sheet is preferably 200 ⁇ m or more and 3,000 ⁇ m or less, and more preferably 500 ⁇ m or more and 2,500 ⁇ m or less.
  • the distance between rolls of the cast roll is 200 ⁇ m or more, the risk of film breakage can be reduced in the subsequent stretching step, and when the distance between rolls is 3,000 ⁇ m or less, the cooling rate is high and uneven cooling can be prevented.
  • the extruded sheet-shaped molded product or gel-like sheet may be rolled. Rolling can be carried out by, for example, a method using a roll or the like.
  • the rolled surface magnification is preferably more than 1 time and 3 times or less, and more preferably more than 1 time and 2 times or less.
  • the rolling ratio exceeds 1 times, the plane orientation tends to increase, and the film strength of the finally obtained porous film tends to increase.
  • the rolling ratio is 3 times or less, the orientation difference between the surface layer portion and the inside of the center is small, and a uniform porous structure tends to be formed in the thickness direction of the film.
  • step (B) In the step (B), the gel-like sheet obtained in the step (A) is stretched. The step (B) is performed before the step (C) of extracting the pore-forming material from the sheet. In the step (B), the stretching treatment of the gel-like sheet is performed at least once in the longitudinal direction and the width direction (that is, by biaxial stretching) from the viewpoint of controlling the flexural rigidity of the polyolefin microporous film.
  • the stretching ratio in the longitudinal direction is preferably 6 times or more from the viewpoint of reducing the flexural rigidity in the longitudinal direction.
  • the plasticizer tends to suppress the orientation in the stretching direction as compared with the case where the resin and the plasticizer are stretched alone. There is a tendency to reduce the rigidity.
  • the strain rate in the longitudinal direction and the width direction in the step (B) is not particularly limited, but is preferably 3% / sec or more and less than 50% / sec, and 10 from the viewpoint of achieving both low rigidity and high strength. Most preferably% / sec or more and 30% / sec or less.
  • step (B) in order to facilitate the bending coefficient value of 0.3 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or more and 1.5 ( ⁇ gf ⁇ cm 2 / cm) / ⁇ m 3 or less, the longitudinal direction
  • the draw ratio of (MD) can be 6 times or more and 10 times or less.
  • the stretching ratio in the longitudinal direction is preferably 6 times or more and 9 times or less, and more preferably 7 times or more and 8 times. It is as follows.
  • stretching method examples include simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, and multiple stretching. Above all, simultaneous biaxial stretching is preferable from the viewpoint of improving the puncture strength, the uniformity of stretching, and the reduction of flexural rigidity.
  • simultaneous biaxial stretching refers to a stretching method in which stretching in the longitudinal direction and stretching in the width direction are performed at the same time, and the stretching ratio in each direction may be different.
  • Sequential biaxial stretching refers to a stretching method in which stretching in the longitudinal direction and the width direction is performed independently, and when stretching is performed in the longitudinal direction or the width direction, the other direction is in an unconstrained state or a constant length. It is assumed that it is fixed to.
  • the draw ratio in the step (B) is preferably in the range of 12 times or more and 120 times or less in terms of surface magnification, and more preferably in the range of 36 times or more and 65 times or less.
  • the stretching ratio in each axial direction is preferably in the range of 6 times or more and 10 times or less in the longitudinal direction and 2 times or more and 12 times or less in the width direction, 7 times or more and 9 times or less in the longitudinal direction, and 6 times in the width direction. It is more preferable that the range is 9 times or more.
  • the total area magnification is 12 times or more, sufficient strength tends to be imparted to the obtained porous film, while when the total area magnification is higher than 120 times, the rigidity of the film is difficult to control. Therefore, it is preferably 120 times or less.
  • the stretching temperature of the step (B) is preferably 90 to 150 ° C., more preferably 100 to 140 ° C., still more preferably 110 to 130 ° C. from the viewpoint of meltability and film forming property of the polyolefin resin.
  • the pore-forming material is removed from the sheet-shaped molded product to obtain a porous film.
  • the method for removing the pore-forming material include a method in which a sheet-shaped molded product is immersed in an extraction solvent to extract the pore-forming material and sufficiently dried.
  • the method for extracting the pore-forming material may be either a batch method or a continuous method.
  • the residual amount of the pore-forming material in the porous membrane is preferably less than 1% by mass with respect to the total mass of the porous membrane.
  • the extraction solvent used when extracting the pore-forming material it is preferable to use a solvent that is poor with respect to the polyolefin resin, is a good solvent with respect to the pore-forming material, and has a boiling point lower than that of the polyolefin resin.
  • examples of such an extraction solvent include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; non-chlorine type such as hydrofluoroether and hydrofluorocarbon.
  • Hydrocarbon solvents such as ethanol and isopropanol
  • ethers such as diethyl ether and tetrahydrofuran
  • ketones such as acetone and methyl ethyl ketone
  • an aqueous solution of sodium hydroxide, potassium hydroxide or the like can be used as the extraction solvent.
  • Heat fixing step (D) In the heat fixing step (D), in order to suppress the shrinkage of the polyolefin microporous film, after extracting the plasticizer in the step (C), the microporous film is heat-treated for the purpose of heat fixing.
  • the heat treatment of the porous membrane includes a stretching operation performed at a predetermined temperature atmosphere and a predetermined stretching ratio for the purpose of adjusting physical properties, and / or a predetermined temperature atmosphere and a predetermined relaxation for the purpose of reducing stretching stress. There is a mitigation operation performed at a rate. These heat treatments can be performed using a tenter or a roll stretching machine. It is preferable that heat fixing including stretching and relaxation operation after extraction of the plasticizer is performed in the width direction.
  • the stretching ratio of the film is 1.1 times or more, more preferably 1.3 times or more, and most preferably 1.5 times or more in the longitudinal direction and / or width direction of the film. This is preferable from the viewpoint of obtaining a porous film having higher strength and higher porosity.
  • the relaxation ratio is preferably 0.8 to 2.5 times, more preferably 1.2 to 2.3 times, and even more preferably 1.5 to 2.0 times.
  • the relaxation ratio referred to in the present specification is a value obtained by dividing the film width direction dimension (mm) at the stretcher outlet of the heat fixing step by the film width direction dimension (mm) at the stretcher inlet.
  • the relaxation operation is a reduction operation of the film in the longitudinal direction and / or the width direction after the stretching operation
  • the relaxation rate is a value obtained by dividing the relaxation rate in the heat fixing step by the stretching rate, and the relaxation rate is It is preferably 1.0 or less, more preferably 0.90 or less, and even more preferably 0.85 or less.
  • the relaxation rate is preferably 0.5 or more from the viewpoint of increasing the strength of the film.
  • the relaxation operation may be performed in both the longitudinal direction and the width direction, or only in one of the longitudinal direction and the width direction.
  • the strain rate is preferably 11% / sec or less, more preferably 2% / sec or more and 11% / sec or less, and further preferably 3% / sec or more and 9%. It is / sec or less, most preferably 5% / sec or more and 8% / sec or less.
  • the strain rate in the relaxation operation is preferably 10% / sec or less, more preferably 0.1% / sec or more and 10% / sec or less, and further preferably 0.5% / sec or more and 7% / sec or less. Most preferably, it is 1.0% / sec or more and 5.0% / sec or less.
  • the strain rate means the rate of change of an object per unit time before and after being subjected to a specific process.
  • the flexural rigidity and the piercing strength of the microporous membrane can be controlled by setting the strain rate of the stretching operation and the relaxation operation to a certain value or less, whereby both low rigidity and high strength can be achieved. It becomes.
  • the strain rate at the time of stretching is large, the rigidity of the film becomes high because the resin is pulled without being entangled with each other. It was also found that when the strain rate at the time of relaxation is large, the bending rigidity becomes high because the boeing of the film becomes large. The method of calculating the strain rate and the ratio of the strain rate will be described later in Examples.
  • the temperature of heat fixation including stretching and relaxation operations is preferably in the range of 100 to 170 ° C. from the viewpoint of the melting point of the polyolefin resin.
  • the lower limit of the heat fixing temperature is more preferably 110 ° C. or higher, further preferably 120 ° C. or higher, still more preferably 125 ° C. or higher, and the upper limit thereof is more preferably 170 ° C. or lower, further preferably 160 ° C. or lower, and more. More preferably, it is 150 ° C. or lower, and most preferably 145 ° C. or lower.
  • step (E) It is important that the method for producing the polyolefin microporous membrane includes step (E).
  • step (E) in order to control the rigidity of the film, after the step (D), fine stretching of 1.0% or more and 5.0% or less in the longitudinal direction is performed by a roll stretching machine or a tenter stretching machine. Is preferable, MD is slightly stretched by 1.5 to 4.0%, MD is slightly stretched by 2.0% or more and 4.0% or less, and MD is particularly preferably 2 Fine stretching is performed at 0.0 to 3.5%.
  • the bending coefficient can be controlled within a predetermined range by performing fine stretching of 1.0% or more and 5.0% or less in the step (E).
  • the stretching temperature in the step (E) it is preferable to perform microstretching within a temperature range of (melting point ⁇ 70) ° C. or higher and (melting point ⁇ 30) ° C. or lower of the polyolefin microporous membrane.
  • the temperature range for microstretching is more preferably (melting point -60) ° C. or higher and (melting point -40) ° C. or lower for the film.
  • the stretching ratio in the step (B) and each strain rate in the step (C) are set in a preferable range, and then the fine stretching is performed in the above temperature range in the step (E). It was found that the bending coefficient can be controlled within the specified range.
  • an inorganic coating layer can be provided on the surface of the polyolefin microporous film.
  • the inorganic coating layer is a layer containing an inorganic component such as inorganic particles, and may optionally contain a binder resin that binds the inorganic particles to each other, a dispersant that disperses the inorganic particles in the binder resin, and the like.
  • the inorganic particles include oxide-based ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, itria, zinc oxide, and iron oxide; nitride-based ceramics such as silicon nitride, titanium nitride, and boron nitride; Silicon carbide, calcium carbonate, magnesium sulfate, aluminum sulfate, barium sulfate, aluminum hydroxide, aluminum hydroxide, aluminum hydroxide, potassium titanate, talc, kaolinite, dikite, nacrite, halloysite, pyrophyllite, montmorillonite, cericite, mica, Ceramics such as amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; as well as glass fiber and the like.
  • oxide-based ceramics such as alumina, silica, titania, zirconia,
  • the inorganic particles may be used alone or in combination of two or more.
  • the binder resin include conjugated diene-based polymers, acrylic-based polymers, polyvinyl alcohol-based resins, and fluororesins.
  • the binder resin can be in the form of latex and can contain water or an aqueous solvent.
  • the dispersant is one that adsorbs to the surface of the inorganic particles in the slurry and stabilizes the inorganic particles by electrostatic repulsion or the like, and is, for example, a polycarboxylic acid salt, a sulfonate, a polyoxy ether, a surfactant, or the like. ..
  • the inorganic coating layer can be formed, for example, by applying and drying the slurry of the contained components described above on the surface of the polyolefin microporous film.
  • an adhesive layer that further exhibits adhesiveness to the electrode may be attached to the polyolefin microporous film or the inorganic coating layer, and when the adhesive layer is provided, for example, deformation in a laminated battery, etc. Can be suppressed.
  • the polyolefin microporous membrane according to the embodiment of the present invention can be used as a separator for a lithium ion secondary battery.
  • thermal runaway of the lithium ion secondary battery can be suppressed.
  • the above-mentioned measured values of various physical properties are values measured according to the measuring method in the examples described later.
  • a PL-GPC200 manufactured by Agilent which incorporates a differential refractometer (RI) and a light scattering detector (PD2040), was used.
  • RI differential refractometer
  • PD2040 light scattering detector
  • two Agilent PLgel MIXED-A 13 ⁇ m, 7.5 mm ID ⁇ 30 cm were connected and used.
  • 1,2,4-trichlorobenzene 0.05 wt% 4,4'-Thiobis (containing 6-tert-butyl-3-methylphenol) was added as an eluent at a flow rate of 1.0 ml.
  • Measurements were made under the conditions of / min and an injection volume of 500 ⁇ L, and RI chromatograms and light scattering chromatograms with scattering angles of 15 ° and 90 ° were obtained. From the obtained chromatograms, the number average molecular weight (number average molecular weight ( Mn), weight average molecular weight (Mw) and Z average molecular weight (Mz) were obtained. Using the values of Mz and Mw, the ratio of Z average molecular weight to weight average molecular weight (Mz / Mw) was obtained, and Mw and Mn were obtained. The degree of polydispersity (Mw / Mn) was obtained using the value of. The value of the increase in the refractive index of polyethylene was 0.053 ml / g.
  • DSC measurement differential scanning calorimetry
  • the DSC was measured using a DSC60 manufactured by Shimadzu Corporation.
  • a PO microporous membrane was punched into a circle having a diameter of 5 mm, and several sheets were stacked to make 3 mg, which was used as a measurement sample.
  • This sample was laid on an aluminum open sample pan having a diameter of 5 mm, a clamping cover was placed on the sample, and the sample was fixed in the aluminum pan by a sample sealer.
  • the temperature is raised from 30 ° C to 200 ° C at a heating rate of 10 ° C / min (first temperature rise), held at 200 ° C for 5 minutes, and then from 200 ° C to 30 ° C at a temperature lowering rate of 10 ° C / min. The temperature has dropped. Subsequently, after holding at 30 ° C. for 5 minutes, the temperature was raised again from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min (second temperature rise). In the melting endothermic curve of the second temperature rise, the maximum temperature was taken as the melting point of the PO microporous membrane. When there were a plurality of maximum values, the temperature at which the maximum value of the largest melting endothermic curve was obtained was adopted as the melting point (Tm) of the PO microporous membrane.
  • Tm melting point
  • the basis weight is the weight (g) of the polyolefin microporous membrane per unit area (1 m 2). After sampling to 1 m ⁇ 1 m, the weight was measured with an electronic balance (AUW120D) manufactured by Shimadzu Corporation. When sampling to 1 m ⁇ 1 m was not possible, the sample was cut into an appropriate area, the weight was measured, and then converted to the weight (g) per unit area (1 m 2).
  • AUW120D electronic balance
  • the thickness was measured at an ambient temperature of 23 ⁇ 2 ° C. using a micro-thickness measuring instrument (type KBN, terminal diameter ⁇ 5 mm) manufactured by Toyo Seiki.
  • a micro-thickness measuring instrument type KBN, terminal diameter ⁇ 5 mm manufactured by Toyo Seiki.
  • When measuring the thickness after sampling the microporous membrane to 10 cm ⁇ 10 cm, multiple microporous membranes are stacked so as to be 15 ⁇ m or more, and 9 points are measured and averaged, and the average thereof is taken. The value obtained by dividing the value by the number of overlapping values is taken as the thickness of one sheet.
  • Porosity (%) (volume-mass / density of mixed composition) / volume x 100 The density of the mixed composition used was a value calculated from the densities and mixing ratios of the polyolefin resin used and the other components.
  • Air permeability (seconds / 100 cm 3 ) The air permeability was measured with the Oken type air permeability measuring machine "EGO2" of Asahi Seiko Co., Ltd.
  • the measured value of the air permeability is a value obtained by measuring the air permeability at a total of three points, 5 cm from both ends and one point in the center, along the width direction of the membrane, and calculating the average value thereof.
  • the piercing strength (gf) was measured as a load, and the displacement (mm) of the needle from the time the needle touched the microporous membrane until the maximum stress (piercing strength) was reached was measured as the piercing elongation.
  • the measured value of the puncture test is a value obtained by measuring a total of three points, 5 cm from both ends and one point in the center, along the width direction of the membrane, and calculating the average value thereof.
  • the flexural rigidity value of the membrane sample was measured at an atmospheric temperature of 23 ⁇ 2 ° C. and an atmospheric humidity of 40 ⁇ 2% using a pure bending tester KES-FB2-A of Kato Tech. Cut the sample into MD 20 cm x TD 20 cm, chuck both ends of the TD to the fixed chuck (2) and the moving chuck (3) as shown in FIG. 1, and measure the flexural rigidity value of the MD according to the instruction manual. It was. Each setting is as follows.
  • the flexural rigidity value of TD chuck both ends of the MD of the sample cut out to MD 20 cm ⁇ TD 20 cm, and measure in the same manner as described above.
  • the flexural rigidity shall be measured after excluding those coating layers from the microporous film.
  • Ni foils (A, B) were pasted together, and both sides were pressed with clips with two glass plates.
  • the Ni foil electrode thus produced was placed in an oven at 25 ° C. and heated to 200 ° C. at 2 ° C./min.
  • the impedance change at this time was measured under the condition of 1 V and 1 kHz using an electric resistance measuring device "AG-4311" (manufactured by Ando Electric Co. Ltd.).
  • the temperature at which the impedance value reached 1000 ⁇ in this measurement was defined as the shutdown temperature (° C.).
  • a fluororubber having a thickness of 1 mm was attached to the inside of the chuck of the tensile tester. The measurement was carried out under the conditions of a temperature of 23 ⁇ 2 ° C., a chuck pressure of 0.40 MPa, and a tensile speed of 100 mm / min.
  • the tensile strength (MPa) was determined by dividing the strength of the polyolefin microporous membrane at break by the sample cross-sectional area before the test.
  • the tensile elongation (%) was determined by dividing the elongation amount (mm) leading to fracture by the inter-chuck distance (50 mm) and multiplying by 100.
  • strain rate (% / sec) (stretching ratio -1) x 100 / (stretching length (m) / ((pre-stretching line speed (m / sec) + post-stretching line speed (m / sec)) / 2))
  • the stretching length refers to the distance that the film moves in the longitudinal direction (MD) from the start of stretching to the end of stretching in steps (B) and (D).
  • the strain rates of the stretching operation and the relaxation operation are calculated respectively.
  • Springback value 100- (thickness of laminated body after 3 seconds / thickness of laminated body after 1 minute x 100) [%]
  • the springback value was evaluated according to the following criteria. (Evaluation criteria) A: Less than 1% B: Less than 1 to 3% C: 3 to 5% or more D: 5 to 7% or more E: 7% or more
  • Negative Electrode A slurry was prepared by dispersing artificial graphite as a negative electrode active material and an ammonium salt of carboxymethyl cellulose and a styrene-butadiene copolymer latex as a binder in purified water. This slurry was applied to a copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression-molded with a roll press machine. The obtained molded product was slit to a width of 58.5 mm to obtain a negative electrode. c.
  • the solution was prepared.
  • Battery assembly After winding the positive electrode, the porous film and the negative electrode obtained in Examples or Comparative Examples, a wound electrode body was prepared by a conventional method and pressed with a press so as to fit in an outer can. The number of turns was adjusted according to the thickness of the polyolefin microporous film and the degree of springback.
  • the outermost peripheral end of the obtained wound electrode body was fixed by attaching an insulating tape.
  • the negative electrode lead was welded to the battery can and the positive electrode lead was welded to the safety valve, and the wound electrode body was inserted into the battery can.
  • 5 g of a non-aqueous electrolyte solution was injected into the battery can, and the lid was crimped to the battery can via a gasket to obtain a square secondary having a width of 42.0 mm, a height of 63.0 mm, and a thickness of 10.5 mm. I got a battery.
  • This square secondary battery is charged to a battery voltage of 4.2 V at a current value of 0.2 C (current 0.2 times the 1-hour rate (1 C) of the rated electric capacity) in an atmosphere of 25 ° C., and after reaching the battery voltage of 4.2 V. Charging was carried out for a total of 3 hours by a method of starting to throttle the current value so as to hold 4.2 V. Subsequently, the battery was discharged to a battery voltage of 3.0 V with a current value of 0.2 C.
  • FIG. 2 is a schematic view of a collision test.
  • 15.8 mm
  • the procedure of the collision test in Examples and Comparative Examples will be described below with reference to FIG.
  • the secondary battery obtained in the above item was charged with a constant current of 1C, reached 4.2V, and then charged with a constant voltage of 4.2V for a total of 3 hours.
  • the secondary battery was placed sideways on a flat surface, and a stainless steel round bar 5 having a diameter of 15.8 mm was arranged so as to cross the central portion of the secondary battery.
  • the round bar 5 is arranged so that its long axis is parallel to the longitudinal direction (MD) of the separator.
  • a 18.2 kg weight 6 was dropped from a height of 61 cm so that an impact was applied at a right angle to the vertical axis direction of the secondary battery from the round bar 5 arranged at the center of the secondary battery.
  • the surface temperature of the secondary battery was measured 3 seconds and 3 minutes after the collision.
  • the test was conducted 5 cells at a time and evaluated according to the following criteria. For this evaluation item, A, B, and C were used as acceptance criteria.
  • the surface temperature of the secondary battery is a temperature measured by a thermocouple (K-type seal type) at a position 1 cm from the bottom side of the exterior body of the secondary battery.
  • E Surface temperature exceeds 100 ° C or ignites in one or more cells.
  • the secondary battery obtained in the above item was charged with a constant current of 1C in an environment of 25 ° C. and reached 4.2V. After that, the battery was charged at a constant voltage of 4.2 V for a total of 3 hours. The charged battery was heated from room temperature to a predetermined temperature at 5 ° C./min and left at a predetermined temperature for 60 minutes to check the ignition status. Three batteries were prepared and the results were evaluated according to the following criteria. A: None of the batteries ignited at 136 ° C. B: None of the batteries ignited at 134 ° C. C: None of the batteries ignited at 132 ° C. D: None of the batteries ignited at 130 ° C. E: At least one battery ignited at 130 ° C.
  • Example 1 High-density polyethylene (PE5) having an Mv of 700,000 and a polydispersity (Mw / Mn) of 7.9 by 45% by mass, a high-density polyethylene (PE2) having an Mv of 250,000 and a polydispersity (Mw / Mn) of 7.2. 45% by mass, Mv 400,000, and 10% by mass of homopolypropylene (PP1) having a polydispersity (Mw / Mn) of 4.5 were dry-blended using a tumbler blender to obtain a raw material resin mixture.
  • a polyolefin composition was obtained by blending 32% by mass of the raw material resin mixture, 68% by mass of liquid paraffin and 0.1% by mass of the antioxidant.
  • the polyolefin composition was put into a twin-screw extruder, and the melted polyolefin composition was extruded at a distance of 900 ⁇ m between cast rolls to form a gel-like sheet, which was then cooled and solidified by the cast rolls.
  • B Using a simultaneous biaxial stretching machine, a stretched sheet is obtained by stretching a cooled and solidified sheet at a set temperature of 119 ° C. and a surface magnification of 64 times (longitudinal stretching magnification 8 times, width direction stretching magnification 8 times). It was.
  • C Then, the stretched sheet was immersed in methylene chloride to extract and remove liquid paraffin, and then dried to make it porous.
  • Examples 2 to 21 and Comparative Examples 1 to 21 A microporous polyolefin membrane was obtained and evaluated in the same manner as in Example 1 except that the production conditions shown in Tables 1 and 2 were used. The evaluation results are shown in Tables 1 and 2 below. However, in Comparative Example 18, the relaxation operation was not performed in the step (D). In Comparative Example 3 and Comparative Example 13, MD microstretching was not performed in the step (E).
  • step (B) after stretching a cooled and solidified sheet at a set temperature of 115 ° C. and a longitudinal stretching ratio of 6 times using a roll stretching machine, a set temperature of 120 ° C. and a width direction stretching ratio of 7 times are subsequently used using a tenter.
  • a polyolefin microporous film was obtained and evaluated by the same method as in Example 1 except that the MD microstretching was not carried out in the step (E). The evaluation results are shown in Tables 1 and 2 below.
  • the annealed film was uniaxially stretched 1.2 times in the longitudinal direction at a temperature of 25 ° C. to obtain a stretched film.
  • the stretched film was uniaxially stretched 2.5 times in the longitudinal direction at a temperature of 140 ° C., heat-fixed at 150 ° C., and then the microporous film was wound up.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

膜厚が1.0μm以上17.0μm以下であり、長手方向(MD)の曲げ剛性(gf×cm/cm)を膜厚(μm)の3乗で除した値である曲げ係数が、0.3(μgf×cm/cm)/μm以上1.5(μgf×cm/cm)/μm以下であり、かつ目付換算突刺強度が70gf/(g/m)以上160gf/(g/m)以下であるポリオレフィン微多孔膜が提供される。

Description

ポリオレフィン微多孔膜
 本発明は、ポリオレフィン微多孔膜に関する。
 ポリオレフィン微多孔膜は、優れた電気絶縁性及びイオン透過性を示すことから、電池用セパレータ、コンデンサー用セパレータ、燃料電池用材料、精密濾過膜等に使用されており、特にリチウムイオン二次電池用セパレータとして使用されている。
 近年、リチウムイオン二次電池は、携帯電話、ノート型パソコン等の小型電子機器、及び電気自動車、小型電動バイク等の電動車両にも使用されている。リチウムイオン二次電池用セパレータには、機械的特性及びイオン透過性だけでなく、衝突試験に対する高安全性と、角型電池の製造工程中では適度に低剛性であることが求められている。また、最近では、その製造方法に関しても、延伸時の歪速度による物性コントロールも検討されており、歪速度のコントロールによりこれまで実現が難しかった物性のトレードオフの解消も可能となってきていた(特許文献2~5)。
 特許文献1には、スプリングバックの小さいポリオレフィン微多孔膜の製造方法を提案している。一次延伸後に緩和操作を行うことで膜全体の内部応力を小さくし、スプリングバックを小さくできることを教示している。しかしながら、特許文献1では電池の衝突安全性には着目されておらず、衝突安全性に関して改善の余地がある。
 特許文献2には、電池の熱暴走の抑止のために120℃の熱収縮率と130℃の熱収縮率の比を規定し、120℃では膜は寸法を維持し、130℃では融解してシャットダウンすることで電池の熱暴走を抑制できる膜の開発が記述されている。その製造方法として、二軸延伸または逐次延伸時のMDとTDの歪速度の比が1.2以上1.8以下であることと、熱固定工程における延伸歪が20%/sec以上であり、かつ緩和速度が10%/sec以下であることが教示されている。しかしながら、特許文献2に記載の膜は、熱収縮の制御のために強度を犠牲にする傾向にあり、電池の衝突安全性の観点で改善の余地がある。
 特許文献3には、低突刺伸度かつ低TMA応力であるポリオレフィン微多孔膜が提案され、突刺伸度及び応力を特定の範囲内にコントロールすることにより電池の熱暴走を抑止できることを教示している。その製造方法として、一次延伸工程と熱固定工程でのTDの歪速度比を2.0以上10.0以下に設定し、同時二軸延伸時のMDの歪速度を20%/sec以上50%/sec以下に設定することが教示されている。しかしながら、特許文献3は、熱固定工程の緩和の歪速度に関しては検討されておらず、膜の曲げ剛性及び突刺強度の高強度化に関して改善の余地がある。
 特許文献4には、ゲル状シートを延伸する際に、好ましくは歪速度を3%/sec以上に設定することで、孔構造を均一緻密な構造にし、シャットダウン特性と耐熱性の両立の実現を検討している。しかしながら、特許文献4には、熱固定工程の緩和処理の歪速度に関しては記載されておらず、ポリオレフィン微多孔膜の曲げ剛性に関しても言及されていない。
 特許文献5には、積層膜において表層と中間層の組成を規定の範囲内に収めることで、TMA測定における120℃での熱収縮率を10%以上40%以下に収め、それにより熱プレス時の電池の歪み又はサイクル特性の低下を抑えることが記述されている。しかしながら、特許文献5では熱収縮率の抑制のために強度を抑える膜設計になっており、電池の安全性に関しては改善の余地がある。
特開2016-191006号公報 国際公開第2018/179810号 国際公開第2019/045077号 特開2015-208893号公報 国際公開第2019/074122号
 リチウムイオン二次電池は、円筒型、角型、パウチ型など用途に応じて多様な形状が展開されている。電池の製造方法は電池の形状によっても異なるが、角型電池の製造においては、電極とポリオレフィン膜の捲回体もしくは積層体をプレスし、直方体の外装缶に挿入する工程がある。
 捲回体においては、プレス圧力を解放した直後に、捲回体が、ポリオレフィン微多孔膜の剛性により、反発してスプリングバックすることが分かっている。その結果、外装缶の厚みよりも捲回体の厚みが大きくなるため、剛性が高いポリオレフィン微多孔膜を用いる場合には、スプリングバック分を考慮して捲回体の巻き数を抑える必要があった。捲回体の巻き数を抑えることは、電極の使用量が落ちるために電池のエネルギー密度の低下に繋がる。そのため、これまでにも捲回体の巻き数をできる限り多くしようとする開発は行われていた。
 積層体においては、近年エネルギー密度向上の観点から、つづら折り方式の採用が増加している。つづら折り方式では、セパレータの上下面が入れ替わるように交互に折り返しつつ、互い違いに正極と負極を挿入する。つづら折り方式においては、連続する2箇所が逆方向に折り曲げられるため、プレス圧力を解放する際に、ポリオレフィン微多孔膜の剛性により、折り曲げ部分が元の形状に戻ろうとしてスプリングバックする。そのため、捲回体と同様に、スプリングバック分を考慮し積層数を抑えることが必要になるため、エネルギー密度が低下することが課題であった。
 また、高エネルギー密度の電池は、例えば外部から衝撃を受けた際に、膜が破膜してショートすること等により、電池の熱暴走が起こり易く、安全性は低下する傾向にあった。
 従来、ポリオレフィン微多孔膜の低剛性化のためには、ポリオレフィン微多孔膜の膜厚を薄くする、または強度を落とす、などの方法があったが、両者とも電池の衝突安全性は低下する傾向にあったため、これまでポリオレフィン微多孔膜の低剛性と電池の衝突安全性は両立できていなかった。
 上記の事情に鑑みて、本発明が解決しようとする課題は、角型電池の高エネルギー密度化を実現し、かつ高エネルギー密度でありながら、衝突安全性も担保できるリチウム二次電池用ポリオレフィン微多孔膜を提供することである。
 本発明者らは、ポリオレフィン微多孔膜の曲げ剛性および目付換算突刺強度を特定することによって、上記課題を解決し得ることを見出し、本発明を完成させた。すなわち、本発明は以下のとおりである。
[1]
 膜厚が1.0μm以上17.0μm以下であって、長手方向(MD)の曲げ剛性(gf×cm/cm)を膜厚(μm)の3乗で除した値である曲げ係数が、0.3(μgf×cm/cm)/μm以上1.5(μgf×cm/cm)/μm以下であって、かつ目付換算突刺強度が70gf/(g/m)以上160gf/(g/m)以下であるポリオレフィン微多孔膜。
[2]
 前記目付換算突刺強度が、80gf/(g/m)以上140gf/(g/m)である、項目1に記載のポリオレフィン微多孔膜。
[3]
 突刺強度が300gf以上950gf以下である、項目1又2に記載のポリオレフィン微多孔膜。
[4]
 MDの引張強度およびTDの引張強度が1000kgf/cm以上である、項目1~3のいずれか1項に記載のポリオレフィン微多孔膜。
[5]
 MDの引張強度とTDの引張強度の比(MD/TD引張強度比)が0.80~1.20である、項目1~4のいずれか1項に記載のポリオレフィン微多孔膜。
[6]
 シャットダウン温度が125℃以上150℃以下である、項目1~5のいずれか1項に記載のポリオレフィン微多孔膜。
[7]
 透気度が30sec/100cm以上250sec/100cm以下である、項目1~6のいずれか1項に記載のポリオレフィン微多孔膜。
[8]
 単位膜厚当たりの耐電圧が、0.130kV/μm以上である、項目1~7のいずれか1項に記載のポリオレフィン微多孔膜。
[9]
 平均孔径が、0.010μm以上0.080μm以下である、項目1~8のいずれか1項に記載のポリオレフィン微多孔膜。
[10]
 ポリエチレンの割合が50質量%以上100質量%以下であり、かつポリプロピレンの割合が0%以上20質量%以下である、項目1~9のいずれか1項に記載のポリオレフィン微多孔膜。
 本発明によれば、リチウムイオン二次電池の高エネルギー密度化と電池の衝突安全性を両立することができる。
 本発明によれば、ポリオレフィン微多孔膜の曲げ剛性を低剛性にコントロールすることで、角型電池の製造工程で外装缶に捲回体および積層体を挿入する際のスプリングバックが抑制され、ひいては捲回数および積層数を増やすことができる。それにより、角型電池のエネルギー密度を上げることが可能となる。
 また本発明によれば、高い目付換算突刺強度のポリオレフィン微多孔膜を得ることができるため、電池の衝突安全性も向上させることができる。
 従来はポリオレフィン微多孔膜を低剛性化する方法として、膜厚を下げる、突刺強度を下げる、などの手法があったが、両者とも電池の衝突安全性は低下する傾向にあった。しかしながら、本発明のポリオレフィン微多孔膜は、低剛性と衝突安全性の両立を可能とすることができる。
図1は純曲げ試験の測定機構を説明する概略図であり、点Pは固定されており、点Qは可動であり、試験時には点Qが図1の曲線のように動くことで曲げ剛性を測定する。なお、図1に記載のMDは、MDの曲げ剛性を測定する場合のサンプルのセット方向である。 図2は衝突試験の概略図である。
 以下、本発明を実施するための形態(以下、「実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本明細書では、長手方向(MD)とは微多孔膜連続成形の機械方向を意味し、かつ幅方向(TD)とは微多孔膜のMDを90°の角度で横切る方向を意味する。
<ポリオレフィン微多孔膜>
 本発明の一態様は、ポリオレフィン微多孔膜である。角型電池で使用されるポリオレフィン微多孔膜は、電極とセパレータを捲回する際のスプリングバックを考慮して、曲げ剛性が低いものが好ましい。また、ポリオレフィン微多孔膜は、二次電池用セパレータとして利用されることができるため、電池の衝突安全性の観点からは突刺強度が高い方が好ましい。
 本発明の実施形態に係るポリオレフィン微多孔膜は、曲げ係数が、0.3(μgf×cm/cm)/μm以上1.5(μgf×cm/cm)/μm以下であることを特徴とする。曲げ係数とは、純曲げ試験機で測定した長手方向(MD)の曲げ剛性[gf×cm/cm]を膜厚[μm]の3乗で割った値である。曲げ係数が、0.3(μgf×cm/cm)/μmよりも低いとポリオレフィン微多孔膜の剛性が弱くなりすぎてしまい、電極とセパレータの捲回時および積層時にシワが入るため0.3(μgf×cm/cm)/μm以上が良い。また、曲げ係数を1.5(μgf×cm/cm)/μm以下に抑えることにより、捲回体においてはプレスした後のスプリングバックを、つづら折り方式の積層体においては折り返し部分におけるスプリングバッグを抑制でき、電極の捲回数および積層数を増やすことができるため、エネルギー密度の向上が可能となる。
 膜厚と曲げ係数と目付換算突刺強度とを良好なバランスでコントロールするためには、ポリオレフィン原料の多分散度(Mw/Mn)、延伸工程における長手方向の延伸倍率、熱固定工程における延伸の歪速度、熱固定工程における緩和の歪速度、さらに微延伸工程における温度と延伸倍率などの制御を行うことが重要である。
 曲げ剛性とは、材料の曲げ変形のし難さを示す指標であり、材料を曲げた際に材料が元の形に戻ろうとする力を示す。従来、材料が直方体の場合、曲げ剛性は厚みの3乗に比例することは公知である。しかしながら、ポリオレフィン微多孔膜で、低剛性化のために膜厚を薄くすると、単位面積当たりの樹脂量が減り、電池の安全性が低下することが分かっている。そこで本実施形態では、低剛性化を実現し、スプリングバックを抑制できる電池の安全性が良好なポリオレフィン微多孔膜を開発した。
[曲げ剛性特性]
 本明細書では、曲げ剛性とはMD20cm×TD20cmに切り出したサンプルの対向する2辺をチャックで固定し、そのうちの1辺を固定して、対向する1辺を曲線状に動かして図1のように曲線状に折り曲げたときに、サンプルがもとの平坦な状態に戻ろうとする力のことを意味する。一般的には、この働く力のことを「曲げ剛性」と呼び、折り曲げる動作に対するサンプルの柔軟性を表す指標となる。
 本発明は、この曲げ剛性を膜厚の3乗で除した値が小さいことを特徴とし、曲げに対する柔軟性が高い膜が好ましい。曲げ係数が1.5(μgf×cm/cm)/μm以下であると、つづら折り方式による電極積層工程においてスプリングバックせず、ひいては電池の外装缶に捲回体を挿入する際にもスプリングバック分を考慮する必要が無いため、その分電極の積層数を増やすことが可能になり、エネルギー密度が向上する。曲げ係数が1.1(μgf×cm/cm)/μm以下であると、電極とポリオレフィン微多孔膜を捲回する際に膜の剛性が低いため、電極と微多孔膜の捲回体をプレスしてもスプリングバックせず、ひいては電池の外装缶に捲回体を挿入する際にもスプリングバック分を考慮する必要が無いため、その分電極の捲回数を増やすことが可能となり、電池のエネルギー密度を向上させることが可能となる。
 電極作製時におけるシワの発生を抑制するという観点から、ポリオレフィン微多孔膜の曲げ係数の下限値は0.3(μgf×cm/cm)/μm以上であり、0.4(μgf×cm/cm)/μm以上が好ましく、0.5(μgf×cm/cm)/μm以上がより好ましい。エネルギー密度向上の観点から、その上限値は1.5(μgf×cm/cm)/μm以下であり、1.35(μgf×cm/cm)/μm以下が好ましく、上記で説明された観点から1.1(μgf×cm/cm)/μm以下がより好ましく、1.0(μgf×cm/cm)/μm以下がさらに好ましく、0.9(μgf×cm/cm)/μm以下がさらに好ましく、0.8(μgf×cm/cm)/μm以下が特に好ましく、0.7(μgf×cm/cm)/μm以下が最も好ましい。
[目付換算突刺強度]
 本明細書では、カトーテック製のハンディー圧縮試験器KES-G5(商標)を用いて、最大突刺荷重として突刺強度(gf)を測定し、突刺強度を目付で除した値を目付換算突刺強度とした。目付換算突刺強度を高くすることにより、電池に衝突があったとしても、膜が破膜することなく絶縁性が保たれるため、電池が熱暴走すること無く、安全性を担保することが可能となる。このような観点から、目付換算突刺強度は、70gf/(g/m)以上である。また、突刺強度を高くするほど、微多孔膜が熱を受けたときの収縮の割合(以下、熱収縮)が、一般的に大きくなる。熱収縮を抑制する観点で、目付換算突刺強度の上限は、160gf/(g/m)以下である。
[構成要素]
 ポリオレフィン微多孔膜の構成要素及び好ましい実施形態について以下に説明する。
 ポリオレフィン微多孔膜としては、例えば、ポリオレフィン樹脂を含む多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を含む多孔膜、ポリオレフィン系の繊維を織ったもの(織布)、ポリオレフィン系の繊維の不織布などが挙げられる。これらの中でも、高い突刺強度と低曲げ剛性の両立の観点で、ポリオレフィン樹脂を含む多孔膜(以下、「ポリオレフィン微多孔膜」ともいう。)が好ましい。
 ポリオレフィン樹脂多孔膜について説明する。ポリオレフィン樹脂多孔膜は、二次電池用ポリオレフィン微多孔膜を形成した時のシャットダウン性能等を向上させる観点から、多孔膜を構成する樹脂成分の50質量%以上100質量%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物により形成される多孔膜であることが好ましい。ポリオレフィン樹脂組成物におけるポリオレフィン樹脂が占める割合は、60質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましく、最も好ましくは95質量%以上100質量%以下である。
 ポリオレフィン樹脂組成物に含有されるポリオレフィン樹脂としては、特に限定されず、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテン等をモノマーとして用いて得られるホモ重合体、共重合体、又は多段重合体等が挙げられる。また、これらのポリオレフィン樹脂は、単独で用いても、2種以上を混合して用いてもよい。
 中でも、曲げ剛性の低剛性化の観点から、ポリオレフィン樹脂としてはポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-それら以外のモノマーの共重合体、並びにこれらの混合物が好ましい。
 ポリエチレンの具体例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等、ポリプロピレンの具体例としては、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、アタクティックポリプロピレン等、
 共重合体の具体例としては、エチレン-プロピレンランダム共重合体、エチレンプロピレンラバー等、が挙げられる。
 ポリオレフィン樹脂多孔膜は、二次電池用ポリオレフィン微多孔膜を形成した時の高突刺強度化の観点から、微多孔膜を構成する樹脂成分の50質量%以上100質量%以下をポリエチレンが占めるポリエチレン組成物により形成される多孔膜であることが好ましい。多孔膜を構成する樹脂成分におけるポリエチレンが占める割合は、60質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましく、最も好ましくは90質量%以上100質量%以下である。
 また、ポリオレフィン樹脂は、低剛性化の観点から、120℃以上150℃以下、さらに好ましくは125℃以上140℃以下の範囲内に融点を持つポリエチレンであることが好ましい。
 低剛性化の観点から、ポリオレフィン樹脂におけるポリエチレンの割合は、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、そして100質量%以下であることが好ましく、97質量%以下であることがより好ましく、95質量%以下であることがさらに好ましい。ポリオレフィン樹脂におけるポリエチレンの割合が100質量%であると、強度発現の観点で好ましい。
 中でも、二次電池用ポリオレフィン微多孔膜を形成した時に、理論に拘束されることを望まないが、高強度でありながら曲げ剛性を低く抑えることができるために、ポリオレフィン樹脂としてポリエチレン、特に、中密度ポリエチレン(MDPE)又は高密度ポリエチレン(HDPE)を用いることが好ましい。なお、本発明において、中密度ポリエチレンとは、0.930~0.942g/cmのポリエチレンをいい、高密度ポリエチレンとは密度0.942~0.970g/cmのポリエチレンをいう。曲げ剛性をより低減させる観点では、中密度ポリエチレンが好ましい。なお、本発明においてポリエチレンの密度とは、JIS K7112(1999)に記載の密度勾配管法に従って測定した値をいう。
 また、微多孔膜の耐熱性を向上させる観点から、ポリオレフィン樹脂としてポリエチレン及びポリプロピレンの混合物を用いてもよい。この場合、ポリオレフィン樹脂組成物中の、総ポリオレフィン樹脂に対するポリプロピレンの割合は、膜の曲げ剛性を低剛性化できる観点から、0質量%より大きく、20質量%以下、又は1質量%以上20質量%以下であることが好ましく、より好ましくは2質量%以上15質量%以下、さらに好ましくは2質量%以上10質量%以下である。また、成形性を向上させる観点から、ポリオレフィン樹脂組成物中の、総ポリオレフィン樹脂に対するポリプロピレンの割合は3質量%以上10質量%以下が好ましく、5質量%以上10質量%以下が好ましい。
 ポリオレフィン樹脂組成物には、任意の添加剤を含有させることができる。添加剤としては、例えば、ポリオレフィン樹脂以外の重合体;無機フィラー;フェノール系、リン系、イオウ系等の酸化防止剤;ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸類;紫外線吸収剤;光安定剤;帯電防止剤;防曇剤;着色顔料等が挙げられる。これらの添加剤の総添加量は、ポリオレフィン樹脂100質量%に対して、20質量%以下であることがシャットダウン性能等を向上させる観点から好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
 微多孔膜がポリオレフィン樹脂多孔膜である場合、原料として用いるポリオレフィン樹脂の粘度平均分子量(Mv)は、30,000以上5,000,000以下であることが好ましく、より好ましくは80,000以上3,000,000未満、さらに好ましくは150,000以上2,000,000未満である。粘度平均分子量が30,000以上であると、重合体同士の絡み合いにより高強度となる傾向にあるため好ましい。一方、粘度平均分子量が5,000,000以下であると、ポリオレフィン微多孔膜の剛性をコントロールする観点で好ましい。粘度平均分子量が5,000,000より高いと、樹脂の流動性が悪化するために剛性のコントロールが難しくなる。さらに、二次電池用ポリオレフィン微多孔膜を形成した時に、粘度平均分子量が2,000,000未満であると、樹脂同士の絡み合いと樹脂の加工性のバランスが取れ、低剛性化と高強度化の両立の観点から、物性をコントロールし易くなるために好ましい。
 本発明の実施形態に係るポリオレフィン微多孔膜は、その製造方法の一例として、以下に説明する工程(A)~(E)を含むポリオレフィン微多孔膜の製造方法によって製造することができる。
 ポリオレフィン原料の多分散度(Mw/Mn)は、4.0以上12.0以下が好ましい。多分散度(Mw/Mn)は、後述する測定法に準じて測定される。多分散度(Mw/Mn)がこの範囲内にあると高分子量成分と低分子量成分がそれぞれ一定量存在し、突刺強度と耐熱性を担保しつつ、ポリオレフィン微多孔膜の曲げ剛性を低剛性化できる傾向にあるため好ましい。このような観点から、ポリオレフィン原料の多分散度(Mw/Mn)の下限は6.0以上が好ましく、7.0以上がより好ましい。また、その上限については、熱固定(HS)工程時の気孔率低下の観点から、12.0以下が好ましく、10.0以下がより好ましい。したがって、ポリオレフィン原料の多分散度の範囲としては、6.0以上12.0以下、7.0以上12.0以下、4.0以上10.0以下、6.0以上10.0以下、7.0以上10.0以下の順に好ましい。曲げ剛性を低剛性にコントロールするために、ポリオレフィン原料の多分散度(Mw/Mn)が4.0以上12.0以下の原料を50質量%以上含むことが好ましく、70質量%以上含むことがより好ましい。曲げ剛性を低剛性にコントロールするために、多分散度を制御するポリオレフィン原料は、ポリエチレンであることが好ましい。
 さらに、ポリオレフィン原料のZ平均分子量と重量平均分子量の比(Mz/Mw)は、2.0以上7.0以下が好ましい。比(Mz/Mw)は、後述する実施例における測定法に準じて測定される。原料ポリマーのMz/Mwが高くなることによって、ポリオレフィン微多孔膜の曲げ剛性を低剛性化できる傾向にある。このような観点から、ポリオレフィン原料のMz/Mwは4.0以上がより好ましく、5.0以上がさらに好ましい。したがって、ポリオレフィン原料のMz/Mwの範囲としては、4.0以上7.0以下、5.0以上7.0以下の順に好ましい。
[微多孔膜の詳細]
 ポリオレフィン微多孔膜は、非常に小さな孔が多数集まって緻密な連通孔を形成した多孔構造を有しているため、電解液を含んだ状態においてイオン透過性に非常に優れると同時に高強度であるという特徴を有する。微多孔膜は、上述した材料から成る単層膜であってもよく、積層膜であってもよい。
 微多孔膜の膜厚は、機械的強度を有し絶縁性を保つために、下限値は1μm(1.0μm)以上である。単位面積当たりの樹脂量を担保することで、電池の安全性を向上させるために、膜厚としては、2μm(2.0μm)以上が好ましく、3μm(3.0μm)以上がより好ましい。リチウムデンドライトが成長した場合に絶縁性を担保するためには、膜厚として6μm(6.0μm)以上が好ましい。微多孔膜の膜厚は、二次電池の高容量化の観点から17.0μm以下であり、15μm(15.0μm)以下であることが好ましく、11μm(11.0μm)以下であることがより好ましく、10μm(10.0μm)以下であることがさらに好ましい。微多孔膜の膜厚は、キャストロールのロール間距離、延伸工程における延伸倍率等を制御すること等によって調整することができる。
 微多孔膜の気孔率は、好ましくは25%以上60%以下、より好ましくは30%以上50%以下、さらに好ましくは35%以上45%以下である。微多孔膜の気孔率は、出力の観点から25%以上が好ましく、30%以上がより好ましく、35%以上がさらに好ましい。微多孔膜の気孔率として、電池の安全性の観点からは60%以下が好ましく、50%以下がより好ましく、45%以下がさらに好ましい。微多孔膜の気孔率は、ポリオレフィン樹脂組成物と可塑剤の混合比率、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率などを制御すること、又はこれらを組み合わせることによって調整することができる。
 微多孔膜の透気度は、好ましくは30sec/100cm以上250sec/100cm以下が好ましく、より好ましくは70sec/100cm以上200sec/100cm以下、より好ましくは80sec/100cm以上180sec/100cm以下、さらに好ましくは90sec/100cm以上150sec/100cm以下である。微多孔膜の透気度は、突刺強度を担保する観点から70sec/100cm以上が好ましく、出力特性の観点から200sec/100cm以下が好ましい。
 微多孔膜の平均孔径は、高いイオン透過性、優れた耐電圧及び高強度を達成するために、0.010μm以上0.080μm以下であることが好ましく、より好ましくは0.020μm以上であり、さらに好ましくは0.030μm以上であり、特に好ましくは0.035μm以上、又は0.040μm以上であり、最も好ましくは0.045μm以上である。また、平均孔径の上限は、より好ましくは0.075μm以下、さらに好ましくは0.070μm以下、特に好ましくは0.065μm以下である。平均孔径は、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率などを制御すること、又はこれらを組み合わせることにより調整することができる。
 微多孔膜の目付に換算されていない突刺強度(以下、単に突刺強度という。)は、100gf以上950gf以下が好ましい。突刺強度として、電池の安全性の観点から100gf以上が好ましく、ポリオレフィン微多孔膜の曲げ剛性及び熱収縮率の観点から950gf以下が好ましい。微多孔膜の突刺強度の下限値は、より好ましくは300gf以上であり、300gf以上にすることにより、電池に衝突があった場合、又は電極とポリオレフィン微多孔膜との間に異物が混入した場合に、膜が破膜することなく絶縁性が保たれるため、電池が熱暴走すること無く、安全性を担保することが可能となるため、より好ましい。また、微多孔膜の突刺強度の上限値は、より好ましくは、870gf以下であり、870gf以下とすることで、何らかの理由で電池セル内の温度上昇が起きた場合においても、ポリオレフィン膜が熱収縮せず、絶縁性が保たれるため安全性が向上するため、より好ましい。突刺強度は、さらに好ましくは360gf以上800gf以下、特に好ましくは、400gf以上740gf未満であり、最も好ましくは450gf以上700gf以下である。また、微多孔膜の目付換算突刺強度は、電池内での安全性の観点からは70gf/(g/m)以上が好ましく、膜の低剛性化の観点からは160gf/(g/m)以下が好ましい。目付換算突刺強度は、電池の安全性と熱収縮のバランスを鑑みて、75gf/(g/m)以上150gf/(g/m)以下がより好ましく、80gf/(g/m)以上140gf/(g/m)以下がさらに好ましく、85gf/(g/m)以上130gf/(g/m)以下が特に好ましく、90gf/(g/m)以上120gf/(g/m)以下が最も好ましい。
 ポリオレフィン微多孔膜の目付は、電池の熱暴走を抑制する観点から0.1g/m以上が好ましく、電池の高容量化の観点からは20g/m以下が好ましい。より好ましくは、ポリオレフィン微多孔膜の目付は、1g/m以上10g/m以下である。
 微多孔膜の耐電圧の絶対値は電池の安全性の観点から0.5kV以上が好ましく、0.7kV以上がより好ましく、0.9kV以上がさらに好ましく、1.1kV以上が最も好ましい。同様の観点から、微多孔膜の単位膜厚当たりの耐電圧は、0.130kV/μm以上が好ましく、より好ましくは0.140kV/μm以上、さらに好ましくは0.150kV/μm以上である。
 微多孔膜のメルトダウン温度は、好ましくは150℃以上、より好ましくは160℃以上、さらに好ましくは170℃以上である。150℃以上のメルトダウン温度は、150℃までは微多孔膜の破膜が起こらないことを意味するので、二次電池の安全性を確保することができる。メルトダウン温度は、ポリオレフィンの分子量、延伸および熱固定条件によって150℃以上の範囲内に調整されることができる。
 微多孔膜のシャットダウン温度は、好ましくは150℃以下、より好ましくは147℃以下、さらに好ましくは143℃以下、最も好ましくは140℃以下である。150℃以下のシャットダウン温度は、何らかの異常反応が起こり、電池内温度が上昇するときに、150℃に達するまでにセパレータの孔が閉塞することを意味する。したがって、シャットダウン温度が低いほど、低温で速やかに電極間のリチウムイオンの流れが停止するために、安全性は向上する。一方、100℃を超える高温に晒されても電池性能を低下させない観点で、微多孔膜のシャットダウン温度としては125℃以上が好ましく、130℃以上がより好ましい。
 微多孔膜の引張強度は、MD、TDともに、500kgf/cm以上であることが好ましく、700kgf/cm以上であることが好ましく、1000kgf/cm以上であることが好ましく、又は1000kgf/cm以上5000kgf/cm以下が好ましい。引張強度は、MD、TDともに、より好ましくは1500kgf/cm以上4500kgf/cm以下、さらに好ましくは、2000kgf/cm以上4000kgf/cm以下であり、最も好ましくは2500kgf/cm以上3500kgf/cm以下である。引張強度が1000kgf/cmよりも低いと、電極とポリオレフィン微多孔膜の捲回時に掛かる応力に膜が耐えられず、破膜する可能性があり、ポリオレフィン微多孔膜の熱収縮抑制の観点からは5000kgf/cmよりも低いことが好ましい。
 ポリオレフィン微多孔膜のMDとTDの引張強度の値が近いほど、異物が混入した際又は外部から衝撃を受けた際に、強度の弱い方向に膜が裂けることがなく、安全性が向上する。このような観点から、ポリオレフィン微多孔膜のMD/TD引張強度比としては、0.80以上1.20以下が好ましく、より好ましくは0.85~1.15、さらに好ましくは0.90以上1.10以下、最も好ましくは0.95以上1.05以下である。
 微多孔膜の引張伸度は、MD、TDともに10%以上が好ましく、より好ましくは30%以上、最も好ましくは50%以上である。引張伸度が10%よりも低いと電池が外部からの衝撃などにより変形した際に、変形に追従できず破膜するため、電極同士が接触しショートしてしまう可能性がある。
<ポリオレフィン微多孔膜の製造方法>
 本発明の製造方法は特に限定されないが、一例として以下の工程を含む方法が挙げられる:
 (A)ポリオレフィン樹脂及び孔形成材を含むポリオレフィン組成物を押し出して、ゲル状シートを形成する工程;
 (B)ゲル状シートを二軸延伸して、延伸シートを形成する工程;
 (C)延伸シートから孔形成材を抽出して、多孔膜を形成する工程;
 (D)多孔膜を熱固定する工程;並びに
 (E)MDに微延伸する工程。
また、ポリオレフィン微多孔膜の製造方法は、工程(A)において、多分散度が4.0以上12.0以下のポリオレフィン原料を50質量%以上使用し、工程(B)における長手方向の倍率が6倍以上10倍以下であり、工程(D)では、延伸操作と緩和操作を少なくとも一回ずつ含み、工程(D)における延伸の歪速度が11%/sec以下であり、工程(D)における緩和の歪速度が10%/sec以下であり、工程(E)において、ポリオレフィン微多孔膜の融点-70℃~融点-30℃の温度で1.0~5.0%のMD微延伸をすることを特徴とする。
 ポリオレフィン微多孔膜の製造工程及び好ましい実施形態について以下に説明する。
[押出工程(A)]
 工程(A)では、ポリオレフィン組成物を押し出して、ゲル状シートを形成する。ポリオレフィン組成物は、ポリオレフィン樹脂、孔形成剤等を含んでよい。ゲル状シートは、ポリオレフィン樹脂と孔形成材とを溶融混練してシート状に成形することにより得ることができる。
 先ず、ポリオレフィン樹脂と孔形成材を溶融混練する。溶融混練方法としては、例えば、ポリオレフィン樹脂及び必要によりその他の添加剤を押出機、ニーダー、ラボプラストミル、混練ロール、バンバリーミキサー等の樹脂混練装置に投入することで、樹脂成分を加熱溶融させながら任意の比率で孔形成材を導入して混練する方法が挙げられる。
 ポリオレフィン組成物に含有されるポリオレフィン樹脂は、得られるポリオレフィン微多孔膜の所定の樹脂原料に応じて決定されることができる。具体的には、押出工程(A)で使用されるポリオレフィン樹脂は、本発明の実施形態に係るポリオレフィン微多孔膜と関連して説明されたポリオレフィン樹脂でよい。ポリオレフィン組成物中のポリオレフィン樹脂の割合は、シート成形性の観点から、ポリオレフィン組成物の質量を基準として、好ましくは10~80質量%、より好ましくは15~60質量%、さらに好ましくは20~40質量%である。
 高い突刺強度と低曲げ剛性の両立の観点から、ポリオレフィン原料としては、多分散度(Mw/Mn)が4.0以上12.0以下のポリオレフィンが好ましく、Mw/Mnが4.0以上12.0以下のポリエチレンがより好ましい。曲げ剛性を低剛性にコントロールするためには、多分散度(Mw/Mn)が4.0以上12.0以下の原料を50質量%以上含むことが好ましく、70質量%以上含むことがより好ましい。
 工程(A)のためにポリオレフィン組成物に含有されるポリオレフィン樹脂は、ポリエチレンを含むことができ、又はポリエチレンとポリプロピレンを含むことができる。その場合には、ポリエチレンの割合は、50質量%以上100質量%以下でよく、かつポリプロピレンの割合は、0%以上20質量%以下でよい。
 孔形成材としては、可塑剤、無機材又はそれらの組み合わせを挙げることができる。
 可塑剤としては、特に限定されないが、ポリオレフィンの融点以上において均一溶液を形成し得る不揮発性溶媒を用いることが好ましい。不揮発性溶媒の具体例としては、例えば、流動パラフィン、パラフィンワックス等の炭化水素類;フタル酸ジオクチル、フタル酸ジブチル等のエステル類;オレイルアルコール、ステアリルアルコール等の高級アルコール等が挙げられる。なお、これらの可塑剤は、抽出後、蒸留等の操作により回収して再利用してよい。
 可塑剤の中でも、流動パラフィンは、ポリオレフィン樹脂がポリエチレン又はポリプロピレンの場合に、これらとの相溶性が高く、溶融混練物を延伸しても樹脂と可塑剤の界面剥離が起こり難く、均一な延伸が実施し易くなる傾向にあるため好ましい。
 ポリオレフィン樹脂組成物と可塑剤の比率は、均一な溶融混練及びシート成形性に応じて決定されることができる。ポリオレフィン樹脂組成物と可塑剤とから成る組成物中に占める可塑剤の質量分率は、好ましくは20~90質量%、より好ましくは50~70質量%である。可塑剤の質量分率が90質量%以下であると、溶融成形時のメルトテンションが成形性向上のために十分なものとなる傾向にある。可塑剤の質量分率が20質量%以上であると、ポリオレフィン樹脂組成物と可塑剤との混合物を高倍率で延伸した場合でもポ
リオレフィン分子鎖の切断が起こらず、均一かつ微細な孔構造を形成し易く、強度も増加し易い。
 無機材としては、特に限定されず、例えば、アルミナ、シリカ(珪素酸化物)、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、抽出が容易である点から、シリカが特に好ましい。
 ポリオレフィン樹脂組成物と無機材との比率は、良好な隔離性を得る観点から、これらの合計質量に対して無機材が3質量%以上であることが好ましく、10質量%以上であることがより好ましく、高い強度を確保する観点から、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。
 次に、溶融混練物をシート状に成形してゲル状シートを得る。押出機により溶融混練を行う場合には、ポリオレフィン組成物の押出速度(すなわち、押出機の吐出量Q:kg/時間)と押出機のスクリュー回転数N(rpm)との比(Q/N、単位:kg/(h・rpm))が、好ましくは0.1以上7.0以下、より好ましくは0.5以上6.0以下、さらに好ましくは1.0以上5.0以下である。0.1以上7.0未満のQ/Nの条件下で溶融混練を行うと、樹脂と相分離した流動パラフィンがより分散し易くなるために、孔構造が緻密になり、高強度化できる傾向にある。
 シート状成形体を製造する方法としては、例えば、溶融混練物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂成分の結晶化温度より充分に低い温度まで冷却して固化する方法が挙げられる。冷却固化に用いられる熱伝導体としては、金属、水、空気、可塑剤等が挙げられる。これらの中でも、熱伝導の効率が高いため、金属製のロールを用いることが好ましい。また、押出したゲル状シートを金属製のロールに接触させる際に、ロール間で挟み込むことは、熱伝導の効率がさらに高まると共に、シートが配向して膜強度が増し、シートの表面平滑性も向上する傾向にあるためより好ましい。溶融混練物をTダイからシート状に押出す際のキャストロールのロール間距離は200μm以上3,000μm以下であることが好ましく、500μm以上2,500μm以下であることがより好ましい。キャストロールのロール間距離が200μm以上であるとその後の延伸工程において膜破断などのリスクを低減することができ、ロール間距離が3,000μm以下であると、冷却速度が速く冷却ムラを防げる。
 また、押し出されたシート状成形体又はゲル状シートを圧延してもよい。圧延は、例えば、ロール等を使用した方法にて実施することができる。圧延を施すことにより、特に表層部分の配向を増すことができる。圧延面倍率は1倍を超えて3倍以下であることが好ましく、1倍を超えて2倍以下であることがより好ましい。圧延倍率が1倍を超えると、面配向が増加し、最終的に得られる多孔膜の膜強度が増加する傾向にある。圧延倍率が3倍以下であると、表層部分と中心内部の配向差が小さく、膜の厚さ方向に均一な多孔構造を形成することができる傾向にある。
[延伸工程(B)]
 工程(B)では、工程(A)で得られたゲル状シートを延伸する。工程(B)は、シートから孔形成材を抽出する工程(C)の前に行う。工程(B)では、ゲル状シートの延伸処理は、ポリオレフィン微多孔膜の曲げ剛性をコントロールする観点から、長手方向と幅方向に少なくとも1回ずつ(すなわち、二軸延伸により)行われる。
 工程(B)では、長手方向の曲げ剛性の低剛性化の観点から長手方向の延伸倍率が6倍以上であることが好ましい。樹脂と可塑剤が相分離した状態での延伸倍率を高くすることにより、樹脂のみで延伸する場合よりも、可塑剤が延伸方向への配向を抑制する傾向にあるため、高強度化しながらも曲げ剛性を低くできる傾向にある。また、工程(B)における長手方向及び幅方向の歪速度は、特に限定されないが、3%/sec以上50%/sec未満であることが好ましく、低剛性と高強度の両立の観点からは10%/sec以上30%/sec以下が最も好ましい。
 工程(B)では、曲げ係数の値が0.3(μgf×cm/cm)/μm以上1.5(μgf×cm/cm)/μm以下を満たし易くするために、長手方向(MD)の延伸倍率を6倍以上10倍以下にすることができる。それにより、外装缶に捲回体を挿入する際のスプリングバック、および電極とセパレータを積層する際の、セパレータ折り返し部分におけるスプリングバックが抑制され、エネルギー密度が向上する。このような観点から膜の剛性と膜の突刺強度のバランスを最も良好な範囲に設定するためには、長手方向の延伸倍率は6倍以上9倍以下が好ましく、さらに好ましくは7倍以上8倍以下である。
 延伸方法としては、例えば、同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等の方法を挙げることができる。中でも、突刺強度の向上、及び延伸の均一性、曲げ剛性の低剛性化の観点から、同時二軸延伸が好ましい。
 同時二軸延伸とは、長手方向の延伸と幅方向の延伸が同時に施される延伸方法をいい、各方向の延伸倍率は異なってもよい。逐次二軸延伸とは、長手方向及び幅方向の延伸が独立して施される延伸方法をいい、長手方向又は幅方向に延伸が為されているときは、他方向は非拘束状態又は定長に固定されている状態とする。
 工程(B)の延伸倍率は、面倍率で12倍以上120倍以下の範囲であることが好ましく、36倍以上65倍以下の範囲であることがより好ましい。各軸方向の延伸倍率は、長手方向に6倍以上10倍以下、幅方向に2倍以上12倍以下の範囲であることが好ましく、長手方向に7倍以上9倍以下、幅方向に6倍以上9倍以下の範囲であることがより好ましい。総面積倍率が12倍以上であると、得られる多孔膜に十分な強度を付与できる傾向にあり、一方、総面積倍率が120倍よりも高いと、膜の剛性を低くコントロールするのが難しい領域になるため、120倍以下が好ましい。
 工程(B)の延伸温度は、ポリオレフィン樹脂の溶融性及び製膜性の観点から、好ましくは90~150℃、より好ましくは100~140℃、さらに好ましくは110~130℃である。
[抽出工程(C)]
 工程(C)では、シート状成形体から孔形成材を除去して多孔膜を得る。孔形成材を除去する方法としては、例えば、抽出溶剤にシート状成形体を浸漬して孔形成材を抽出し、充分に乾燥させる方法が挙げられる。孔形成材を抽出する方法は、バッチ式と連続式のいずれであってもよい。多孔膜の収縮を抑えるために、浸漬及び乾燥の一連の工程中にシート状成形体の端部を拘束することが好ましい。また、多孔膜中の孔形成材残存量は、多孔膜全体の質量に対して1質量%未満であることが好ましい。
 孔形成材を抽出する際に用いられる抽出溶剤としては、ポリオレフィン樹脂に対して貧溶媒であり、孔形成材に対して良溶媒であり、かつ沸点がポリオレフィン樹脂の融点より低いものを用いることが好ましい。このような抽出溶剤としては、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化炭化水素類;ハイドロフルオロエーテル、ハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤;エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類が挙
げられる。なお、これらの抽出溶剤は、蒸留等の操作により回収して再利用してよい。また、孔形成材として無機材を用いる場合には、水酸化ナトリウム、水酸化カリウム等の水溶液を抽出溶剤として用いることができる。
[熱固定工程(D)]
 熱固定工程(D)では、ポリオレフィン微多孔膜の収縮を抑制するために、工程(C)の可塑剤抽出後に、熱固定を目的として微多孔膜の熱処理を行う。
 多孔膜の熱処理としては、物性の調整を目的として、所定の温度の雰囲気及び所定の延伸倍率で行う延伸操作、並びに/又は、延伸応力の低減を目的として、所定の温度の雰囲気及び所定の緩和率で行う緩和操作が挙げられる。これらの熱処理は、テンター又はロール延伸機を用いて行うことができる。なお、可塑剤抽出後の延伸及び緩和操作などを含む熱固定は、幅方向に行うことが好ましい。
 工程(D)の延伸操作では、膜の延伸倍率を膜の長手方向及び/又は幅方向に1.1倍以上、より好ましくは1.3倍以上、最も好ましくは1.5倍以上の延伸を施すことが、さらなる高強度かつ高気孔率な多孔膜が得られる観点から好ましい。
 また、緩和倍率は、好ましくは0.8~2.5倍、より好ましくは1.2~2.3倍、さらに好ましくは1.5~2.0倍である。本明細書で言う緩和倍率とは、熱固定工程の延伸機出口での膜の幅方向の寸法(mm)を延伸機入口での膜の幅方向の寸法(mm)で除した値のことを言う。
 緩和操作は、延伸操作後の膜の長手方向及び/又は幅方向への縮小操作のことであり、緩和率とは、熱固定工程における緩和倍率を延伸倍率で除した値であり、緩和率は1.0以下であることが好ましく、0.90以下であることがより好ましく、0.85以下であることがさらに好ましい。また、緩和率は、膜の高強度化の観点から0.5以上であることが好ましい。緩和操作は、長手方向と幅方向の両方向、又は長手方向と幅方向の片方だけで行ってよい。
 工程(D)におけるTDの延伸操作では、歪速度が、11%/sec以下であることが好ましく、2%/sec以上11%/sec以下がより好ましく、さらに好ましくは3%/sec以上9%/sec以下、最も好ましくは5%/sec以上8%/sec以下である。緩和操作での歪速度は、10%/sec以下であることが好ましく、0.1%/sec以上10%/sec以下がより好ましく、さらに好ましくは0.5%/sec以上7%/sec以下、最も好ましくは1.0%/sec以上5.0%/sec以下である。ここで歪速度とは、特定の処理に供される前後における物体の単位時間当たりの変化率を意味する。工程(D)では、延伸操作及び緩和操作の歪速度を一定値以下にすることで、微多孔膜の曲げ剛性と突刺強度をコントロールすることができ、それにより低剛性と高強度の両立が可能となる。理論に拘束されることを望まないが、延伸時の歪速度が大きいと、樹脂同士の絡み合いが緩和されないまま引っ張られる状態になるために、膜の剛性は高くなる。また、緩和時の歪速度が大きいと、膜のボーイングが大きくなるために曲げ剛性が高くなることを見出した。歪速度及び歪速度の比の計算方法については実施例に後述する。
 延伸及び緩和操作などを含む熱固定の温度は、ポリオレフィン樹脂の融点の観点から、100~170℃の範囲内であることが好ましい。延伸及び緩和操作の温度が上記範囲内であると、熱収縮率低減と気孔率とのバランスの観点から好ましい。熱固定温度の下限は、より好ましくは110℃以上、さらに好ましくは120℃以上、よりさらに好ましくは125℃以上であり、その上限は、より好ましくは170℃以下、さらに好ましくは160℃以下、よりさらに好ましくは150℃以下であり、最も好ましくは145℃以下である。
[微延伸工程(E)]
 ポリオレフィン微多孔膜の製造方法は、工程(E)を含むことが重要である。工程(E)では、膜の剛性のコントロールのために、工程(D)の後、ロール延伸機またはテンター延伸機により、長手方向に1.0%以上5.0%以下の微延伸を行うことが好ましく、より好ましくは、MDに1.5~4.0%の微延伸を行ない、さらに好ましくはMDに2.0%以上4.0%以下で微延伸を行ない、特に好ましくはMDに2.0~3.5%で微延伸を行なう。理論に拘束されることを望まないが、工程(E)で1.0%以上5.0%以下の微延伸を行うことにより曲げ係数を既定の範囲内にコントロールすることができる。
 工程(E)での延伸温度については、ポリオレフィン微多孔膜の(融点-70)℃以上かつ(融点-30)℃以下の温度範囲内で微延伸を行うことが好ましい。微延伸の温度範囲は、より好ましくは、膜の(融点-60)℃以上かつ(融点-40)℃以下である。本実施形態では、工程(B)での延伸倍率と工程(C)での各歪速度を好ましい範囲に設定した上で、工程(E)では前記の温度範囲内で微延伸を行うことにより、曲げ係数を規定の範囲内にコントロールすることができることを見出した。
<無機塗工層の形成>
 安全性、寸法安定性、耐熱性などの観点から、ポリオレフィン微多孔膜表面に無機塗工層を設けることができる。無機塗工層は、無機粒子などの無機成分を含む層であり、所望により、無機粒子同士を結着させるバインダ樹脂、無機粒子をバインダ樹脂中に分散させる分散剤などを含んでよい。
 無機粒子としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、及び酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、及び窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、硫酸バリウム、水酸化アルミニウム、水酸化酸化アルミニウム、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、及びケイ砂等のセラミックス;並びにガラス繊維などが挙げられる。無機粒子は、単独で用いてもよく、複数を併用してもよい。
 バインダ樹脂としては、例えば、共役ジエン系重合体、アクリル系重合体、ポリビニルアルコール系樹脂、及び含フッ素樹脂などが挙げられる。また、バインダ樹脂は、ラテックスの形態であることができ、水又は水系溶媒を含むことができる。分散剤は、スラリー中で無機粒子表面に吸着し、静電反発などにより無機粒子を安定化させるものであり、例えば、ポリカルボン酸塩、スルホン酸塩、ポリオキシエーテル、界面活性剤などである。
 無機塗工層は、例えば、上記で説明された含有成分のスラリーをポリオレフィン微多孔膜表面に塗布乾燥することにより形成されることができる。
<有機塗工層の形成>
 また、さらに電極との接着性を発現する接着層(有機塗工層)をポリオレフィン微多孔膜又は無機塗工層に付設してもよく、接着層を設けた場合、例えばラミネート型電池において変形等を抑えることができる。
<二次電池用ポリオレフィン微多孔膜>
 本発明の実施形態に係るポリオレフィン微多孔膜は、リチウムイオン二次電池用セパレータとして利用されることができる。ポリオレフィン微多孔膜は、リチウムイオン二次電池に組み込まれることによって、リチウムイオン二次電池の熱暴走を抑制することができる。
 なお、上述した各種物性の測定値は、特に断りの無い限り、後述する実施例における測定法に準じて測定される値である。
 次に、実施例及び比較例を挙げて本実施形態をより具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。
 特に断りがない限り、各測定は室温23℃±2℃、湿度40%±5%の環境下で行なった。
[粘度平均分子量]
 ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を求めた。
 ポリエチレンについては、次式により算出した。
  [η]=6.77×10-4Mv0.67
 ポリプロピレンについては、次式によりMvを算出した。
  [η]=1.10×10-4Mv0.80
[GPC-光散乱によるポリエチレンの多分散度(Mw/Mn)、Z平均分子量と重量平均分子量の比(Mz/Mw)の測定(光散乱-絶対法)]
 示差屈折率計と光散乱検出器を接続したGPC(ゲルパーミエーションクロマトグラフィー)を用い、以下の条件で、各樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、多分散度(Mw/Mn)、及び、Z平均分子量と重量平均分子量の比(Mz/Mw)を測定した。具体的には、Agilent社製、示差屈折計(RI)と、光散乱検出器(PD2040)、を内蔵したPL-GPC200を使用した。カラムとして、Agilent PLgel MIXED-A(13μm、7.5mmI.D×30cm)を2本連結して使用した。160℃のカラム温度で、溶離液として、1,2,4-トリクロロベンゼン(0.05wt%の4,4’-Thiobis(6-tert-butyl-3-methylphenolを含有)を、流速1.0ml/min、注入量500μLの条件で測定し、RIクロマトグラムと、散乱角度15°と90°の光散乱クロマトグラムを得た。得られたクロマトグラムより、Cirrusソフトを用いて、数平均分子量(Mn)、重量平均分子量(Mw)及びZ平均分子量(Mz)を得た。このMzとMwの値を用いてZ平均分子量と重量平均分子量の比(Mz/Mw)を、また、MwとMnの値を用いて多分散度(Mw/Mn)を得た。なお、ポリエチレンの屈折率増分の値は、0.053ml/gを用いた。
[DSC測定(示差走査熱量測定:Differential Scanning Calorimetric)]
 DSCは、島津製作所社製DSC60を使用して測定した。まず、PO微多孔膜を、直径5mmの円形に打ち抜き、数枚重ね合わせて3mgとしたものを測定サンプルとして用いた。このサンプルを、直径5mmのアルミニウム製オープンサンプルパンに敷き、クランピングカバーを乗せ、サンプルシーラーによりアルミニウムパン内に固定した。窒素雰囲気下、昇温速度10℃/分で30℃から200℃まで昇温し(1回目昇温)、200℃で5分ホールドした後、降温速度10℃/分で200℃から30℃まで降温した。続いて、30℃において5分間ホールドした後、再度、昇温速度10℃/分で30℃から200℃まで昇温した(2回目昇温)。2回目昇温の融解吸熱曲線において、極大となる温度をPO微多孔膜の融点とした。極大値が複数ある場合は、一番大きな融解吸熱曲線の極大値となる温度をPO微多孔膜の融点(Tm)として採用した。
[密度(g/cm)]
 JIS K7112:1999に従い、密度勾配管法(23℃)により、試料の密度を測定した。
[目付(g/m)]
 目付は、単位面積(1m)当たりのポリオレフィン微多孔膜の重量(g)である。1m×1mにサンプリング後、島津製作所製の電子天秤(AUW120D)にて重量を測定した。なお、1m×1mにサンプリングできない場合は、適当な面積に切り出して重量を測定した後、単位面積(1m)当たりの重量(g)に換算した。
[各層の厚み(μm)]
 東洋精機製の微少測厚器(タイプKBN、端子径Φ5mm)を用いて、雰囲気温度23±2℃で厚みを測定した。なお、厚みを測定する際には微多孔膜を10cm×10cmにサンプリング後、重ねて15μm以上になるように複数枚微多孔膜を重ねて、9か所を測定して平均を取り、その平均値を重ねた枚数で割った値を1枚の厚みとする。
[気孔率(%)]
 10cm×10cm角の試料をポリオレフィン微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと密度(g/cm)より、次式を用いて計算した。
   気孔率(%)=(体積-質量/混合組成物の密度)/体積×100
 なお、混合組成物の密度は、用いたポリオレフィン樹脂と他の成分の各々の密度と混合比より計算して求められる値を用いた。
[透気度(秒/100cm)]
 旭精工株式会社の王研式透気度測定機「EGO2」で透気度を測定した。
 透気度の測定値は、膜の幅方向に沿って両端から5cmの地点と中央1点との計3点の透気度を測定し、それらの平均値を算出した値である。
[突刺試験および目付換算突刺強度]
 カトーテック製のハンディー圧縮試験器KES-G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、室温23℃及び湿度40%の雰囲気下にて突刺試験を行うことにより、最大突刺荷重として突刺強度(gf)を測定し、かつ針が微多孔膜に触れてから最大応力(突刺強度)に達するまでの針の変位(mm)を突刺伸度として測定した。
 突刺試験の測定値は、膜の幅方向に沿って両端から5cmの地点と中央1点との計3点を測定し、それらの平均値を算出した値である。
 目付換算突刺強度は以下の式で求める。 目付換算突刺強度[gf/(g/m)] = 突刺強度[gf] / 目付[g/m
[孔径(μm)]
 ハーフドライ法に準拠し、パームポロメータ(Porous Materials,Inc.社:CFP-1500AE)を用い、平均孔径(μm)を測定した。浸液には同社製のパーフルオロポリエステル(商品名「Galwick」、表面張力15.6dyn/cm)を用いた。乾燥曲線、及び湿潤曲線について、印加圧力、及び空気透過量の測定を行い、得られた乾燥曲線の1/2の曲線と湿潤曲線とが交わる圧力PHD(Pa)から、次式により平均孔径dHD(μm)を求め、孔径とした。
  dHD=2860×γ/PHD
[曲げ剛性]
 カトーテックの純曲げ試験機KES-FB2-Aを用いて、雰囲気温度23±2℃雰囲気湿度40±2%で膜サンプルの曲げ剛性の値を測定した。サンプルをMD20cm×TD20cmにカットし、図1のようにTDの両端2辺を、固定チャック(2)と移動チャック(3)にチャッキングし、取り扱い説明書に従ってMDの曲げ剛性値の測定を行った。各設定は以下とする。
 アナログメーターの指針:10V
 SENS:4
 曲げ変形速度:0.5cm-1/sec
 曲率:±2.5cm-1
 曲げ剛性(gf×cm/cm)は、曲率を上方向に0.5(1/cm)~1.5(1/cm)と下方向に-0.5(1/cm)~-1.5(1/cm)に変化させたときの、単位幅当たりの曲げモーメントの変化率として算出する。同じ範囲で曲率を変化させた場合に、曲げモーメントが大きいほど、曲げに対する抵抗が大きく、セパレータにコシがあることを意味する。曲げ剛性は、セパレータを上方向、下方向に1回ずつ折り曲げたときの平均値を採用する。
また、曲げ係数(μgf×cm/cm)/μmは以下のように計算する。尚、曲げ係数の計算においては、曲げ剛性値(gf×cm/cm)を(μgf×cm/cm)に単位換算してから計算する。

 曲げ係数[(μgf×cm/cm)/μm]=曲げ剛性値[μgf×cm/cm]/膜厚[μm]

TDの曲げ剛性値を測定する場合は、MD20cm×TD20cmに切り出したサンプルのMDの両端2辺をチャッキングし、上記と同様に測定する。
なお、ポリオレフィン微多孔膜が表面に無機塗工層及び/又は有機塗工層を有する場合、それらの塗工層を微多孔膜から除外してから、曲げ剛性を測定するものとする。
[シャットダウン温度]
 厚さ10μmのNi箔を2枚(A,B)用意し、一方のNi箔Aを縦15mm、横10mmの長方形部分を残してテフロン(登録商標)テープでマスキングするとともに他方のNi箔Bには測定試料のセパレータを置き、セパレータの両端をテフロン(登録商標)テープで固定した。このNi箔Bを電解液1mol/Lのホウフッ化リチウム溶液(溶媒:プロピレンカーボネート/エチレンカーボネート/γ-ブチルラクトン=体積比1/1/2の混合溶媒)に浸漬してセパレータに電解液を含浸させた後、Ni箔(A,B)を貼り合わせ、2枚のガラス板で両側をクリップで押さえた。このようにして作製したNi箔電極を25℃のオーブンに入れ、200℃まで2℃/minで昇温した。この際のインピーダンス変化を電気抵抗測定装置「AG-4311」(安藤電気社製)を用いて、1V、1kHzの条件下で測定した。この測定においてインピーダンス値が1000Ωに達した温度をシャットダウン温度(℃)とした。
[耐電圧測定]
 ポリオレフィン微多孔膜の幅方向の中央1点について、MD10cm×TD10cmに切り出し、直径5mmのアルミニウム板で挟み、菊水電子工業製の耐電圧測定機(TOS9201)でこれの測定を実施した。測定条件については、直流電圧を初電圧0Vからスタートし、100V/secの昇圧速度で電圧を掛け、電流値が0.2mA流れた時の電圧値を微多孔膜の耐電圧測定値とした。なお、15mm間隔にMD5点×TD5点の合計25点測定し、その平均値を耐電圧測定値とした。
 また、単位膜厚当たりの耐電圧は以下のように計算した。単位膜厚当たりの耐電圧[V/μm]=耐電圧[V]/膜厚[μm]
[引張強度(MPa)、引張伸度(%)]
 JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG-A型(商標)を用いて、MD及びTDサンプル(形状;幅10mm×長さ100mm)について測定した。引張試験機のチャック間を50mmとし、サンプルの両端部(各25mm)の片面にセロハン(登録商標)テープ(日東電工包装システム(株)製、商品名:N.29)を貼ったものを用いた。更に、試験中のサンプル滑りを防止するために、引張試験機のチャック内側に、厚み1mmのフッ素ゴムを貼り付けた。
 なお、測定は、温度23±2℃、チャック圧0.40MPa、及び引張速度100mm/minの条件下で行った。
 引張強度(MPa)は、ポリオレフィン微多孔膜の破断時の強度を、試験前のサンプル断面積で除することで求めた。
 引張伸度(%)は、破断に至るまでの伸び量(mm)をチャック間距離(50mm)で除して、100を乗じることにより求めた。
[歪速度および歪速度比の計算]
 各工程及び各方向への延伸の歪速度を以下のように計算した。
 歪速度(%/sec)=(延伸倍率-1)×100/(延伸長(m)/((延伸前ライン速度(m/sec)+延伸後ライン速度(m/sec))/2))
 ここで、延伸長とは、工程(B)および工程(D)で、延伸開始から延伸終了までに膜が長手方向(MD)に移動する距離のことを指す。
 また、工程(D)における歪速度の算出は、延伸操作と緩和操作のそれぞれの歪速度を算出する。
[捲回体のスプリングバック評価]
 正極として厚み10μmのアルミニウム箔を、負極として厚み10μmのニッケル箔を用意し、正極、ポリオレフィン膜、負極、ポリオレフィン膜となるように重ねた後に捲回し、直径が20mmとなるように捲回体を作製した。その後、プレス機にて5MPa,30℃で10秒間プレスした後、3秒後と1分後の捲回体の厚みの差を評価した。なお、計3回測定し、その平均の値をスプリングバック値とした。スプリングバック値=100-(3秒後の捲回体の厚み/1分後の捲回体の厚み×100)[%]
 また、スプリングバック値を次の基準により評価した。
(評価基準)
 A: 2%未満
 B:2%以上5%未満
 C:5%以上10%未満
 D:10%以上15%未満
 E:15%以上
[つづら折りのスプリングバック評価]
 捲回体のスプリングバック評価で使用されたものと同じ正極と負極を用意した。ポリオレフィン膜を30mm間隔で、上下面が交互に入れ替わるように折り返しつつ、一方から正極を、他方から負極を挿入することを繰り返し、総厚みが20mmになるように積層体を作成した。プレス機にて5MPa,30℃で10秒間プレスした後、3秒後と1分後の積層体の厚みの差を評価した。なお、計3回測定し、その平均の値をスプリングバック値とした。スプリングバック値=100-(3秒後の積層体の厚み/1分後の積層体の厚み×100)[%]
 また、スプリングバック値を次の基準により評価した。
(評価基準)
 A: 1%未満
 B:1~3%未満
 C:3~5%以上
 D:5~7%以上
 E:7%以上
[衝突試験評価]
a.正極の作製
 正極活物質としてリチウムコバルト複合酸化物LiCoO、並びに導電材としてグラファイト及びアセチレンブラックを、バインダであるポリフッ化ビニリデン(PVDF)及びN-メチルピロリドン(NMP)に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ15μmのアルミニウム箔にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。得られた成形体を57.0mm幅にスリットして正極を得た。
b.負極の作製
 負極活物質として人造グラファイト、及びバインダとしてカルボキシメチルセルロースのアンモニウム塩とスチレン-ブタジエン共重合体ラテックスとを、精製水に分散させてスラリーを調製した。このスラリーを負極集電体となる銅箔にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。得られた成形体を58.5mm幅にスリットして負極を得た。
c.非水電解液の調製
 エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=1:1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1mol/Lとなるように溶解させて、非水電解液を調製した。
d.電池組立
 正極、実施例又は比較例で得られた多孔膜及び負極を捲回した後、常法により捲回電極体を作製し、外装缶に入るようにプレス機にてプレスした。なお、捲回数はポリオレフィン微多孔膜の厚み及びスプリングバックの程度によって調整した。得られた巻回電極体の最外周端部を絶縁テープの貼付により固定した。負極リードを電池缶に、正極リードを安全弁にそれぞれ溶接して、巻回電極体を電池缶の内部に挿入した。その後、非水電解液を電池缶内に5g注入し、ガスケットを介して蓋を電池缶にかしめることにより、幅42.0mm、高さ63.0mm、厚さ10.5mmの角型二次電池を得た。この角型二次電池を25℃の雰囲気下、0.2C(定格電気容量の1時間率(1C)の0.2倍の電流)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を絞り始めるという方法で、合計3時間充電を行った。続いて0.2Cの電流値で電池電圧3.0Vまで放電した。
[衝突試験]
a.衝突試験
 図2は、衝突試験の概略図である。
 衝突試験では、試験台上に配置された角型電池サンプル4の上に、サンプル4と丸棒5(φ=15.8mm)が概ね直交するように、丸棒5を置いて、丸棒5から61cmの高さの位置から、丸棒5の上面へ18.2kgの錘6を落すことにより、サンプル4に対する衝撃の影響を観察する。
 図2を参照して、実施例及び比較例における衝突試験の手順を以下に説明する。
 25℃の環境下で、上記項目で得た二次電池を1Cの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で合計3時間充電した。
 次に、25℃の環境下で、二次電池を平坦な面に横向きに置き、二次電池の中央部を横切るように、直径15.8mmのステンレスの丸棒5を配置した。丸棒5は、その長軸がセパレータの長手方向(MD)と平行となるように配置した。二次電池の中央部に配置した丸棒5から二次電池の縦軸方向に対して、直角に衝撃が加わるように、18.2kgの錘6を61cmの高さから落下させた。衝突後、3秒後と3分後に二次電池の表面温度を測定した。5セルずつ試験を行い、下記基準に即して評価した。本評価項目については、AとBとCを合格の基準とした。なお、二次電池の表面温度とは、二次電池の外装体の底側から1cmの位置を熱電対(K型シールタイプ)で測定した温度である。
 A:全てのセルにおいて、表面温度が30℃以下。
 B:全てのセルにおいて、表面温度が50℃以下。
 C:全てのセルにおいて、表面温度が70℃以下。
 D:全てのセルにおいて表面温度が100℃以下。
 E:1個以上のセルで表面温度が100℃を超過、又は発火。
b.出力試験(25℃)
 衝突試験と同様にして組み立てて評価のために選定された角型二次電池について、25℃の環境下で、1Cの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で合計3時間充電した。充電後の電池を、25℃の雰囲気下の恒温状態で放電終止電圧3Vまでの1C放電容量と5C放電容量を測定し、5C容量/1C容量を出力特性値とした。なお、下記基準に即して出力特性値を評価した。
  A:出力特性値が0.95以上。
  B:出力特性値が0.90以上0.95未満。
  C:出力特性値が0.85以上0.90未満。
  D:出力特性値が0.80以上0.85未満。
  E:出力特性値が0.80未満。
[オーブン試験]
 衝突試験と同様にして組み立てて評価のために選定された電池を用いて、25℃の環境下で、上記項目で得た二次電池を1Cの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で合計3時間充電した。充電後の電池を室温から所定の温度まで5℃/分で昇温し、所定の温度で60分間放置し、発火状況を確認した。なお、電池を3個作製し、下記基準に即して結果を評価した。
A:136℃にて、いずれの電池も発火しなかったもの。
B:134℃にて、いずれの電池も発火しなかったもの。
C:132℃にて、いずれの電池も発火しなかったもの。
D:130℃にて、いずれの電池も発火しなかったもの。
E:130℃にて、少なくとも1つの電池が発火したもの。
[微短絡試験]
 衝突試験と同様にして組み立てて評価のために選定された電池を用いて、25℃の環境下で、終止電池電圧4.0Vの条件下で3時間定電流定電圧(CCCV)充電した後、4.0V定電圧充電を2時間継続する手法により、電池電圧を4.0Vに調整する。続いて25℃に設定した恒温槽内で、電池を10kPaの圧力で加圧した状態で1時間静置し、電圧が3.7V以下に低下したものを微短絡とする。電池を10個作製し、微短絡した電池の個数で下記基準に即して4.0V微短絡検査試験の結果を評価した。
A:微短絡した電池の個数が0個
B:微短絡した電池の個数が1個
C:微短絡した電池の個数が2~3個。
D:微短絡した電池の個数が4~5個。
E:微短絡した電池の個数が6個以上。
[実施例1]
 (A)Mv70万、多分散度(Mw/Mn)7.9の高密度ポリエチレン(PE5)を45質量%、Mv25万、多分散度(Mw/Mn)7.2の高密度ポリエチレン(PE2)を45質量%、Mv40万、多分散度(Mw/Mn)4.5のホモポリプロピレン(PP1)10質量%をタンブラーブレンダーを用いてドライブレンドして、原料樹脂混合物を得た。32質量%の原料樹脂混合物と68質量%の流動パラフィンと0.1質量%の酸化防止剤とを配合して、ポリオレフィン組成物を得た。次に、ポリオレフィン組成物を二軸押出機に投入し、キャストロール間距離900μmで溶融したポリオレフィン組成物を押出してゲル状シートを形成し、キャストロールで冷却固化した。
 (B)同時二軸延伸機を用いて設定温度119℃、面倍率64倍(長手方向延伸倍率8倍、幅方向延伸倍率8倍)で、冷却固化されたシートを延伸して延伸シートを得た。
 (C)その後、延伸シートを塩化メチレンに浸漬し、流動パラフィンを抽出除去してから乾燥させて多孔化した。
 (D)さらに、得られた多孔化物を一軸延伸機により温度135℃で幅方向に延伸倍率1.8倍延伸した後、緩和倍率1.6倍に緩和した。
 (E)熱固定工程の後、70℃の温度で、微延伸倍率3%でロール延伸にて微延伸して、厚みが5.8μmのポリオレフィン微多孔膜を得た。
 ポリオレフィン微多孔膜を上記方法に従ってスプリングバック評価と衝突試験を実施した。ポリオレフィン微多孔膜の製造条件及び評価結果を表1に示す。また、使用されたポリマー原料の詳細を表3に示す。
[実施例2~21、及び比較例1~21]
 表1及び2に示される製造条件を使用したこと以外は実施例1と同様の方法でポリオレフィン微多孔膜を得て、評価した。評価結果を下記表1及び2に示す。ただし、比較例18は、工程(D)において緩和操作を実施しなかった。比較例3および比較例13は、工程(E)において、MD微延伸を実施しなかった。
[比較例22]
 工程(B)においてロール延伸機を用いて設定温度115℃、長手方向延伸倍率6倍で、冷却固化されたシートを延伸した後に続いてテンターを用いて設定温度120℃、幅方向延伸倍率7倍で延伸を実施したこと及び、工程(E)においてMD微延伸を実施しなかったこと以外は実施例1と同様の方法でポリオレフィン微多孔膜を得て、評価した。評価結果を下記表1及び2に示す。
[比較例23]
 重量平均分子量が590,000、融点が161℃のポリプロピレン樹脂を200℃に設定した単軸押出機にフィーダーを介して投入し、押出機先端に設置したTダイ(200℃)から押し出した。その後直ちに、溶融した樹脂にエアナイフを用いて25℃の冷風を当て、95℃に設定したキャストロールでドロー比200、巻き取り速度20m/分の条件で巻き取り、フィルムを成形した。得られたフィルムを、145℃に加熱された熱風循環オ-ブン中で1時間アニールを施した。次に、アニール後のフィルムを25℃の温度で縦方向に1.2倍で一軸延伸して、延伸フィルムを得た。次いで、延伸フィルムを140℃の温度で縦方向に2.5倍で一軸延伸して、150℃で熱固定した後に、微多孔性フィルムを巻き取った。
[比較例24]
 重量平均分子量700,000、融点162℃のポリプロピレン樹脂100質量%を、単軸押出機を用いて樹脂温度200℃で溶融押出し、ノズル径0.60mmのノズルより、単孔当たり0.6g/分の吐出量で吐出させて紡糸した。紡糸により得られた繊維を空気で冷却しながら吸引することで、100m/分のライン速度で移動しているネット面に捕集した。ネット面に捕集された繊維束を線圧40N/mmで挟圧し、引取りロールに巻き取ることで不織布を製造した。得られた不織布の剛性が低く、スプリングバック評価用の捲回体および積層体、また角型電池作製時にシワ入り、各種評価が出来なった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
表1及び2中の略号の説明
 PC:ポリオレフィン組成物中の原料樹脂混合物の割合[%]
 C/C:キャストロール間間隔(μm)
 HS:熱固定工程
Figure JPOXMLDOC01-appb-T000009
 P  固定点
 Q  可動点
 1  膜サンプル
 2  固定チャック
 3  移動チャック
 4  角型電池サンプル
 5  丸棒
 6  錘

Claims (10)

  1.  膜厚が1.0μm以上17.0μm以下であって、長手方向(MD)の曲げ剛性(gf×cm/cm)を膜厚(μm)の3乗で除した値である曲げ係数が、0.3(μgf×cm/cm)/μm以上1.5(μgf×cm/cm)/μm以下であって、かつ目付換算突刺強度が70gf/(g/m)以上160gf/(g/m)以下であるポリオレフィン微多孔膜。
  2.  前記目付換算突刺強度が、80gf/(g/m)以上140gf/(g/m)である、請求項1に記載のポリオレフィン微多孔膜。
  3.  突刺強度が300gf以上950gf以下である、請求項1又2に記載のポリオレフィン微多孔膜。
  4.  MDの引張強度およびTDの引張強度が1000kgf/cm以上である、請求項1~3のいずれか1項に記載のポリオレフィン微多孔膜。
  5.  MDの引張強度とTDの引張強度の比(MD/TD引張強度比)が0.80~1.20である、請求項1~4のいずれか1項に記載のポリオレフィン微多孔膜。
  6.  シャットダウン温度が125℃以上150℃以下である、請求項1~5のいずれか1項に記載のポリオレフィン微多孔膜。
  7.  透気度が30sec/100cm以上250sec/100cm以下である、請求項1~6のいずれか1項に記載のポリオレフィン微多孔膜。
  8.  単位膜厚当たりの耐電圧が、0.130kV/μm以上である、請求項1~7のいずれか1項に記載のポリオレフィン微多孔膜。
  9.  平均孔径が、0.010μm以上0.080μm以下である、請求項1~8のいずれか1項に記載のポリオレフィン微多孔膜。
  10.  ポリエチレンの割合が50質量%以上100質量%以下であり、かつポリプロピレンの割合が0%以上20質量%以下である、請求項1~9のいずれか1項に記載のポリオレフィン微多孔膜。
PCT/JP2020/038210 2019-10-08 2020-10-08 ポリオレフィン微多孔膜 WO2021070917A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227008877A KR20220048022A (ko) 2019-10-08 2020-10-08 폴리올레핀 미다공막
CN202080070450.1A CN114555687B (zh) 2019-10-08 2020-10-08 聚烯烃微多孔膜
US17/765,190 US20220389203A1 (en) 2019-10-08 2020-10-08 Polyolefin Microporous Membrane
JP2021551709A JP7140926B2 (ja) 2019-10-08 2020-10-08 ポリオレフィン微多孔膜
EP20874698.2A EP4043516A4 (en) 2019-10-08 2020-10-08 MICROPOROUS POLYOLEFIN MEMBRANE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019185470 2019-10-08
JP2019-185470 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021070917A1 true WO2021070917A1 (ja) 2021-04-15

Family

ID=75437241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038210 WO2021070917A1 (ja) 2019-10-08 2020-10-08 ポリオレフィン微多孔膜

Country Status (6)

Country Link
US (1) US20220389203A1 (ja)
EP (1) EP4043516A4 (ja)
JP (1) JP7140926B2 (ja)
KR (1) KR20220048022A (ja)
CN (1) CN114555687B (ja)
WO (1) WO2021070917A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279324A (ja) * 1998-03-30 1999-10-12 Asahi Chem Ind Co Ltd ポリエチレン微多孔膜
JP2003105122A (ja) * 2001-09-28 2003-04-09 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2010538097A (ja) * 2007-08-31 2010-12-09 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP2016102201A (ja) * 2014-11-12 2016-06-02 東レ株式会社 多孔性フィルム
JP2016102203A (ja) * 2014-11-12 2016-06-02 東レ株式会社 多孔性フィルム、および透湿防水シート
JP2016191006A (ja) 2015-03-31 2016-11-10 旭化成株式会社 ポリオレフィン微多孔膜の製造方法、電池用セパレータ、及び非水電解液二次電池
JP2017027945A (ja) * 2015-07-24 2017-02-02 旭化成株式会社 蓄電デバイス用セパレータ
WO2019045077A1 (ja) * 2017-08-31 2019-03-07 旭化成株式会社 ポリオレフィン微多孔膜
WO2019107119A1 (ja) * 2017-11-28 2019-06-06 旭化成株式会社 蓄電デバイス用セパレータ及びその製造方法、並びに蓄電デバイス及びその製造方法
JP2019157060A (ja) * 2018-03-16 2019-09-19 東レ株式会社 ポリオレフィン微多孔膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325405B2 (ja) * 2007-10-09 2013-10-23 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
JP2009149710A (ja) * 2007-12-19 2009-07-09 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
KR102027261B1 (ko) * 2012-03-30 2019-10-01 도레이 카부시키가이샤 폴리에틸렌 미다공막 및 그 제조방법
JP2015208893A (ja) 2014-04-24 2015-11-24 東レバッテリーセパレータフィルム株式会社 ポリオレフィン製積層微多孔膜
JP6208187B2 (ja) * 2015-09-03 2017-10-04 旭化成株式会社 ポリオレフィン微多孔膜、蓄電デバイス用セパレータ、及び蓄電デバイス
JP7045862B2 (ja) * 2017-03-24 2022-04-01 旭化成株式会社 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
CN110461925B (zh) 2017-03-27 2022-03-22 旭化成株式会社 聚烯烃微多孔膜及聚烯烃微多孔膜的制造方法
EP3689604A4 (en) 2017-10-13 2020-11-18 Asahi Kasei Kabushiki Kaisha MICROPOREOUS POLYOLEFIN FILM AND RECHARGEABLE LITHIUM-ION BATTERY INCLUDING LEDIT MICROPOREOUS POLYOLEFIN FILM

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279324A (ja) * 1998-03-30 1999-10-12 Asahi Chem Ind Co Ltd ポリエチレン微多孔膜
JP2003105122A (ja) * 2001-09-28 2003-04-09 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2010538097A (ja) * 2007-08-31 2010-12-09 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP2016102201A (ja) * 2014-11-12 2016-06-02 東レ株式会社 多孔性フィルム
JP2016102203A (ja) * 2014-11-12 2016-06-02 東レ株式会社 多孔性フィルム、および透湿防水シート
JP2016191006A (ja) 2015-03-31 2016-11-10 旭化成株式会社 ポリオレフィン微多孔膜の製造方法、電池用セパレータ、及び非水電解液二次電池
JP2017027945A (ja) * 2015-07-24 2017-02-02 旭化成株式会社 蓄電デバイス用セパレータ
WO2019045077A1 (ja) * 2017-08-31 2019-03-07 旭化成株式会社 ポリオレフィン微多孔膜
WO2019107119A1 (ja) * 2017-11-28 2019-06-06 旭化成株式会社 蓄電デバイス用セパレータ及びその製造方法、並びに蓄電デバイス及びその製造方法
JP2019157060A (ja) * 2018-03-16 2019-09-19 東レ株式会社 ポリオレフィン微多孔膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4043516A4

Also Published As

Publication number Publication date
JP7140926B2 (ja) 2022-09-21
JPWO2021070917A1 (ja) 2021-04-15
EP4043516A4 (en) 2022-11-23
EP4043516A1 (en) 2022-08-17
KR20220048022A (ko) 2022-04-19
CN114555687A (zh) 2022-05-27
CN114555687B (zh) 2023-11-24
US20220389203A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
KR100977345B1 (ko) 폴리올레핀제 미다공막
JP4931911B2 (ja) ポリオレフィン微多孔膜
US9356275B2 (en) Laminated separator including inorganic particle and polyolefin layer for electricity storage device
KR101723275B1 (ko) 폴리올레핀제 미다공막
JP7045862B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP6895570B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
WO2009136648A1 (ja) 高出力密度リチウムイオン二次電池用セパレータ
JP6823718B2 (ja) ポリオレフィン微多孔膜、蓄電デバイス用セパレータ、及び蓄電デバイス
JP6864762B2 (ja) ポリオレフィン微多孔膜
WO2020256138A1 (ja) ポリオレフィン微多孔膜
CN108623876B (zh) 聚烯烃微多孔膜及聚烯烃微多孔膜的制备方法
JP7343716B2 (ja) ポリオレフィン微多孔膜
WO2021070917A1 (ja) ポリオレフィン微多孔膜
JP2022051238A (ja) ポリオレフィン微多孔膜
JP2023164348A (ja) ポリオレフィン微多孔膜
JP2023161496A (ja) ポリオレフィン微多孔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551709

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227008877

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020874698

Country of ref document: EP

Effective date: 20220509